[0001] The invention is directed to the preparation of polymer laminated base paper and
more in particular to the preparation of polymer laminated photographic base paper.
[0002] Polymer laminated base paper for photographic printing paper is conventionally prepared
from a base paper that is laminated with at least one polymer resin layer, usually
a titanium dioxide filled polyethylene, polypropylene or a polymethylene-methacrylate
resin, by extrusion-coating (or co-extrusion-coating) of a polymer melt onto the surface
of the base paper.
[0003] In JP-A 57-102622 a process is described for the extrusion-coating of a base paper
with polyethylene, in which process the base paper is subjected to a corona treatment,
followed by heating to a temperature of at least 80°C. This process aims at improving
the adhesion between base paper and polymer coating.
[0004] An important aspect of the quality of polymer resin laminated base paper is the resin
surface appearance, which should not have a large number of crater-like defects (or
pits) after extrusion-coating of the polymer resin on the base paper.
[0005] Further important aspects of photographic base paper are the speed of production
and the thickness of the polymer layers. Both aspects are important in view of the
economy of the process of producing photographic print paper. The formation of pits
has turned out to be strongly dependent on those aspects.
[0006] It has been attempted to suppress the number of pits by increasing the thickness
of the polymer resin layer. At high extrusion-coating speeds, such as over 300 m/min
this is not sufficiently effective, unless very large amounts of polymer are used.
Furthermore, it has economical disadvantages as the polymer resin is an important
cost factor in the production of photographic print paper.
[0007] At extrusion-coating speeds of the polymer resin of 300 m/min or more it has been
found to be much more difficult to reduce the number of pits.
[0008] In the art of providing polymer laminated photographic base paper there is a need
for high speed production, especially during the extrusion-coating of the paper with
the polymer resin, whereby the amount of pits remains at a sufficiently low value.
[0009] Accordingly it is an object of the present invention to provide a process for the
preparation of a polymer laminated base paper, more in particular a polymer laminated
photographic base paper, wherein the number of pits is decreased, especially at higher
extrusion-coating speeds.
[0010] It is a further object of the invention to provide a process for the preparation
of a polymer laminated base paper, more in particular a polymer laminated photographic
base paper, wherein the number of pits is decreased, at higher extrusion-coating speeds,
without the need to increase the polymer weight.
[0011] The present invention is based thereon, that the coated paper shows less pits in
case the base paper web is heated, preferably by infrared radiation, prior to the
extrusion-coating with the polymer resin.
[0012] Accordingly the present invention is directed to a process for the preparation of
polymer laminated base paper, said process comprising laminating a base paper web
on at least one side thereof with at least one polymer layer, by extrusion-coating
at a coating speed of 300 m/min or more, wherein the said base paper web is heated
prior to laminating.
[0013] Surprisingly it has been found that with this process the number of pits can be reduced,
even at high extrusion- coating speeds, such as extrusion-coating speeds in excess
of 300m/min. The advantages of the invention become apparent already at extrusion
speeds of 300 m/min or over. It is preferred to use a speed of at least 350 m/min,
more in particular at least 400 m/min. Presently an upper limit of 700 m/min is considered
acceptable.
[0014] In the broadest sense the present invention resides therein that the paper web is
heated just prior to the (co-)extrusion-coating. This heating can be done by the application
of heated air, heated rollers and/or by radiation. More in particular, preference
is given to the use of radiation in the Near Infra Red (NIR) region. In particular,
it is to be noted that the NIR radiation can be emitted at radiation temperatures
of over 2500 K, preferably over 2900 K, most preferred over 3000 K. Generally, the
upper limit for the emission temperature is 3500 K.
[0015] It has been found that surprisingly the use of NIR radiation provides good results
in terms of product properties. Further, it has been found that in terms of heating
rate the use of NIR has advantages.
[0016] The advantages of the treatment of the web by infra-red radiation, with wavelength
ranges between 0.8 µm and 1 mm, results in the increase of the web temperature in
an extremely short treatment period, usually less than 1 second. With the use of conventional
heating technologies this is less easy too achieve. The fastest temperature increase
can be realised with NIR radiation of a wavelength between 0.8 and 1.5 µm. Advantages
of this method are that it is contactless, eliminating the risk of mechanical damage
as in case of the use of heated rollers and is highly flexible as the heating power
can continuously and immediately be adapted to process needs, such as varying laminating
speed, with temperature controlling devices which control the surface temperature.
[0017] In the heating step prior to the extrusion-coating the temperature of the paper is
preferably raised to a value of at least 30°C, preferably to a value between 30 and
125°C. More in particular the upper limit of the temperature of the web is 90°C. In
case energy consumption is a consideration, the temperature may be kept at a value
of less than 80°C without negative effects.
[0018] The extrusion-coating can be done with one layer of polymer or with a combination
of polymer layers by co-extrusion. The paper web can be coated on one side or on both
sides, the latter embodiment having preference. The polymers to be used for the extrusion-coating
are the conventional polymers used in paper coating, more in particular in the preparation
of photographic base paper. Examples are polyolefins, polyacrylates or polyesters.
