EP 1 143 070 A2 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 10.10.2001 Patentblatt 2001/41

(51) Int CI.7: **E01C 9/10**, E01C 5/14, E01C 5/22

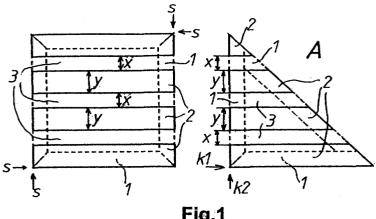
(21) Anmeldenummer: 01890045.6

(22) Anmeldetag: 22.02.2001

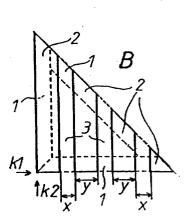
(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Benannte Erstreckungsstaaten: AL LT LV MK RO SI

(30) Priorität: 05.04.2000 AT 5772000


(71) Anmelder: Maculan, Alexander Dipl.-Ing. 1010 Wien (AT)

(72) Erfinder: Maculan, Alexander Dipl.-Ing. 1010 Wien (AT)


(74) Vertreter: Gibler, Ferdinand, Dipl.Ing. Dr. techn. **Patentanwalt** Dorotheergasse 7 1010 Wien (AT)

(54)Bausatz zum Aufbau eines Bodenbelages

(57)Bausatz zum Aufbau eines Bodenbelages umfassend mehrere Belags-Elemente, welche jeweils durch Tragbalken (1) und Trittbohlen (2) gebildet sind, wobei die Trittbohlen (2) auf den Tragbalken (1) durch Fugen (3) voneinander beabstandet festgelegt sind und der Bausatz drei voneinander verschiedene Typen von Belags-Elementen aufweist, wobei der erste Typ im Grundriß betrachtet quadratisch ausgebildet ist, der zweite und der dritte Typ im Grundriß betrachtet jeweils in Gestalt eines rechtwinkelig-gleichschenkeligen Dreiecks ausgebildet ist, deren Katheten (k1,k2) gleich lang wie die Seiten (s) des ersten Typs sind, die Trittbohlen (2) des ersten Typs parallel zu den Seiten (s), die Trittbohlen (2) des zweiten Typs parallel zur ersten Kathete (k1) und die Trittbohlen (2) des dritten Typs parallel zur zweiten Kathete (k2) verlaufen.

Beschreibung

[0001] Die Erfindung betrifft einen Bausatz zum Aufbau eines Bodenbelages umfassend mehrere Belags-Elemente, welche jeweils durch Tragbalken und Trittbohlen gebildet sind, wobei die Trittbohlen auf den Tragbalken durch Fugen voneinander beabstandet festgelegt sind.

[0002] Mit derartigen Bausätzen werden vornehmlich in Rasenflächen liegende Bodenbeläge aufgebaut, welche eine gegenüber der Rasenfläche festere Oberfläche aufweisen. Solche Bodenbeläge können beispielsweise Gehwege, Plätze zum Aufstellen von Sitzbänken, Gartenhäuschen od. dgl. oder Einfassungen für Biotope, Gartenteiche od. dgl. sein.

[0003] Bisher bekannte Bausätze weisen eine Vielzahl von Belags-Elementen auf, welche hinsichtlich ihrer geometrischen Gestalt gleichartig ausgebildet sind. Nachteilig ergibt sich aus dieser Gleichartigkeit vor allem, daß sich nur eine stark begrenzte Anzahl von Verlegemustern realisieren läßt und die wenigen möglichen Verlegemuster sehr ähnliches Aussehen haben.

[0004] Es ist Aufgabe der vorliegenden Erfindung, einen Bausatz der eingangs angeführten Art anzugeben, deren Belags-Elemente in einer großen Anzahl von voneinander deutlich verschiedenen Verlegemustern verlegt werden können.

[0005] Erfindungsgemäß wird dies dadurch erreicht, daß der Bausatz drei voneinander verschiedene Typen von Belags-Elementen aufweist, wobei der erste Typ im Grundriß betrachtet quadratisch ausgebildet ist, der zweite und der dritte Typ im Grundriß betrachtet jeweils in Gestalt eines rechtwinkelig-gleichschenkeligen Dreiecks ausgebildet ist, deren Katheten gleich lang wie die Seiten des ersten Typs sind, daß die Trittbohlen des ersten Typs parallel zu den Seiten, die Trittbohlen des zweiten Typs parallel zur ersten Kathete und die Trittbohlen des dritten Typs parallel zur zweiten Kathete verlaufen.

[0006] Ein solcher Bausatz weist eine relativ geringe Anzahl voneinander verschiedener Typen von Belags-Elementen auf, womit er mit relativ geringem technischen Aufwand hergestellt werden kann. Dennoch lassen sich mit ihm sehr viele verschiedene Verlegemuster realisieren.

[0007] Gemäß einer besonders bevorzugten Ausführungsform kann vorgesehen sein, daß die Trittbohlen sämtlicher Belags-Elemente gleiche Breite und die Fugen sämtlicher Belags-Elemente gleiche Breite aufweisen.

[0008] Ein aus dem erfindungsgemäßen Bausatz zusammengesetzter Bodenbelag kann aufgrund dieser konstruktiven Ausgestaltung so verlegt werden, daß sich ein schönes Fugenbild ergibt, weil sowohl Trittbohlen als auch Fugen durchgängig verlaufend angeordnet werden können. Hinzu tritt ein produktionstechnischer Vorteil, weil sämtliche Trittbohlen aus Rohmaterial mit einem einzigen Querschnitt hergestellt werden können. **[0009]** Weiters kann vorgesehen sein, daß die Tragbalken in Gestalt eines umlaufenden Rahmens angeordnet sind.

[0010] Dies führt zu einer besonders hohen Stabilität der Belags-Elemente des erfindungsgemäßen Bausatzes.

