Technical Field
[0001] This invention relates to crosslinkable-group-containing polyamic acids, melt-moldable
or formable, crosslinkable-group-containing polyimides, production processes thereof,
and crosslinked thermoplastic polyimides obtained by heat-treating them. Specifically,
the present invention is concerned with crosslinked thermoplastic polyimides having
various excellent properties inherent to polyimides, namely, high heat resistance,
excellent mechanical properties, superb sliding property, low water absorption property,
outstanding electrical properties, high thermal oxidation resistance, high chemical
resistance and high radiation resistance, especially those improved more markedly
in heat resistance, chemical resistance and mechanical properties, crosslinkable-group-containing
polyimides which are thermoplastic and melt-moldable or formable, crosslinkable-group-containing
polyamic acids as precursors of the crosslinkable-group-containing polyimides, production
proceses thereof, and their solutions or suspensions.
Background Art
[0002] Polyimides have been used widely for many years as molding or otherwise forming materials,
composite materials, or electrical or electronic materials in various fields, because
in addition to their superb heat resistance, they are also excellent in mechanical
properties and electrical properties.
[0003] For example, a polyimide ("Kapton", "Vespel", trade names; products of E.I. DuPont
de Nemours & Co., Inc.) of the formula (A) is known as a representative polyimide:

This polyimide is non-thermoplastic and is insoluble and infusible, and hence has
a drawback in moldability or formability. It is therefore accompanied by a problem
that no mass production is practically feasible. As a specific processing method,
a block is obtained using a special molding process called powder sintering molding,
and then, mechanical working such as cutting, grinding and polishing is applied to
the block to obtain a formed, product.
[0004] As an amorphous thermoplastic polyimide with improved moldability or formability,
a polyetherimide represented by the formula (B) ("Ultem", trade name; product of General
Electric Company) is known:

However, this polyimide is soluble in amide-type aprotonic polar solvents and halogenated
hydrocarbon solvents and is inferior in chemical resistance. In addition, its glass
transition temperature is 215°C, and a further improvement in heat resistance is desired
depending on the application.
[0005] Further, a polyimide which is imparted with moldability or formability and is represented
by the formula (C):

shows melt fluidity at its melting point and higher and permits melt molding or forming
while retaining the inherent properties of polyimides because it has a melting point
at 385°C(U.S. Patent No. 5,043,419). Although the glass transition temperature of
this polyimide is relatively high, i.e., 250°C, marked reductions in properties, which
are accompanied by deformation, softening or the like, take place when used at the
glass transition temperature or higher. Further improvements are therefore desired
depending on its application. Further, this polyimide is inferior in chemical resistance
especially under stress, and an improvement is strongly desired in this respect.
[0006] Since the properties of a thermoplastic polyimide depend on the backbone structure
of the polyimide, a variety of polyimides are selected in view of their inherent performance
such as heat resistance, moldability or formability, mechanical properties and chemical
resistance. Nonetheless, one or more of these individual properties may be found to
be insufficient depending on the application, leading to an outstanding desire for
the improvement of the above-described various properties.
[0007] On the other hand, a variety of thermosetting polyimides are available on the market.
As a representative example of these polyimides, a polyimide available from monomers
represented by the formula (D) :

is known ["Kerimid-601", trade name; product of Rhone-Poulenc SA; F.D. Darmory, "National
SAMPLE Symposium", 19, 693 (1974)]. As this polyimide is thermosetting, it is less
susceptible to deformation or softening than thermoplastic polyimides and therefore,
can be used under high temperature condition. However, this polyimide is not high
in mechanical properties, especially in toughness and is weak against external force
such as an impact. Due to its thermosetting property, no melt molding or forming is
feasible. It is therefore necessary to carry out shaping at the stage of a prepolymer
before its hardening and then to conduct heat treatment.
[0008] For the purpose of making improvements in the detrimental mechanical properties of
these thermosetting polyimides, it is known to use a linear polyimide as a backbone
and then to introduce crosslinking members into its ends and/or substituent groups.
Reference may be had, for example, to U.S. Patent No. 5,138,028, U.S. Patent No. 5,478,915,
U.S. Patent No. 5,493,002, U.S. Patent No. 5,567,800, U.S. Patent No. 5,644,022, U.S.
Patent No. 5,412,066, and U.S. Patent No. 5,606,014.
[0009] As technical details, U.S. Patent No. 5,567,800, for example, discloses thermosetting
polyimides available from heat treatment of imide oligomers having carbon-carbon triple
bonds at their molecule ends, which can in turn be obtained from monomers represented
by the formula (E):

and an end blocking agent, respectively. Although the polyimides disclosed in this
patent have various excellent properties, they still do not permit melt molding or
forming, and therefore, their molding or forming is limited to processing which makes
use of solutions of polyamic acids as precursors. In general, subsequent to the shaping
of a solution of a polyamic acid, removal of the solvent and a dehydrating imidation
reaction are conducted by heating. As this processing involves the removal of the
solvent, it is generally impossible to obtain a molded or formed product having a
large thickness. This processing is therefore limited in shape to films or sheets,
and further, involves problems such as foaming due to remaining solvent and a need
for recovery of a great deal of solvent.
Disclosure of the Invention
[0010] An object of the present invention is to provide crosslinkable-group-containing polyimides
of various known thermoplastic polyimide backbone structures, which are provided with
far better heat resistance, chemical resistance and mechanical properties than known
polyimides of the structures without impairing advantages inherent to the structure,
such as excellent moldability or formability, superb sliding property, low water absorption
property, outstanding electrical properties, high thermal oxidation stability and
high radiation resistance.
[0011] Specifically described, the terms "heat resistance", "chemical resistance" and "mechanical
properties" the improvements of. which constitute one of themes sought for attainment
by the present invention mean, for example, physical property values and test results
such as those to be described below.
① Concerning heat resistance, representative examples can include glass transition
temperature; softening temperature, deflection temperature under load, and mechanical
properties at high temperatures in thermal mechanical analyses; retentions of mechanical
properties in thermal cycle tests; solder reflow heat resistance test; heat resistance
test; and hot air aging test. Among these, the themes the attainment of which are
sought for in the present invention can include especially deflection temperature
under load, mechanical properties at high temperatures, retentions of mechanical properties
in thermal cycle tests, and the like.
② As to chemical resistance, representative examples can include solvent dissolution
resistance test, solvent immersion test, under-stress solvent immersion resistance
resistance test, and retentions of various physical properties after immersion in
solvent under stress. Among these, the themes the attainment of which are sought for
in the present invention can include especially unders-stress solvent immersion resistance
test, retentions of various physical properties after immersion in solvent under stress,
and the like.
③ In respect to mechanical properties, representative examples can include tensile
test, compression test, bending test, Izod impact test, and fatigue test. Among these,
the themes the attainment of which is sought for in the present invention can include
especially yield strength, tensile modulus, flexural modulus, Izod impact value, and
the like.
[0012] Describing in other words from another viewpoint, the themes the attainment, of which
is sought for by the present invention are to provide a crosslinkable-group-containing
polyimide imparted with thermoplasticity by additionally providing it with high moldability
or formability, which has not been brought about by conventional polyimides of the
end-curing type, while retaining excellent physical properties inherent to thermosetting
polyimides of the end-curing type, that is, superb sliding property, low water absorption
property, outstanding electrical properties, high thermal oxidation stability, high
chemical resistance and excellent mechanical properties.
[0013] Accordingly, an object of the present invention is to provide a crosslinkable-group-containing
polyimide, which is thermoplastic and permits melt moldability or formability, or
a crosslinkable-group-containing polyamic acid which is a precursor of the polyimide.
Another object of the present invention is to provide its production process.
[0014] It is an important feature of the present invention that the crosslinkable-group-containing
polyimide according to the present invention permits melt molding or forming despite
its inclusion of crosslinkable groups, which allow a crosslinking reaction, and the
crosslinkable-group-containing thermoplastic polyimide shows thermoplasticity. It
is here that the crosslinkable-group-containing polyimide according to the present
invention is totally different from the conventional thermosetting resins which are
crosslinkable. The present invention is based on a novel concept never in existence
to date, and has made it possible to achieve mutually contradictory matters of intermolecular
crosslinking and melt fluidity.
[0015] To achieve the above-described objects, the present inventors have proceeded with
an extensive investigation. As a result, it has found that a crosslinkable-group-containing
polyimide molecule ends of which are blocked with 1 to 80 mole % of a crosslinkable-group-containing
dicarboxylic acid anhydride and 99 to 20 mole % of a crosslinkable-group-free dicarboxylic
acid anhydride can achieve the above-described objects and permits melt molding or
forming despite it has been more significantly improved and is outstanding especially
in heat resistance, chemical resistance and mechanical properties, leading to the
completion of the present invention.
[0016] Described specifically, the present invention provides the following polyimides or
processes (1)- (35) :
(1) A crosslinkable-group-containing polyimide comprising crosslinkable groups at
1 to 80 mole % of molecule ends thereof.
(2) A crosslinkable-group-containing polyimide as described in claim 1, wherein a
backbone structure which forms the polyimide is substantially provided with thermoplasticity.
(3) A crosslinkable-group-containing polyimide as described above under (1) or (2),
said polyimide permitting melt molding or forming, wherein 1 to 80 mole % of the molecule
ends are crosslinkable-group-containing molecule ends represented by the chemical
formula (2a) and 99 to 20 mole % of the molecule ends are crosslinking-group-free
molecule ends represented by the chemical formula (2b):

wherein Y represents a trivalent aromatic group selected from the group consisting:

wherein X represents a divalent linking group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group and a hexafluoroisopropylidene group; and

wherein T represents a divalent aromatic group consisting of:

wherein X represents a divalent linking group selected from the group consisting
of a direct bond, a carbonyl group, a sulf one group, a sulfide group, an ether group,
an isopropylidene group and a hexafluoroisopropylidene group.
(4) A crosslinkable-group-containing polyimide as described above under any one of
(1)-(3), wherein the polyimide comprises polyimide molecules of a structure represented
by the chemical formula (2c):

wherein T, PI and Y are groups to be indicated next, respectively, that is,
T represents a divalent aromatic group selected from the group consisting of:

wherein X represents a divalent linking group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group and a hexafluoroisopropylidene group;
PI represents a polyimide backbone; and
Y represents a trivalent aromatic group selected from the group consisting of:

wherein X represents a divalent linking group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group and a hexafluoroisopropylidene group.
(5) A crosslinkable-group-containing polyimide as described above under (3) or (4),
wherein in the chemical formula (2b) or (2c), T is the following chemical formula
(2d) :

(6) A crosslinkable-group-containing polyimide as described above under any one (3)-(5),
wherein in the chemical formula (2a) or (2c), Y is the following chemical formula
(2e) :

(7) A crosslinkable-group-containing polyimide as described above under any one of
(1)-(6), wherein a backbone of the polyimide has recurring structural units represented
by the chemical formula (1):

wherein Ar and R are groups to be described next, that is,
Ar represents a divalent aromatic group selected from' the group consisting of:

wherein J represents a divalent linking group selected from the group consisting
of a carbonyl group, an ether group, an isopropylidene group and a hexafluoroisopropylidene
group, K represents a divalent linking group selected from the group consisting of
a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group and a hexafluoroisopropylidene group, p and q each independently
stand, for 0 or 1, and a position of each bond, said position being unspecified, is
a para-position or meta-position; and
R represents a tetravalent aromatic group selected from the group consisting of:

wherein G represents a divalent aromatic group selected from the group consisting
of a direct bond, a carbonyl a sulfone group, a sulfide group, an ether group, an
isopropylidene group, a hexafluoroisopropylidene group, a 3-oxyphenoxy group, a 4-oxyphenoxy
group, a 4'-oxy-4-biphenoxy group and a 4-[1-(4-oxyphenyl)-1-methylethyl]phenoxy group.
(8) A crosslinkable-group-containing polyimide as described above under claim 7, wherein
50 to 100 mole % of the recurring structural units represented by the chemical formula
(1) are of a recurring unit structure represented by the chemical formula (1a):

wherein G is a divalent aromatic group selected from the group consisting of a direct
bond, a carbonyl group, a sulfone group, a sulfide group, an ether group, an isopropylidene
group, a hexafluoroisopropylidene group, a 3-oxyphenoxy group, a 4-oxyphenoxy group,
a 4'-oxy-4-biphenoxy group and a 4-[1-(4-oxyphenyl)-1-methylethyl]phenoxy group.
(9) A crosslinkable-group-containing polyimide as described above, under (8), wherein
in the chemical formula (1a), G is 4'-oxy-4-biphenoxy group.
(10) A crosslinkable-group-containing polyimide as de. scribed above under (8), wherein
in the chemical formula (1a), G is a 4-[1-(4-oxyphenyl)-1-methylethyl]phenoxy group.
(11) A crosslinkable-group-containing polyimide as described above under (7), wherein
50 to 100 mole % of the recurring structural units represented by the chemical formula
(1) are of a recurring unit structure represented by the chemical formula a (1b):

wherein X and R are groups to be indicated next, respectively, that is,
X represents a divalent linking group selected from the group consisting of a direct
bond, a carbonyl group, a sulfone group, a sulfide group, an ether group, an isopropylidene
group and a hexafluoroisopropylidene group; and
R represents a tetravalent linking group selected from the group consisting of:

wherein G represents a divalent aromatic group selected from the group consisting
of a direct bond, a carbonyl group, a sulf one group, a sulfide group, an ether group,
an isopropylidene group, a hexafluoroisopropylidene group, a 3-oxyphenoxy group, a
4-oxyphenoxy group, a 4'-oxy-4-biphenoxy group and a 4-[1-(4-oxyphenyl)-1-methylethyl]phenoxy
group, and a position of each bond, said position being unspecified, is a para-position
or meta-position.
(12) A crosslinkable-group-containing polyimide as described above under (11), wherein
in the chemical formula (1b),
X is an oxygen atom;
imido-bonded positions of two benzenes to which X is directly bonded are a m-position
and a para-position, respectively; and
R is a 3,'4',3',4'-substituted biphenyl.
(13) A crosslinkable-group-containing polyimide as described above under (7), wherein
among the recurring structural units represented by the chemical formula (1), 50 to
100 mole % are of a recurring unit structure represented by the chemical formula (1c):

wherein X and R are groups to be indicated next, respectively, that is,
X represents a divalent linking group selected from the group consisting of a direct
bond, a carbonyl group, a sulfone group, a sulfide group, an ether group, an isopropylidene
group and a hexafluoroisopropylidene group; and
R represents a tetravalent linking group selected from the group consisting of:

wherein G represents a divalent aromatic group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group, a hexafluoroisopropylidene group, a 3-oxyphenoxy group, a
4-oxyphenoxy group, a 4'-oxy-4-biphenoxy group and a 4-[1-(4-oxyphenyl)-1-methylethyl]phenoxy
group, and a position of each bond, said position being unspecified, is a para-position
or meta-position.
(14) A crosslinkable-group-containing polyimide as described above under (13), wherein
in the chemical formula (1c), X is an oxygen atom.
(15) A crosslinkable-group-containing polyimide as described above under (13), wherein
in the chemical formula (1c),
X is an oxygen atom;
positions of a benzene ring, at which two Xs are directly bonded, respectively,
are m-positions relative to each other;
bonded positions of each of two benzenes to each of which X and an imido group
are directly bonded are p-positions relative to each other; and
R is a 3,4,3',4'-substituted biphenyl.
(16) A crosslinkable-group-containing polyimide as described above under (7), wherein
among the recurring structural units represented by the chemical formula (1), 50 to
100 mole % are of a recurring unit structure represented by the chemical formula (1e):

wherein Q, Z and R are groups to be indicated next, respectively, that is,
Q represents a divalent aromatic group selected from the group consisting of an
ether group and an isopropylidene group;
Z represents a divalent aromatic group selected from the group consisting of a
direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group, an
isopropylidene group, a hexafluoroisopropylidene group, and

R represents a tetravalent aromatic group selected from the group consisting of:

wherein G represents a divalent aromatic group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group, a hexafluoroisopropylidene group, a 3-oxyphenoxy group, a
4-oxyphenoxy group, a 4'-oxy-4-biphenoxy group and a 4-[1-(4-oxyphenyl)-1-methylethyl]phenoxy
group, and a position of each bond, said position being unspecified, is a para-position
or meta-position.
(17) A crosslinkable-group-containing polyimide as described above under (16), wherein
in the chemical formula (1e),
Q is an oxygen atom; and
Z is at least one divalent group selected from the group consisting of a direct
bond, a carbonyl group, a sulfone group, a sulfide group, an ether group, an isopropylidene
group and a hexafluoroisopropylidene group.
(18) A crosslinkable-group-containing polyimide as described above under (16), wherein
in the chemical formula (1e),
- Q
- is an oxygen atom;
- Z
- is a direct bond; and
- R
- is a 1,2,4,5-substituted benzene.
(19) A process for the production of a melt-moldable or formable, crosslinkable-group-containing
polyimide, 1 to 80 mole % of molecule ends of the polyimide being crosslinkable-group-containing
molecule ends represented by a chemical formula (2a) and 99 to 20 mole % of the molecule
ends being crosslinkable-group-free molecule ends represented by a chemical formula
(2b), which comprises end-blocking ends of polyimide backbones by using dicarboxylic
acid anhydrides represented by the chemical formula (3a) and the chemical formula
(3b):

wherein Y represents a trivalent aromatic group selected from the group consisting:

wherein X represents a divalent linking group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group and a hexafluoroisopropylidene group;

wherein T represents a divalent aromatic group consisting of:

wherein X represents a divalent linking group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group and a hexafluoroisopropylidene group;

wherein Y represents a trivalent aromatic group selected from the group consisting:

wherein X represents a divalent linking group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group and a hexafluoroisopropylidene group; and

wherein T represents a divalent aromatic group consisting of:

wherein X represents a divalent linking group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group and a hexafluoroisopropylidene group.
(20) A process as described above under (19), wherein the dicarboxylic acid anhydrides
represented by the chemical formula (3a) and the chemical formula (3b) are used in
amounts represented, on a molar ratio basis, by the numerical formula [1]:
1/99 ≦ the dicarboxylic acid anhydride represented by the chemical formula (3a)/the
dicarboxylic acid anhydride represented by the chemical formula (3b) ≦ 80/20 [1]

Y represents a trivalent aromatic group selected from the group consisting of:

wherein X represents a divalent linking group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group and a hexafluoroisopropylidene group.

T represents a divalent aromatic group selected from the group consisting of:

wherein X represents a divalent linking group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group and a hexafluoroisopropylidene group.
(21) A process as described above under (19) or (20), wherein in the chemical formula
(3a) and/or the chemical formula (3b), T is the chemical formula (2a) and/or Y is
the chemical formula (2e):


(22) A process as described above under any one of (19)-(21), wherein the polyimide
backbones have been obtained by thermally and/or chemically imidating a polyamic acid
obtained as a polyimide precursor by polymerizing a diamine component and a tetracarboxylic
acid anhydride component.
(23) A process as described above under (22), wherein the diamine component is at
least one diamine component selected from the group consisting of diamine components
represented by the chemical formula (4):
H2N―Ar―NH2 (4)
wherein Ar represents a divalent aromatic group selected from the group consisting
of:

wherein J represents a divalent linking group selected from the group consisting
of a carbonyl group, an ether group, an isopropylidene group and a hexafluoroisopropylidene
group, K represents a divalent linking group selected from the group consisting of
a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group and a hexafluoroisopropylidene group, p and q each independently
stand for 0 or 1, and a position of each bond, said position being unspecified, is
a para-position or meta-position;
(24) A process as described above under (23), wherein of the diamine component represented
by the chemical formula (4), 50 to 100 mole % are represented by the chemical formula
(4c):

wherein X represents a divalent linking group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group and a hexafluoroisopropylidene group, and a position of each
bond, said position being unspecified, is a para-position or meta-position.
(25) A process as described above under (24), wherein in the chemical formula (4c),
X is an oxygen atom.
(26) A process as described above under (24), wherein in the chemical formula (4c);
X is an oxygen;
positions of a benzene ring, at which two Xs are directly bonded, respectively,
are m-positions relative to each other; and
bonded positions of each of two benzenes to each of which X and an amino group
are directly bonded are p-positions relative to each other.
27. A process as described above under (24), wherein of the diamine component represented
by the chemical formula (4), 50 to 100 mole % are represented by the chemical formula
(4d) :

wherein X represents a divalent linking group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group and a hexafluoroisopropylidene group.
(28) A process as described above under (27), wherein in the chemical formula (4d),
X is a direct bond.
(29) A process as described above under (22), wherein the tetracarboxylic acid dihydride
component is represented by the chemical formula (5):

wherein R represents a tetravalent linking group selected from the group consisting
of:

wherein G represents a divalent aromatic group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group, a hexafluoroisopropylidene group, a 3-oxyphenoxy group, a
4-oxyphenoxy group, a 4'-oxy-4-biphenoxy group and a 4-[1-(4-oxyphenyl)-1-methylethyl]phenoxy
group.
(30) A crosslinkable-group-containing polyimide as described above under any one of
(1)-(18), there is a temperature T [°C] which simultaneously satisfy the following
numerical formulas [2] and [3]:


where
- MV5(T):
- melt viscosity [Pa·sec] of the polyimide as measured under a desired constant shearing
stress in a range of from 0.1 to 1 [MPa] after causing the polyimide to melt by holding
the polyimide at a temperature T [°C] for 5 minutes; and
- MV30(T):
- melt viscosity [Pa·sec] of the polyimide as measured under the desired constant shearing
stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to melt by
holding the polyimide at the temperature T [°C] for 30 minutes.
(31) A crosslinkable-group-containing polyimide as described above under any one of
(1)-(18), wherein there is a temperature T [°C] which simultaneously satisfy the following
numerical formulas [2], [3] and [4]:



where
- MV5(T):
- melt viscosity [Pa·sec] of the polyimide as measured under a desired constant shearing
stress in a range of from 0.1 to 1 [MPa] after causing the polyimide to melt by holding
the polyimide at a temperature T [°C] for 5 minutes;
- MV5(T+20) :
- melt viscosity [Pa·sec] of the polyimide as measured under the desired constant shearing
stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to melt by
holding the polyimide at a temperature T+20 [°C] for 5 minutes;
- MV30(T):
- melt viscosity [Pa·sec] of the polyimide as measured under the desired constant shearing
stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to melt by
holding the polyimide at the temperature T [°C] for 30 minutes.
- MV30 (T+20) :
- melt viscosity [Pa·sec] of the polyimide as measured under the desired constant shearing
stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to melt by
holding the polyimide at a temperature T+20 [] for 30 minutes.
(32) A crosslinkable-group-containing polyimide as described above under any one of
(1)-(18), which simultaneously satisfies the following numerical formulas [5] and
[6]:


where
- MV5(360):
- melt viscosity [Pa·sec] of the polyimide as measured under a desired constant shearing
stress in a range of from 0.1 to 1 [MPa] after causing the polyimide to melt by holding
the polyimide at 360 [°C] for 5 minutes; and
- MV30(360) :
- melt viscosity [Pa·sec] of the polyimide as measured under the desired constant shearing
stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to melt by
holding the polyimide at 360 [°C] for 30 minutes.
(33) A crosslinkable-group-containing polyimide as described above under any one of
(1)-(18), wherein a time t (min) which satisfies the numerical formula [7] lasts 10
minutes or longer:

where
- G' (t) :
- storage modulus of the polyimide as measured at 360°C and 1 Hz after an elapse of
the time t (min) ; and
- G" (t):
- loss modulus of the polyimide as measured at 360°C and 1 Hz after an elapse of the
time t (min).
(34) A crosslinked polyimide obtained by heat-treating a crosslinkable-group-containing
polyimide as described above under any one of (1)-(18) and (30)-(33).
(35) A solution or suspension comprising a crosslinkable-group-containing polyimide
as described above under any one of (1)-(18) and (30)-(33).
[0017] The polyimide according to the present invention is a crosslinkable-group-containing
polyimide which contains crosslinking groups at 1 to 80 mole % of molecule ends thereof.
[Molecule ends]
[0018] The term "molecule ends" as used herein means molecule ends, which are not contained
in recurring structural units of a polyimide molecule chain arid schematically correspond
to "-End"s in the chemical formula (6a).
[0019] Where, as will be indicated by the chemical, formula (6b), two kinds of units A and
B exist in a recurring structural unit and the number of units of one kind ("A" in
this case) is greater by one than that of the unit(s) of the other kind, molecule
ends schematically corresponds to "-End"s in the chemical formula (6b).
[0020] It is to be noted that the structural unit A or B is not supposed to be contained
in the structure of each "-End".

