BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
[0001] The present invention relates to improvement of handheld type four-cycle engines
which can desirably be used mainly as a power source for machines for portable operation
such as trimmers.
DESCRIPTION OF THE RELEVANT ART
[0002] With regard to conventional handheld type four-cycle engines, one in which an oil
mist generated from the oil stored in an oil reservoir is circulated inside the engine
in order to lubricate the inside of the engine regardless of the operational position
of the engine is already known in Japanese Patent Application Laid-open No. 10-288019.
[0003] However, the lubrication system disclosed in the above-mentioned patent publication
has a comparatively long and complicated circulation route in which the oil mist is
circulated from the oil tank to the crank chamber, then to the valve operation chamber
and is then returned to the oil tank. Such a long and complicated circulation route
for the oil mist causes an increase in the size of the engine main body, which includes
the circulation route, and makes it difficult to reduce the weight thereof. Weight
reduction is one of the important issues when considering improvements in the operability
of, in particular, handheld type four-cycle engines.
SUMMARY OF THE INVENTION
[0004] The present invention has been carried out in view of the above-mentioned circumstances,
and it is an object of the present invention to provide a handheld type four-cycle
engine which can reliably lubricate the valve operation mechanism regardless of the
operational position of the engine while making the engine main body more compact
and lighter.
[0005] In accordance with a first characteristic of the present invention in order to achieve
the above-mentioned objective, there is proposed a handheld type four-cycle engine
including a crankcase having a crank chamber housing a crankshaft; a cylinder block
having a cylinder bore; and an intake valve, an exhaust valve and a valve operation
mechanism provided in a side wall of the cylinder block, the valve operation mechanism
being operable in association with the crankshaft so as to open and close the intake
valve and the exhaust valve, wherein an oil tank for storing oil is provided in one
side wall running the length of the crankcase and the cylinder block, and the oil
tank houses the valve operation mechanism and oil mist generation means for generating
oil mist from the stored oil.
[0006] In accordance with the above-mentioned first characteristic, since the oil tank can
be filled with the oil mist generated by the oil mist generation means, each part
of the valve operation mechanism disposed inside the oil tank can be lubricated reliably
by the above-mentioned oil mist regardless of the operational position of the engine.
It is therefore unnecessary to provide the engine main body with a special oil supply
passage for lubricating the valve operation mechanism, and the size and weight of
the engine can thus be reduced. Moreover, since the oil tank is provided in one side
wall running the length of the crankcase and the cylinder block, it is unnecessary
to provide an oil reservoir in the lower part of the crankcase, and the total height
of the engine can thus be reduced and the size of the engine can be further reduced.
[0007] In accordance with a second characteristic of the present invention, in addition
to the above-mentioned first characteristic, there is proposed a handheld type four-cycle
engine wherein an outward route and an return route are provided for communication
between the oil tank and the crank chamber above the oil stored in the oil tank, and
valve means is provided for introducing the positive pressure component of pressure
pulsations generated in the crank chamber into the side of the oil tank.
[0008] The above-mentioned valve means corresponds to the one-way valve 51 described in
the embodiment of the present invention below.
[0009] In accordance with the above-mentioned second characteristic, since the oil mist
generated in the oil tank is circulated between the oil tank and the crank chamber
by utilising the pressure pulsations of the crank chamber, the crankshaft and the
piston can be lubricated regardless of the operational position of the engine. Moreover,
since it is sufficient for the oil mist to merely circulate between the two chambers,
that is to say, the oil tank and the crank chamber, the outward and return routes
for providing communication between the two chambers can be made comparatively short
and simple, and the size and weight of the engine can be further reduced.
[0010] In accordance with a third characteristic of the present invention, in addition to
the above-mentioned first or second characteristics, there is proposed a handheld
type four-cycle engine wherein a breather chamber is communicated with the return
route between the valve means and the oil tank, and the breather chamber is communicated
with an air cleaner of an intake system on one side and with a suction chamber communicated
with the oil tank via an orifice on the other side.