[0011] In den häufigsten Fällen sind die beiden Komponenten der Belags-Elemente (Tragbalken und Trittbohlen) aus Holz gebildet, welches Material leicht verwesen kann, insbesondere dann, wenn Wasser längere Zeit auf seiner Oberfläche stehen bleibt. Damit auf die Trittbohlen gelangendes Wasser, insbesondere Regenwasser, von diesen ablaufen kann, sind zwischen diesen Trittbohlen Fugen freigelassen.

[0012] Werden nun mehrere Belags-Elemente Mannan-Mann nebeneinander verlegt, so ergibt sich das Problem, daß die äußersten Trittbohlen zweier aneinanderstoßender Belags-Elemente dicht-an-dicht, also ohne eine Fuge zwischen sich auszubilden, aneinanderliegen. Auf diese beiden Trittbohlen gelangendes Wasser kann schwerer abfließen, weil hierzu eine zwischen den beiden Trittbohlen liegende Fuge fehlt.

[0013] Gemäß einer bevorzugten Ausführungsform ist daher vorgesehen, daß an zumindest einer Seitenfläche des Belags-Elementes zumindest ein Abstandhalter angeformt ist.

[0014] Werden beim Verlegen solcherart ausgebildeter Belags-Elemente zwei benachbart zueinander liegende Belags-Elemente dicht-an-dicht aneinander gelegt, kommt jede mit einem Abstandhalter versehene Seitenfläche über diesen Abstandhalter zur Anlage an der Seitenfläche des benachbarten Belags-Elementes, wodurch die geforderte Ausbildung einer Fuge zwischen den Trittbohlen benachbarter Belags-Elemente erreicht wird.

[0015] Der erfindungsgemäße Abstandhalter ist ein einfacher, unaufwendig herstell- und am Belags-Element festlegbarer Bauteil, welcher sicherstellt, daß die beim Verlegen der Belags-Elemente freigelassenen Fugen nicht später durch Kräfte, welche bei der Benutzung der Belags-Elemente auf sie ausgeübt werden, wieder verschlossen werden. Ein solches unerwünschtes Schließen der Fugen könnte passieren, wenn ohne Abstandhalter ausgebildete Belags-Elemente mit Abstand zueinander verlegt werden.

[0016] In weiterer Ausgestaltung der Erfindung kann vorgesehen sein, daß bei gleich breiter Ausführung sämtlicher Fugen des Belags-Elementes die Abstandhalter eine der Fugenbreite entsprechende Breite aufweisen.

[0017] Die durch den Abstandhalter gebildete Fuge zwischen zwei benachbarten Belags-Elementen bekommt bei dieser Ausbildung -sofern der Abstandhalter unmittelbar an der Seitenfläche des benachbarten Belags-Elementes anliegt- dieselbe Breite, wie die Fugen zwischen den Trittbohlen jedes Belags-Elementes. Es weisen damit sämtliche Fugen, die in einem Verbund einer Vielzahl von erfindungsgemäßen Belags-Elemen-

45

50

ten vorliegen, ein und dieselbe Breite auf, womit sich ein gleichmäßiges Fugenbild im gesamten Verbund ergibt.

[0018] Alternativ dazu kann auch vorgesehen sein, daß bei gleich breiter Ausführung sämtlicher Fugen der Belags-Elemente die Abstandhalter eine der halben Fugenbreite entsprechende Breite aufweisen.

[0019] Werden zwei Belags-Elemente dieser Bauart mit den, jeweils mit zumindest einem Abstandhalter versehenen Seitenflächen aneinander gelegt und kommen diese Abstandhalter aneinander zu liegen, so wird auch hier erreicht, daß die zwischen diesen zwei benachbarten Belags-Elementen entstehende Fuge dieselbe Breite aufweist, wie die Fugen zwischen den Trittbohlen jedes Belags-Elementes. Auch bei dieser bevorzugten Ausgestaltungsvariante der Erfindung weisen somit sämtliche Fugen, die in einem Verbund einer Vielzahl von erfindungsgemäßen Belags-Elementen vorliegen, ein und dieselbe Breite auf, womit sich ein gleichmäßiges Fugenbild im gesamten Verbund ergibt.

[0020] Gemäß einer besonders bevorzugten Ausführungsform der Erfindung kann vorgesehen sein, daß die Abstandhalter durch die Tragbalken selbst gebildet sind, indem diese vor die im Bereich zumindest einer Seitenfläche des Belags-Elementes verlaufenden Seitenkanten der Trittbohlen vorspringend angeordnet sind.

[0021] Damit werden separate Bauteile zur Herstellung der Abstandhalter eingespart, was den technischen Herstellungsaufwand des Belags-Elementes niedrig hält.

[0022] In diesem Zusammenhang kann vorgesehen sein, daß die Tragbalken im vor die Seitenfläche des Belags-Elementes vorspringenden Bereich zumindest eine Einbuchtung aufweisen.

[0023] Auf die Tragbalken gelangtes (Regen-)Wasser kann durch diese Einbuchtung von den Tragbalken abfließen, womit von diesem Wasser bewirkte Verwesungen des Tragbalkens wirksam vermieden werden.