[Crosslinkable groups]
[0021] The term "crosslinkable groups" means groups capable of forming a certain bond between
molecule chains as a result of a reaction between crosslinkable groups or a crosslinkable
group and a group on a polyimide backbone under specific crosslinking conditions.
In the present invention, crosslinkable groups exist in molecule ends of polyimide
chains.
[0022] No limitation is imposed on the crosslinking conditions, and a known crosslinking
reaction such as heat-setting or photo-setting can be applied. From the standpoint
of use, preferred are crosslinkable groups to which conditions not decomposing a polyimide
backbone under crosslinking conditions are applicable.
[0023] If crosslinkable groups react with groups on a polyimide backbone, groups usable
as the crosslinkable groups obviously differ depending on the polyimide backbone to
be used.
[0024] As crosslinkable groups, those known to the public can be chosen and used as No limitation
is imposed on the kind of crosslinkable groups, but representative examples can include
ethynyl groups, benzocyclobuten-4'-yl groups, vinyl groups, allyl groups, cyano groups,
isocyanate groups, nitrilo groups, amino groups, isopropenyl groups, vinylene groups,
vinylidene groups, ethynylidene groups, and biphenylenyl groups.
[Molecule ends having preferred crosslinkable groups]
[0025] Molecule ends, each of which is usable in the present invention and has a crosslinkable
group, are preferably those represented by the chemical formula (2a). The polyimide
according to the present invention is characterized in that 1 to 80 mole % of the
total number of end groups of the polymer chain are such crosslinkable-group-containing
end groups and 99 to 20 mole % are crosslinkable-group-free end groups, preferably,
those represented by the chemical formula (2b).
[0027] Incidentally, the crosslinkable-group-containing end groups are not limited to those
exemplified above, but known crosslinkable-group-containing end groups can be used
either singly or in combination as desired.
[0028] As the most preferred crosslinkable-group-containing end group, one of the chemical
formula (2a) in which Y is the chemical formula (2e) is used. Specifically, it is:

[Crosslinkable-group-free molecule ends]
[0029] As the crosslinkable-group-containing polyimide according to the present invention
is characterized in that it has crosslinkable groups at 1 to 80 mole % of its molecule
ends, 99 to 20 mole % of its molecule ends are crosslinkable-group-free molecule ends.
The term "crosslinkable-group-free molecule ends" ineans molecule end groups which
cannot form any bond between molecule chains because no reaction takes place between
the molecule ends themselves or the molecule ends and groups on polyimide backbones
under any conditions during a molding or forming step, a post treatment step or the
like.
[Crosslinkable-group-containing molecule ends which may function as crosslinkable-group-free
molecule ends]
[0030] As the term "crosslinkable-group-free molecule ends" as used herein means molecule
end groups incapable of crosslinking under any conditions during a molding or forming
step, a post treatment step or the like as described above, a structure which becomes
a crosslinkable group under certain conditions can function as a crosslinkable-group-free
group when employed under conditions milder than the first-mentioned conditions.
[Preferred crosslinkable-group-free molecule ends]
[0031] As crosslinkable-group-free molecule ends, those of known structures can be used
either singly or in combination, and no limitation is imposed. Nonetheless, use of
those represented by the chemical formula (2) is preferred. Most preferably, those
of the chemical formula (2) in which T represents the chemical formula (2d) are used.
Specifically, it is:

[Molar ratio of crosslinkable-group-containing molecule ends to crosslinkable-group-free
molecule ends]
[0032] The present invention relates to the crosslinkable-group-containing polyimide characterized
in that it contains crosslinkable groups at 1 to 80 mole % of its molecule ends. It
is therefore essential that the molar ratio of crosslinkable-group-containing molecule
ends to crosslinkable-group-free molecule ends falls within the following range:

where
- [E'1]:
- the molar quantity of the crosslinkable-group-containing molecule ends; and
- [E'2] :
- the molar quantity of the crosslinkable-f-group-free molecule ends.
[0033] If the value of [E'1]/[E'2] falls short of this range and is smaller than 1/99, no
sufficient crosslinking density can be achieved, leading to insufficient improvements
in chemical resistance, heat resistance and mechanical properties. If the value of
[E'1]/[E'2] is greater than 80/20, on the other hand, a sufficient crosslinking density
is available, but upon melt molding or forming, a substantial viscosity increase takes
place so that the melt molding or forming becomes infeasible.
[0034] The range of the [E'1]/[E'2] value has to be chosen appropriately depending on molding
or forming conditions. In general, however, the preferred range is:

and the more preferred range is:

[0035] The still more preferred range varies depending on the molding or forming process.
For example, in a batchwise molding or forming process, such as compression molding,
that involves residence, in a molten state, the still more preferred range is:

and the most preferred range is:

[0036] For example, in a molding or forming process, such as injection molding or extrusion,
that involves residence in a molten state and requires a continuous operation, the
preferred range is:

and the most preferred range is:

[0037] For example, in a molding or forming process that does not involve much residence
in a molten state, the preferred range is:

and the most preferred range is:

[Structure of the crosslinkable-group-containing polyimide]
[0038] To form the backbone structure of the crosslinkable-group-containing polyimide according
to the present invention, known polyimides are used singly, as a blend of a desired
ratio, or as a copolymer of a desired ratio.
[Structure of preferred crosslinkable-group-containing polyimide - (1)]
[0039] Although no limitation is imposed on the backbone structure of the crosslinkable-group-containing
polyimide. according to the present invention, preferred is a crosslinkable-group-containing
polyimide characterized in that the backbone structure, which makes up the crosslinkable-group-containing
polyimide, is substantially provided with thermoplasticity.
[What does "substantially provided with thermoplasticity" mean?]
[0040] The expression "a backbone structure is substantially provided with thermoplasticity"
as used herein means that plasticity is shown as a characteristic property of the
backbone structure, specifically that a polyimide, which has been obtained by polymerizing
a polyimide of the backbone structure under diamine-excess conditions and then blocking
molecular chains of the polyimide at ends thereof with phthalic anhydride in a stoichiometric
or greater amount, shows thermoplasticity.
[Structure of preferred crosslinkable-group-containing polyimide - (2)]
[0041] Preferably, the polyimide is a crosslinkable-group-containing polyimide which permits
melt molding or forming.
[Melt molding or forming]
[0042] The term "melt molding or forming" as used herein means. a molding or forming process
of the polyimide, in at least one step of which the resin is caused to flow in a molten
state. The molten state of the polyimide can be achieved only at a temperature higher
than its crystal melting temperature or glass transition temperature. To allow a resin
to flow, the resin is required to have an adequate melt viscosity which varies depending
on shearing stress which in turn differs depending on the molding or forming process.
Incidentally, the temperature, shearing stress and melt viscosity differ depending
on the molding or forming process.
[0043] Illustrative of the molding or forming process are extrusion, injection molding,
compression molding, blow molding, vacuum forming, rotational molding, reaction injection
molding, laminated molding, and casting.
[Variations in melt viscosity]
[0044] To continuously perform processing under steady state, variations in melt viscosity
are required to be small. The term "variations in melt viscosity" means variations
in viscosity when a resin is held at a processing temperature under processing shearing
stress.
[Melt viscosity]
[0045] From the foregoing, the polyimide according to the present invention is a crosslinkable-group-containing
polyimide which, although no limitation is imposed on its viscosity, preferably satisfies
the following numerical formulas [2] and [3] simultaneously:


where
- MV5(T) :
- melt viscosity [Pa·sec] of the polyimide as measured under a desired constant shearing
stress in a range of from 0.1 to 1 [MPa] after causing the polyimide to melt by holding
the polyimide at a temperature T [°C] for 5 minutes, and
- MV30 (T):
- melt viscosity [Pa·sec] of the polyimide as measured under the desired constant shearing
stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to melt by
holding the polyimide at the temperature T [°C] for 30 minutes;
more preferably, satisfies the following numerical formulas [2], [3] and [4] simultaneously:



where
- MV5 (T):
- melt viscosity [Pa·sec] of the polyimide as measured under a desired constant shearing
stress in a range of from 0.1 to 1 [MPa] after causing the polyimide to melt by holding
the polyimide at a temperature T [°C] for 5 minutes,
- MV5 (T+20) :
- melt viscosity [Pa·sec] of the polyimide as measured under the desired constant shearing
stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to melt by
holding the polyimide at a temperature T+20 [°C] for 5 minutes,
- MV30(T):
- melt viscosity [Pa·sec] of the polyimide as measured under the desired constant shearing
stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to melt by
holding the polyimide at the temperature T [°C] for 30 minutes, and
- MV30 (T+20)
- : melt viscosity [Pa·sec] of the polyimide as measured under the desired constant
shearing stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to
melt by holding the polyimide at a temperature T+20 [°C] for 30 minutes; and
most preferably, satisfies the following numerical formulas [2], [3] and [4b]
simultaneously:



where
- MV5(T) :
- melt viscosity [Pa·sec] of the polyimide as measured under' a desired constant shearing
stress in a range of from 0.1 to 1 [MPa] after causing the polyimide to melt by holding
the polyimide at a temperature T [°C] for 5 minutes,
- MV5 (T+20) :
- melt viscosity [Pa·sec] of the polyimide as measured under the desired constant shearing
stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to melt by
holding the polyimide at a temperature T+20 [°C] for 5 minutes,
- MV30(T):
- melt viscosity [Pa·sec] of the polyimide as measured under the desired constant shearing
stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to melt by
holding the polyimide at the temperature T [°C] for 30 minutes, and
- MV30(T+20)
- : melt viscosity [Pa·sec] of the polyimide as measured under the desired constant
shearing stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to
melt by holding the polyimide at a temperature T+20 [°C] for 30 minutes.
[0046] When as crosslinkable-group-containing end groups, those of the structure represented
by the chemical formula (2) are used, inclusion of 360°C within a range of the temperature
T [°C] which satisfies the above numerical formulas [2], [3], [4] and [4b] is preferred
from the additional consideration of the fact that the crosslinking temperature condition
for the crosslinkable groups is about 360°C or higher.
[0047] In other words, the polyimide according to the present invention is a crosslinkable-group-containing
polyimide which preferably satisfies the following numerical formulas [5] and [6]
simultaneously:


where
- MV5(360):
- melt viscosity [Pa·sec] of the polyimide as measured under a desired constant shearing
stress in a range of from 0.1 to 1 [MPa] after causing the polyimide to melt by holding
the polyimide at 360 [°C] for 5 minutes, and
- MV30(360):
- melt viscosity [Pa·sec] of the polyimide as measured under the desired constant shearing
stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to melt by
holding the polyimide at 360 [°C] for 30 minutes;
more preferably, satisfies the following numerical formulas [5], [6] and [8] simultaneously:



where
- MV5(360):
- melt viscosity [Pa·sec] of the polyimide as measured under a desired constant shearing
stress in a range of from 0.1 to 1 [MPa] after causing the polyimide to melt by holding
the polyimide at 360 [°C] for 5 minutes,
- MV5(380):
- melt viscosity [Pa·sec] of the polyimide as measured under the desired constant shearing
stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to melt by
holding the polyimide at 380 [°C] for 5 minutes,
- MV30(360) :
- melt viscosity [Pa·sec] of the polyimide as measured under the desired constant shearing
stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to melt by
holding the polyimide at 360 [°C] for 30 minutes,
- MV30 (380) :
- : melt viscosity [Pa·sec] of the polyimide as measured under the desired constant
shearing stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to
melt by holding the polyimide at 380 [°C] for 30 minutes; and
most preferably, satisfies the following numerical formulas [5], [6] and [8b]
simultaneously:



where
- MV5(360):
- melt viscosity [Pa·sec] of the polyimide as measured under a desired constant shearing
stress in a range of from 0.1 to 1 [MPa] after causing the polyimide to melt by holding
the polyimide at 360 [°C] for 5 minutes,
- MV5 (380) :
- melt viscosity [Pa·sec] of the polyimide as measured under the desired constant shearing
stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to melt by
holding the polyimide at 380 [°C] for 5 minutes,
- MV30 (360) :
- melt viscosity [Pa·sec] of the polyimide as measured under the desired constant shearing
stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to melt by
holding the polyimide at 360 [°C] for 30 minutes,
- MV30(380):
- melt viscosity [Pa·sec] of the polyimide as measured under the desired constant shearing
stress in the range of from 0.1 to 1 [MPa] after causing the polyimide to melt by
holding the polyimide at 380 [°C] for 30 minutes.
[Measuring method of melt viscosity]
[0048] Although no particular limitation is imposed on the measuring method of a melt viscosity,
the melt viscosity can be measured, for example, by a
Koka-type flow tester (e.g., "CFT500A" manufactured by Shimadzu Corporation) under conditions
of an orifice of 1.0 mm (diameter) x 10 mm (length) and a load of 100 kgf.
[0049] It is known (from "Rheology Measuring Methods" compiled by the Rheology Committee
of the Society of Polymer Science, Japanese) that this case, shearing stress (Tw)
[Pa] is determined by calculating apparent shear stress against a nozzle wall and
the value so calculated is expressed by:

where
P: extrusion pressure [Pa];
R: nozzle diameter/2 [cm]; and
Lc: nozzle length [cm].
The shear stress measured by this measuring method is, therefore, 0.245 [MPa]
[Gel time]
[0050] As another parameter which also indicates whether or not a melt flow is feasible,
gel time can be mentioned. The gel time of a resin at a given temperature is represented
by t which satisfies the following numerical formula [7]:

where
- G' (t) :
- storage modulus of the resin as measured at the given temperature and a constant frequency
after an elapse of the time t [min] ; and
- G" (t):
- loss modulus of the resin as measured at the given temperature and the constant frequency
after an elapse of the time t (min).
[0051] No limitation is imposed on the gel time, because upon measuring the gel time, the
sample temperature and the measuring frequency must be changed depending on the processing
method and the properties of the resin. In the case of each polyimide in this application,
however, the gel time measured at a constant sample temperature of 360°C and 1Hz may
preferably be 10 [min] or longer;, with 20 [min] or longer being more preferred.
[0052] No particular limitation is imposed on the measuring methods of the storage modulus
and loss modulus. As an example, however, they can be measured by a melt viscoelasticity
meter (e.g., "RDS-II" manufactured by Rheometrix Scientific F.E.) equipped with parallel
plates (e.g., 25 mm disposable).
[Preferred structure of crosslinkable-group-containing polyimide - (3)]
[0053] More preferably, the crosslinkable-group-containing polyimide according to the present
invention is a crosslinkable-group-containing polyimide containing molecule chains
each of which has a crosslinkable-group-containing end at an end thereof and a crosslinkable-group-free
end at an opposite end thereof. Although no limitation is imposed on the content.of
the molecule chains; their content may be preferably 0.2 mole % or higher, more preferably
1 mole % or higher, most preferably 5 mole % or higher.
[0054] The crosslinkable-group-containing polyimide - which is characterized in that it
contains molecule chains, each of which has a crosslinkable-group-containing end at
an end thereof and a crosslinkable-group-free end at an opposite end thereof may more
preferably be a crosslinkable-group-containing polyimide having the structure represented
by the chemical formula (2c). Although no limitation is imposed on the content of
the molecule chains in the polyimide either, their content may be preferably 0.2 mole
% or higher, more preferably 1 mole % or higher, most preferably 5 mole % or higher.
[Preferred structure of crosslinkable-group-containing polyimide -(4)]
[0055] The crosslinkable-group-containing polyimide according to the present invention may
preferably contain recurring structural units represented by the chemical formula
(1) in the polyimide backbone.
[More preferred structure of crosslinkable-group-containing polyimide - (1)]
[0056] One of more preferred examples of the crosslinkable-group-containing polyimide according
to the present invention which has recurring structural units represented by the chemical
formula (1) is characterized in that 50 to 100 mole % of the recurring structural
units are recurring structural units represented by the chemical formula (1a).
[0057] Among these, most preferred are crosslinkable-group-containing polyimides 50 to 100
mole % of the recurring structural units of each of which have one of the following
structures:

[More preferred structure of crosslinkable-group-containing polyimide -(2)]
[0058] Another one of the more preferred examples of the crosslinkable-group-containing
polyimide according to the present invention which has recurring structural units
represented by the chemical formula. (1) is characterized in that 50 to 100 mole %
of the recurring structural units are recurring structural units represented by the
chemical formula (1b).
[0059] Among these, most preferred are crosslinkable-group-containing polyimides 50 to 100
mole % of the recurring structural units of each of which have the following structure:

[More preferred structure of crosslinkable-group-containing polyimide - (3)]
[0060] A further one of the more preferred examples of the crosslinkable-group-containing
polyimide according to the present invention which has recurring structural units
represented by the chemical formula (1) is characterized in that 50 to 100 mole %
of the recurring structural units are recurring structural units represented by the
chemical formula (1c).
[0061] Among these, preferred are crosslinkable-group-containing polyimides 50 to 100 mole
% of the recurring structural units of each of which has the chemical formula (1c)
in which X is an oxygen atom, and most preferred are crosslinkable-group-containing
polyimides 50 to 100 mole % of the recurring structural units of each of which has
a structure represented by:

[More preferred structure of crosslinkable-group-containing polyimide - (4)]
[0062] A still further one of the more preferred examples of the crosslinkable-group-containing
polyimide according to the present invention which has recurring structural units
represented by the chemical formula (1) is characterized in that 50 to 100 mole %
of the recurring structural units are recurring structural units represented by the
chemical formula (1e).
[0063] Among these, preferred are crosslinkable-group-containing polyimides 50'to 100 mole
% of the recurring structural units of each of which are recurring structural units
represented by the following formula (1d) :

wherein X and R are groups to be indicated next, respectively, that is,
X represents a divalent linking group selected from the group consisting of a direct
bond, a carbonyl group, a sulfone group, a sulfide group, an ether group, an isopropylidene
group and a hexafluoroisopropylidene group; and
R represents a tetravalent aromatic group selected from the group consisting of:

wherein G represents a divalent aromatic group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group, a hexafluoroisopropylidene group, a 3-oxyphenoxy group, a
4-oxyphenoxy group, a 4'-oxy-4-biphenoxy group and a 4-[1-(4-oxyphenyl)-1-methylethyl]phenoxy
group, and a position of each bond, said position being unspecified, is a para-position
or meta-position.
[0064] Among these, preferred are crosslinkable-group-containing polyimides 50 to 100 mole
% of the recurring structural units of each of which has the chemical formula (1d)
in which Z2 is an oxygen atom, and most preferred are crosslinkable-group-containing
polyimides 50 to 100 mole % of the recurring structural units of each of which has
a recurring unit structure represented by:

[Molecular weight of crosslinkable-group-containing polyimide]
[0065] As a measure of the molecular weight of a crosslinkable-group-containing polyimide,
a logarithmic viscosity number is used.
[Logarismic viscosity number of crosslinkable-groupcontaining polyimide]
[0066] The logarithmic viscosity number of a crosslinkable-group-containing polyimide is
in a range of from 0.1 to 1.5 dL/g. A logarithmic viscosity number smaller than 0.1
leads to a decrease in the molecular weight between crosslinking points and hence
to substantial reductions in mechanical properties, while a logarithmic viscosity
number higher than 1.5 leads to an increase in melt viscosity and thus to a considerable
reduction, in melt moldability or formability. The preferred logarithmic viscosity
number is in a range of from 0.2 to 1.2, with a range of from 0.3 to 0.8 being more
preferred, and a range of from 0.4 to 0.6 being most preferred.
[Measuring method of logarithmic viscosity number]
[0067] The above-described logarithmic viscosity number can be measuring in a 9:1 by weight
mixed solvent of p-chlorophenol and phenol, at a solution viscosity of 0.5 g/100 mL
and 35°C, by using, for example, a Ubbellohde viscometer.
[Regularity when the crosslinkable-group-containing polyimide is a copolymer]
[0068] When the crosslinkable-group-containing polyimide according to the present invention
is a copolymer, a limitation may be imposed or may not be imposed on the specific
order or regularity of recurring units of two or more kinds which make up the copolymer.
Concerning the kind of the copolymer, the copolymer can be of any one of random, alternating
and block structures.
[Production process of crosslinkable-group-containing polyimide]
[0069] A detailed description will hereinafter be made of the process for the production
of the crosslinkable-group-containing polyimide according to the present invention.
However, it should be borne in mind that no limitation is imposed on the production
process in the present invention.
[Raw materials to be used]
[0070] The crosslinkable-group-containing polyimide according to the present invention is
generally obtained from the following raw materials:
(A) a diamine component;
(B) a tetracarboxylic acid dianhydride component;
(C) an end blocking agent having a crosslinkable group; and
(D) an end blocking agent having no crosslinkable group.
[Diamine component]
[0071] The diamine component usable to obtain the crosslinkable-group-containing polyimide
according to the present invention can preferably be, but is not limited to, an aromatic
diamine.
[0072] Examples of the diamine component can include:
a) Diamines containing one benzene ring:
p-phenylenediamine, and
m-phenylenediamine;
b) Diamines containing two benzene rings:
3,3'-diaminodiphenyl ether,
3,4'-diaminodiphenyl ether,
4,4'-diaminodiphenyl ether,
3,3'-diaminodiphenyl sulfide,
3,4'-diaminodiphenyl sulfide,
4,4'-diaminodiphenyl sulfide,
3,3'-diaminodiphenyl sulfone,
3,4'-diaminodiphenyl sulfone,
4,4'-diaminodiphenyl sulfone,
3,3'-diaminobenzophenone
4,4'-diaminobenzophenone,
3,4'-diaminobenzophenone,
3,3'-diaminodiphenylmethane,
4,4'-diaminodiphenylmethane,
3,4'-diaminodiphenylmethane,
2,2-di(3-aminophenyl)propane,
2,2-di(4-aminophenyl)propane,
2-(3-aminophenyl)-2-(4-aminophenyl)propane,
2,2-di(3-aminophenyl)-1,1,1,3,3,3,-hexafluoropropane,
2,2-di(4-aminophenyl)-1,1,1,3,3,3,-hexafluoropropane,
2-(3-aminophenyl)-2-(4-aminophenyl)-1,1,1,3,3,3,-hexafluoropropane,
1,1-di(3-aminophenyl)-1-phenylethane,
1,1-di(4-aminophenyl)-1-phenylethane, and
1-(3-aminophenyl)-1-(4-aminophenyl)-1-phenylethane;
c) Diamines containing three benzene rings:
1,3-bis(3-aminophenoxy)benzene,
1,3-bis(4-aminophenoxy)benzene,
1,4-bis(3-aminophenoxy)benzene
1,4-bis(4-aminophenoxy)benzene,
1,3-bis(3-aminobenzoyl)benzene,
1,3-bis(4-aminobenzoyl)benzene,
1,4-bis(3-aminobenzoyl)benzene,
1,4-bis(4-aminobenzoyl)benzene,
1,3-bis(3-amino-α,α-dimethylbenzyl)benzene,
1,3-bis(4-amino-α,α-dimethylbenzyl)benzene,
1,4-bis(3-amino-α,α-dimethylbenzyl)benzene,
1,4-bis(4-amino-α,α-dimethylbenzyl)benzene,
1,3-bis(3-amino-α,α-ditrifluoromethylbenzyl)-benzene,
1,3-bis(4-amino-α,α-ditrifluoromethylbenzyl)-benzene,
1,4-bis(3-amino-α,α-ditrifluoromethylbenzyl)-benzene,
1,4-bis(4-amino-α,α-ditrifluoromethylbenzyl)-benzene,
2,6-bis(3-aminophenoxy)benzonitrile, and
2,6-bis(3-aminophenoxy)pyridine;
d) Diamines containing four benzene rings:
4,4'-bis(3-aminophenoxy)biphenyl,
4, 4'-bis (4-aminophenoxy)biphenyl,
bis[4-(3-aminophenoxy)phenyl ketone,
bis[4-(4-aminophenoxy)phenyl] ketone,
bis[4-(3-aminophenoxy)phenyl]sulfide,
bis[4-(4-aminophenoxy)phenyl] sulfide,
bis[4-(3-aminophenoxy)phenyl] sulfone,
bis[4-(4-aminophenoxy)phenyl] sulfone,
bis [4-(3-aminophenoxy)phenyl] ether,
bis [4-(4-aminophendxy)phenyl] ether,
2,2-bis[4-(3-aminophenoxy)phenyl]propane,
2,2-bis[4-(4-aminophenoxy)phenyl]propane,
2,2-bis [3-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, and
2,2-bis[4-(4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane;
e) Diamines containing five benzene rings:
1, 3-bis [4-(3-aminophenoxy)benzoyl]benzene,
1,3-bis[4-(4-aminophenoxy)benzoyl]-benzene,
1,4-bis[4-(3-aminophenoxy)benzoyl]benzene,
1,4-bis[4-(4-aminophenoxy)benzoyl]benzene,
1,3-bis[4-(3-aminophenoxy)-α,α-dimethylbenzyl]-benzene,
1,3-bis[4-(4-aminophenoxy)-α,α-dimethylbenzyl]-benzene,
1,4-bis[4-(3-aminophenoxy)-α,α-dimethylbenzyl]-benzene, and
1,4-bis[4-(4-aminophenoxy)-α,α-dimethylbenzyl]-benzene;
f) Diamines containing six benzene rings:
4,4'-bis[4-(4-aminophenoxy)benzoyl]diphenyl ether,
4,4'-bis[4-(4-amino-α,α-dimethylbenzyl)phenoxy]-benzophenone,
4,4'-bis[4-(4-amino-α,α-dimethylbenzyl)phenoxy]-diphenyl sulfone, and
4,4'-bis[4-(4-aminophenoxy)phenoxy]diphenyl sulfone;
g) Diamines containing aromatic substituent group(s):
3,3'-diamino-4,4'-diphenoxybenzophenone,
3,3'-diamino-4,4'-dibiphenoxybenzophenone,
3,3'-diamino-4-phenoxybenzophenone, and
3,3'-diamino-4-biphenoxybenzophenone; and
h) Diamines, containing a spirobiindane ring:
6,6'-bis(3-aminophenoxy)3,3,3',3'-tetramethyl-1,1'-spirobiindane, and:
6,6'-bis(4-aminophenoxy)3,3,3',3'-tetramethyl-1,1'-spirobiindane.
[0073] Also usable are diamines each of which is obtained by substituting some or all of
the hydrogen atoms on one or more of the aromatic ring(s) of the corresponding one
of the above-described diamines by a like number of substituent group(s) selected
from fluoro, methyl, methoxy, trifluoromethyl or trifluoromethoxy groups.
[0074] Further, these diamines are also usable after in place of some or all of the hydrogen
atoms on one or more of the aromatic ring(s) of each of the diamines, a like number
of ethynyl group(s), benzocyclobuten-4'-yl group(s), vinyl group(s), allyl group(s),
cyano group(s), isocyanate group(s), nitrilo group(s) and/or isopropenyl group(s),
which can act as crosslinking points, are introduced as substituent group(s), preferably
to an extent not impairing the moldability or formability. Moreover, one or more of
vinylene groups, vinylidene groups and ethynylidene groups, which can act as crosslinking
points, can be incorporated into each backbone skeleton, rather than as substituent
group (s), preferably to an extent not impairing the moldability or formability.
[0075] In addition, for the purpose of achieving improvements in or modifications to performance,
copolymerization can be conducted using one or more aliphatic diamines, to an extent
not impairing various good physical properties, together with the above-described
diamine. Examples of such aliphatic diamines can include:
i) Siloxanediamines:
1,3-bis(3-aminopropyl)tetramethyldisiloxane,
1,3-bis(4-aminobutyl)tetramethyldisiloxane,
α,ω-bis(3-aminopropyl)polydimethylsiloxane, and
α,ω-bis(3-aminobutyl)polydimethylsiloxane;
j) Ethyleneglycoldiamines:
bis(aminomethyl) ether;
bis(2-aminoethyl) ether,
bis(3-aminopropyl) ether,
bis(2-aminomethoxy)ethyl] ether,
bis[2-(2-aminoethoxy)ethyl] ether,
bis[2-(3-aminoprotoxy)ethyl] ether,
1,2-bis(aminomethoxy)ethane,
1,2-bis(aminoethoxy)ethane,
1,2-bis[2-(aminomethoxy)ethoxy]ethane,
1,2-bis[2-(2-aminomethoxy)ethoxy]ethane,
ethylene glycol bis(3-aminopropyl) ether,
diethylene glycol bis(3-aminopropyl) ether, and
triethylene glycol bis(3-aminopropyl) ether;
k) Methylenediamines:
1,3-diaminopropane,
1,4-diaminobutane,
1,5-diaminopentane,
1,6-diaminohexane,
1,7-diaminoheptane,
1,8-diaminooctane,
1,9-diaminononane,
1,10-diaminodecane,
1,11-diaminoundecane, and
1,12-diaminododecane; and
l) Alicyclic diamines:
1,2-diaminocyclohexane,
1,3-diaminocyclohexane,
1,4-diaminocyclohexane,
1, 2-di(2-aminoethyl)cyclohexane,
1,3--di(2-aminoethyl)cyclohexane,
1,4-di(2-aminoethyl)cyclohexane,
bis(4-aminocyclohexyl)methane,
2,6-bis(aminomethyl)bicyclo[2.2.1]heptane, and
2,5-bis(aminomethyl)bicyclo[2.2.1]heptane.
[0076] These diamines can be used either singly or in combination as needed.
[Preferred diamine components]
[0077] Among the above-exemplified diamine components, preferred diamines are those represented
by the chemical formula (4).
[More preferred diamine components (1)]
[0078] Among the diamines represented by the chemical formula (4), diamines of a more preferred
type are those represented by the chemical formula (4c). When these more preferred
diamine compohents are used, it is particularly preferred to use them in a proportion
of 50 to 100 mole %.
[0079] Usable examples of the diamines represented by the chemical formula (4c) can include:
1,3-bis (3-aminophenoxy)benzene,
1,3-bis(4-aminophenoxy)benzene,
1,4-bis(3-aminophenoxy)benzene,
1,4-bis(4-aminophenoxy)benzene,
1,3-bis(3-aminobenzoyl)benzene,
1,3-bis(4-aminobenzoyl)benzene,
1,4-bis(3-aminobenzoyl)benzene,
1,4-bis(4-aminobenzoyl)benzene,
1,3-bis(3-amino-α,α-dimethylbenzyl)benzene,
1,3-bis(4-amino-α,α-dimethylbenzyl)benzene,
1,4-bis(3-amind-α,α-dimethylbenzyl)benzene,
1,4-bis(4-amino-α,α-dimethylbenzyl)benzene,
1,3-bis(3-amino-α,α-ditrifluoromethylbenzyl)-benzene,
1,3-bis(4-amino-α,α-ditrifluoromethylbenzyl)-benzene,
1,4-bis(3-amino-α,α-ditrifluoromethylbenzyl)-benzene,
1, 4-bis(4-amino-α,α-ditrifluoromethylbenzyl)-benzene,
2,6-bis(3-aminophenoxy)benzonitrile, and
2,6-bis(3-aminophenoxy)pyridine.
[0080] Among these, particularly preferred diamines are:
1,3-bis(3-aminophenoxy)benzene,
1,3-bis(4-aminophenoxy)benzene,
1,4-bis(3-aminophenoxy)benzene,
1,4-bis(4-aminophenoxy)benzene,
1,3-bis(3-aminobenzoyl)benzene,
1,3-bis(4-aminobenzoyl)benzene,
1,4-bis(3-aminobenzoyl)benzene, and
1,4-bis(4-aminobenzoyl)benzene; and
the most preferred diamine is:
1,3-bis(4-aminophenoxy)bezene.
[More preferred diamine components (2)]
[0081] Among the diamines represented by the chemical formula (4), diamines of another more
preferred type are those represented by the chemical formula (4d). When these more
preferred diamine components are used, it is particularly preferred to use them in
a proportion of 50 to 100 mole %.
[0082] Examples of the diamines represented by the chemical formula (4d) can include:
4,4'-bis(3-aminophenoxy)biphenyl,
bis[4-(3-aminophenoxy)phenyl] ketone,
bis[4-(3-aminophenoxy)phenyl] sulfide,
bis[4-(3-aminophenoxy)phenyl] sulfone,
bis[4-(3-aminophenoxy)phenyl] ether,
2,2-bis[4-(3-aminophenoxy)phenyl]propane, and
2,2-bis[3-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane.
[0083] Among these, the particularly preferred diamine component is:
4,4'-bis(3-aminophenoxy)biphenyl.
[Tetracarboxylic acid dianhydride component]
[0084] No limitation is imposed on the tetracarboxylic acid dianhydride component employed
to obtain the polyimide according to the present invention, and the following illustrative
tetracarboxylic, acid dianhydrides can be used either singly or in combination as
desired:
pyromellitic dianhydride,
3,3'4,4'-biphenyltetracarboxylic acid dianhydride,
3,3'4,4'-benzophenonetetracarboxylic acid dianhydride,
bis(3,4-dicarboxyphenyl) ether dianhydride,
bis(3,4-dicarboxyphenyl) sulfide dianhydride,
bis(3,4-dicarboxyphenyl) sulfone dianhydride,
2,2-bis(3,4-dicarboxyphenyl)propane dianhydride,
2,2-bis(3,4-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropane dianhydride,
1,3-bis(3,4-dicarboxyphenoxy)benzene dianhydride,
1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride,
4,4'-bis(3,4-dicarboxyphenoxy)biphenyl dianhydride,
2,2-bis[(3,4-dicarboxyphenoxy)phenyl]propane dianhydride,
2,3,6,7-naphthalenetetracarboxylic acid dianhydride,
1,4,5,8-naphthalenetetracarboxylic acid dianhydride,
ethylenetetracarboxylic acid dianhydride,
butanetetracarboxylic acid dianhydride,
cyclopentanecarboxylic acid dianhydride,
2,2',3,3'-bezophenonetetracarboxylic acid dianhydride,
2,2',3,3'-biphenyltetracarboxylic acid dianhydride,
2,2-bis(2,3-dicarboxyphenyl)propane dianhydride,
2,2-bis (2, 3-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropane dianhydride,
bis(2,3-dicarboxyphenyl) ether dianhydride,
bis(2,3-dicarboxyphenyl) sulfide dianhydride,
bis(2,3-dicarboxyphenyl) sulfone dianhydride,
1,3-bis(2,3-dicarboxyphenoxy)benzene dianhydride,
1,4-bis(2,3-dicarboxyphenoxy)benzene dianhydride, and
1,2,5,6-naphthalenetetracarboxylic acid dianhydride.
[0085] In combination with all the kinds of the above-described tetracarboxylic acid dianhydride
components, diamines in each of which some or all of the hydrogen atoms on one or
more of the aromatic ring (s) have been replaced by a like number of substituent groups
selected from fluoro groups, methyl groups, methoxy groups, trifluoromethyl groups
and/or trifluoromethoxy groups can be used.
[0086] Further, the above-described diamines are also usable after in place of some or all
of the hydrogen atoms on one or more of the aromatic ring(s) of each of the diamines,
a like number of ethynyl group(s), benzocyclobuten-4,'-yl group(s), vinyl group(s),
allyl group(s), cyano group(s), isocyanate group(s), nitrilo group(s) and/or isopropenyl
group(s), which can act as crosslinking points, are introduced as substituent group
(s), preferably to an extent not impairing the moldability or formability. Moreover,
one or more of vinylene groups, vinylidene groups and ethynylidene groups, which can
act as crosslinking points, can be incorporated into each backbone skeleton, rather
than as substituent group(s), preferably to an extent not impairing the moldability
or formability.
[0087] These tetracarboxylic acid dianhydride components can be used either singly or in
combination as needed.
[0088] Depending on the production process, tetracarboxylic acid monoanhydrides, tetracarboxylic
compounds other than anhydrides, or their derivatives such as salts can also be used
as desired instead of such dianhydrides.
[Preferred tetracarboxylic acid dianhydride components]
[0089] Among the above-exemplified tetracarboxylic acid dianhydride components, preferred
tetracarboxylic acid dianhydrides are tetracarboxylic acid dianhydrides represented
by the chemical formula (5). Specific examples can include:
pyromellitic dianhydride,
3,3'4,4'-biphenyltetracarboxylic acid dianhydride,
3,3'4,4'-benzophenonetetracarboxylic acid dianhydride,
bis(3,4-dicarboxyphenyl) ether dianhydride,
bis(3,4-dicarboxyphenyl) sulfide dianhydride,
bis (3, 4-dicarboxyphenyl) sulfone dianhydride,
2,2-bis(3,4-dicarboxyphenyl)propane dianhydride,
2,2-bis(3,4-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropane dianhydride,
1,3-bis(3,4-dicarboxyphenoxy)benzene dianhydride,
1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride,
4,4'-bis(3,4-dicarboxyphenoxy)biphenyl dianhydride,
2,2-bis[(3,4-dicarboxyphenoxy)phenyl]propane dianhydride,
2,3,6,7-naphthalenetetracarboxylic acid dianhydride, and
1,4,5,8-naphthalenetetracarboxylic acid dianhydride,
[0090] [More preferred tetracarboxylic acid dianhydride components]
[0091] Among the diamines represented by the chemical formula (5), more preferred tetracarboxylic
acid dianhydrides can be :
pyromellitic dianhydride,
3,3'4,4'-biphenyltetracarboxylic acid dianhydride,
3,3'4,4'-benzophenonetetracarboxylic acid dianhydride,
bis(3,4-dicarboxyphenyl) ether dianhydride,
bis(3,4-dicarboxyphenyl)sulfide dianhydride,
bis(3,4-dicarboxyphenyl) sulfone dianhydride,
2,2-bis(3,4-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropane dianhydride, and
1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride.
One or more tetracarboxylic acid dianhydride components selected from the group consisting
of these more preferred tetracarboxylic acid dianhydrides can be used.
[Amount of the tetracarboxylic acid dianhydride component to be used]
[0092] The total amount of the tetracarboxylic acid dianhydride is from 0.8 to 1.25 moles
per mole of the total amount of the diamine component to be used. By changing this
molar ratio, the molecular weight of the resulting crosslinkable-group-containing
polyimide can be controlled. A molar ratio lower than 0.8 cannot provide a molecular
weight high enough to bring about sufficient properties, while a molar ratio higher
than 1.25 leads to a reduction in the molecular weight.
[0093] When a dicarboxylic acid or its anhydride or derivative is used as an end blocking
agent, the total amount of the tetracarboxylic acid dianhydride component may be preferably
from 0.8 to 0.99, more preferably from 0.85 to 0.97 per mole of the total amount of
the diamine component to be used, with a range of from 0.90 to 0.95 being most preferred.
[0094] In this case, use of a tetracarboxylic acid dianhydride component beyond the above
range results in insufficient end blocking, thereby causing adverse effects on the
thermal stability and moldability or formability.
[0095] When a monoamine is used as an end blocking agent, the total amount of the tetracarboxylic
acid dianhydride component to be used may be preferably from 1.01 to 1.25 moles, more
preferably from 1.05 to 1.20 moles per mole of the total amount of the diamine component
to be used, with a range of from 1.07 to 1.15 being most preferred.
[0096] In this case, use of a tetracarboxylic acid dianhydride component below the above
range results in insufficient end blocking, thereby causing adverse effects on the
thermal stability and moldability or formability.
[0097] The control of the molecular weight of the crosslinkable-group-containing polyimide
can be achieved by adjusting the molar ratio of the total amount of the tetracarboxylic
acid dianhydride component to the total amount of the diamine component to be used.
Depending on the polymerization process, the kind of the solvent, the polymerization
time, the polymerization time and the like, however, their optimum charging ratio
may differ in some instances.
[Crosslinkable-group-containing end blocking agent]
[0098] No limitation is imposed on the crosslinkable-group-containing end blocking agent
to be used in the present invention. Crosslinkable-group-containing end blocking agents
of various kinds are usable depending on the synthesis process of the polyimide, including
monoamines and dicarboxylic acid anhydrides as representative examples. As crosslinkable
group(s) to be introduced, a variety of known crosslinkable groups can be selected
in accordance with molding or forming conditions.
[0099] Although no limitation is imposed on the kind of the crosslinkable group(s), representative
examples can include ethynyl group, benzocyclobuten-4'-yl group, vinyl group, allyl
group, cyano group, isocyanate group, nitrilo group, amino group, isopropenyl group,
vinylene group, vinylidene group, and ethynylidene group.
[Preferred crosslinkable-group-containing end blocking agents]
[0100] The crosslinkable-group-containing end blocking agent usable in the present invention
may preferably be a crosslinkable-group-containing dicarboxylic acid anhydride. Depending
on the synthesis process, its ring-opened product or its derivative such as its salt
can be used.
[0101] Examples can include:
- unsaturated aliphatic dicarboxylic acid anhydrides represented by maleic anhydride
and nadic anhydride,
- ethynyl-containing dicarboxylic acid anhydrides, represented by 1-phenyl-2-(3,4-dicarboxyphenyl)-acetylene
anhydride, ethynylphthalic anhydride and 6-ethynyl-2,3-dicarboxynaphthalene anhydride,
and
- phthalic acid anhydrides or 2,3-dicarboxynaphthalene anhydride derivatives containing
a benzocyclobuten-4'-yl group, vinyl group, allyl group or isopropenyl group.
[End blocking agents containing more preferred crosslinking group]
[0102] The crosslinkable group contained in the structure may preferably be an ethynyl group,
with one containing a phenylethynylbenzene structure being more preferred. [End blocking
agents containing still more preferred crosslinking group]
[0103] The crosslinkable-group-containing end blocking agent usable in the present invention
may more preferably be a dicarboxylic acid anhydride represented by the chemical formula
(3a)
[0104] Specific examples are:
1-phenyl-2- (3, 4-dicarboxyphenyl)acetylene anhydride,
1-phenyl-2-(3-(3,4-dicarboxyphenoxy)phenyl)acetylene anhydride,
1-phenyl-2-(3-(3,4-dicarboxyphenylcarbonyl)phenyl)acetylene anhydride,
1-phenyl-2-(3-(3,4-dicarboxyphenylsulfonyl)phenyl)acetylene anhydride,
1-phenyl-2-(3-(3,4-dicarboxyphenylsulfinyl)phenyl)acetylene anhydride,
1-phenyl-2-(3-(2-(3,4-dicarboxyphenyl)isopropanyl)phenyl)-acetylene anhydride,
1-phenyl-2-(3-(1,1,1,3,3,3-hexafluoro-2-(3,4-dicarboxyphenyl)isopropanyl)phenyl)acetylene
anhydride,
1-phenyl-2-(3-(3,4-dicarboxyphenyl)phenyl)acetylene anhydride,
1-phenyl-2-(4-(3,4-dicarboxyphenyl)phenyl)acetylene anhydride,
1-phenyl-2-(4-(3,4-dicarboxyphenylcarbonyl)phenyl)acetylene anhydride,
1-phenyl-2-(4-(3,4-dicarboxyphenylsulfonyl)phenyl)acetylene anhydride,
1-phenyl-2-(4-(3,4-dicarboxyphenylsulfinyl)phenyl)acetylene anhydride,
1-phenyl-2-(4-(2-(3,4-dicarboxyphenyl)isopropanyl)phenyl)acetylene anhydride,
1-phenyl-2-(4-(1,1,1,3,3,3-hexafluoro-2-(3,4-dicarboxyphenyl)isopropanyl)-phenyl)acetylene
anhydride,
1-phenyl-2-(4-(3,4-dicarboxyphenyl)phenyl)acetylene anhydride, and
2,3-dicarboxy-6-phenylethynyl)naphthalene anhydride.
[0105] The above-described, crosslinkable-group-containing end blocking agents can be used
either singly or in combination. End blocking agents in each of which some or all
of the hydrogen atoms on one or more of the aromatic ring(s) have been replaced by
a like number of substituent groups selected from fluoro groups, methyl groups, methoxy
groups, trifluoromethyl groups and/or trifluoromethoxy groups can also be used.
[0106] Further, the above-described, crosslinkable-group-containing dicarboxylic acid anhydrides
are also usable after in place of some or all of the hydrogen atoms on one or more
of the aromatic ring(s) of each of the anhydrides, a like number of ethynyl group(s),
benzocyclobuten-4'-yl group(s), vinyl group(s), allyl group (s), cyano group(s), isocyanate
group(s), nitrilo group(s) and/or isopropenyl grsup (s), which can act as crosslinking
points, are introduced as substituent group (s), preferably to an extent not impairing
the moldability or formability.
[Most preferred, crosslinkable-group-containing end blocking agent]
[0107] Among the above-described, crosslinkable-group-containing end blocking agents, 1-phenyl-2-(3,4-dicarboxyphenyl
acetylene anhydride is most preferred from the standpoint of the properties and practical
application of the crosslinkable-group-cohtaining polyimide according to the present
invention.
[Crosslinkable-group-free end blocking agent]
[0108] No limitation is imposed on the crosslinkable-group-free end blocking agent usable
in the present invention. Depending on the synthesis process of the polyimide, a variety
of crosslinkable-group-free end blocking agents can be used. Representative examples
are monoamines or dicarboxylic acid anhydrides. It is essential that a group, which
may function. as a crosslinking group under conditions of a molding or forming. step
or post-treatment step, is not contained in the structure. Examples of the crosslinking
group can include ethynyl group, benzocyclobuten-4'-yl group, vinyl group, allyl group,
cyano group, isocyanate group, nitrilo group, amino group, isopropenyl group, vinylene
group, vinylidene group, and ethynylidene group.
[Preferred, crosslinkable-group-free end blocking agents]
[0109] The crosslinkable-group-free end blocking agent usable in the present invention may
preferably be a dicarboxylic acid anhydride. Depending on the synthesis process, its
ring-opened product or its derivative such as its salt can be used.
[0110] Specific examples are:
phthalic anhydride,
4-phenylphthalic anhydride,
4-phenoxyphthalic anhydride,
4-phenylsulfinylphthallic acid,
4-phenylcarbonylphthalic acid,
4-(2-phenylisopropyl)phthalic anhydride,
4-(1,1,1,3,3,3-hexafluoro-2-phenylisopropyl)phthalic anhydride,
2,3-naphthalenedicarboxylic anhydride, and
1,8-naphthalenedicarboxylic anhydride.
[0111] The above-described dicarboxylic acid anhydrides can be used either singly or in
combination. Diamines in each of which some or all of the hydrogen atoms on one or
more of the aromatic ring(s) have been replaced by a like number of substituent groups
selected from fluoro groups, methyl groups, methoxy groups, trifluoromethyl groups
and/or trifluoromethoxy groups can also be used. [Most preferred, crosslinkable-group-free
end blocking agent]
[0112] Among the above-described dicarboxylic acid anhydrides, phthalic acid is most preferred
from the standpoint of the properties and practical application of the crosslinkable-group-containing
polyimide according to the present invention.
[Molar ratio of the crosslinkable-group-containing end blocking agent to the crosslinkable-group-free
end blocking agent]
[0113] No limitation is imposed on the molar ratio of the crosslinkable-group-containing
blocking agent to the crosslinkable-group-free blocking agent insofar as the ends
of the synthesized crosslinkable-group-containing polyimide satisfy the conditions
that "the molecule ends have crosslinking groups at 1 to 80 mole % thereof". Preferably,
however, their molar ratio falls within the following range:

where
- [E1]:
- the molar quantity of the used crosslinkable-group-containing blocking agent; and
- [E2]:
- the molar quantity of the used crosslinkable-group-free blocking agent ends.
[0114] If the value of [E1]/[E2] falls short of this range and is smaller than 1/99, no
sufficient crosslinking density can be achieved, leading to insufficient improvements
in chemical resistance, heat resistance and mechanical properties. If the value of
[E1]/[E2] is greater than 80/20, on the other hand, a sufficient crosslinking density
is available, but upon melt molding or forming, a substantial viscosity increase takes
place so that the melt molding or forming becomes infeasible.
[0115] The range of the [E1]/[E2] value has to be chosen appropriately depending on molding
or forming conditions. In general, however, the preferred range is:

and the more preferred range is:

[0116] The still more preferred range varies depending on the molding or forming process.
For example, in a batchwise molding or forming process, such as compression molding,
that involves residence in a molten state, the still more preferred range is:

and the most preferred range is:

[0117] For example, in a molding or forming process, such as injection molding or extrusion,
that involves residence in a molten state and requires a continuous operation, the
preferred range is:

and the most preferred range is:

[0118] For example, in a molding or forming process that does not involve much residence
in a molten state, the preferred range is:

and the most preferred range is:

[Amount of the end blocking agent to be used]
[0119] No limitation is imposed on the amount of the end blocking agent to be used, insofar
as the conditions that the ends of the synthesized crosslinkable-group-containing
polyimide satisfy the conditions that "the molecule ends have crosslinking groups
at 1 to 80 mole % thereof".
[0120] However, the end blocking agent may be used in an amount that satisfies preferably
the following range:

more preferably the following range:

where
- [Da]:
- total amount of the diamine component (mol),
- [Tc]:
- total amount of the tetracarboxylic acid dianhydride component (or its ring-opened
product or derivative) (mol),
- [Ma]:
- total amount of the monoamine component to be used as an end blocking agent (mol),
and
- [Dc]:
- total amount of the dicarboxylic acid anhydride component (or its ring-opened product
or derivative) to be used as an end blocking agent (mol).
If the value of ([Dc]-[Ma])/([Da]-[Tc]) falls short of this range and is smaller
than it, no sufficient blocking of molecule ends is feasible, resulting in deteriorations
in thermal stability, thermal oxidation stability, and moldability or formability.
If the value exceeds the above range, on the other hand, it becomes difficult to control
the molecular weight and also to wash off any extra portion of the end blockingagent.
[Production process of the crosslinkable-group-containing polyimide]
[0121] The polyimide can be obtained by providing the above-described raw materials and
conducting polymerization and imidation by known methods. Although no limitation is
imposed on the production process, the polymerization is generally conducted in a
solvent.
[0122] Examples of the process can generally include:
A) a process which comprises stirring a diamine component and a tetracarboxylic acid
dianhydride component in a solvent to obtain a crosslinkable-group-containing polyamic
acid and then thermally or chemically conducting its dehydrating imidation, and
B) a direct polymerization process which comprises directly heating a diamine component
and a tetracarboxylic acid dianhydride component, in a form dissolved or suspended
in a solvent such that dehydrating imidation is thermally effected.
[Polymerization solvent].
[0123] Examples of the solvent can include:
m) Phenol solvents:
Phenol, o-chlorophenol, m-chlorophenol, p-chlorophenol; o-cresol, m-cresol, p-cresol,
2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, and 3,5-xylenol;
n) Aprotonic amide solvents:
N,N-Dimethylformamide, N,N-dimethylacetamide, N,N-diethylacetamide, N-methyl-2-pyrrolidone,
1,3-dimethyl-2-imidazolidine, N-methylcaprolactam, and hexamethylphosphorotriamide;
o) Ether solvents:
1,2-Dimethoxyethane, bis(2-methoxyethyl) ether, 1,2-bis(2-methoxyethoxy)ethane, tetrahydrofuran,
bis[2-(2-methoxyethoxy)ethyl] ether, and 1,4-dioxane;
p) Amine solvents:
Pyridine, quinoline, isoquinoline, α-picoline, β-picoline, γ-picoline, isophorone,
piperidine, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine,
and tributylamine; and
q) Other solvents:
Dimethyl sulfoxide, dimethyl sulfone, diphenyl ether, sulphorane, diphenyl sulfone,
tetramethylurea, anisole, and water.
[0124] These solvents can be used either singly or in combination. Each of these solvents
can also be used by mixing it with one or more of solvents to be described subsequently
herein under r), s), t) and u) . When used as a mixture, it is not absolutely necessary
to choose solvents in such a combination that allows the solvents to be mutually dissolved
at a desired ratio, and no problem or inconvenience arises even if they cannot be
mixed or their mixture is not homogeneous.
[Polymerization concentration]
[0125] Absolutely no limitation is imposed on the concentration at which polymerization
is to be conducted in such a solvent. Expressing the proportion of the total weight
of the whole diamine component and the whole tetracarboxylic acid dianhydride component
in terms of percentage on the basis of the total weight of the whole solvent, the
whole diamine component and the whole tetracarboxylic acid dianhydride component,
the preferred polymerization concentration is from 5 to 50%, with 10 to 30% being
more preferred.
[Charging order]
[0126] No limitation is imposed on the order in which the diamine component, the tetracarboxylic
acid dianhydride component and the end blocking agent are charged. when the diamine
component, the tetracarboxylic acid dianhydride component or the end blocking agent
consists of two or more kinds of diamines, dianhydrides or blocking agents, they can
be added in an arbitrary order. It is also discretionary to add each component or
agent at once or in portions.
[Polymerization conditions]
[0127] No particular limitation is imposed on the polymerization temperature, polymerization
time or polymerization pressure. Known conditions can be applied.
[0128] The polymerization temperature may generally be in a range of from -10°C to 10°C
in the case of the polymerization of the crosslinkable-group-containing polyamic acid,
and is a range of from 50°C to 250°C in the case of the imidation. The reaction time
may generally be from 1 to 48 hours, although it differs depending on the kinds of
the monomers to be used, the kind of the solvent to be employed or the kind of the
reaction temperature to be employed. Farther, as the reaction pressure, atmospheric
pressure is sufficient.
[Logarithmic viscosity number of crosslinkable-group-containing polyamic acid]
[0129] When polymerization is conducted through a crosslinkable-group-containing polyamic
acid, the logarithmic viscosity number of the crosslinkable-group-containing polyamic
acid may preferably be in a range of from 0.1 to 2.0 dL/g (as measured at a concentration
of 0.5 g/dL and 35°C in N,N-dimethylacetamide). A logarithmic viscosity number smaller
than 0.1 leads to a decrease in the molecular weight between crosslinking points so
that mechanical properties are lowered significantly, whereas a logarithmic viscosity
number greater than 2.0 leads to an increase in melt viscosity so that melt moldability
or formability is reduced substantially. The preferred logarithmic viscosity number
is in a range of from 0.3 to 1.2, with a range of from 0.4 to 0.7 being more preferred.
[Chemical imidation]
[0130] Chemical imidation is a process to chemically effect dehydration by reacting the
crosslinkable-group-containing polyamic acid with a dehydrating agent having hydrolytic
ability.
[0131] Usable examples of the dehydrating agent can include aliphatic carboxylic acid anhydrides
represented by acetic anhydride and trifluoroacetic anhydride; phosphoric acid anhydrides
represented by polyphosphoric acid and phosphorus pentoxide; mixed acid anhydrides
of these acids; and acid chlorides led by chloromethanesulfonic acid, phosphorus pentoxide
and thionyl chloride. These dehydrating agents can be used either singly or in combination.
These dehydrating agents can be used in an amount of 2 to 10 moles, preferably 2.1
to 4 moles, per mole of the whole amount of the diamine component to be used.
[0132] Further, chemical imidation can also be conducted in the presence of a base catalyst.
As the base catalyst so used, the amine solvents mentioned above under p) can be mentioned.
In addition, organic bases such as imidazole, N,N-dimethylaniline and N,N-diethylaniline
as well as inorganic bases such as potassium hydroxide, sodium hydroxide, potassium
carbonate, sodium carbonate, potassium hydrogencarbonate and sodium hydrogencarbonate
can be mentioned. These catalysts can be used in an amount of from 0.001 to 0.50 mole,
preferably from 0.05 to 0.2 mole, per mole of the whole amount of the diamine component
to be used.
[0133] No particular limitation is imposed on the reaction temperature, reaction time and
reaction pressure for the chemical imidation process, and known conditions can be
applied. Described specifically, the reaction temperature may preferably be from -10°C
to around 120°C, with a range of from around room temperature to 70°C being more preferred.
It is room temperature that is most preferable and practical from the standpoint of
practice. On the other hand, the reaction time may preferably be from about 1 to 24
hours although it differs depending on the kind of the solvent to be used and other
reaction conditions. More preferably, the reaction time may be from 2 to around 10
hours. As the reaction pressure, atmospheric pressure is sufficient. As the atmosphere,
air, nitrogen, helium, neon or argon is usable, and no particular limitation is imposed
thereon. Preferably, however, nitrogen or argon which is an inert gas is chosen.
[Thermal imidation]
[0134] Thermal imidation can be achieved by heating polyamic acid or its solution generally
to 100°C to 300°C.
[0135] The thermal imidation can also conducted in the concurrent presence of a similar
base catalyst as that employed in the chemical imidation process.
[0136] No particular limitation is imposed on the reaction temperature, reaction time and
reaction pressure for the thermal imidation process, and known conditions can be applied.
Described specifically, as the reaction temperature, 80°C to around 400°C can be used,
with a range of from 100°C to around 300°C being preferred. On the other hand, the
reaction time may preferably be from 0.5 to 24 hours although it differs depending
on the kind of the solvent to be used and other reaction conditions. As the reaction
pressure, atmospheric pressure is sufficient. As the atmosphere, air, nitrogen, helium,
neon or argon is usable, and no particular limitation is imposed thereon. Preferably,
however, nitrogen or argon which is an inert gas is chosen.
[Combined use of chemical imidation and thermal imidation]
[0137] Chemical imidation and thermal imidation can be used in combination.
[0138] Illustrative are:
A) a process in which heating is also conducted at the same time upon practice of
the above-described chemical imidation process, and
B) a process in which upon conducting the above-described thermal imidation process,
a dehydrating agent useful in chemical imidation is caused to exist concurrently.
[Direct polymerization process]
[0139] The term "direct polymerization process" as used herein means a process which comprises
directly heating a diamine component and a tetracarboxylic acid dianhydride component
in a form dissolved or suspended in a solvent such that dehydrating imidation is thermally
effected. This direct polymerization is achieved by conducting polymerization and
imidation in a solvent in a similar manner as in thermal imidation.
[0140] Like the chemical imidation process, the direct polymerization process can also be
conducted in the concurrent presence of a base catalyst. Usable base catalysts and
their amount to be used are the same as those described above in connection with the
chemical imidation process.
[0141] Further, to take out of the system water which is to be formed by the dehydrating
imidation reaction, it is also possible to make another solvent exist at the same
time. Solvents which are usable here can include:
r) benzene, toluene, o-xylene, m-xylene, p-xylene, chlorobenzene, o-dichlorobenzene,
m-dichlorobenzene, p-dichlorobenzene, bromobenzene, o-dibromobenzene, m-dibromobenzene,
p-dibromobenzene, o-chlorotoluene, m-chlorotoluene, p-chlorotoluene, o-bromotoluene,
m-bromotoluene, and p-bromotoluene.
[0142] These solvents can be used either singly or in combination. Each of these solvents
can also be used by further mixing it with one or more of the solvents described above
under m) to q) and the solvents to be described subsequently under s) to u) . When
used as a mixture, it is not absolutely necessary to choose solvents in such a combination
that allows the solvents to be mutually dissolved at a desired ratio, and no problem
or inconvenience arises even if they cannot be mixed or their mixture is not homogeneous.
Absolutely no limitation is imposed on the amount of the dehydrating agent to be used.
[0143] No particular limitation is imposed on the reaction temperature, reaction time and
reaction pressure, and known conditions can be applied. Described specifically, as
the reaction temperature, 100°C to around 300°C can be applied, with a range of from
120°C to around 250°C being preferred. On the other hand, the reaction time may generally
be from 0.5 hour to 24 hours although it differs depending on the kind of the solvent
to be used and other reaction conditions. As the reaction pressure, atmospheric pressure
is sufficient. As the atmosphere, air, nitrogen, helium, neon or argon is usable,
and no particular limitation is imposed thereon. Preferably, however, nitrogen or
argon which is an inert gas is chosen.
[Treatment of the crosslinkable-group-containing polyimide]
[0144] The crosslinkable-group-containing polyimide can be improved in chemical resistance,
heat resistance, mechanical properties and the like by subjecting it to intermolecular
crosslinking through its treatment during or after its molding or forming.
[0145] Conditions for such a crosslinking reaction are not. limited and can be set as desired.
Further, these conditions significantly vary depending on the kind and quantity of
crosslinkable groups to be used.
[0146] When crosslinkable-group-containing molecule ends are represented by the chemical
formula (2a), for example, the preferred crosslinking method is heat treatment, and
by the heat treatment, carbon-carbon triple bonds are thermally caused to react so
that crosslinks are formed between molecular chains.
[Conditions for the heat treatment]
[0147] When crosslinkable-group-containing molecule ends are represented by the chemical
formula (2a), the temperature, time and pressure of the heat treatment are not particularly
limited, and are determined depending on properties required for a crosslinked thermoplastic
polyimide to be obtained. As the temperature of the heat treatment, 250°C to around
450°C, preferably 300°C to around 400°C can be applied, with 330°C to around 380°C
being most preferred from the standpoint of practice. At a temperature lower than
250°C the crosslinking reaction hardly takes, while at a temperature higher than 450°C,
polyimide backbones undergo modifications so that their properties cannot be obtained
sufficiently.
[0148] Although the time of the heat treatment differs depending on the other conditions
for the heat treatment, it may be preferably 0.1 hour or longer, more preferably 0.2
hour or longer, and the most preferred, time is 1 hour or longer.
[0149] A heat treatment time shorter than this time results in an insufficient crosslinking
density, thereby practically failing to observe improvements in physical properties.
[0150] On the other hand, an excessively long crosslinking time is disadvantageous from
the standpoint of the process efficiency, and depending on the backbone structure,
there is a potential problem of modifications. The upper limit of a preferred heat
treatment time is 100 hours.
[0151] As the pressure for the heat treatment, atmospheric temperature is sufficient. If
necessary, however, it is also possible to adopt such a process that heat treatment
is effected while conducting degasfication or the like under elevated pressure.
[0152] As the atmosphere, air, nitrogen, helium, neon or argon is usable, and no particular
limitation is imposed thereon. Preferably, however, nitrogen or argon which is an
inert gas is chosen.
[Heat treatment method]
[0153] The heat treatment method differs depending on the form of a crosslinkable-group-containing
polyimide, and no limitation is imposed thereon. When a crosslinkable-group-containing
polyimide obtained, for example, in the form of powder or granules is used, examples
of its heat treatment method can include:
A) to subject it, as is, to heat treatment;
B) to apply melt molding or forming to obtain a molded or formed product shaped as
and then to subject the molded or formed product to heat treatment;
C) to simultaneously conduct heat treatment while applying melt molding or forming;
and
D) to conduct its heat treatment, as is, to an intermediate extent, then to apply
melt molding or forming to obtain a molded or formed product shaped as desired, and
thereafter to subject the molded or formed product to heat treatment again.
[0154] As their applications, the followings are possible, respectively:
A) as a crosslinked thermoplastic polyimide is obtained in the form of powder or granules,
it can be added, as is, as a filler to other resins or can be formed, as is, into
a molded product by sinter molding;
B) all general melt molding or forming;
C) Forming of films or sheets especially by pressing, and their use as adhesives;
and
D) All general melt molding or forming, especially forming of films or sheets by pressing
and their use as adhesives.
[Treatment methods other than heat treatment]
[0155] Instead of heat treatment, various energy sources which induce crosslinking can be
used. Illustrative are irradiations of visible light, ultraviolet rays, ultraviolet
rays, radiations such as α-, β- and γ-rays, electron beams, and X-rays, and further,
plasma treatment and doping treatment.
[Crosslinking promoter and crosslinking retarder]
[0156] A crosslinking promoter or crosslinking retarder can be used to control the crosslinking
reaction velocity. No limitation is imposed on the crosslinking promoter or crosslinking
retarder. A compound which, when used together with a crosslinkable-group-containing
polyimide, can substantially promote or retard the crosslinking reaction, can be used
in combination as desired.
[0157] It is possible to add, for example, a metal catalyst. containing gallium, germanium,
indium or lead, a transition metal catalyst containing molybdenum, manganese, nickel,
cadmium, cobalt, chromium, iron, copper, tin, platinum or the like, a phosphorus compound,
a silicon compound, a nitrogen compound, or a sulfur compound.
[Solution or suspension containing a crosslinkable-group-containing polyimide]
[0158] A solution or suspension which contains a crosslinkable-group-containing polyimide
according to the present invention can be used in a pre-treatment step of shaping
or melt molding or forming of the crosslinkable-group-containing polyimide
[0159] The solution or suspension can be prepared using a solvent which does not cause a
chemical reaction with the crosslinkable-group-containing polyimide according to the
present invention.
[0160] Usable examples of the solvent can include, in addition to the solvent described
above under m) to q) and r), the followings:
s) Acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, propanol,
isopropanol, butanol, isobutanol, pentane, hexane, heptane, cyclohexane, dichloromethane,
chloroform, carbon tetrachloride, fluorobenzene, methyl acetate, ethyl acetate, butyl
acetate, methyl formate, and ethyl formate;
t) Water, the amine solvents described above under p), imidazole, N,N-dimethylaniline,
N,N-diethylaniline, and aqueous solutions containing potassium hydroxide, sodium hydroxide,
potassium carbonate, sodium carbonate, potassium hydrogencarbonate, and sodium hydrogencarbonate,
respectively; and
u) Silicone oil, machine oil, working oil, kerosine, gasoline, and jet fuel.
[0161] These solvents can be used either singly or in combination. They can also be used
by further mixing them with one or more of the solvents described above under m) to
r). When used as a mixture, it is not absolutely necessary to choose solvents in such
a combination that allows the solvents to be mutually, dissolved at a desired ratio,
and no problem or inconvenience arises even if they cannot be mixed or their mixture
is not homogeneous. The concentrations of the aqueous solutions described above under
t) are not limited and can be determined as desired. In general, their concentrations
are in a range of from 1 to 60%.
[0162] No limitation is imposed on the preparation method of the solution or suspension
which contains the polyimide according to the present invention, and all known methods
are applicable.
[0163] Illustrative preparation methods can include:
A) to use, as is, a solution or suspension after completion of polymerization; and
B) to obtain the crosslinkable-group-containing polyimide in the form of powder, granules
or a block, and then to dissolve or disperse it in the above-described solvent.
[0164] No limitations are imposed on the preparation conditions, such as temperature, time
and stirring method, upon preparation of the solution or suspension. In the case of
the suspension, no limitation is imposed on the particle size or particle size distribution
of powder, granules or the like to be dispersed, and upon preparation, a dispersion
promoter or an emulsifier can also be added.
[Alloys and blends with other resins]
[0165] In accordance with the application purpose of the crosslinkable-group-containing
polyimide according to the present invention, it can be blended or alloyed, to an
extent not impairing the object of the present invention, with suitable amount or
amounts of one or more of resins such as thermoplastic resins, for example, polyethylene,
polypropylene, polyvinyl chloride, polyvinylidene chloride, polybutadiene, polystyrene,
polyvinyl acetate ABS resin, polybutylene terephthalate, polyethylene terephthalate,
polyphenylene oxide, polycarbonates, PTFE, celluloid, polyarylates, polyether nitriles,
polyamides, polysulfones, polyether sulfones, polyether ketones, polyphenyl sulfide,
polyamide-imides, polyether imides, modified polyphenylene oxide and polyimides, and
thermosetting resins, for example, thermosetting polybutadiene, formaldehyde resins,
amino resins, polyurethane, silicone resins, SBR, NBR, unsaturated polyesters, epoxy
resins, polycyanates, phenol resins and polybismaleimide. No particular limitation
is imposed on their blending or alloying method, and a known method can be applied.
[Fillers and additives]
[0166] With the crosslinkable-group-containing polyimide according to the present invention,
various fillers or additives can be mixed to extents not impairing the object of the
present invention. Their examples can include abrasion resistance improvers such as
graphite, carborundum, silica powder, molybdenum disulfide and fluorinated resins;
electrical characteristics improvers such as clay and mica; anti-track property improvers
such as asbestos, silica and graphite; acid resistance improvers such as barium sulfate,
silica and calcium metasilicate; thermal conductivity improvers such as iron powder,
zinc powder, aluminum powder and copper powder; and further, glass beads, glass balls,
talc, diatomaceous earth, alumina,
Shirasu (white volcanic ash) balloons, alumina hydrate, metal oxides, colorants, and pigments.
No particular limitation is imposed on the mixing method, and a known method can be
applied.
Examples
[0167] The present invention will hereinafter be described in further detail by Examples.
It should however be bone in mind that the present invention is by no means limited
by the
Examples.
[0168] Testing methods of various tests, which are common to the Examples and Comparative
Examples, are as described next:
1) Logarithmic viscosity number of polyimide powder
A sample (0.50 g) was dissolved under heat in 100 mL of a mixed solvent of p-chlorophenol
and phenol (90:10 by weight ratio), and after cooling the solution. to 35°C, the logarithmic
viscosity number was measured.
2) Melt viscosity
A melt viscosity was measured by a Shimadzu Koka-type flow tester ("CFT500A") through an orifice of 1.0 mm (diameter) x 10 mm (length),
under a load of 100 kgf and, unless otherwise specifically indicated, under 360°C
x 5 min.
3) 5% Weight loss temperature
Using DTA-TG ("Shimadzu DT-40 series, 40M"), a 5% weight loss temperature was measured
at a heating rate of 10°C/min. in air.
4) Glass transition temperature and crystal melting temperature
Glass transition temperature and crystal melting temperature were measured at a heating
rate of 10°C/min by DSC ("Shimadzu DT-40 series, DSC-41M").
5) Tensile strength of molded product
ASTM-D-638 was followed.
6) Logarithmic viscosity number of polyamic acid varnish
After a varnish the solid content of which was 0.50 g was dissolved in N-methyl-2-pyrrolidone
to give a total volume of 100 mL, its logarithmic viscosity number was measured at
35°C.
7) Mechanical properties of film
Mechanical properties were measured following ASTM D-822.
8) Heat distortion temperature
ASTM D-648 was followed.
Experiment A Series
[0169] In Example A1 to Example A91, a description will be made about certain examples out
of the present invention, in each of which 50 to 100 mole % of recurring structural
units in a backbone structure are of a recurring unit structure represented by:

wherein X represents a divalent linking group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group and a hexafluoroisopropylidene group; and
R represents a tetravalent aromatic group selected from the group consisting of:

wherein G represents a divalent aromatic group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group, a hexafluoroisopropylidene group, a 3-oxyphenoxy group, a
4-oxyphenoxy group, a 4'-oxy-4-biphenoxy group and a 4-[1-(4-oxyphenyl)-1-methylethyl]phenoxy
group.
Examples A1-A7, Comparative Examples A1-A3
[0170] In each of these examples and comparative examples, 4,4'-bis(3-aminophenoxy)biphenyl
(368.43 g, 1.000 mol), pyromellitic dianhydride (102.52 g, 0.470 mol), and 3,3',4,4'-biphenyltetracarboxylic
acid dianhydride (138.28g, 0.470 mol) were charged as monomers together with the corresponding
end blocking agent (s), the kind(s) and amount(s) of which are shown in Table A1,
and m-cresol (1,830 g) as a solvent into a vessel equipped with a stirrer, a reflux
condenser, a water trap and a nitrogen gas inlet tube. The contents were heated with
stirring to 200°C over 2 hours and 30 minutes under a nitrogen atmosphere, and reactions
were conducted under 200°C reflux conditions for 4 hours.
Table A1
| Ex./Comp.Ex. No. |
Charged amount of PA |
Charged amount of PCE |
PA/PCE molar ratio |
| |
[g] |
[mmol] |
[g] |
[mmol] |
|
| Example A1 |
17.60 |
118.8 |
0.2979 |
1.200 |
99/1 |
| Example A2 |
16.89 |
114.0 |
1.489 |
6.000 |
95/5 |
| Example. A3 |
16.00 |
108.8 |
2.979 |
12.00 |
90/10 |
| Example A4 |
14.22 |
96.00 |
5.958 |
24.00 |
80/20 |
| Example A5 |
10.66 |
72.00 |
11.92 |
48.00 |
60/40 |
| Example A6 |
7.110 |
48.00 |
17.87 |
72.00 |
40/60 |
| Example A7 |
3.555 |
24.00 |
23.83 |
96.00 |
20/80 |
| Comp.Ex. A1 |
2.666 |
18.00 |
25.32 |
102.0 |
15/85 |
| Comp. Ex. A2 |
0 |
0 |
29.79 |
120.0 |
0/100 |
| Comp.Ex. A3 |
17.77 |
120.0 |
0 |
0 |
100/0 |
| [Note] In Table A1, "PA" stands for phthalic anhydride, and "PCE" stands for 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene
anhydride. |
[0171] The temperature was then lowered to 190°C, at which the corresponding end blocking
agent(s) shown in Table A1 were charged again. The resulting contents were heated
again, and the reactions were then conducted under 200°C reflux conditions for further
4 hours.
[0172] The reaction mixture was thereafter cooled to 100°C, the resulting viscous polymer
solution was discharged into toluene (10 liters) which was under vigorous agitation,
and a precipitate was then collected by filtration. The precipitate was again suspended
and allowed to reprecipitate in toluene (4 liters). After the reprecipitate was collected
by filtration and then provisionally dried at 50°C for 24 hours, the reprecipitate
was dried at 220°C for 12 hours under a nitrogen gas stream. The yield of the thus-obtained
powder and the logarithmic viscosity number, glass transition temperature; 5% weight
loss temperature and melt viscosity (360°C/5 min.) are shown in Table A2.
[0173] The present invention is characterized in that concerning the molecule ends, the
ratio of the chemical formula (2a) to the chemical formula (2b) ranges from 1/99 to
80/20 as recited in certain claims. From the above-described results, it is also evident
that those having ratios of the chemical formula (2a) to the chemical formula (2b)
greater than 80/20 are considerably inferior in moldability or formability to those
having ratios of the chemical formula (2a) to the chemical formula (2b) equal to or
smaller than 80/20.

Examples A8-A12, Comparative Examples A4,A5.
[0174] Using the powders obtained in Examples A2-A6 and Comparative Example 3, compression
molding was conducted. The powders used in the respective examples and comparative
examples are shown next in Table A3.
Table A3
| Ex./Comp.Ex. No. |
Ex./Comp.Ex. No. of used powder |
| Example A8 |
Example A2 |
| Example A9 |
Example A3 |
| Example A10 |
Example A4 |
| Example A11 |
Example A5 |
| Example A12 |
Example A6 |
| Comp.Ex. A4, A5 |
Comp.Ex. A3 |
[0175] Described specifically, in each of these examples and comparative examples, the powder
was extruded into pellets at 355°C by a 25-mm single-screw extruder. After the pellets
were filled in a compression mold of configurations specified in ASTM-D-638, compression
molding was conducted at 360°C for 12 hours (Examples A8-A12, Comparative Example
A4) or under conditions of 360°C and 5 minutes (Comparative Example A5). In all the
examples and comparative examples, good molded products were obtained. Using those
molded products, a tensile test was performed at room temperature (23°C). The results
are shown in Table A4.
[0176] The present invention is characterized in that concerning the molecule ends, the
ratio of the chemical formula (2a) to the chemical formula (2b) ranges from 1/99 to
80/20 as recited in certain claims. From the above-described results, it is also evident
that those having ratios of the chemical formula (2a) to the chemical formula (2b)
not reaching 1/99 are inferior in mechanical properties to those having ratios of
the chemical formula (2a) to the chemical formula (2b) equal to or greater than 1/99.

Examples A13-A17, Comparative Examples A6-A8
[0177] In each of these examples and comparative examples, 4,4'-bis(3-aminophenoxy)biphenyl
(368.43 g, 1.000 mol), pyromellitic dianhydride (102.52 g, 0.470 mol), and 3,3',4,4'-biphenyltetracarboxylic
acid dianhydride (138.28g, 0.470 mol) were charged as monomers together with m-cresol
(1, 630 g) as a solvent into a vessel equipped with a stirrer, a reflux condenser,
a water trap and a nitrogen gas inlet tube. The contents were heated with stirring
to 200°C over 2 hours and 30 minutes, under a nitrogen atmosphere, and a reaction
was conducted under 200°C reflux conditions for 2 hours, whereby a solution of an
end-unblocked polymer was obtained. During the reaction, the corresponding end blocking
agent(s) described in Table A5 and m-cresol (200.0 mL) were charged into another vessel
and were then heated beforehand at 100°C for 1 hour under a nitrogen atmosphere to
provide a solution. The solution of the end blocking agent(s) was charged in its entirety
into the solution of the end-unblocked polymer, and reaction(s) was(were) then conducted
under 200°C reflux conditions for 2 hours.
Table A5
| Ex./Comp.Ex. No. |
Charged amount of PA |
Charged amount of PCE |
PA/PCE molar ratio |
| |
[g] |
[mmol] |
[g] |
[mmol |
|
| Example A13 |
33.77 |
228.0 |
2.979 |
12.0 |
95/5 |
| Example A14 |
31.99 |
216.0 |
5.958 |
24.0 |
90/10 |
| Example A15 |
28.44 |
192.0 |
11.96 |
48.0 |
80/20 |
| Example A16 |
21.33 |
144.0 |
23.83 |
96.0 |
60/40 |
| Example A17 |
14.21 |
96.00 |
35.75 |
144.0 |
40/60 |
| Comp.Ex. A6 |
5.332 |
36.00 |
50.64 |
204.0 |
15/85 |
| Comp.Ex. A7 |
0 |
0 |
59.58 |
240.0 |
0/100 |
| Comp.Ex. A8 |
35.55 |
240.0 |
0 |
0 |
100/0 |
| [Note] In Table A5, "PA" stands for phthalic anhydride, and "PCE" stands for 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene
anhydride. |
[0178] The reaction mixture was thereafter cooled to 100°C. While maintaining the resultant
viscous polymer solution at 100°C, toluene (4 liters) was charged dropwise into the
polymer solution over 4 hours. After toluene (3 liters) which had been heated at 80°C
was additionally charged, the resulting mixture was allowed to cool down to room temperature.
Toluene (3 liters) was added further, followed by stirring for 1 hour. A precipitate
was then collected by filtration. The precipitate was again suspended and allowed
to reprecipitate in toluene (4 liters). After the reprecipitate was collected by filtration
and then provisionally dried at 50°C for 24 hours, the reprecipitate was dried at
200°C under reduced pressure for 12 hours under a gentle nitrogen gas stream. The
yield of the thus-obtained powder and the logarithmic viscosity number, glass transition
temperature, 5% weight loss temperature and melt viscosity (360°C/5 min.) are shown
in Table A6.
[0179] The present invention is characterized in that concerning the molecule ends, the
ratio of the chemical, formula (2a) to the chemical formula (2b) ranges from 1/99
to 80/20 as recited in certain claims. From the above-described results, it is also
evident that those having ratios of the chemical formula (2a) to the chemical formula
(2b) greater than 80/20 are considerably inferior in moldability or formability to
those having ratios of the chemical formula (2a) to the chemical formula (2b) equal
to or smaller than 80/20.

Examples A18-A22, Comparative Examples A9, A10.
[0180] Using the powders obtained in Examples A13-A17 and Comparative Example A8, compression
molding was conducted. The powders used in the respective examples and comparative
examples are shown next in Table A7.
Table A7
| Ex./Comp.Ex. No. |
Ex./Comp.Ex. No. of used powder |
| Example A18 |
Example A13 |
| Example A19 |
Example A14 |
| Example A20 |
Example A15 |
| Example A21 |
Example A16 |
| Example A22 |
Example A17 |
| Comp.Ex. A9,A10 |
Comp.Ex. A8 |
[0181] Described specifically, in each of these examples and comparative examples, the powder
was extruded into pellets at 355°C by a 25-mm single-screw extruder. After the pellets
were filled in a compression mold having a size of 10.0 mm in width and 80.0 mm in
length, compression molding was conducted at 360°C for 12 hours (Examples A18-A22,
Comparative Example A9) or under conditions of 360°C and 5 minutes (Comparative Example
A10). In all the examples and comparative examples, good molded products were obtained.
Those specimens were all of 10.0 mm ± 0.010 mm in width, 80.0 mm ±0.010 mm in length
and 1.500 mm ± 0.010 mm in thickness. Using those molded products, a chemical resistance
test was performed by the below-described method.
[0182] Described specifically, each specimen was held in place at portions 5.00 mm apart
from opposite ends thereof, and was then adjusted and fixed such that a displacement
of 3.50 mm in the direction of the thickness would be given when the specimen was
bent by a jig maintained in contact with the specimen at a center thereof (a portion
40.0 mm apart from the respective ends). Under those conditions, the specimen was
immersed in toluene or methyl ethyl ketone. One hour, 24 hours and 168 hours later,
the specimen caas taken out of the solvent and visually observed for cracks. The results
of the chemical resistance test are shown in Table A8.
[0183] The present invention is characterized in that concerning the molecule ends, the
ratio of the chemical formula (2a) to the chemical formula (2b) ranges from 1/99 to
80/20 as recited in certain claims. From the above-described results, it is evident
that those having ratios of the chemical formula (2a) to the chemical formula (2b)
not reaching 1/99 are inferior in chemical resistance to those having ratios of the
chemical formula (2a) to the chemical formula (2b) equal to or greater than 1/99.
Table A8
| Ex./Comp.Ex. No. |
Toluene immersion time |
MEK immersion time |
PA/PCE molar ratio |
| |
1hr. |
24hr. |
168hr. |
1hr. |
24hr. |
168hr. |
|
| Example A18 |
A |
A |
A |
B |
B |
C |
95/5 |
| Example A19 |
A |
A |
A |
A |
B |
B |
90/10 |
| Example A20 |
A |
A |
A |
A |
A |
B |
80/20 |
| Example A21 |
A |
A |
A |
A |
A |
A |
60/40 |
| Example A22 |
A |
A |
A |
A |
A |
A |
40/60 |
| Comp.Ex.A9 |
A |
B |
B |
C |
C |
C |
0/100 |
| Comp.Ex.A10 |
A |
B |
B |
C |
C |
C |
0/100 |
| [Note] In Table A8, "A", "B" and "C" indicate "completely free of cracks", "cracks
observed in a very small number" and "cracks observed in a large number", respectively,
in this order. Further,' "PA/PCE molar ratio" means the molar ratio of phthalic anhydride
to 1-phenyl-2-(3,4-dicarboxy-phenyl)acetylene anhydride, and "MEK" stands for methyl
ethyl ketone. |
Examples A23-A32, Comparative Examples A11-A16
[0184] In each of these examples and comparative examples, the following two reactions (A),(B)
were conducted.
(A) 4,4'-Bis(3-aminophenoxy)biphenyl (368.43 g, 1.000 mol), pyromellitic dianhydride
(102.52 g, 0.470 mol), and 3,3',4,4'-biphenyltetracarboxylic acid dianhydride (138.28
g, 0.470 mol) were charged as monomers together with phthalic anhydride (10.66 72.00
mmol) and 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene anhydride (11.92 g, 48.00 mmol)
as end blocking agents, m-cresol (1,830 g) as a solvent, and γ -picoline (13.970 g,
0.1500 mol) as a catalyst into a vessel equipped with a stirrer, a reflux condenser,
a water trap and a nitrogen gas inlet tube. The contents were heated with stirring
to 150°C over 2 hours under a nitrogen atmosphere, and reactions were conducted at
150°C for 2 hours.
As end blocking agents, phthalic anhydride (5.33 g, 36.00 mmol) and 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene
anhydride (5.96 g, 24.00 mmol) were then charged, followed by the reactions at 150°C
for further 8 hours.
The reaction mixture was thereafter cooled to 60°C, the resulting viscous polymer
solution was discharged into methyl ethyl ketone (10 liters) which was under vigorous
agitation, and a precipitate was then collected by filtration. The precipitate was
again suspended and allowed to reprecipitate in methyl ethyl ketone (4 liters). After
the reprecipitate was collected by filtration and then provisionally dried at 50°C
for 24 hours, the reprecipitate was dried at 220°C for 12 hours nder a nitrogen gas
stream, whereby polyimide powder was obtained.
(B) In each of these examples and comparative examples, polyimide powder was obtained
in exactly the same manner as in the reaction (A) except that upon preparation of
the make-up, the amount(s) of the end blocking agent(s) of the kind(s) was (were)
changed to only phthalic anhydride (17.77 g, 120.00 mmol) and that during the reactions,
the amount (s) of the end blocking agent(s) of the kind(s) was(were) changed to only
phthalic anhydride (8.89 g, 60.00 mmol).
[0185] The yields, of the powders obtained in the two reactions (A), (B) and their logarithmic
viscosity numbers, glass transition temperatures, 5% weight loss temperatures and
melt viscosities (360°C/5 min.) are shown in Table A9.
[0186] Further, each powder was extruded into pellets at 355°C by a 25-mm single-screw extruder.
After the pellets were filled in a compression mold of the shape specified in ASTM-D-638,
compression molding was conducted under the conditions described in Table A10.
Table A10
| Ex./Comp.Ex. No. |
Used powder |
Compression molding conditions |
| Examples A23,A28 |
(A) |
360°C, 2 hr. |
| Examples A24,A29 |
(A) |
360°C, 6 hr. |
| Examples A25,A30 |
(A) |
360°C, 12 hr. |
| Examples A26, A31 |
(A) |
360°C, 24 hr. |
| Examples A27,A32 |
(A) |
360°C, 72 hr. |
| Comp.Ex. A11, A14 |
(B) |
360°C, 2 hr. |
| Comp.Ex. A12,A15 |
(B) |
360°C, 12 hr. |
| Comp.Ex. A13,A16 |
(B) |
360°C, 72 hr. |
[0187] Using the specimens so obtained, a tensile test at room temperature (23°C) and a
high-temperature tensile test at 177°C were performed. The results are shown in Table
A11.
[0188] From the foregoing, it is evident that the crosslinkable-group-containing polyimide
according to the present invention can be significantly improved in roomtemperature
and high-temperature mechanical properties by annealing, and it is also appreciated
that this effect cannot be expected from the conventional polyimides of the comparative
examples.

Examples A28-A32, Comparative Examples A14-A16
[0189] In each of these examples and comparative examples, pyromellitic dianhydride and
3,3',4,4'-biphenyl-tetracarboxylic acid dianhydride were charged in their corresponding
amounts shown in Table A12 together with 4,4'-bis(3-aminophenoxy)biphenyl (368.43
g, 1.000 mot), all as monomers, into a vessel equipped with a stirrer, a reflux condenser,
a water trap and a nitrogen gas inlet tube. As a solvent, m-cresol was also charged
in its corresponding amount shown in Table A12. The contents were heated with stirring
to 200°C over 2 hours and 30 minutes under a nitrogen atmosphere, and a reaction was
conducted under 200°C reflux conditions for 2 hours, whereby a solution of an end-unblocked
polymer was obtained.
[0190] During the reaction, the corresponding end blocking agents described in Table A13
and m-cresol (200.0 mL) were charged into another vessel and were then heated beforehand
at 100°C for 1 hour under a nitrogen atmosphere to provide a solution. The solution
of the end blocking agents was charged in its entirety into the solution of the end-unblocked
polymer, and reactions were then conducted under 200°C reflux conditions for 2 hours.
Table A12
| Ex./Comp.Ex. No. |
Charged amount of PMDA |
Charged amount of BPDA |
Charged amount of m-cresol [g] |
| |
[g] |
[mol] |
[g] |
[mol] |
|
| Example A28 |
146.58 |
0.6720 |
84.74 |
0.2880 |
1600 |
| Example A29,31 |
142.00 |
0.6510 |
82.09 |
0.2790 |
1580 |
| Example A30,32 |
137.42 |
0.6300 |
79.44 |
0.2700 |
1560 |
| Comp.Ex.A14 |
146.58 |
0.6720 |
84.74 |
0.2880 |
1600 |
| Comp.Ex.A15 |
142.00 |
0.6510 |
82.09 |
0.2790 |
1580 |
| Comp.Ex.A16 |
137.42 |
0.6300 |
79.44 |
0.2700 |
1560 |
| [Note] In Table A12, "PMDA" stands for pyromellitic dianhydride, and "BPDA" stands
for 3,3',4,4'-biphenyl-tetracarboxylic acid dianhydride. |
Table A13
| Ex./Comp.Ex. No. |
Charged amount of PA |
Charged amount of PCE |
PA/PCE molar ratio |
| |
[g] |
[mmol] |
[g] |
[mmol] |
|
| Example A28 |
16.59 |
112.0 |
11.92 |
48.00 |
70/30 |
| Example A29 |
29.03 |
196.0 |
20.85 |
84.00 |
70/30 |
| Example A30 |
41.47 |
280.0 |
29.79 |
120.0 |
70/30 |
| Example A31 |
20.74 |
140.0 |
34.75 |
140.0 |
50/50 |
| Example A32 |
29.62 |
200.0 |
49.45 |
200.0 |
50/50 |
| Comp.Ex. A14 |
3.555 |
24.00 |
33.76 |
136.0 |
15/85 |
| Comp.Ex. A15 |
6.221 |
42.00 |
59.08 |
238.0 |
15/85 |
| Comp.Ex. A16 |
8.887 |
60.00 |
84.40 |
340.0 |
15/85 |
| [Note] In Table A13, "PA" stands for phthalic anhydride, and "PCE" stands for 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene
anhydride. |
[0191] The reaction mixture was thereafter cooled to 60°C, the resulting viscous polymer
solution was discharged into methyl ethyl ketone (10 liters) which was under vigorous
agitation, and a precipitate was then collected by filtration. The precipitate was
again suspended and allowed to reprecipitate in methylethyl ketone (4 liters). After
the reprecipitate was collected by filtration and then provisionally dried at 50°C
for 24 hours, the reprecipitate was dried at 220°C for 12 hours. under a nitrogen
gas stream, whereby polyimide powder was obtained.
[0192] The logarithmic viscosity number, glass transition temperature, 5% weight loss temperature
and melt viscosity (360°C/5 mim., 15 min., 30 min.) of the thus-obtained polyimide
powder are shown in Table A14.
[0193] It is appreciated from the results that the crosslinkable-group-containing polyimide
according to the present invention, even at various molecular weights, has good melt
fluidity and is better in moldability or formability than the polyimides of the comparative
examples.