[0011] In accordance with the above-mentioned third characteristic, the blowby gas generated
in the crank chamber is transferred to the breather chamber together with the oil
mist, and separated into gas and liquid. Then, the blowby gas is discharged to the
air cleaner, and the liquefied oil flows into the suction chamber via the orifice
and can be returned to the low pressure oil tank.
[0012] Furthermore, in accordance with a fourth characteristic of the present invention,
there is proposed a handheld type four-cycle engine including a crankcase having a
crank chamber housing a crankshaft; a cylinder block having a cylinder bore; and an
intake valve, an exhaust valve and a valve operation mechanism provided in a side
wall of the cylinder block, the valve operation mechanism being operable in association
with the crankshaft so as to open and close the intake valve and the exhaust valve,
characterised in that an oil tank for storing oil that is separate from the crank
chamber is provided in one side wall running the length of the crankcase and the cylinder
block, the oil tank houses the valve operation mechanism and oil mist generation means
for generating oil mist from the stored oil and is arranged so that the oil mist generated
inside the oil tank can be supplied to the crank chamber, a cooling fan driven by
the crankshaft is placed so as to adjoin the oil tank, and a power output mechanism
is provided on the crankshaft so that the crankcase is interposed between the power
output mechanism and the oil tank.
[0013] In accordance with the above-mentioned fourth characteristic, since the oil tank
is provided in one side wall running the length of the crankcase and the cylinder
block, it is unnecessary to provide an oil reservoir in the lower part of the crankcase,
the total height of the engine can thus be reduced and the engine can be made compact.
Moreover, since the oil tank is filled with the oil mist generated by the oil mist
generation means and the oil mist is supplied to the crank chamber, each component
inside the crank chamber as well as the valve operation mechanism placed inside the
oil tank can be lubricated reliably regardless of the operational position of the
engine.
[0014] Furthermore, since the cooling fan is placed so as to adjoin the oil tank, the oil
tank and, therefore, the stored oil and the oil mist inside the oil tank can be cooled
effectively by the cooling air generated by the cooling fan, thus efficiently carrying
out lubrication and cooling of each component.
[0015] Moreover, since the valve operation mechanism and the power output mechanism are
linked to the two ends of the crankshaft, the loads arising from the valve operation
mechanism and the power output mechanism, during operation of the engine, are applied
to the two separate ends of the crankshaft, it is thus possible to prevent the load
applied to the crankshaft, its bearings and the side wall of the crankcase from being
localised and the durability thereof can be enhanced.
[0016] In accordance with a fifth characteristic of the present invention, in addition to
the above-mentioned first or fourth characteristic, there is proposed a handheld type
four-cycle engine wherein a carburettor and an exhaust muffler are placed on the two
sides of the cylinder block along a direction perpendicular to the,axes of both the
cylinder bore and the crankshaft.
[0017] In accordance with the above-mentioned fifth characteristic, the carburettor and
the exhaust muffler can be easily arranged without any obstruction from the oil tank,
the cooling fan or the power output mechanism thus helping to make the engine more
compact.
[0018] The above-mentioned oil mist generation means corresponds to the oil slingers 36
to 41 described in the embodiment of the present invention below, and the above-mentioned
power output mechanism corresponds to the centrifugal clutch 31 described in the embodiment
below.
[0019] The above-mentioned objectives, other objectives, characteristics and advantages
of the present invention will become apparent from an explanation of preferable embodiments
which will be described in detail below by reference to the attached drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0020] Fig. 1 is an oblique view showing one embodiment of the handheld type four-cycle
engine of the present invention in practical use.
[0021] Fig. 2 is a vertically sectioned view of the above-mentioned four-cycle engine.
[0022] Fig. 3 is a cross-sectional view at line 3-3 in Fig. 2.
[0023] Fig. 4 is a cross-sectional view at line 4-4 in Fig. 3.
[0024] Fig. 5 is a cross-sectional view at line 5-5 in Fig. 4.
[0025] Fig. 6 is a cross-sectional view at line 6-6 in Fig. 5.