[0024] Die Erfindung wird unter Bezugnahme auf die beigeschlossenen Zeichnungen, in welchen besonders bevorzugte Ausführungsbeispiele dargestellt sind, näher beschrieben. Dabei zeigt:

Fig. 1 die drei Typen von Belags-Elementen eines erfindungsgemäßen Bausatzes im Grundriß;

Fig.2a eine erste Ausführungsform eines Belags-Elementes im Grundriß;

Fig.2b das Belags-Element der Fig.2a, geschnitten entlang der in Fig.2a eingezeichneten Linie A-A; Fig.3a eine zweite Ausführungsform eines erfindungsgemäßen Belags-Elementes im Grundriß; Fig.3b das Belags-Element der Fig.3a, geschnitten entlang der in Fig.3a eingezeichneten Linie B-B; Fig.4a,b Ausführungsformen von zu einem erfindungsgemäßen Bausatz gehörenden Belags-Elementen des zweiten und dritten Typs im Grundriß; Fig.4c,d bevorzugte Ausführungsformen von zu einem erfindungsgemäßen Bausatz gehörenden Belags-Elementen des zweiten und dritten Typs im Grundriß;

Fig.5 zwei aneinander angelegte Belags-Elemente umfassend Abstandhalter 5, deren Breite b der Fugenbreite x entspricht, im Grundriß;

Fig.6 einen Verbund von neun aneinander angelegten Belags-Elementen im Grundriß;

Fig.7 zwei aneinander angelegte Belags-Elemente umfassend Abstandhalter 5, deren Breite b der halben Fugenbreite x/2 entspricht, im Grundriß;

Fig.8 eine besonders bevorzugte Ausführungsform eines Belags-Elementes, bei welcher der Abstandhalter 5 durch einen Tragbalken 1 des Belags-Elementes gebildet ist, im Grundriß;

Fig.9a die bevorzugte Ausführungsform eines Belags-Elementes entsprechend Fig.8, welche an allen vier Seitenflächen 4 Abstandhalter 5 aufweist, im Grundriß;

Fig.9b das Belags-Element der Fig.9a, geschnitten entlang der in Fig.9a eingezeichneten Linie C-C; Fig.10 die bevorzugte Ausführungsform eines Belags-Elementes entsprechend Fig.7, welche jedoch nur zwei Tragbalken 1 aufweist;

Fig.11a,b mit zwei dreieckigen Belags-Elementen legbare quadratische Bodenbeläge im Grundriß; Fig.12 mit den quadratischen Belags-Elementen der Fig. 11a,b gelegte größere quadratische Bodenbeläge im Grundriß;

Fig.13 mit einem erfindungsgemäßen Bausatz verlegbare Friese im Grundriß und

Fig.14-18 mit einem erfindungsgemäßen Bausatz verlegbare Bodenbeläge mit jeweils verschiedenen Verlegemustern im Grundriß.

[0025] Ein erfindungsgemäßer Bausatz zum Aufbau eines Bodenbelages weist so wie in Fig.1 dargestellt, drei voneinander verschiedene Typen von Belags-Elementen auf.

[0026] Gemeinsam ist diesen drei Typen der konstruktive Aufbau, denn jedes Belags-Element umfaßt unabhängig von der Form ihres Grundrisses jeweils Tragbalken 1, auf welchen Trittbohlen 2 festgelegt sind, die voneinander durch Fugen 3 beabstandet sind. Die Anzahl von Tragbalken 1 und Trittbohlen 2 kann beliebig gewählt werden, sinnvollerweise werden jedoch, so wie in Fig.3a,b dargestellt, mindestens zwei Tragbalken 1 vorgesehen, die beabstandet parallel zueinander ver-

[0027] Der erste, in Fig.1 ganz links dargestellte Belags-Element-Typ ist im Grundriß betrachtet quadratisch ausgebildet. Seine Trittbohlen 2 verlaufen parallel zu den Seiten s.

[0028] Der zweite und der dritte Typ sind im Grundriß betrachtet jeweils in Gestalt eines rechtwinkelig-gleichschenkeligen Dreiecks ausgebildet. Die Katheten k1,k2 sind dabei gleich lang wie die Seiten s des ersten Belags-Element-Typs.

3

20

35

laufen.

[0029] Die Trittbohlen 2 des zweiten und des dritten Belags-Element-Typs verlaufen jeweils parallel zu einer der beiden Katheten k1,k2. Zweiter und dritter Typ unterscheiden sich darin, daß die Trittbohlen 2 des zweiten Typs parallel zur ersten Kathete k1 und die Trittbohlen 2 des dritten Typs parallel zur zweiten Kathete k2 verlaufen. Legt man ein Belags-Element des zweiten Typs deckungsgleich über eine des dritten Typs, so verlaufen die Trittbohlen 2 des zweiten Typs rechtwinkelig zu jenen des dritten Typs.

[0030] Ein erfindungsgemäßer Bausatz weist zumindest ein Stück jedes Belags-Element-Typs auf. Um entsprechend große Bodenbeläge herstellen zu können, sind aber in der Regel jeweils mehrere Stück von jedem Belags-Element-Typ vorgesehen.

[0031] Durch unterschiedliche Ausrichtung und Gruppierung der einzelnen Belags-Element-Typen lassen sich sehr viele verschiedene Verlegemuster realisieren: Wie in Fig.11a,b dargestellt, können die zweiten und dritten Belags-Element-Typen (in den Zeichnungen kurz mit A und B bezeichnet), zu verschiedenartigen Quadraten zusammengesetzt werden. Werden dabei, wie in Fig.11a dargestellt, jeweils ein Belags-Element des zweiten Typs A und ein Belags-Element des dritten Typs B miteinander kombiniert, wechselt die Verlegerichtung, d.h. die Verlaufsrichtung der Trittbohlen 2 und der Fugen 3.

[0032] Bei einer Kombination zweier Belags-Elemente desselben Typs bleibt die Verlegerichtung gleich, da Trittbohlen 2 und Fugen 3 der beiden Belags-Elemente fluchtend zueinander zu liegen kommen (vgl. Fig. 11b). [0033] Die in Fig.11a,b dargestellten Quadrate können als Eckelemente bei Friesen verwendet werden (vgl. Fig.13) oder zu größeren Quadraten mit geometrischen Strukturen zusammengefügt werden, siehe Fig.