More in particular, the coating is done using low-density polyethylene, high density
polyethylene and blends thereof. The amount of polymer coating depends on the required
properties of the laminated base paper, such as stiffness, gloss, number of pits and
the like. More in particular the amount is preferably not more than 50 g/m
2, more preferably between 25 and 50 g/m
2.
[0019] The heating step can be incorporated in an extrusion-coating line for paper. It is
to be noted that in case of the use of more than one layer of polymer resin it is
possible to use co-extrusion. The term 'extrusion' is therefor intended to include
also co-extrusion.
[0020] In the extrusion line also other treatments of the paper web can be used such as
corona treatment, ozone treatment, flame-treatment and plasma treatment, which treatments
all aim at improving the adhesion of the polymer melt to the base paper web.
[0021] The invention is now elucidated on the basis of the attached figure. In this figure
an extrusion-coating line has been shown. The base-paper web is fed, via a number
of rollers, past a corona treatment, via the nip-roll to the nip-zone. The polymer
melt and the base paper web come together in the nip. The polymer melt is then cooled
on the chill-roll and is released from the chill-roll at the release-roll, from where
it is transported further.
[0022] Between the corona treatment and the nip-roll, NIR radiation equipment is installed.
In order to get a very good efficiency, the infra-red radiation is provided from one
side and a radiation mirror is provided on the other side. It is also possible to
install the NIR-radiation equipment before the corona treatment.
[0023] It is to be noted that the present figure shows lamination on only one side of the
paper web. In case lamination on both sides has to be provided, the partly laminated
paper web can be laminated on the other side in a comparable co-extrusion line. It
is also possible to include a second extruder and, if necessary, suitable radiation
equipment in this line.
[0024] The invention is now elucidated on the basis of the Example.
Example
[0025] Two paper substrates were used for testing. These substrates, or base papers, represent
a range of base paper qualities as can be found in the market. Paper substrate '1'
represents a good quality in relation to the number of pits. Paper substrate '2' represents
a lower quality.
[0026] The web width of the substrates was 47 cm. The substrates were first extrusion coated
with 21.0 g/m2 transparent polyolefin resin film on the backside at a line speed of
200 m/min.
[0027] Before extrusion-coating of the topside, the substrate was pretreated with corona
and subsequently preheated with NIR radiation up to a temperature of 39°C or 83°C.
The treating width of the NIR-equipment covered 24 cm in the centre of the total web
width of 47 cm. For the pretreatment two NIR-units were used. After the online pretreatments
(Corona and preheating) the substrate was extrusion coated at the topside with a polyolefin
resin LDPE of 28 g/m2 (containing metaloxide, dyes, coloured pigments, optical brighteners
and the like) at a speed of 400 m/min. The hotmelt (temperature 326°C) was nipped
(pressure 6 bar) between the substrate and a cooling chill-roll. Because of the NIR-pretreatment
the crater like defects or so-called pits defects decreased in comparison to the samples
which received no heat pretreatment (remaining at room temperature). The NIR-pretreatment
shows no disadvantage in the number of releasing defects, when the extrusion coated
web releases from the cooling chill-roll.
[0028] The following test results are obtained which shows the effectivity of the heat pretreatment
in order to reduce the number of pits defects:

In the example the following methods were used to determine the various parameters:
Pits: Olympus microscope; measure area of 4 mm2
Web temperature: Minolta Land temperature meter.
[0029] These results show that for the lower quality base paper type, a significant reduction
of the number of pits can be realised, even at temperatures as high as 83°C. With
a good quality of base paper also a significant reduction of the number of pits is
realised.
1. Process for the preparation of polymer laminated base paper, said process comprising
laminating a base paper web on at least one side thereof with at least one polymer
layer by extrusion-coating at a coating speed of 300 m/min or more, wherein the said
base paper web is heated prior to laminating.
2. Process according to claim 1, wherein the coating speed is at least 350, preferably
at least 400 m/min, more in particular not more than 700 m/min.
3. Process according to claim 1 or 2, wherein the said heating is done by use of heated
air, heated roller(s) and/or radiation.
4. Process according to claim 3, wherein the said radiation is near-infrared radiation.
5. Process according to claim 4, wherein the said infrared radiation is emitted at temperatures
of over 2500 K.
6. Process according to claims 1-5, wherein the base paper web is extrusion-coated on
both sides.
7. Process according to claims 1-6, wherein the said polymer is a polyolefin, a polyacrylate
or a polyester.
8. Process according to claims 1-7, wherein the said base paper web is preheated to a
temperature of between 30 and 125°C.
9. Process according to claim 8, wherein the temperature is not more than 90°C.
10. Process according to claims 1-9, wherein the base paper web is subjected to one or
more additional other treatments, prior to extrusion-coating.
11. Process according to claim 10, wherein the said other treatment comprises at least
one of corona treatment, ozone treatment, flame treatment and plasma treatment.
12. Process according to claims 1-11, wherein the laminated base paper is a polymer laminated
photographic base paper.
13. Process according to claim 12, wherein the polymer laminated photographic base paper
is provided with at least one layer of a photographic emulsion.
14. Process according to claim 13, wherein the polymer laminated photographic base paper
is provided with at least one layer of a gelatin sublayer between the polymer coating
and the photographic emulsion.
15. Polymer laminated photographic base paper or print paper obtainable by the process
of claims 12-14.