DESCRIPTION OF PREFERRED EMBODIMENTS
[0026] As shown in Fig. 1, a handheld type four-cycle engine E to which the present invention
is applied is fitted as the source of power to the driving section of, for example,
a powered trimmer T. Since the powered trimmer T is used in a manner in which a cutter
C is positioned in various directions according to the operational conditions, the
engine E is also tilted to a large extent or turned upside-down as a result, and the
operational position is unstable.
[0027] As shown in Figs. 2 and 3, the engine main body 1 of the above-mentioned handheld
type four-cycle engine E includes a crankcase 6 having a crank chamber 6a, a cylinder
block 7 having one cylinder bore 7a, and a cylinder head 8 having a combustion chamber
8a, and a large number of cooling fins 11 are formed on the outer peripheries of the
cylinder block 7 and the cylinder head 8.
[0028] The crankshaft 12 housed in the crank chamber 6a is supported in right and left side
walls of the crankcase 6 in a rotatable manner via ball bearings 14 and 14' and is
also connected to a piston 15 fitted in the cylinder bore 7a via a connecting rod
16.
[0029] An oil tank 13 is provided as a continuation of the left side wall running the length
of the crankcase 6 and the cylinder block 7. The oil tank 13 includes a tank inner
half 13a and a tank outer half 13b, the tank inner half 13a being linked integrally
to the crankcase 6 and the cylinder block 7, and the tank outer half 13b being bolt-joined
to the tank inner half 13a. The left-hand end of the crankshaft 12 runs through and
projects out of the oil tank 13, and an oil seal 17 in close contact with the outer
circumference of the crankshaft 12 is fitted in the tank outer half 13b.
[0030] A flywheel 24 having a large number of cooling vanes 25 is fixed to the left-hand
end of the crankshaft 12 projecting out of the oil tank 13, the flywheel 24 functioning
also as a cooling fan, and a recoil type starter 26 is placed outside the flywheel
24.
[0031] An oil seal 17' is fitted in the right side wall of the crankcase 6 so as to adjoin
the outside of the bearing 14', the right-hand end of the crankshaft 12 runs through
and projects out of the oil seal 17', a drive plate 27 is fixed to the right hand
end of the crankshaft 12, and a plurality of centrifugal shoes 28 (one thereof is
shown in the figure) are pivotally supported on the drive plate 27 in a rockable manner.
These centrifugal shoes 28, together with a clutch drum 30 connected to the drive
shaft 29 for driving the aforementioned cutter C, form a centrifugal clutch 31. When
the rotational rate of the crankshaft 12 exceeds a predetermined value, the centrifugal
shoes 28 are pressed onto the inner periphery of the clutch drum 30 due to the centrifugal
force of the shoes, thereby transmitting the output torque of the crankshaft 12 to
the drive shaft 29.
[0032] The cylinder block 7 and the cylinder head 8 share an overhang section 19 which overhangs
on the side of the oil tank 13, and the lower part of the overhang section 19 forms
a part of the upper wall of the tank inner half 13a. The combustion chamber 8a is
formed in the part of the cylinder head 8 corresponding to this overhang section 19,
and an intake port 9i and an exhaust port 9e communicated with the combustion chamber
8a are formed in the cylinder block 7. An ignition plug 10 is screwed into the cylinder
head 8, the electrodes of the ignition plug 10 projecting into the combustion chamber
8a.
[0033] An intake valve 18i and an exhaust valve 18e are mounted in the overhang 19, that
is to say, the upper wall of the tank inner half 13a, in a freely ascending and descending
manner so that their valve heads project into the oil tank 13, the intake valve 18i
and the exhaust valve 18e opening and closing the intake port 9i and the exhaust port
9e respectively. A valve operation mechanism 23 for operating the intake valve 18i
and the exhaust valve 18e so as to open and close them is disposed inside the oil
tank 13.