[0034] Die in den Fig.11-13 dargestellten Grund-Verlegemuster können bei größeren Bodenbelägen in beliebiger Kombination verwendet werden, lediglich beispielhaft sind in den Fig.14-18 einige, mit einem erfindungsgemäßen Bausatz realisierbare Gestaltungsmöglichkeiten von Bodenbelägen dargestellt.

[0035] Um bei solchen Bodenbelägen zu erreichen, daß sowohl die Fugen 3 als auch die Trittbohlen 2 fluchtend zueinander ausgerichtet sind bzw. daß an Stoßstellen, an welchen die Verlaufsrichtung von Trittbohlen 2 und Fugen 3 wechselt (vgl. Fig.11a) die aneinander anstoßenden, schrägen Stirnflächen der Trittbohlen 2 einander vollflächig gegenüberliegen und somit insgesamt ein ästhetisches Fugenbild zustande kommt, weisen einerseits die Trittbohlen 2 sämtlicher Belags-Elemente gleiche Breite y auf und sind andererseits die zwischen diesen liegenden Fugen 3 sämtlicher Belags-Elemente gleich breit ausgeführt.

[0036] Bei der Ausführungsform der Fig.2a,b des ersten Belags-Element-Typs sind vier Tragbalken 1 vorhanden, die einen umlaufenden quadratischen Rahmen bildend angeordnet sind. Ein solcher umlaufender Rah-

men ist auch bei den in Fig.4a,b dargestellten Ausführungsformen des zweiten und dritten Belags-Element-Typs vorgesehen.

[0037] Die Art der Befestigung der Trittbohlen 2 auf den Tragbalken 1 ist nicht erfindungswesentlich und kann daher ebenfalls beliebig gewählt werden. Die Trittbohlen 2 können beispielsweise auf die Tragbalken 1 genagelt, mit diesen verschraubt oder verklebt sein.

[0038] Die Trittbohlen 2 können an ihren vier, den Tragbalken 1 abgewandten Kanten abgefast sein. Diese Abfasung wurde nur in Fig.2b und 3b bzw. in Fig.2a an einer Trittbohle 2 sowie in Fig.9b dargestellt, um die Zeichnungen übersichtlich zu halten.

[0039] Tragbalken 1 und Trittbohlen 2 sind vorzugsweise aus Holz gefertigt, können aber auch aus anderen Materialien, insbesondere Metall, wie z.B. Aluminium, gebildet sein. Desweiteren ist die Ausbildung der Tragbalken 1 aus einem ersten Material (z.B. Metall) bei gleichzeitiger Ausbildung der Tragbohlen 2 aus einem anderen Material (z.B. Holz) möglich.

[0040] Vorzugsweise ist vorgesehen, daß an zumindest einer Seitenfläche 4 der Belags-Elemente zumindest ein Abstandhalter 5 angeformt ist.

[0041] Dieser Abstandhalter 5 kann grundsätzlich beliebige Gestalt und Größe aufweisen. So kann er beispielsweise durch einen würfel-, dom- oder leistenförmigen Bauteil gebildet sein, der an der betreffenden Seitenfläche 4 des Belags-Elementes befestigt (angeschraubt, angeklebt od. dgl.) ist. Eine weitere Möglichkeit läge darin, den Abstandhalter 5 durch eine nicht vollständig in die Seitenfläche 4 eingeschraubte Schraube oder einen nicht vollständig eingeschlagenen Nagel zu bilden. Die Anzahl der Abstandhalter 5 pro Seitenfläche 4 ist beliebig wählbar.

[0042] Jede Seitenfläche 4 des Belags-Elementes ist durch zu Trittbohlen 2 gehörende und durch zu Tragbalken 1 gehörende Flächen gebildet. Der Abstandhalter 5 kann wahlweise an einer zu einer Trittbohle 2 oder an einer zu einem Tragbalken 1 gehörenden Fläche oder gleichzeitig sowohl an einem Tragbalken 1 und an einer Trittbohle 2 festgelegt sein. Desweiteren ist es möglich, den Abstandhalter 5 einstückig mit einem dieser Belags-Element-Komponenten auszubilden.

[0043] Wird, wie in Fig.5 dargestellt, ein solches Belags-Element, das in erfindungsgemäßer Weise auf einer Seitenfläche 4 mit Abstandhaltern 5 versehen ist, mit dieser Seitenfläche 4 an die Seitenfläche eines weiteren Belags-Elementes angelegt, so kommen die Abstandhalter 5 des erfindungsgemäßen Belags-Elementes an der Seitenfläche des weiteren Belags-Elementes zur Anlage. Zwischen den beiden Belags-Elementen wird damit eine Fuge 6 gebildet.

[0044] Werden zur Herstellung eines größerflächigen Verbundes mehrere Belags-Elemente verwendet und soll an jeder Stoßstelle zwischen zwei unmittelbar benachbarten Belags-Elementen eine Fuge 6 ausgebildet werden, so sind -bei der quadratischen Ausbildung der Belags-Elemente gemäß des ersten Typs- an zumin-

dest zwei aneinander anstoßender Seitenflächen 4 jedes Belags-Elementes Abstandhalter 5 anzubringen (vgl. Fig.6).

[0045] Bevorzugterweise werden sämtliche Fugen 3 zwischen den Trittbohlen 2 eines Belags-Elementes gleich breit ausgeführt. Damit auch die zwischen zwei benachbarten Belags-Elementen entstehenden Fugen 6 dieselbe Breite wie die Belags-Element-internen Fugen 3 aufweisen, werden die Abstandhalter 5 mit einer Breite b ausgeführt, welche der Fugenbreite x entspricht.