Examples A33-A37, Comparative Examples A17-A19
[0194] In each of these examples and comparative examples, pyromellitic dianhydride and
N-methyl-2-pyrrolidone were charged in their corresponding amounts shown in Table
A15 together with 4,4'-bis(3-aminophenoxy)biphenyl (368.43 g, 1.000 mol) into a vessel
equipped with a stirrer and a nitrogen gas inlet tube. While stirring the contents
under a nitrogen atmosphere, a reaction was conducted at room temperature for 12 hours,
whereby a polyamic acid varnish was obtained. The corresponding end blocking agents,
the kind(s) and amount(s) of which are shown in Table A15, were charged into the thus-obtained
varnish, followed by reactions at room temperature for 12 hours.

[0195] The logarithmic viscosity number of the thus-obtained polyamic acid varnish is shown
in Table A16. Using that varnish, a film was prepared. Described specifically, the
varnish was evenly cast on a soft glass plate. Within an oven through which a nitrogen
gas stream was flowing, the film was heated from 50°C. to 200°C at a heating rate
of 1°C per minute, and was then cured at 200°C for 2 hours. Further, the film was
heated from 200°C to 370°C at a heating rate of 15°C per minute, and was then annealed
at 370°C for 4 hours. After the resulting film was quenched, hot water was poured
over the film such that the film was peeled off from the glass plate. Incidentally,
the film of Comparative Example A19 was so brittle that upon quenching, it shattered
into small pieces, thereby failing to obtain a film. From the films of the remaining
examples, good films were obtained. A tensile test of each film, which had been obtained
by the above-described procedures, was performed at room temperature (23°C). The results
are shown in Table A16.
[0196] From these results, it is evident that the crosslinkable-group-containing polyimide
according to the present invention, at various molecular weights, exhibits better
physical properties than the polyimides of the comparative examples.

Examples A38-A42, Comparative Examples A20-A22
[0197] In each of these examples and comparative examples, 500 mL of the corresponding one
of the varnishes - which had been obtained in Examples A33-A37 and Comparative Examples
A17-A19, respectively - were discharged into methanol (10 liters) which was under
vigorous agitation, and a precipitate was collected by filtration. The precipitate
was washed further with methanol (800 mL). After provisional drying under reduced
pressure at 50°C for 24 hours, the precipitate was dehydrated and imidated under reduced
pressure at 250°C for 12 hours under a gentle nitrogen gas stream, whereby polyimide
powder was obtained. The used varnish and the glass transition temperature and 5%
weight loss temperature of the thus-obtained polyimide powder are shown in Table A17.
[0198] Further, the powder was placed on a heat-resistant dish, annealed under nitrogen
gas at 380°C for 2 hours, and then quenched. Thereafter, its glass transition temperature
and 5% weight loss temperature were measured. The results are shown in Table A17.
[0199] From these results, it is appreciated that, when annealed, the crosslinkable-group-containing
polyimide according to the present invention is significantly improved in glass transition
temperature but the polyimides of the comparative examples are not improved.
Table A17
| Ex./Comp.Ex. No.. |
Used varnish |
Before annealing |
After annealing |
| |
|
Tg[°C], |
Td5[°C] |
Tg[°C], |
Td5[°C] |
| Example A38 |
Example A33 |
245 |
560 |
268 |
552 |
| Example A39 |
Example A34 |
245 |
560 |
266 |
553 |
| Example A40 |
Example A35 |
244 |
559 |
265 |
554 |
| Example A41 |
Example A36 |
242 |
552 |
264 |
550 |
| Example A42 |
Example A37 |
237 |
544 |
265 |
543 |
| Comp.Ex.A20 |
Comp.Ex.A17 |
245 |
561 |
244 |
555 |
| Comp.Ex.A21 |
Comp.Ex.A18 |
244 |
560 |
243 |
554 |
| Comp.Ex.A22 |
Comp.Ex.A19 |
235 |
542 |
235 |
521 |
| [Note] In Table A17, "Tg" indicates a glass transition temperature, and "Td5" designates
a 5% weight loss temperature. |
Examples A43-A45, Comparative Example A23
[0200] In each of these examples and comparative example, 4,4'-bis(3-aminophenoxy)biphenyl
(368.43 g, 1.000 mol) and pyromellitic dianhydride (205.03 g, 0.940 mol) were charged
as monomers together with m-cresol (1,520 g) as a solvent into a vessel equipped with
a stirrer, a reflux condenser, a water trap and a nitrogen gas inlet tube. The contents
were heated with stirring to 200°C over 2 hours and 30 minutes under a nitrogen atmosphere,
and a reaction was conducted under 200°C reflux conditions for 2 hours, whereby a
solution of an end-unblocked polymer was obtained. During the reaction, the corresponding
end blocking agent (s) described in Table A18 and m-cresol (200.0 mL) were charged
into another vessel and were then heated beforehand at 100°C for 1 hour under a nitrogen
atmosphere to provide a solution. The solution of the end blocking agent(s) was charged
in its entirety into the solution of the end-unblocked polymer, and reaction(s) was(were)
then conducted under 200°C reflux conditions for 2 hours.
Table A18
| Ex./Comp.Ex. No. |
Charged amount of PA |
Charged amount of PCE |
PA/PCE molar ratio |
| |
[g] |
[mmol] |
[g] |
[mmol] |
|
| Example A43 |
33.77 |
228.0 |
2.979 |
12.0 |
95/5 |
| Example A44 |
31.99 |
216.0 |
5.958 |
24.0 |
90/10 |
| Example A45 |
28.44 |
192.0 |
11.92 |
48.0 |
80/20 |
| Comp.Ex. A23 |
17.77 |
120.0 |
0 |
0 |
100/0 |
| [Note] In Table A18, "PA" stands for phthalic anhydride, and "PCE" stands for 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene
anhydride. |
[0201] The reaction mixture was thereafter cooled to 100°C. While maintaining the resultant
viscous polymer solution at 100°C, toluene (4 liters) was charged dropwise into the
polymer solution over 4 hours. After toluene (3 liters) which had been heated at 80°C
was additionally charged, the resulting mixture was allowed, to cool down to room
temperature. Toluene (3 liters) was added further, followed by stirring for 1 hour.
A precipitate was then collected by filtration. The precipitate was again suspended
and allowed to reprecipitate in toluene (4 liters). After the reprecipitate was collected
by filtration and then provisionally dried at 50°C for 24 hours, the reprecipitate
was dried at 200°C under reduced pressure for 12 hours under a gentle nitrogen gas
stream. The logarithmic viscosity number, glass transition temperature, crystal melting
temperature, 5% weight loss temperature and melt viscosity (410°C/5 min.) of the thus-obtained
polyimide powder are shown in Table A19.
[0202] Using the polyimide powder so obtained, pelletization was conducted at 400°C by extrusion.
Injection molding was then conducted at a resin temperature o.f from 380 to 410°C,
an injection pressure of from 1,400 to 1,600 kg/cm
2 and a mold temperature of 170°C, whereby an amorphous specimen of the shape specified
in ASTM-D-638 was obtained.
[0203] To the thus-obtained amorphous specimen, annealing treatment was applied further
under a nitrogen gas stream, whereby the specimen was crystallized and, where the
specimen was that of one of the examples, the specimen was subjected to crosslinking.
The annealing treatment consisted of the following nine steps: ① heating from room
temperature to 220°C at a heating rate of 5°C/min., ② annealing at 220°C for 5 hours,
③ heating from 220°C to 280°C at a heating rate of 5°C/min., ④ annealing at 280°C
for 5 hours, ⑤ heating from 280°C to 320°C at a heating rate of 5°C/min., ⑥ annealing
at 320°C for 5 hours, ⑦ heating from 320°C to 350°C at a heating rate of 5°C/min.,
⑧ annealing at 350°C for 24 hours, and ⑨ cooling to room temperature at a cooling
rate of 5°C/min.
[0204] Using the specimen, a tensile test was performed. The results are shown in Table
A20.

[0205] From the above results, it is evident that the crosslinkable-group-containing polyimide
according to the present invention, even when crystallized, has good mechanical properties.
Examples A46-A49, Comparative Examples A24-A27
[0206] In each of these examples and comparative examples, the following two reactions (A),
(B) were conducted.
(A) 4,4'-Bis(3-aminophenoxy)biphenyl (368.43 g, 1.000 mol), pyromellitic dianhydride
(101.43 g, 0.465 mol) and 3,3',4,4'-biphenyltetracarboxylicacid anhydride (136.81
g, 0.465 mol) were charged as monomers together with m-cresol (1,820 g) as a solvent
into a vessel equipped with a stirrer, a reflux condenser, a water trap and a nitrogen
gas inlet tube. The contents were heated with stirring to 200°C over 3 hours under
a nitrogen atmosphere, and a reaction was conducted under 200°C reflux conditions
for 2 hours, whereby a solution of an end-unblocked polymer was obtained. During the
reaction, phthalic anhydride (20.74 g, 140.0 mmol) and 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene
anhydride (34.75 g, 140.0 mmol) were charged as end blocking agents together with
m-cresol (200.0 mL) into another vessel, and were then heated beforehand at 100°C
for 1 hour under a nitrogen atmosphere to provide a solution. The solution of the
end blocking agents was charged in its entirety into the solution of the end-unblocked
polymer, and reactions were then conducted under 200°C reflux conditions for 2 hours.
The reaction mixture was thereafter cooled to 60°C, the resulting viscous polymer
solution was discharged into methanol (10 liters) which was under vigorous agitation,
and a precipitate was then collected by filtration. The precipitate was again suspended
and allowed to reprecipitate in methanol (4 liters). After the reprecipitate was collected,
by filtration and then provisionally dried at 50°C for 24 hours, the reprecipitate
was dried at 220°C for 12 hours under a nitrogen gas stream, whereby polyimide powder
was obtained.
(B) In each of these examples and comparative examples, polyimide powder was obtained
in exactly the same manner as in the reaction (A) except that the amounts of the end
blocking agents of the kinds were changed to only phthalic anhydride (41.47 g, 280.00
mmol).
[0207] The logarithmic viscosity numbers, glass transition temperatures, 5% weight loss
temperatures and melt viscosities (360°C/5 min.) of the powders obtained in the two
reactions (A), (B) are shown in Table A21.
[0208] Further, each powder was extruded into pellets at 355°C by a 25-mm single-screw extruder.
After the pellets were filled in a compression mold of the shape specified in ASTM-D-638,
compression molding was conducted under the conditions described in Table A22.
[0209] Using the thus-obtained specimen, a chemical resistance test was performed. Described
specifically, the specimen was fixed on a jig in a state stretched by 0.5%, and was
then immersed in toluene or methyl ethyl ketone at room temperature (23°C) for 24
hours. Using the immersed specimen, a tensile test was performed at room temperature
(23°C). The results of the tensile test were compared with those of a tensile test
of a corresponding non-immersed specimen, and a break strength retention (%) was calculated.
The term "break strength retention (%)" as used herein means a value expressed in
terms of percentage by comparing the break strength of an immersed specimen with the
break strength of a corresponding non-immersed specimen.
[0210] The results are shown in Table A22.

[0211] From the above results, it is evident that the crosslinkable-group-containing polyimide
according to the present invention is significantly improved in chemical resistance
by annealing under various conditions irrespective of the annealing temperature. It
is appreciated that this effect cannot be expected from the conventional polyimides
of the comparative examples.
Examples A50-A54, Comparative Examples A28-A32
[0212] In each of these examples and comparative examples, polyimide powder was synthesized
in exactly the same manner as in Examples A13-A17 except that the corresponding one
of various diamines and pyromellitic dianhydride (202.85 g, 0.930 mol) were used as
monomers and that phthalic anhydride (20.74 g, 140.0 mmol) and 1-phenyl-2-(3,4-dicarboxy-phenyl)acetylene
anhydride (34.75 g, 140.0 mmol) were used as end blocking agents in each of the examples
but only phthalic anhydride (41.47 g, 280.00 mmol) was used as an end blocking agent
in each of the comparative examples.
[0213] Further, the thus-obtained polyimide powder was extruded into pellets at 325°C to
365°C by a 25-mm single-screw extruder. After the pellets were filled in a compression
mold of the shape specified in ASTM-D-648, Compression molding was conducted under
the conditions of 360°C and 6 hours.
[0214] Using the specimen so obtained, its heat distortion temperature was measured.
[0215] The kinds and amounts of the diamines, which were used in the respective examples
and comparative examples, and the heat distortion temperatures are shown in Table
A23.

Examples A55-A59, Comparative Examples A33-A37
[0216] In each of these examples and comparative examples, polyimide powder was synthesized
in exactly the same manner as in Examples A13-A17 except that the corresponding one
of various diamines, 4,4'-bis(3-aminophenoxy)biphenyl (331.59 g, 0.900 mol) arid pyromellitic
dianhydride (202.85 g, 0.930 mol) were used as monomers and that phthalic anhydride
(20.74 g, 140.0 mmol) and 1-phenyl-2-(3,4-dicarboxyphenyl)-acetylene anhydride (34.75g,
140.0 mmol) were used as end blocking agents in each of the examples but only phthalic
anhydride (41.47 g, 280.00 mmol) was used as an end blocking agent in each of the
comparative examples.
[0217] In a similar manner as in Examples A50-A54, specimens were then obtained from the
respective polyimide powders, and their heat distortion temperatures were measured.
The kinds and amounts of the diamines, which were used in the respective examples,
and the heat distortion temperatures are shown in Table A24.

Examples A60-A64, Comparative Examples A38-A42
[0218] In each of these examples and comparative examples, polyimide powder was synthesized
in exactly the same manner as in Examples A13-A17 except that the corresponding ones
of various diamines, 4,4'-bis(3-aminophenoxyl)biphenyl (221.058 g, 0.600 mol) and
pyromellitic dianhydride (202.85 g, 0.930 mol) were used as monomers and that phthalic
anhydride (20.74 g, 140.0 and 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene anhydride
(34.75 g, 140.0 mmol) were used as end blocking agents in each of the examples but
only phthalic anhydride (41.47 g, 280.00 mmol) was used as an end blocking agent in
each of the comparative examples.
[0219] In a similar manner as in Examples A50-A54, specimens were then obtained, and their
heat distortion temperatures were measured.
[0220] The kinds and amounts of the diamines, which were used in the respective examples
and comparative examplds, and the heat distortion temperatures are shown in Table
A25.

Examples A65-A69, Comparative Examples A43-A47
[0221] In each of these examples and comparative examples, polyimide powder was synthesized
in exactly the same manner as in Examples A13-A17 except that 4,4'-bis(3-aminophenoxy)biphenyl
(368.43 g; 1.000 mol) and the corresponding one of various acid anhydrides were used
as monomers and that phthalic anhydride (20.74 g, 140.0 mmol) and 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene
anhydride (34.75 g, 140.0 mmol) were used as end blocking agents in each of the examples
but only phthalic anhydride (41.47 g, 280.00 mmol) was used as an end blocking agent
in each of the comparative examples. In a similar manner as in Examples A50-A54, specimens
were then obtained, and their heat distortion temperatures were measured.
[0222] The kinds and amounts of the acid anhydrides, which were used in the respective examples
and comparative examples, and the heat distortion temperatures are shown in Table
A26.

[0223] From the above test, it is evident that crosslinkable-group-containing polyimides
according to the present invention, which have various structures, are far superior
in heat resistance to similar polymers having no crosslinkable groups.
Examples A70-A75, Comparative Examples A43-A48
[0224] In each of these examples and comparative examples, a 15% (W/W) polyamic acid varnish
was obtained in a similar manner as in Examples A33-A37 by using dimethyl acetamide
as a solvent, the corresponding diamine(s) and acid anhydride (s), the amounts and
kinds of which are shown in Table A27, as monomers, and phthalic anhydride (10.66
g, 72.00 mmol) and 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene anhydride (11.92 g, 48.00
mmol) as end blocking agents in each of the examples or only phthalic anhydride (17.77
g, 120.00 mmol) as an end blocking agent in each of the comparative examples.

[0225] Using the thus-obtained varnishes, films were prepared under similar conditions as
in Examples 33-37. Those films were punched by a die, whereby elongated rectangular
specimens of 5.00 mm in width and 260 mm in length were obtained. Using those specimens,
a chemical resistance test was performed.
[0226] Described specifically, each film was held in place at portions 5.00 mm apart from
opposite ends thereof. Using a device capable of finely adjusting the distance between
those portions, the distance between those portions was set at 251.75 mm. Under those
conditions, the specimen was immersed together with the device in toluene or methyl
ethyl ketone. One hour, 24 hours and 168 hours later, the specimen was taken out of
the solvent and visually observed for cracks. The results are shown together with
the logarithmic viscosity numbers of the varnishes in Table A28.
[0227] Incidentally, "A", "B" and "C" in Table A28 indicate "completely free of cracks",
"cracks observed in a very small number" and "cracks observed in a large number",
respectively, in this order. Further, "MEK" stands for methyl ethyl ketone.
Table A28
| Ex./Comp. Ex. No. |
Logarithmic viscosity number [dL/g] |
Toluene immersion time |
MEK immersion time |
| |
|
1hr. |
24hr. |
168hr. |
1hr. |
24hr.. |
168hr. |
| Example A70 |
0.455 |
A |
A |
A |
A |
A |
A |
| Example A71 |
0.461 |
A |
A |
A |
A |
A |
A |
| Example A72 |
0.449 |
A |
A |
A |
A |
A |
B |
| Example A73 |
0.466 |
A |
A |
A |
A |
A |
B |
| Example A74 |
0.480 |
A |
A |
A |
A |
A |
A |
| Example A75 |
0.452 |
A. |
A |
A |
A |
A |
A |
| Comp.Ex.A48 |
0.449 |
A |
B |
B |
B |
C |
C |
| Comp.Ex.A49 |
0.466 |
A |
B |
B |
B |
C |
C |
| Comp.Ex.A50 |
0.453 |
A |
B |
B |
C |
C |
C |
| Comp.Ex.A51 |
0.470 |
A |
B |
B |
C |
C |
C |
| Comp.Ex.A52 |
0.478 |
A |
B |
B |
B |
C |
C |
| Comp.Ex.A53 |
0.451 |
A |
A |
B |
B |
B |
C |
Examples A76-A79, Comparative Example A54
[0228] In each of these examples and comparative example, a 15% (W/W) polyamic acid varnish
was obtained in a similar manner as in Examples A33-A37 by using dimethylformamide
as a solvent and 4,4'-bis(3-aminophenoxy)biphenyl (368.43 g, 1.000 mol) and pyromellitic
dianhydride (142.00 g, 0.651 mol) and 3,3',4,4'-benzophenonetetracarboxylic acid dianhydride
(89.90 g, 0.279 mol) as monomers together with the corresponding end blocking agent(s)
the amount(s) and kind(s) of which are shown in Table A29.
[0229] Using the thus-obtained varnishes, films were prepared under similar conditions as
in Examples 33-37. Employing those films, a chemical resistance test was performed
in toluene in a similar manner as in Examples A70-A75. The results are shown together
with the logarithmic viscosity numbers of the varnishes in Table A29.
[0230] Incidentally, "A", "B" and "C" in Table A28 indicate "completely free of cracks",
"cracks observed in a very small number" and "cracks observed in a large number",
respectively, in this order.