[0034] The valve operation mechanism 23 includes a drive gear 32 fixed to the crankshaft
12, a pair of driven gears 36 and 37 supported in a rotatable manner on a pair of
support shafts 33 and 34 provided in the oil tank 13 above the crankshaft 12 and driven
by the drive gear 32 with a reduction ratio of 1/2, an intake cam 21 i and an exhaust
cam 21e formed integrally with the driven gears 36 and 37 respectively, an intake
cam follower 22i pivotally supported in the oil tank 13 in a rockable manner and provided
between the intake cam 21 i and the intake valve 18i, an exhaust cam follower 22e
pivotally supported in the oil tank 13 in a rockable manner and provided between the
exhaust cam 21e and the exhaust valve 18e, and valve springs 20i and 20e forcing the
intake valve 18i and the exhaust valve 18e towards the closing direction. The engine
E is thus arranged to be of the side valve type.
[0035] The driven gear 36 and the intake cam 21 i, and also the driven gear 37 and the exhaust
cam 21e are placed distant from each other in the axial direction so that they closely
adjoin the left and right side walls respectively of the oil tank 13. Gear type oil
slingers 39 and 40 are formed integrally with the intake cam 21 i and the exhaust
cam 21e respectively so as to adjoin them.
[0036] Another support shaft 35 is provided in the oil tank 13 at a position beneath the
crankshaft 12, and this support shaft 35 supports a driven gear 38 and a vane type
oil slinger 41 in a rotatable manner, the driven gear 38 being driven by the drive
gear 32 and the oil slinger 41 being integral with the driven gear 38. The driven
gear 38 and the oil slinger 41 are positioned distant from each other in the axial
direction so that they closely adjoin the left and right inner walls respectively
of the oil tank 13.
[0037] A predetermined amount of lubricating oil O is stored in the oil tank 13, at least
one of the three driven gears 36 to 38 or the three oil slingers 39 to 41 is partially
immersed in the stored oil O regardless of the operational position of the engine
E, and the stored oil O is scattered by the rotation thereof so generating an oil
mist. The three driven gears 36 to 38 therefore also function as oil slingers, and
in fact, the three support shafts 33, 34 and 35 support a pair of oil slingers 36
and 39; 37 and 40; and 38 and 41 respectively, the oil slingers of each pair being
distant from each other in the axial direction.
[0038] As shown in Fig. 3, the intake port 9i is connected to a carburettor 2 and an air
cleaner 4 in that order, and the exhaust port 9e is connected to an exhaust muffler
3. The carburettor 2 and the exhaust muffler 3 are placed along a direction perpendicular
to the axes of both the crankshaft 12 and the cylinder bore 7a.
[0039] The route for the circulation of oil mist between the oil tank 13 and the crank chamber
6a is explained below by reference to Figs. 2 and 4 to 6.
[0040] An outward route 45 and an return route 46 for circulating the oil mist generated
inside the oil tank 13 between the oil tank 13 and the crank chamber 6a are provided
between the above-mentioned two chambers 13 and 6a. The outward route 45 includes
a through hole formed in the crankshaft 12 and providing communication between the
oil tank 13 and the crank chamber 6a. The return route 46 includes a valve hole 47
in the bottom wall of the crankcase 6, a valve chamber 48 communicated with the crank
camber 6a via the valve hole 47, and a first return pipe 49 providing communication
between the valve chamber 48 and the oil tank 13. A one-way valve 51 is provided in
the valve chamber 48, the one-way valve 51 including a reed valve for blocking and
unblocking the valve hole 47. The one-way valve 51 opens so as to unblock the valve
hole 47 when a positive pressure is generated in the crank chamber 6a accompanying
the ascending and descending movement of the piston 15, and the one-way valve 51 closes
so as to close the valve hole 47 when a negative pressure is generated.
[0041] The open ends of the above-mentioned outward route 45 and the first return pipe 49
inside the oil tank 13 are arranged so that they are always above the liquid level
of the stored oil O regardless of the operational position of the engine E.
[0042] A breather chamber 53 is provided on one side of the valve chamber 48, the breather
chamber 53 being communicated with the valve chamber 48 via a link hole 52. The breather
chamber 53 is partitioned into a plurality of expansion chambers 53a, 53b (two chambers
in the figure) by means of a wall 54. These expansion chambers 53a and 53b are communicated
with each other via throttle passages 55 and 55 on both sides of the wall 54, and
the expansion chamber 53b furthest from the link hole 52 is communicated with the
above-mentioned air cleaner 4 via a breather pipe 56.