[0046] Die Abstandhalter 5 können so plaziert sein, daß beim Aneinanderlegen zweier Belags-Elemente die Abstandhalter 5 aneinander zu liegen kommen, so wie dies in Fig.7 dargestellt ist. Dies ergibt sich beispielsweise dann, wenn an einer Seitenfläche 4 zwei Abstandhalter 5 vorgesehen sind und diese bei beiden aneinander angelegten Seitenflächen 4 denselben Abstand a von den Mittelsymmetrieachsen 7 der Belags-Elemente aufweisen oder die Abstandhalter 5 auf den beiden aneinander angelegten Seitenflächen 4 jeweils durch eine Leiste gebildet sind, welche die Mittelsymmetrieachsen 7 der Belags-Elemente übergreifend ausgebildet sind.

[0047] Die zwischen den beiden Belags-Elementen entstehende Fuge 6 weist dabei eine Breite auf, die der Summe der Breiten b der beiden Abstandhalter 5 entspricht. Damit die zwischen zwei benachbarten Belags-Elementen entstehenden Fugen 6 bei der hiesigen Anordnung dieselbe Breite wie die Belags-Element-internen Fugen 3 aufweisen, werden die Abstandhalter 5 mit einer Breite b ausgeführt, welche der halben Fugenbreite x/2 entspricht.

[0048] Solche aneinander zur Anlage kommenden Abstandhalter 5 können an mehreren Seitenflächen 4, beispielsweise analog zu Fig.6 an zwei aneinander anstoßenden oder auch an allen vier Seitenflächen 4 vorgesehen sein.

[0049] Gemäß einer besonders bevorzugten Ausführungsform werden die Abstandhalter 5 nicht durch separate Bauteile gebildet, sondern durch die ohnehin vorhandenen Tragbalken 1:

[0050] Dazu sind die Tragbalken 1 im Bereich jener Seitenfläche 4 des Belags-Elementes, an welcher ein Abstandhalter 5 ausgebildet werden soll, vor die dort befindliche(n) Seitenkante(n) der Trittbohlen 2 vorspringend angeordnet (vgl. Fig.8 oben). Die Größe dieses Vorsprunges ist beliebig wählbar bzw. wird vorzugsweise im Sinne der obigen Ausführungen der Fugenbreite x oder der halben Fugenbreite x/2 entsprechend ausgebildet

[0051] Bei der Ausführungsform der Fig.9a,b sind alle vier Seitenflächen 4 des Belgas-Elementes mit einem Abstandhalter 5 zu versehen, weshalb alle vier, im Bereich der Seitenflächen 4 angeordneten Tragbalken 1 vor die Trittbohlen 2 vorspringend ausgebildet sind. Die Breite b dieser vier Vorsprünge 5 beträgt jeweils die Hälfte der Fugenbreite x.

[0052] Bei Belags-Elementen des zweiten und dritten Typs können analog alle im Bereich der Seitenflächen 4 verlaufenden Tragbalken 1 vor die Trittbohlen 2 vorspringend ausgebildet sein (vgl. Fig.4c,d).

[0053] Wenn entsprechend Fig.3 nur zwei Tragbalken 1 vorgesehen sind, sind diese die äußersten Tragbohlen 2 überragend ausgebildet, sodaß sich auch hier an allen vier Seitenflächen 4 Vorsprünge ergeben, welche die erfindungsgemäßen Abstandhalter 5 bilden (vgl. Fig.10). [0054] Wie in Fig.9a und Fig.10 sowie Fig.4c,d mit strichpunktierten Linien eingetragen, kann im vor die Seitenfläche 4 vorspringenden Bereich des Tragbalkens 1 eine Einbuchung 8 eingearbeitet sein. Durch diese Einbuchtung 8 kann Wasser, das auf den Tragbalken 1 gelangt, zum unter dem Bodenbelag befindlichen Boden abfließen. Aus dieser Funktion der Einbuchtung 8 ergibt sich, daß diese auch kleiner als in Fig.9a,10 und 4c,d dargestellt ausgebildet sein kann bzw. daß pro Tragbalken 1 mehrere kleinere Einbuchtungen 8 vorgesehen sein können.

Patentansprüche

Bausatz zum Aufbau eines Bodenbelages umfassend mehrere Belags-Elemente, welche jeweils durch Tragbalken (1) und Trittbohlen (2) gebildet sind, wobei die Trittbohlen (2) auf den Tragbalken (1) durch Fugen (3) voneinander beabstandet festgelegt sind, dadurch gekennzeichnet, daß der Bausatz drei voneinander verschiedene Typen von Belags-Elementen aufweist, wobei

der erste Typ im Grundriß betrachtet quadratisch ausgebildet ist,

der zweite und der dritte Typ im Grundriß betrachtet jeweils in Gestalt eines rechtwinkeliggleichschenkeligen Dreiecks ausgebildet ist, deren Katheten (k1,k2) gleich lang wie die Seiten (s) des ersten Typs sind, daß

die Trittbohlen (2) des ersten Typs parallel zu den Seiten (s),

die Trittbohlen (2) des zweiten Typs parallel zur ersten Kathete (k1) und

die Trittbohlen (2) des dritten Typs parallel zur zweiten Kathete (k2) verlaufen.