[0231] From the above results, it is evident that crosslinkable-group-containing polyimides
according to the present invention, which have various structures, are far superior
in heat resistance to similar polymers having no crosslinkable groups.
Examples A80-A82
[0232] Using the polyimide powders employed above in Examples A28-A30, their melt viscosities
were measured by varying the measuring temperature and the residence time in various
ways within a range of from 300°C to 400°C. The results are shown in Table A30.
[0233] Incidentally, the shearing stress under those measuring conditions was constant at
0.245 MPa.
Table A30
| Ex. No. |
Ex. No. of used powder |
Measuring temp. [°C] |
Melt viscosity[Pa·S] |
| |
|
|
5min. |
30min. |
| Example A80 |
Example A28 |
300 |
No flow |
← |
| |
|
320 |
58000 |
59200 |
| |
|
340 |
10800 |
11500 |
| |
|
360 |
3280 |
4120 |
| |
|
380 |
1650 |
7820 |
| |
|
400 |
1770 |
18000 |
| Example A81 |
Example A29 |
300 |
No flow |
← |
| |
|
320 |
115.00 |
11600 |
| |
|
340 |
2110 |
2300 |
| |
|
360 |
890 |
1130 |
| |
|
380 |
510 |
3810 |
| |
|
400 |
550 |
6930 |
| Example A82 |
Example A30 |
300 |
38400 |
35500 |
| |
|
320 |
3100 |
3110 |
| |
|
340 |
750 |
770 |
| |
|
360 |
360 |
390 |
| |
|
380 |
190 |
860 |
| |
|
400 |
230 |
2990 |
Comparative Examples A55-A57
[0234] Using the polyimide powders employed above in Comparative Examples A14-A16, their
melt viscosities and the temperature dependency of their melt viscosity stability
were ascertained in a similar manner as in Examples A80-A82.
[0235] The results are shown in Table A31.
Table A31
| Comp.Ex. No. |
Comp.Ex. No. of used powder |
Measuring temp. [°C] |
Melt viscosity [Pa · S] |
| |
|
|
5min. |
30min. |
| Comp.Ex. A55 |
Comp.Ex. A14 |
300 |
No flow |
← |
| |
|
320 |
62000 |
101000 |
| |
|
340 |
13900 |
No flow |
| |
|
360 |
No flow |
← |
| |
|
380 |
No flow |
← |
| |
|
400 |
No flow |
← |
| Comp.Ex. A56 |
Comp.Ex. A15 |
300 |
No flow |
← |
| |
|
320 |
16600 |
33100 |
| |
|
340 |
3450 |
No flow |
| |
|
360 |
No flow |
← |
| |
|
380 |
No. flow |
← |
| |
|
400 |
No flow |
← |
| Comp.Ex. A57 |
Comp.Ex. A16 |
300 |
37700 |
36400 |
| |
|
320 |
4020 |
10440 |
| |
|
340 |
1330 |
No flow |
| |
|
360 |
7830 |
No flow |
| |
|
380 |
No flow |
← |
| |
|
400 |
No flow |
← |
[0236] From the results of Examples A80-A82 and Comparative Examples A55-A57, it is evident
that over a wide temperature range, the crosslinkable-group-containing polyimide according
to the present invention has high stability in melt viscosity and hence, excellent
moldability or formability.
Examples A83-A87
[0237] Using a melt viscoelasticity meter ("RDS-II" manufactured by Rheometrix Scientific
F.E.) equipped with parallel plates (e.g., 25 mm disposable), the gel times of the
powders polymerized in Examples A13-A17 were measured at various temperatures. Incidentally,
the term "gel time" means a time which is required until a gel point is reached at
a constant frequency and a given temperature. The term "gel point", in turn, means
an intersecting point between lines G' and G" when storage modulus G' and loss modulus
G" are 'each' plotted as a function of time t (min.).
[0238] The measurement was performed up to 2 hours at each temperature. The results are
shown in Table A32. Incidentally, ">120" which appears in Table A32 indicates that
no gel point was reached within the measuring time.
Table A32
| Ex. No. |
Ex. No. of used powder |
Measuring temp. [°C] |
Gel time [min.] |
| Example A83 |
Example A13 |
330 |
>120 |
| |
|
360 |
>120 |
| |
|
390 |
>120 |
| Example A84 |
Example A14 |
330 |
>120 |
| |
|
360 |
>120 |
| |
|
390 |
52 |
| Example A85 |
Example A15 |
330 |
>120 |
| |
|
360 |
112 |
| |
|
390 |
31 |
| Example A86 |
Example A16 |
330 |
>120 |
| |
|
360 |
45 |
| |
|
390 |
17 |
| Example A87 |
Example A17 |
330 |
>120 |
| |
|
360 |
22 |
| |
|
390 |
8 |
Comparative Examples A58-A59
[0239] The gel times of the powders, which were polymerized in Comparative Examples A6-A7,
at various temperatures were measured in a similar manner as in Examples A83-A87.
The results are shown in Table A33.
Table A33
| Comp.Ex. No. |
Comp.Ex. No. of used powder |
Measuring temp. [°C] |
Gel time [min.] |
| |
|
330 |
55 |
| Comp.Ex. A58 |
Comp.Ex. A6 |
360 |
6 |
| |
|
390 |
3 |
| |
|
330 |
15 |
| Comp.Ex. A59 |
Comp.Ex. A7 |
360 |
3 |
| |
|
390 |
2 |
[0240] From the results of Examples A83-A87 and Comparative Examples A58-A59, it is evident
that over a wide temperature range, the crosslinkable-group-containing polyimide according
to the present invention is slow in gelation and hence, is excellent in moldability
or formability.
Examples A88-A91, Comparative Examples A60-A63
[0241] Polyimide powder was obtained in exactly the same manner as in the reaction (A) described
in Examples A46-A49 except that the amounts of the end blocking agents of the kinds
were changed to only 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene anhydride (69.50 g,
280.00 mmol). This polyimide powder will be identified by (C).
[0242] Further, the polyimide powder obtained in the reaction (B) described in Examples
A46-A49 and the above-described polyimide (C) were blended at the ratios described
in Table A34, respectively, whereby homogeneous mixed powders were obtained. These
mixed powders will be identified by (D) and (E).
[0243] Physical properties of the mixed powders (C)-(E) are shown in Table A34.
Table A34
| |
Blending ratio (B)/(C) [wt/wt] |
Logarithmic viscosity [dL/g] |
Glass transition temp. [°C] |
5% Weight loss temp. [°C] |
| (C) |
--- |
0.427 |
234 |
560 |
| (D) |
50/50 |
0.426 |
234 |
560 |
| (E) |
10/90 |
0.426 |
234 |
560 |
[0244] The polyimide powders (D) and (E) obtained above were separately extruded into pellets
in a similar manner as in Examples A46-A49, and their compression molding and chemical
resistance test were performed.
[0245] The results are shown in Table A35.
Table A35
| Ex./Comp.Ex. No. |
Used powder |
Compression molding conditions |
Retention of break strength [%] |
| |
|
|
Toluene |
MEK |
| Example A88 |
(D) |
390°C, 6 hr. |
91.8 |
68.5 |
| Example A89 |
(D) |
370°C, 6 hr. |
92.1 |
73.0 |
| Example A90 |
(D) |
350°C, 6 hr. |
90.7 |
70.2 |
| Example A91 |
(D) |
330°C, 6 hr. |
88.0 |
64.4 |
| Comp.Ex. A60 |
(E) |
390°C, 6hr. |
78.3 |
42.2 |
| Comp.Ex. A61 |
(E) |
370°C, 6 hr. |
82.0 |
42.6 |
| Comp.Ex. A62 |
(E) |
350°C, 6 hr. |
81.4 |
43.3 |
| Comp.Ex. A63 |
(E) |
330°C, 6 hr. |
80.3 |
45.9 |
| [Note] In Table A35, "MEK" stands for methyl ethyl ketone. |
[0246] From the above results, it is evident that crosslinkable-group-containing polyimides
according to the present invention, which are available, from blending, can also be
significantly improved in chemical resistance by annealing under various conditions
irrespective of the annealing temperature. It is appreciated that this effect cannot
be expected from the polyimides of the comparative examples.
Experiment B Series
[0247] In Example B1 to Example B62, a description will be made about certain examples out
of the present invention, in each of which 50 to 100 mole % of recurring structural
units in a backbone structure are of a recurring unit structure represented by:

wherein X represents a divalent linking group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group and a hexafluoroisopropylidene group; and
R represents a tetravalent aromatic group selected from the group consisting of:

wherein G represents a divalent aromatic group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group, a hexafluoroisopropylidene group, and at least one divalent
linking group selected from the group of substituent groups represented by the following
formulas:

Examples B1-B7, Comparative Examples B1-B3
[0248] In each of these examples and comparative examples, 3,4'-diaminodiphenyl ether (200.24
g, 1.000 mol), 3,3',4,4'-biphenyltetracarboxylic acid dianhydride (138.28g, 0.470
mol) and bis(3,4-dicarboxyphenyl) ether dianhydride (145.80 g, 0.470 mol) were charged
as monomers together with the corresponding end blocking agent(s), the kind(s) and
amount(s) of which are shown in Table B1, and m-cresol (1, 937 g) as a solvent into
a vessel equipped with a stirrer, a reflux condenser, a water trap and a nitrogen
gas inlet tube. The contents were heated with stirring to 200°C over 2 hours and 30
minutes under a nitrogen atmosphere, and reactions were conducted under 200°C reflux
conditions for 4 hours. In Table B1, "PA" stands for phthalic anhydride, and "PCE"
stands for 1-phenyl-2-(3,4-dicarboxyphenyl)-acetylene anhydride.
Table B1
| Ex./Comp.Ex. No. |
Charged amount of PA |
Charged amount of PCE |
PA/PCE molar ratio |
| |
[g] |
[mmol] |
[g] |
[mmol] |
|
| Example B1 |
17.60 |
118.8 |
0.2979 |
1.200 |
99/1 |
| Example B2 |
16.89 |
114.0 |
1,489 |
6.000 |
95/5 |
| Example B3 |
16.00 |
108.0 |
2.979 |
12.00 |
90/10 |
| Example B4 |
14.22 |
96.00 |
5.958 |
24.00 |
80/20 |
| Example B5 |
10.66 |
72.00 |
11.92 |
48.00 |
60/40 |
| Example B6 |
7.110 |
48.00 |
17.87 |
72.00 |
40/60 |
| Example B7 |
3.555 |
24.00 |
23.83 |
96.00 |
20/80 |
| Comp.Ex. B1 |
2.666 |
18.00 |
25.32 |
102.0 |
15/85 |
| Comp.Ex. B2 |
0 |
0 |
29.79 |
120.0 |
0/100 |
| Comp.Ex. B3 |
17.77 |
120.0 |
0 |
0 |
100/0 |
[0249] The temperature was then lowered to 190°C, at which the corresponding end blocking
agent(s) shown in Table B1 was (were) charged again. The resulting contents were heated
again, and the reactions were then conducted under 200°C reflux conditions for further
4 hours.
[0250] The reaction mixture was thereafter cooled to 100°C, the resulting viscous polymer
solution was discharged into toluene (10 liters) which was under vigorous agitation,
and a precipitate was then collected by filtration. The precipitate was again suspended
and allowed to reprecipitate in toluene (4 liters). After the reprecipitate was collected
by filtration and then provisionally dried at 50°C for 24 hours, the reprecipitate
was dried at 210°C for 12, hours under a nitrogen gas stream. The yield of the thus-obtained
powder and the logarithmic viscosity number, glass transition temperature, 5% weight
loss temperature and melt viscosity (360°C/5 min.) are shown in Table B2.

[0251] The present invention is characterized in that concerning the molecule ends, the
molar ratio of the chemical formula (2a) to the chemical formula (2b) ranges from
1/99 to 80/20 as recited in certain claims. From the above-described results, it is
also evident that those having molar ratios of the chemical formula (2a) to the chemical
formula (2b) greater than 80/20 are considerably inferior in moldability or formability
to those having molar ratios of the chemical formula (2a) to the chemical formula
(2b) equal to or smaller than 80/20.
Examples B8-B12, Comparative Examples B4,B5.
[0252] Using the powders obtained in Examples B2-B6 and Comparative Example B3, compression
molding was conducted. The powders used in the respective examples and comparative
examples are shown next in Table B3.
Table B3
| Ex./Comp.Ex. No. |
Ex./Comp.Ex. No. of used powder |
| Example B8 |
Example B2 |
| Example B9 |
Example B3 |
| Example B10 |
Example B4 |
| Example B11 |
Example B5 |
| Example B12 |
Example B6 |
| Comp.Ex. B4,B5 |
Comp.Ex. B3 |
[0253] Described specifically, in each of these examples and comparative examples, the powder
was extruded into pellets at 355°C by a single-screw extruder of 25 mm in barrel diameter.
After the pellets were filled in a compression mold of configurations specified in
ASTM-D-638, Compression molding was conducted at 360°C for 12 hours (Examples B8-B12,
Comparative Example B4) or under conditions of 360°C and 5 minutes (Comparative Example
5). In all the examples and comparative examples, good molded products were obtained.
Using those molded products, a tensile test was performed at room temperature (23°C).
The results are shown in Table B4. In Table B4, "PA/PCE molar ratio" means the molar
ratio of phthalic anhydride to 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene anhydride.

[0254] The present invention is characterized in that concerning the molecule ends, the
molar ratio of the chemical formula (2a) to the chemical formula (2b) ranges from
1/99 to 80/20 as recited in certain claims. From the above-described results, it is
also evident that those having molar ratios of the chemical formula (2a) to the chemical
formula (2b) not reaching 1/99 are inferior in mechanical properties to those having
molar ratios of the chemical formula (2a) to the chemical formula (2b) equal to or
greater than 1/99.
Examples B13-B17, Comparative Examples B6-B8
[0255] In each of these examples and comparative examples, 3,4'-diaminidiphenyl ether (200.24
g, 1.000 mol), 3,3',4,4'-biphenyltetracarboxylic acid dianhydride (138.28 g, 0.470
mol) and bis(3,4-dicarboxyphenyl) ether dianhydride (145.80 g, 0.470 mol) were charged
as monomers together with m-cresol (1,737 g) as a solvent into a vessel equipped with
a stirrer, a reflux condenser, a water trap and a nitrogen gas inlet tube. The contents
were heated with stirring to 200°C over 2 hours and 30 minutes under a nitrogen atmosphere,
and a reaction was conducted under 200°C reflux conditions for 2 hours, whereby a
solution of an end-unblocked polymer was obtained. During the reaction, the corresponding
end blocking agent(s) described in Table B5 and m-cresol (200.0 mL) were charged into
another vessel and were then heated beforehand at 100°C for 1 hour under a nitrogen
atmosphere to provide a solution. The solution of the end blocking agent(s) was charged
in its entirety into the solution of the end-unblocked polymer, and reaction(s) was(were)
then conducted under 200°C reflux conditions for 2 hours. In Table B5, "PA" stands
for phthalic anhydride, and "PCE" stands for 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene
anhydride.
Table B5
| Ex./Comp.Ex. No. |
Charged amount of PA |
Charged amount of PCE |
PA/PCE molar ratio |
| |
[g] |
[mmol] |
[g] |
[mmol] |
|
| Example B13 |
33.77 |
228.0 |
2.979 |
12.0 |
95/5 |
| Example B14 |
31.99 |
216.0 |
5.958 |
24.0 |
90/10 |
| Example B15 |
28.44 |
192.0 |
11.96 |
48.0 |
80/20 |
| Example B16 |
21.33 |
144.0 |
23.83 |
96.0 |
60/40 |
| Example B17 |
14.21 |
96.00 |
35.75 |
144.0 |
40/60 |
| Comp.Ex. B6 |
5.332 |
36.00 |
50.64 |
204.0 |
15/85 |
| Comp.Ex. B7 |
0 |
0 |
59.58 |
240.0 |
0/100 |
| Comp.Ex. B8 |
35.55 |
240.0 |
0 |
0 |
100/0 |
[0256] The reaction mixture was thereafter cooled to 100°C. While maintaining the resultant
viscous polymer solution at 100°C, toluene (2 liters) which had been heated at 100°C
was charged into the polymer solution and further, toluene (6 liters) was charged
dropwise over 4 hours. After toluene (4 liters) was charged, the resulting mixture
was allowed to cool down to room temperature. A precipitate was then collected by
filtration. The precipitate was again suspended and allowed to reprecipitate in toluene
(4 liters). After the reprecipitate was collected by filtration and then provisionally
dried at 50°C for 24 hours, the reprecipitate was dried at 200°C under reduced pressure
for 12 hours under a gentle nitrogen gas stream. The yield of the thus-obtained powder
and the logarithmic viscosity number, glass transition temperature, 5% weight loss
temperature and melt viscosity (360°C/5 min.) are shown in Table B6.

[0257] The present invention is characterized in that concerning the molecule ends, the
molar ratio of the chemical formula (2a) to the chemical formula (2b) ranges from
1/99 to 80/20 as recited in certain claims. From the above-described results, it is
also evident that those having molar ratios of the chemical formula (2a) to the chemical
formula (2b) greater than 80/20 are considerably inferior in moldability or formability
to those having molar ratios of the chemical formula (2a) to the chemical formula
(2b) equal to or smaller than 80/20. Examples B18-B22, Comparative Examples B9/B10.
[0258] Using the powders obtained in Examples B13-B17 and Comparative Example B8, compression
molding was conducted. The powders used in the respective examples and comparative
examples are shown next in Table B7.
Table B7
| Ex./Comp.Ex. No. |
Ex./Comp.Ex. No. of used powder |
| Example B18 |
Example B13 |
| Example B19 |
Example B14 |
| Example B20 |
Example B15 |
| Example B21 |
Example B16 |
| Example B22 |
Example B17 |
| Comp.Ex. B9,B10 |
Comp.Ex. B8 |
[0259] Described specifically, in each of these examples and comparative examples, the powder
was extruded into pellets at 355°C by a single-screw extruder of 25 mm in barrel diameter.
After the pellets were filled in a compression mold having a size of 10.0 mm in width
and 80.0 mm in length, compression molding was conducted at 360°C for 12 hours (Examples
B18-B22, Comparative Example B9) or under conditions of 360°C and 5 minutes (Comparative
Example 10). In all the examples and comparative examples, good molded products were
obtained. Those specimens were all of 10.0 mm ± 0.010 mm in width, 80.0 mm ± 0.010
mm in length and 1.500 mm ± 0.010 mm in thickness. Using those molded products, a
chemical resistance test was performed. Described specifically, each specimen was
held in place at portions 5.00 mm apart from opposite ends thereof, and was then adjusted
and fixed such that a displacement of 3.50 mm in the direction of the thickness would
be given when the specimen was bent by a jig maintained in contact with the specimen
at a center thereof (a portion 40.0 mm apart from the respective, ends). Under those
conditions, the specimen was immersed in toluene or methyl ethyl ketone. One hour,
24 hours and 168 hours later, the specimen was taken out of the solvent and visually
observed for cracks.
[0260] The results of the chemical resistance test are shown in Table B8. In Table B8, "A",
"B" and "C" indicate "completely free of cracks", "cracks observed in a very small
number" and "cracks observed in a large number", respectively, in this order. Further,
"PA/PCE molar ratio" means the molar ratio of phthalic anhydride to 1-phenyl-2-(3,4-dicarboxy-phenyl)acetylene
anhydride, and "MEK" stands for methyl ethyl ketone.
Table B8
| Ex./Comp.Ex. No. |
Toluene immersion time |
MEK immersion time |
PA/PCE molar raitio |
| |
1hr. |
24hr. |
168hr. |
1hr. |
24hr. |
168hr. |
|
| Example B18 |
A |
A |
A |
A |
B |
B |
95/5 |
| Example B19 |
A |
A |
A |
A |
A |
B |
90/10 |
| Example B20 |
A |
A |
A |
A |
A |
A |
80/20 |
| Example B21 |
A |
A |
A |
A |
A |
A |
60/40 |
| Example B22 |
A |
A |
A |
A |
A |
A |
40/60 |
| Comp.Ex.B9 |
A |
A |
B |
B |
C |
C |
0/100 |
| Comp.Ex.B10 |
A |
A |
B |
B |
C |
C |
0/100 |
[0261] The present invention is characterized in that concerning the molecule ends, the
molar ratio of the chemical formula (2a) to the chemical formula (2b) ranges from
1/99 to 80/20 as recited in certain claims. From the above-described results, it is
evident that those having molar ratios of the chemical formula (2a) to the chemical
formula (2b) not reaching 1/99 are inferior in chemical resistance to those having
molar ratios of the chemical formula (2a) to the chemical formula (2b) equal to or
greater than 1/99.
Examples B23-B32, Comparative Examples B11-B16
[0262] In each of these examples and comparative examples, the following two reactions (A),(B)
were conducted.
(A) 3,4-Diaminodiphenyl ether (200.24 g, 1.000 mol), 3,3',4, 4'-biphenyltetracarboxylic
acid dianhydride (138.28 g, 0.470 mol) and 3,3',4,4'-benzophenonetetracarboxylic acid
dianhydride (151.45 g, 0.470 mol) were charged as monomers together with phthalic
anhydride (10.66 g, 72.00 mmol) and 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene anhydride
(11.92 g, 48.00 mmol) as end blocking agents, m-cresol (1,960 g) as a solvent, and
γ-picoline (13.970 g, 0.1500 mol) as a catalyst into a vessel equipped with a stirrer,
a reflux condenser, a water trap and a nitrogen gas inlet tube. The contents were
heated with stirring to 150°C over 2 hours under a nitrogen atmosphere, and reactions
were conducted at 150°C for 2 hours.
As end blocking agents, phthalic anhydride (5.33 g, 36.00 mmol) and 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene
anhydride (5.96 g, 24.00 mmol) were then charged, followed by the reactions at 150°C
for further 8 hours.
The reaction mixture was thereafter cooled to 60°C, the resulting viscous polymer
solution was discharged into methyl ethyl ketone (10 liters) which was under vigorous
agitation, and a precipitate was then collected by filtration. The precipitate was
again suspended and allowed to reprecipitate in methyl ethyl ketone (4 liters). After
the reprecipitate was collected by filtration and then provisionally dried at 50°C
for 24 hours, the reprecipitate was dried at 220°C for 12 hours under a nitrogen gas
stream, whereby polyimide powder was obtained.
(B) In each of these examples and comparative examples, polyimide powder was obtained
in exactly the same manner as in the reaction (A) except that upon preparation of
the make-up, the amount(s) of the end blocking agent(s) of the kind(s) was(were) changed
to only phthalic anhydride (17.77 g, 120.00 mmol) and that during the reactions, the
amount(s) of the end blocking agent(s) of the kind(s) was(were) changed to only phthalic
anhydride (8.89 g, 60.00 mmol).
[0263] The yields of the powders obtained in the two reactions (A), (B) and their logarithmic
viscosity numbers, glass transition temperatures, 5% weight loss temperatures and
melt viscosities (360°C/5 min.) are shown in Table B9.
[0264] Further, each powder was extruded into pellets at 355°C by a single-screw extruder
of 25 mm in barrel diameter. After the pellets were filled in a compression mold of
the shape specified in ASTM-D-638, compression molding was conducted under the conditions
described in Table B10.
Table B10
| Ex./Comp.Ex. No. |
Used powder |
Compression molding conditions |
| Examples B23,B28 |
(A) |
350°C, 2 hr. |
| Examples B24,B29 |
(A) |
350°C, 6 hr. |
| Examples B25,B30 |
(A) |
350°C, 12 hr. |
| Examples B26,B31 |
(A) |
350°C, 24 hr. |
| Examples B27,B32 |
(A) |
350°C, 72 hr. |
| Comp.Ex. B11,B14 |
(B) |
350°C, 2 hr. |
| Comp.Ex. B12,B15 |
(B), |
350°C, 12 hr. |
| Comp.Ex. B13,B16 |
(B) |
350°C, 72 hr. |
[0265] Using the specimens so obtained, a tensile test at room temperature (23°C) and a
high-temperature tensile test at 177°C were performed. The results are shown in Table
B11.