[0043] A horizontally flattened chamber 57a is provided immediately below the breather chamber
53, a vertically flattened chamber 57b is provided in the side wall of the breather
chamber 53 on the side of the oil tank 13, the vertically flattened chamber 57b rising
at one end of the horizontally flattened chamber 57a, and a suction chamber 57 is
formed by the two flattened chambers 57a and 57b. The horizontally flattened chamber
57a is communicated with the breather chamber 53 via orifices 58, 58 ··· separately
placed at several positions, and the vertically flattened chamber 57b is also communicated
with the breather chamber 53 via orifices 58, 58 ··· provided close to the ceiling
of the breather chamber 53.
[0044] The suction chamber 57 is communicated with the inside of the oil tank 13 via a second
return pipe 59. In the same way as for the first return pipe 49, in this case the
second return pipe 59 is arranged so that the open end thereof inside the oil tank
13 is always above the liquid level of the stored oil O regardless of the operational
position of the engine E.
[0045] The above-mentioned valve chamber 48 and the breather chamber 53 are formed between
a surrounding wall 60 and a gasket 61, the surrounding wall 60 being formed integrally
with the lower part of the crankcase 6 and the gasket 61 being joined to the lower
end of the surrounding wall 60. The horizontally flattened chamber 57a is formed between
the gasket 61 and a base plate 62 joined to the surrounding wall 60 in such a way
that the periphery of the gasket 61 is interposed between the base plate 62 and the
surrounding wall 60. The vertically flattened chamber 57b is formed in the dividing
wall present between the breather chamber 53 and the oil tank 13.
[0046] Referring again to Fig. 2, an engine cover 65 is fixed to the engine main body 1
so as to cover it, a recoil type starter 26 is supported in the cover 65, and an air
inlet 66 is provided in the engine cover 65 around the recoil type starter 26 so as
to face cooling vanes 25 of the flywheel 24.
[0047] The action of the embodiment is explained below.
[0048] When the drive gear 32 rotates together with the crankshaft 12 during operation of
the engine E, this rotation makes the three sets of oil slingers 36 and 39; 37 and
40; 38 and 41 supported in the three support shafts 33, 34, 35 rotate together. Since
at least one of the oil slingers reliably scatters the stored oil O so as to generate
an oil mist regardless of the operational position of the engine E, the inside of
the oil tank 13 can always be filled with oil mist. The valve operation mechanism
23 is provided inside such an oil tank 13, the intake cam 21 i and the exhaust cam
21e rotating together with the upper driven gears 36 and 37 operate the intake valve
18i and the exhaust valve 18e so as to open and close them with appropriate timing
via the cam followers 22i and 22e while working co-operatively with the valve springs
20i and 20e, and each component of the valve operation mechanism 23 can therefore
be lubricated effectively by the above-mentioned oil mist. It is therefore unnecessary
to provide the engine main body 1 with a special oil supply passage for lubricating
the valve operation mechanism 23, and the size and weight of the engine E can thus
be reduced. Moreover, since the oil tank 13 is provided in one side wall running the
length of the crankcase 6 and the cylinder block 7, it is unnecessary to provide an
oil reservoir in the lower part of the crankcase 6, the total height of the engine
E can be reduced and the size of the engine can further be reduced.
[0049] A negative pressure and a positive pressure are generated alternately in the crank
chamber 6a accompanying the ascending and descending movement of the piston 15 so
causing pressure pulsations; when a negative pressure is generated, the one-way valve
51 closes so as to block the valve hole 47 and at the same time the oil mist inside
the oil tank 13 is drawn up into the crank chamber 6a through the through hole of
the crankshaft 12, that is to say, the outward route 45 thus lubricating the crankshaft
12 and the piston 15. At this stage, the pressure of the oil tank 13 becomes negative
due to the oil mist drawn up into the crank chamber 6a.