- Bausatz nach Anspruch 1, dadurch gekennzeichnet, daß die Trittbohlen (2) sämtlicher Belags-Elemente gleiche Breite (y) und die Fugen (3) sämtlicher Belags-Elemente gleiche Breite (x) aufweisen.
- Bausatz nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Tragbalken (1) in Gestalt eines umlaufenden Rahmens angeordnet sind.
- Bausatz nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß an zumindest einer Seitenflä-

50

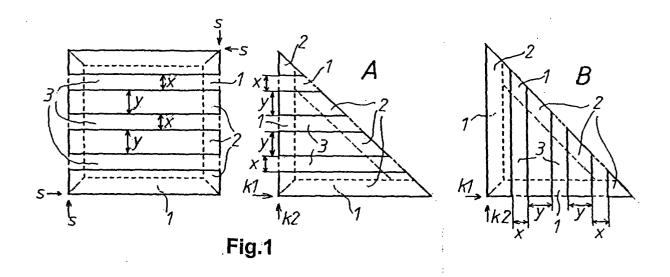
55

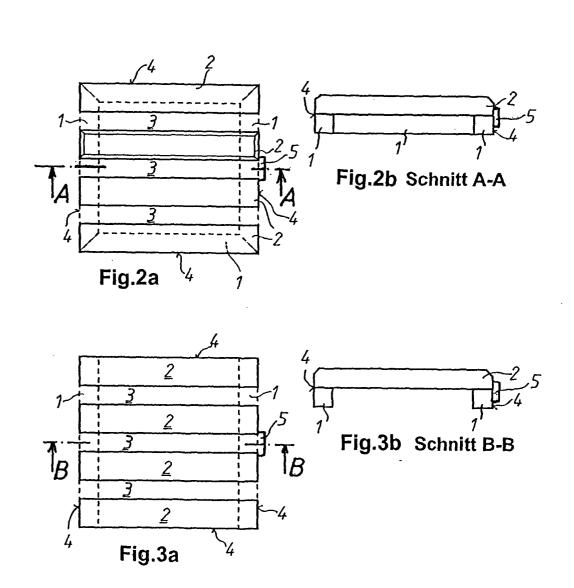
che (4) jedes Belags-Elementes zumindest ein Abstandhalter (5) angeformt ist.

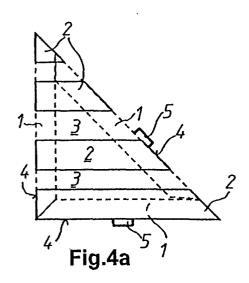
- 5. Bausatz nach Anspruch 4, dadurch gekennzeichnet, daß bei gleich breiter Ausführung sämtlicher Fugen (3) der Belags-Elemente die Abstandhalter (5) eine der Fugenbreite (x) entsprechende Breite (b) aufweisen.
- 6. Bausatz nach Anspruch 4, dadurch gekennzeichnet, daß bei gleich breiter Ausführung sämtlicher Fugen (3) der Belags-Elemente die Abstandhalter (5) eine der halben Fugenbreite (x/2) entsprechende Breite aufweisen.
- 7. Bausatz nach Anspruch 4, 5 oder 6, dadurch gekennzeichnet, daß die Abstandhalter (5) durch die Tragbalken (1) selbst gebildet sind, indem diese vor die im Bereich zumindest einer Seitenfläche (4) des Belags-Elementes verlaufenden Seitenkanten der 20 Trittbohlen (2) vorspringend angeordnet sind.
- 8. Bausatz nach Anspruch 7, dadurch gekennzeichnet, daß die Tragbalken (1) im vor die Seitenfläche (4) des Belags-Elementes vorspringenden Bereich 25 zumindest eine Einbuchtung (8) aufweisen.

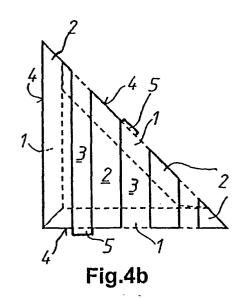
15

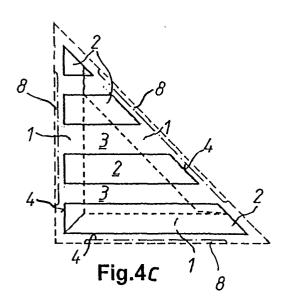
30

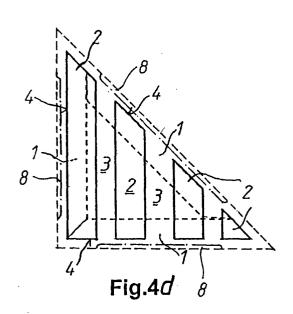

35

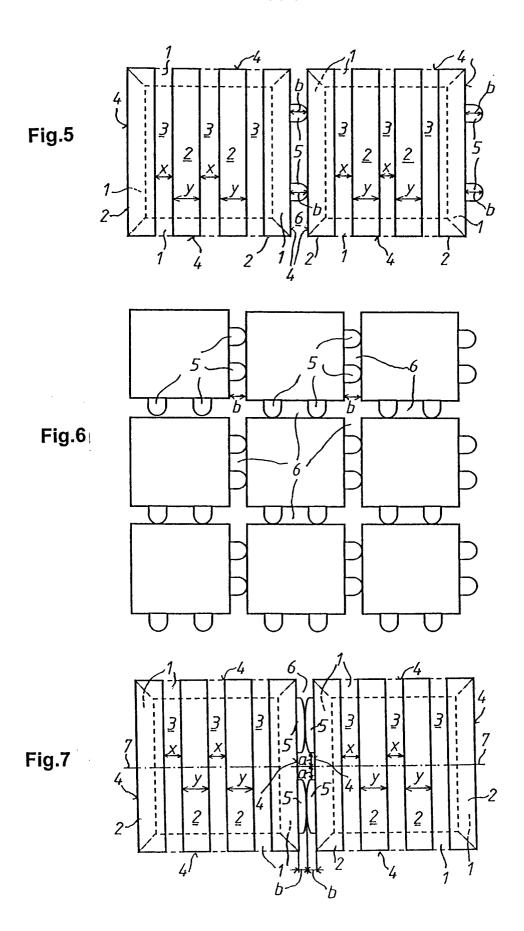

40


45


50


55





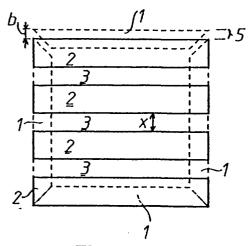
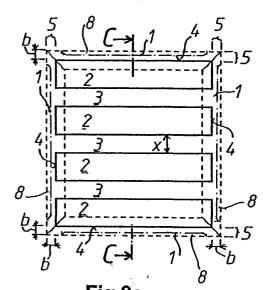
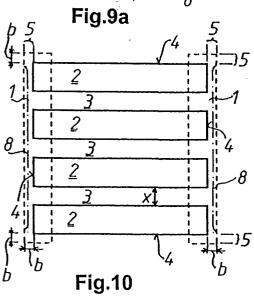




Fig.8

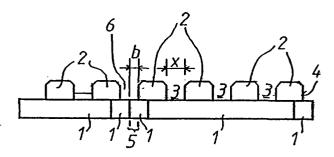


Fig.9b Schnitt C-C

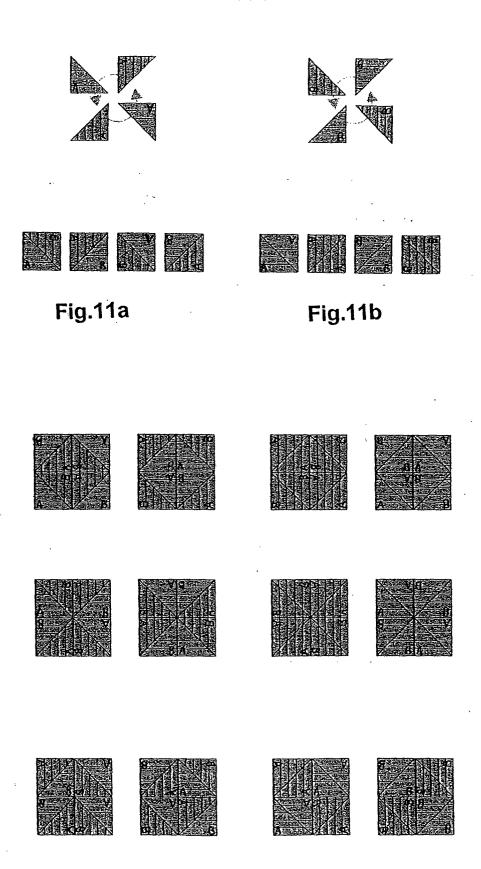


Fig.12

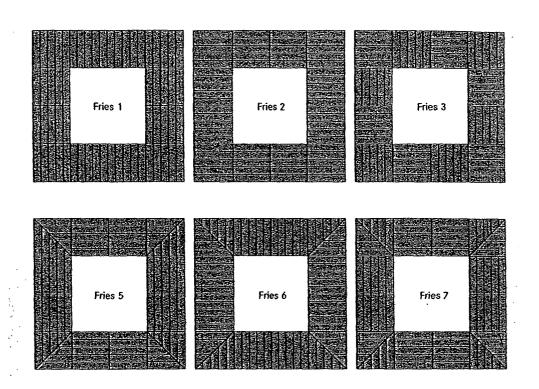


Fig.13

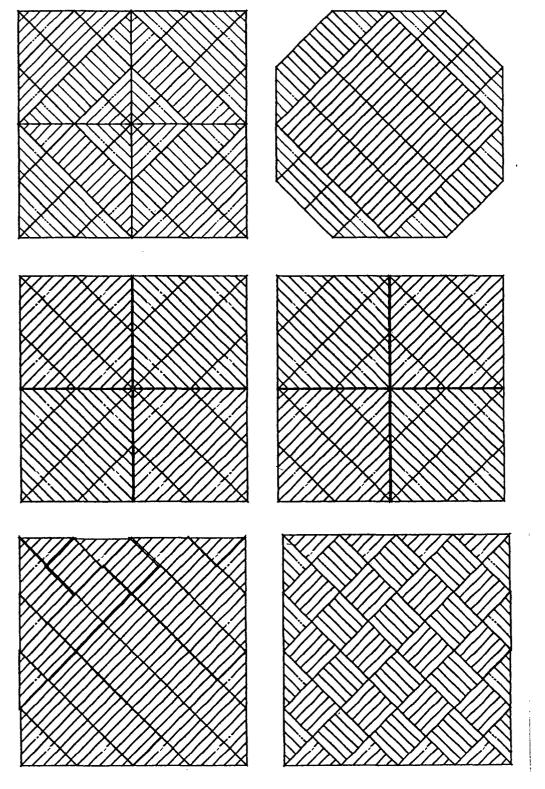