[0050] When a positive pressure is generated, the one-way valve 51 opens so as to unblock
the valve hole 47, and the oil mist inside the crank chamber 6a is returned to the
oil tank 13 having a low pressure through the return route 46, that is to say, the
valve hole 47, the valve chamber 48 and the first return pipe 49. It is thus sufficient
for the oil mist to circulate merely between the two chambers, namely the oil tank
13 and the crank chamber 6a, the outward route 45 and the return route 46 providing
communication between the above-mentioned two chambers 13 and 6a can be made comparatively
short and simple, and the size and weight of the engine main body 1 can be reduced.
[0051] Meanwhile, the blowby gas generated in the crank chamber 6a is transferred to the
valve chamber 48 together with the oil mist and further to the breather chamber 53
through the link hole 52, and separated into gas and liquid while passing through
the first and second expansion chambers 53a and 53b, and the blowby gas alone is discharged
to the air cleaner 4 via the breather pipe 56.
[0052] The oil separated and liquefied in the breather chamber 53 flows into the suction
chamber 57 via the orifice 58, 58 ···. Since the first suction chamber 57a and the
second suction chamber 57b are communicated with the inside of the oil tank 13 having
a low pressure via the second return pipe 59, the oil transferred to the suction chamber
57 is drawn up into the oil tank 13 through the second return pipe 59. Since the suction
chamber 57 includes, in particular, the horizontally flattened chamber 57a and the
vertically flattened chamber 57b rising at one end of the horizontally flattened chamber
57a as mentioned above, and each of the two chambers 57a and 57b is communicated with
the breather chamber 53 via the orifices 58, 58 ···, the oil stored in the breather
chamber 53 can flow into the suction chamber 57 and return to the oil tank 13 even
in the case where the engine E is tilted horizontally so positioning the vertically
flattened chamber 57b downwards, as well of course in the case where the engine E
is upright so positioning the horizontally flattened chamber 57a downwards.
[0053] Furthermore, since the flywheel 24 having the cooling vanes 25 driven by the crankshaft
12 is placed outside the oil tank 13 so as to adjoin it, cooling air drawn in through
the air inlet 66 of the engine cover 65 by rotation of the cooling vanes 25 is directly
applied to the oil tank 13, the oil mist and the oil O stored inside the oil tank
can be cooled effectively and the lubrication and cooling of each part can be carried
out efficiently.
[0054] Moreover, since the valve operation mechanism 23 and the centrifugal clutch 31 are
linked to the two ends of the crankshaft 12 with the engine main body 1 disposed therebetween,
the loads arising from the valve operation mechanism 23 and the drive shaft 29 during
operation of the engine E separately work on the two ends of the crankshaft 12. It
is therefore possible to prevent the load from being localised on the crankshaft 12,
its bearings 14 and 14' and the side wall of the crankcase 6, and the durability thereof
can thus be enhanced. Furthermore, since it is unnecessary to specially increase the
load capacity of these parts, the engine E can be made more compact.
[0055] Moreover, since the carburettor 2 and the exhaust muffler 3 are placed along a direction
perpendicular to the axes of both the crankshaft 12 and the cylinder bore 7a, the
carburettor 2 and the exhaust muffler 3 can easily be arranged without any obstruction
from the oil tank 13, the flywheel 24 or the centrifugal clutch 31 which are arranged
along the axis of the crankshaft 12 thus helping to make the engine E more compact.
[0056] The present invention is not limited to the above-mentioned embodiment and can be
modified in a variety of ways without departing from the spirit and scope of the invention.
For example, a rotary valve operable in association with the crankshaft 12 and operating
so as to unblock the outward pipe 45 when the piston 15 descends, and to block the
outward pipe 45 when the piston 15 ascends can be provided instead of the one-way
valve 51.
[0057] With regard to a handheld type four-cycle engine including, in a side wall of a cylinder
block, an intake valve, an exhaust valve and a valve operation mechanism operable
in association with a crankshaft so as to open and close the above-mentioned valves
and, an oil tank is formed in one side wall of the cylinder block, and the oil tank
houses the valve operation mechanism and oil mist generation means for generating
an oil mist from stored oil. It is thus possible to reliably lubricate the valve operation
mechanism regardless of the operational position of the engine while allowing the
size and weight of the engine main body to be reduced.