Fig. 1

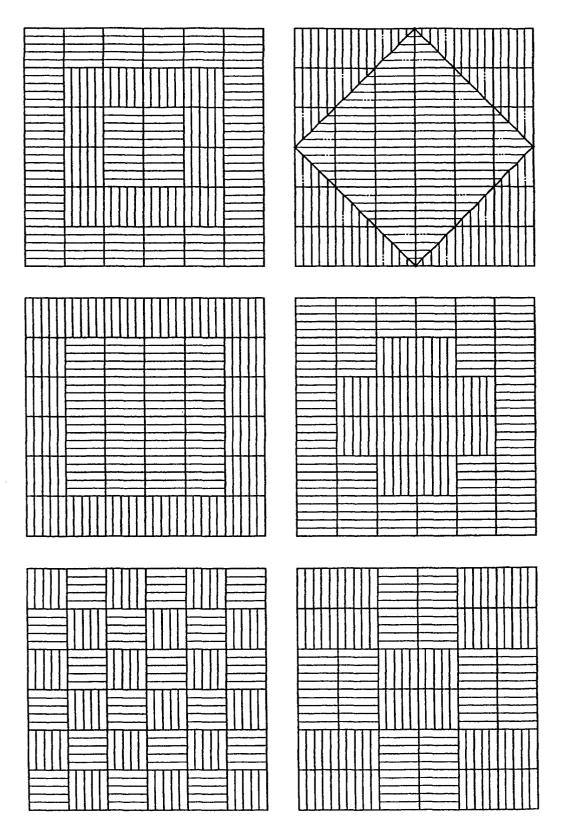
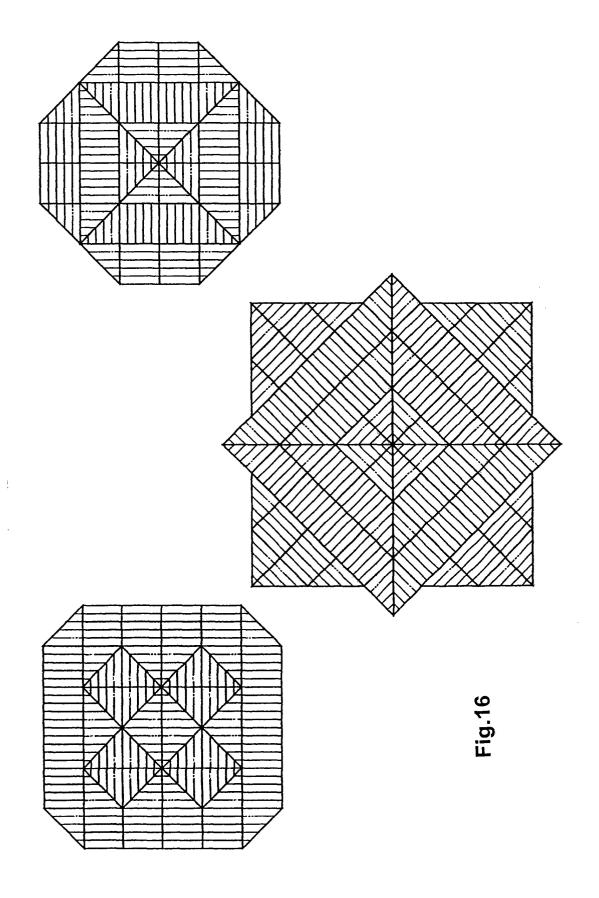
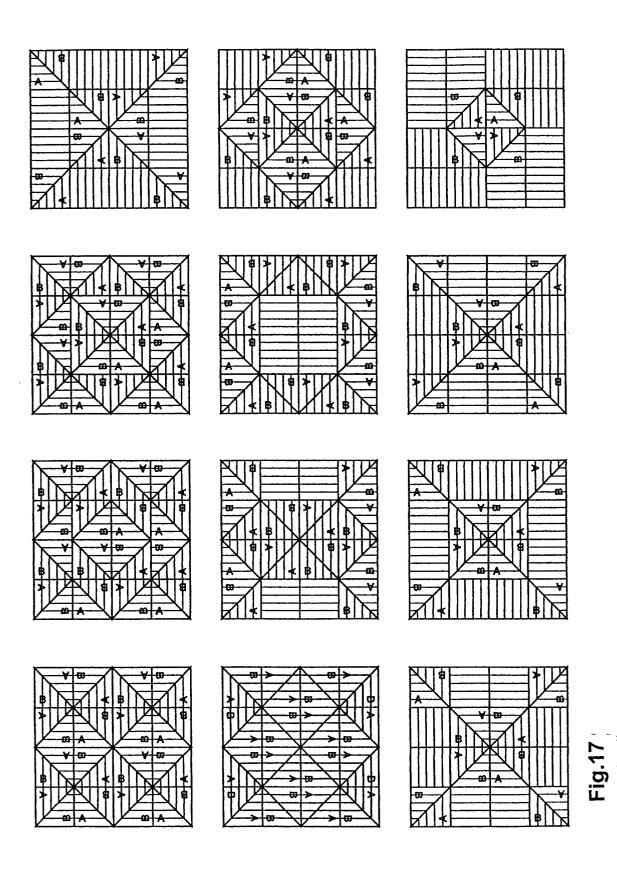
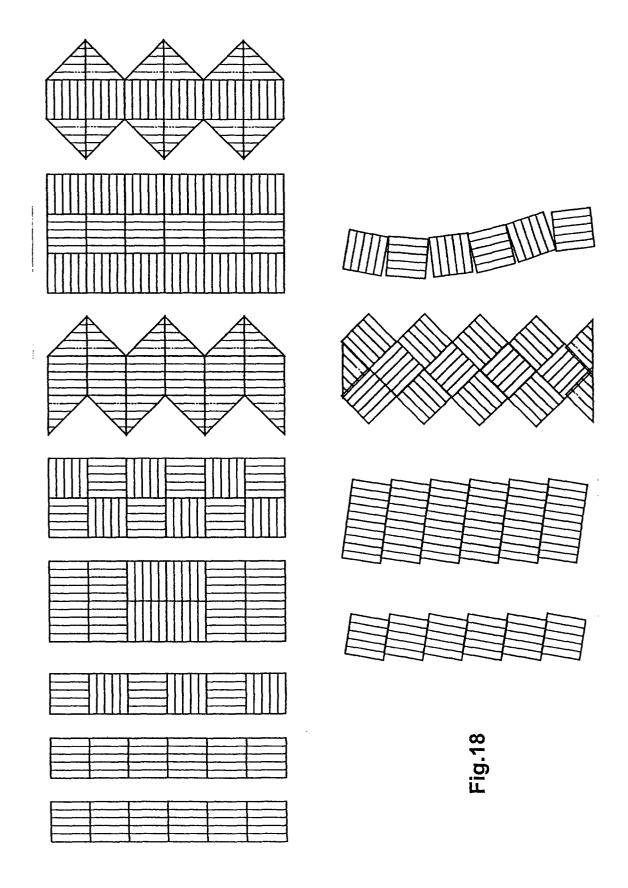





Fig. 15

16