[0266] From the foregoing, it is evident that the crosslinkable-group-containing polyimide
according to the present invention can be significantly improved in roomtemperature
and high-temperature mechanical properties by annealing, and it is also appreciated
that this effect cannot be expected from the conventional polyimides of the comparative
examples.
Examples B28-B32, Comparative Examples B14-B16
[0267] In each of these examples and comparative examples, bis(3,4-dicarboxyphenyl)ether
dianhydride and 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride were charged in their
corresponding amounts shown in Table B12 together with 4,4'-diaminodiphenyl ether
(200.24 g, 1.000 mol), all as monomers, into a vessel equipped withe stirrer, a reflux
condenser, a water trap and a nitrogen gas inlet tube. As a solvent, m-cresol was
also charged in its corresponding amount shown in Table B12. The contents were heated
with stirring to 200°C over 2 hours and 30 minutes under a nitrogen atmosphere, and
a reaction was conducted under 200°C reflux conditions for 2 hours, whereby a solution
of an end-unblocked polymer was obtained. In Table B12, "ODPA" stands for bis(3,4-dicarboxyphenyl)
ether dianhydride, and "HQDA" stands for 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride.
Table B12
| Ex./Comp.Ex. No. |
Charged amount of ODPA |
Charged amount of HQDA |
Charged amount of m-cresol [g] |
| |
[g] |
[mol] |
[g] |
[mol] |
|
| Example B28 |
208.47 |
0.6720 |
115.87 |
0.2880 |
1097 |
| Examples B29,31 |
201.95 |
0.6510 |
112.25 |
0.2790 |
1057 |
| Examples B30,32 |
195.44 |
0.6300 |
108.63 |
0.2700 |
1016 |
| Comp.Ex.B14 |
208.47 |
0.6720 |
115.87 |
0.2880 |
1097 |
| Comp.Ex.B15 |
201.95 |
0.6510 |
112.25 |
0.2790 |
1057 |
| Comp.Ex.B16 |
195.44 |
0.6300 |
108.63 |
0.2700 |
1016 |
[0268] During the reaction, the corresponding end blocking agents described in Table B13
and m-cresol (200.0 mL) were charged into another vessel and were then heated beforehand
at 100°C for 1 hour under a nitrogen atmosphere to provide a solution. The solution
of the end blocking agents was charged in its entirety into the solution of the end-unblocked
polymer, and reactions were then conducted under 200°C reflux conditions for 2 hours.
In Table B13, "PA" stands for phthalic anhydride, and "PCE" stands for 1-phenyl-2-(3,4-dicarboxyphenyl)-acetylene
anhydride.
Table B13
| Ex./Comp.Ex. No. |
Charged amount of PA |
Charged amount of PCE |
PA/PCE molar ratio |
| |
[g] |
[mmol] |
[g] |
[mmol] |
|
| Example B28 |
16.59 |
112.0 |
11.92 |
48.00 |
70/30 |
| Example B29 |
29.03 |
196.0 |
20.85 |
84.00 |
70/30 |
| Example B30 |
41.47 |
280.0 |
29.79 |
120.0 |
70/30 |
| Example B31 |
20.74 |
140.0 |
34.75 |
140.0 |
50/50 |
| Example B32 |
29.62. |
200.0 |
49.45 |
200.0 |
50/50 |
| Comp.Ex. B14 |
3.555 |
24.00 |
33.76 |
136.0 |
15/85 |
| Comp.Ex. B15 |
6.221 |
42.00 |
59.08 |
238.0 |
15/85 |
| Comp.Ex. B16 |
8.887 |
60.00 |
84.40 |
340.0 |
15/85 |
[0269] The reaction mixture was thereafter cooled to 60°C, the resulting viscous polymer
solution was discharged into methyl thyl ketone (10 liters) which was under vigorous
agitation, and a precipitate was then collected by filtration. The precipitate was
again suspended and allowed to reprecipitate in methyl ethyl ketone (4 liters). After
the reprecipitate was collected by filtration and then provisionally dried at 50°C
for 24 hours, the reprecipitate was dried at 220°C for 12 hours under a nitrogen gas
stream, whereby polyimide powder was obtained.
[0270] The logarithmic viscosity number, glass transition temperature and melt viscosity
(360°C/5 min., 15 min., 30 min.) of the thus-obtained polyimide powder are shown in
Table B14.

[0271] It is appreciated from the results that the crosslinkable-group-containing polyimide
according to the present invention, even at various molecular weights (or logarithmic
viscosity numbers correlating with the molecular weights), has good melt fluidity
and is better in moldability or formability than the polyimides of the comparative
examples. Examples B33-B37, Comparative Examples B17-B19
[0272] In each of these examples and comparative examples, 3,3',4,4'-biphenyltetracarboxylic
acid dianhydride and N-methyl-2-pyrrolidone were charged in their corresponding amounts
shown in Table B15 together with 3,4'-diaminodiphenyl ether (200.24 g, 1.000 mol)
into a vessel equipped with a stirrer and a nitrogen gas inlet tube. While stirring
the contents under a nitrogen atmosphere, a reaction was conducted at room temperature
for 12 hours, whereby a polyamic acid varnish was obtained. The corresponding end
blocking agents, the kind(s) and amount(s) of which are shown in Table B15, were charged
into the thus-obtained varnish, followed by reactions at room temperature for 12 hours.
In Table B15, "BPDA", "NMP", "PA" and "PCE" stand for pyromellitic dianhydride, N-methyl-2-pyrrolidone,
phthalic anhydride, and 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene anhydride, respectively.

[0273] The logarithmic viscosity number of the thus-obtained polyamic acid varnish is shown
in Table B16.
[0274] Using that varnish, a film was prepared.
[0275] Described specifically, the varnish was evenly cast on a soft glass plate. Within
an oven through which a nitrogen gas stream was flowing, the film was heated from
50°C to 200°C at a heating rate of 1°C per minute, and was then cured at 200°C for
2 hours. Further, the film was heated from 200°C to 410°C at a heating rate of 20°C
per minute, and was then annealed at 410°C for 30 minutes. After the resulting film
was quenched, hot water was poured over the film such that the film was peeled off
from the glass plate. Incidentally, the film of Comparative Example 19 was so brittle
that upon quenching, it shattered into small pieces, thereby failing to obtain a film.
From the films of the remaining examples, good films were obtained.
[0276] A tensile test of each film, which had been obtained by the above-described procedures,
was performed at room temperature (23°C). The results, are shown in Table B16.

[0277] From the above results, it is evident that the crosslinkable-group-containing polyimide
according to the present invention, at various molecular weights (or logarithmic viscosity
numbers correlating with the molecular weights), exhibits better physical properties
than the polyimides of the comparative examples.
Examples B38-B42, Comparative Examples B20-B22
[0278] In each of these examples and comparative examples, 500 mL of the corresponding one
of the varnishes - which had been obtained in Examples B33-B37 and Comparative Examples
B17-B19, respectively - were discharged into methanol (10 liters) which was under
vigorous agitation, and a precipitate was collected by filtration. The precipitate
was washed further with methanol (800 mL). After provisional drying under reduced
pressure at 50°C for 24 hours, the precipitate was dehydrated and imidated under reduced
pressure at 250°C for 12 hours under a gentle nitrogen gas stream, whereby polyimide
powder was obtained. The used varnish and the glass transition temperature and 5%
weight loss temperature of the thus-obtained polyimide powder are shown in Table B17.
[0279] Further, the powder was placed on a heat-resistant dish, annealed under nitrogen
gas at 420°C for 1 hour, and then quenched. Thereafter, its glass transition temperature
and 5% weight loss temperature were measured. The results are shown in Table B17.
[0280] In Table B17, "Tg" indicates a glass transition temperature, and "Td5" designates
a 5% weight loss temperature.
Table B17
| Ex./Comp.Ex No. |
Used varnish |
Before annealing |
After annealing |
| |
|
Tg[°C], |
Td5[°C] |
Tg°C], |
Td5[°C] |
| Example B38 |
Example B33 |
248 |
560 |
271 |
550 |
| Example B39 |
Example B34 |
247 |
560 |
269 |
554 |
| Example B40 |
Example B35 |
246 |
561 |
269 |
553 |
| Example B41 |
Example B36 |
242 |
554 |
267 |
552 |
| Example B42 |
Example B37 |
236 |
544 |
268 |
547 |
| Comp.Ex.B20 |
Comp.Ex.B17 |
248 |
559 |
248 |
552 |
| Comp.Ex.B21 |
Comp.Ex.B18 |
245 |
560 |
245 |
550 |
| Comp.Ex.B22 |
Comp.Ex.B19 |
235 |
543 |
235 |
511 |
[0281] From these results, it is appreciated that, when annealed, the crosslinkable-group-containing
polyimide according to the present invention is significantly improved in glass transition
temperature but the polyimides of the comparative examples are not improved.
Examples B43-B45, Comparative Example B23
[0282] In each of these examples and comparative example, 3,4'-diaminodiphenyl ether (200.24
g, 1.000 mol) and 3,3',4,4'-biphenyltetracarboxylic acid dianhydride (276.57 g, 0.940
mol) were charged as monomers together with m-cresol (1,707 g) as a solvent into a
vessel equipped with a stirrer, a reflux condenser, a water trap and a nitrogen gas
inlet tube. The contents were heated with stirring to 200°C over 2 hours and 30 minutes
under a nitrogen atmosphere, and a reaction was conducted under 200°C reflux conditions
for 2 hours, whereby a solution of an end-unblocked polymer was obtained. During the
reaction, the corresponding end blocking agent(s) described in Table B18 and m-cresol
(200.0 mL) were charged into another vessel and were then heated beforehand at 100°C
for 1 hour under a nitrogen atmosphere to provide a solution. The solution of the
end blocking agent(s) was charged in its entirety into the solution of the end-unblocked
polymer, and reaction(s) was(were) then conducted under 200°C reflux conditions for
2 hours. In Table B18; "PA" stands for phthalic anhydride, and "PCE" stands for 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene
anhydride.
Table B18
| Ex./Comp.Ex. No. |
Charged amount of PA |
Charged amount of PCE |
pA/pCE molar ratio |
| |
[g] |
[mmol] |
[g] |
[mmol] |
|
| Example B43 |
33.77 |
228.0 |
2.979 |
12.0 |
95/5 |
| Example B44 |
31.99 |
216.0 |
5.958 |
24.0 |
90/10 |
| Example B45 |
28.44 |
192.0 |
11.92 |
48.0 |
80/20 |
| Comp.Ex. B23 |
17.77 |
120.0 |
0 |
0 |
100/0 |
[0283] The reaction mixture was thereafter cooled to 100°C. While maintaining the resultant
viscous polymer solution at 100°C, toluene (4 liters) was charged dropwise into the
polymer solution over 4 hours. After toluene (3 liters) which had been heated at 80°C
was additionally charged, the resulting mixture was allowed to cool down to room temperature.
Toluene (3 liters) was added further, followed by stirring for 1 hour. A precipitate
was then collected by filtration. The precipitate was again suspended and allowed
to reprecipitate in toluene (4 liters). After the reprecipitate was collected by filtration
and then provisionally dried at 50°C for 24 hours, the reprecipitate was dried at
200°C under reduced pressure for 12 hours under a gentle nitrogen gas stream. The
logarithmic viscosity number, glass transition temperature, crystal melting temperature,
5% weight loss temperature and melt viscosity (420°C/5 min.) of the thus-obtained
polyimide powder are shown in Table B19.

[0284] Using the polyimide powder so obtained, pelletization was conducted at 420°C by extrusion.
Injection molding was then conducted at a resin temperature of from 315 to 425°C,
an injection pressure of from 1,400 to 1,600 kg/cm
2 and a mold temperature of 220, whereby a specimen of the shape specified in ASTM-D-638
was obtained.
[0285] To the thus-obtained specimen, annealing treatment was applied further under a nitrogen
gas stream, whereby the specimen was crystallized and, where the specimen was that
of one of the examples, the specimen was subjected to crosslinking. The annealing
treatment consisted of the following seven steps: ① heating from room temperature
to 240°C at a heating rate of 5°C/min., ② annealing at 240°C for 5 hours, ③ heating
from 240°C to 300°C at a heating rate of 5°C/min., ④ annealing at 300°C for 5 hours,
⑤ heating from 300°C to 380°C at a heating rate of 5°C/min., ⑥ annealing at 380°C
for 5 hours, and ⑦ cooling to room temperature at a cooling rate of 5°C/min.
[0286] Using the specimen, a tensile test was performed. The results are shown in Table
B20.

[0287] From the above results, it is evident that the crosslinkable-group-containing polyimide
according to the present invention, even when crystallized, has good mechanical properties.
Examples B46-B49, Comparative Examples B24-B27
[0288] In each of these examples and comparative examples, the following two reactions (A),
(B) were conducted.
(A) 3,4'-diaminodiphenyl ether (200.24 g, 1.000 mol), 3,3',4,4'-biphenyltetracarboxylic
acid anhydride (136.81 g, 0.465 mol) and bis(3,4-dicarboxyphenyl) ether dianhydride
(144.25 g, 0.465 mol) were charged as monomers together with m-cresol (1,925 g) as
a solvent into a vessel equipped with a stirrer, a reflux condenser, a water trap
and a nitrogen gas inlet tube. The contents were heated with stirring to 200°C over
3 hours under a nitrogen atmosphere, and a reaction was conducted under 200°C reflux
conditions for 2 hours, whereby a solution of an end-unblocked polymer was obtained.
During the reaction, phthalic anhydride (20.74 g, 140.0 mmol) and 1-phenyl-2- (3,
4-dicarboxyphenyl) acetylene anhydride (34.75 g, 140.0 mmol) were charged as end blocking
agents together with m-cresol (200.0 mL) into another vessel, and were then heated
beforehand at 100°C for 1 hour under a nitrogen atmosphere to provide a solution.
The solution of the end blocking agents was charged in its entirety into the solution
of the end-unblocked polymer, and reactions were then conducted under 200°C reflux
conditions for 2 hours. The reaction mixture was thereafter cooled to 60°C, the resulting
viscous polymer solution was discharged into methanol (10 liters) which was under
vigorous agitation, and a precipitate was then collected by filtration. The precipitate
was again suspended and allowed to reprecipitate in methanol (4 liters). After the
reprecipitate was collected by filtration and then provisionally dried at 50°C for
24 hours, the reprecipitate was. dried at 220°C for 12 hours under a nitrogen gas
stream, whereby polyimide powder was obtained.
(B) In each of these examples and comparative examples, polyimide powder was obtained
in exactly the same manner as in the reaction (A) except that the amounts of the end
blocking agents of the kinds were changed to only phthalic anhydride (41.47 g, 280.00
mmol).
[0289] The logarithmic viscosity numbers, glass transition temperatures, 5% weight loss
temperatures and melt viscosities (360°C/5 min.) of the powders obtained in the two
reactions (A), (B) are shown in Table B21.
[0290] Further, each powder was extruded into pellets at 355°C by a 25-mm single-screw extruder.
After the pellets were filled in a compression mold of the shape specified in ASTM-D-638,
compression molding was conducted under the conditions described in Table B22. Using
the thus-obtained specimen, a chemical resistance test was performed. Described specifically,
the specimen was fixed on a jig in a state stretched by 0.5%, and was then immersed
in toluene or methyl ethyl ketone at room temperature (23°C) for 24 hours. Using the
immersed specimen, a tensile test was performed at room temperature (23°C). The results
of the tensile test were compared with those of a tensile test of a corresponding
non-immersed specimen, and a break strength retention (%) was calculated. Incidentally,
the term "break strength retention (%)" as used herein means a value expressed in
terms of percentage by comparing the break strength of an immersed specimen with the
break strength of a corresponding non-immersed specimen.
[0291] The results are shown in Table B22. In Table B22, "MEK" stands for methyl ethyl ketone.
Table B22
| Ex./Comp.Ex. No. |
Used powder |
Compression molding conditions |
Retention of break strength [%] |
| |
|
|
Toluene |
MEK |
| Example B46 |
(A) |
390°C, 6 hr. |
90.6 |
77.4 |
| Example B47 |
(A) |
370°C, 6 hr. |
90.2 |
81.0 |
| Example B48 |
(A) |
350°C, 6 hr. |
87.6 |
75.1 |
| Example B49 |
(A) |
330°C, 6 hr. |
84.1 |
66.5 |
| Comp.Ex. B24 |
(B) |
390°C, 6 hr. |
80.8 |
37.1 |
| Comp.Ex. B25 |
(B) |
370°C, 6 hr. |
83.2 |
41.2 |
| Comp.Ex. B26 |
(B) |
350°C, 6 hr. |
82.6 |
42.4 |
| Comp.Ex. B27 |
(B) |
330°C, 6 hr. |
83.0 |
40.7 |
[0292] From the above results, it is evident that the crosslinkable-group-containing polyimide
according to the present invention is significantly improved in chemical resistance
by annealing under various conditions irrespective of the annealing temperature. It
is appreciated that this effect cannot be expected from the conventional polyimides
of the comparative examples.
Examples B50-B54, Comparative Examples B28-B32
[0293] In each of these examples and comparative examples, polyimide powder was synthesized
in exactly the same manner as in Examples B13-B17 except that the corresponding one
of various diamines and bis(3,4-dicarboxyphenyl) ether dianhydride (288.50 g, 0.930
mol) were used as monomers and that phthalic anhydride (20.74 g, 140.0 mmol) and 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene
anhydride (34.75 g, 140.0 mmol) were used as end blocking agents in each of the examples
but only phthalic anhydride (41.47 g, 280.00 mmol) was used as an end blocking agent
in each of the comparative examples.
[0294] Further, the thus-obtained polyimide powder was extruded into pellets at 325°C to
365°C by a single-screw extruder of 25 mm in barrel diameter. After the pellets were
filled in a compression mold of the shape specified in ASTM-D-648, compression molding
was conducted under the conditions of 360°C and 6 hours.
[0295] Using the specimen so obtained, its heat distortion temperature was measured.
[0296] The kinds and amounts of the diamines, which were used in the respective examples
and comparative examples, and the heat distortion temperatures are shown in Table
B23. In Table B23, the diamines are represented by the following signs:
a) 3,3'-diaminodiphenyl ether,
b) 3,4'-diaminodiphenyl ether,
c) 4,4'-diaminodiphenyl ether,
e) 3,3'-diaminodiphenyl sulfone, and
h) 4,4'-diaminodiphenylmethane.

Examples B55-B59, Comparative Examples B33-B37
[0297] In each of these examples and comparative examples, polyimide powder was synthesized
in exactly the same manner as in Examples 23-32 except that the corresponding one
of various diamines, 4,4'-diaminodiphenyl ether (180.22 g, 0.900 mol) and 1,4-bis(3,4-dicarboxyphenoxy)benzene
dianhydride (374.16 g, 0.930 mol) were used as monomers and that phthalic anhydride
(20.74 g, 140.0 mmol) and 1-phenyl-2-(3,4-dicarboxyphenyl)-acetylene anhydride (34.75
g, 140.0 mmol) were used as end blocking agents in each of the examples but only phthalic
anhydride (41.47 g, 280.00 mmol) was used as an end blocking agent in each of the
comparative examples.
[0298] In a similar manner as in Examples B50-B54, specimens were then obtained from the
respective polyimide powders, and their heat distortion temperatures were measured.
The kinds and amounts of the diamines, which were used in the respective examples,
and the heat distortion temperatures are shown in Table B24. In Table B24, the diamines
are indicated by the following signs:
a) 3,3'-diaminophenyl ether,
b) 4,4'-diaminodiphenyl ether,
c) 3,3'-diaminodiphenyl sulfide,
d) 3,3'-diaminobenzophenone,
e) 3,3'-diaminodiphenylmethane, and
f) 2,2-di(4-aminophenyl)propane.

[0299] From the above tests, it is evident that crosslinkable-group-containing polyimides
according to the present invention, which have various structures, are considerably
superior in heat resistance to similar polymers having no crosslinkable groups.
Examples B60-B61, Comparative Example B38
[0300] Using the polyimide powders employed above in Examples B30 and B32 and Comparative
Example B16, their melt viscosities were measured in a similar manner as in Examples
A80-A82.
[0301] Further, with respect to those powders, their gel times at various temperatures were
measured in a similar manner as in Examples A83-A87.
[0302] The results are shown in Table B25. Incidentally, ">120" which appears in Table B25
indicates that no gel point was reached within the measuring time.

[0303] From the results, it is evident that over a wide temperature range, the crosslinkable-group-containing
polyimide according to the present invention has high stability in melt viscosity
and is resistant to gelation and hence, is excellent in moldability or formability.
Experiment C Series
[0304] In Example C1 to Example C39, a description will be made about certain examples out
of the present invention, in each of which 50 to 100 mole % of recurring structural
units in a backbone structure are of a recurring unit structure represented by:

wherein X represents a divalent linking group selected from the group consisting
of a direct bond; a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group and a hexafluoroisopropylidene group; and
R represents a tetravalent aromatic group selected from the group consisting of:

wherein G represents a divalent aromatic group selected from the group/consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group, a hexafluoroisopropylidene group, and at least one divalent
linking group selected from the group of substituent groups represented by the following
formulas:

Examples C1-C7, Comparative Examples C1-C3
[0305] In each of these examples and comparative examples, 1,3-bis(4-aminophenoxy)benzene
(292.34 g, 1.000 mol), 3,3',4,4'-biphenyltetracarboxylic acid dianhydride (138.28
g, 0.470 mol) and bis(3,4-dicarboxyphenyl) ether dianhydride (145.80 g, 0.470 mol)
were charged as monomers together with the corresponding end blocking agent(s), the
kind(s) and amount(s) of which are shown in Table C1, and m-cresol (3,266 g) as a
solvent into a vessel equipped with a stirrer, a reflux condenser, a water trap and
a nitrogen gas inlet tube. The contents were heated with stirring to 200°C over 2
hours and 30 minutes under a nitrogen atmosphere, and reactions were conducted under
200°C reflux conditions for 4 hours. In Table C1, "PA" stands for phthalic anhydride,
and "PCE" stands for 1-phenyl-2-(3,4-dicarboxyphenyl)-acetylene anhydride.
Table C1
| Ex./Comp.Ex. No. |
Charged amount of PA |
Charged of amount PCE |
PA/PCE molar ratio |
| |
[g] |
[mmol] |
[g] |
[mmol] |
|
| Example C1 |
17.60 |
118.8 |
0.2979 |
1.200 |
99/1 |
| Example C2 |
16.89 |
114.0 |
1.489 |
6.000 |
95/5 |
| Example C3 |
16.00 |
108.0 |
2.979 |
12.00 |
90/10 |
| Example C4 |
14.22 |
96.00 |
5.958 |
24.00 |
80/20 |
| Example C5 |
10.66 |
72.00 |
11.92 |
48.00 |
60/40 |
| Example C6 |
7.110 |
48.00 |
17.87 |
72.00 |
40/60 |
| Example C7 |
3.555 |
24.00 |
23.83 |
96.00 |
20/80 |
| Comp:Ex. C1 |
2.666 |
18.00 |
25.32 |
102.0 |
15/85 |
| Comp.Ex. C2 |
0.0 |
|
29.79 |
120.0 |
0/100 |
| Comp.Ex. C3 |
17.77 |
120.0 |
0.0 |
|
100/0 |
[0306] The temperature was then lowered to 190°C, at which the corresponding end blocking
agent(s), the kind(s) and amount(s) of which are shown in Table C1, was(were) charged
again. The resulting contents were heated again, and the reactions were then conducted
under 200°C reflux conditions for further 4 hours. The reaction mixture was thereafter
cooled to 100°C, the resulting viscous polymer solution was discharged into toluene
(20 liters) which was under vigorous agitation, and a precipitate was then collected
by filtration. The precipitate was again suspended and allowed to reprecipitate in
toluene (4 liters). After the reprecipitate was collected by filtration and then provisionally
dried at 50°C for 24 hours, the reprecipitate was dried at 210°C for 12 hours under
a nitrogen gas stream. The yield of the thus-obtained powder and the logarithmic viscosity
number, glass transition temperature, 5% weight loss temperature and melt viscosity
(360°C/5 min.) are shown in Table C2.

[0307] The present invention is characterized in that concerning the molecule ends, the
molar ratio of the chemical formula (2a) to the chemical formula (2b) ranges from
1/99 to 80/20 as recited in certain claims. From the above-described results, it is
also evident that those having molar ratios of the chemical formula (2a) to the chemical
formula (2b) greater than 80/20 are considerably inferior in moldability or formability
to those having molar ratios of the chemical formula (2a) to the chemical formula
(2b) equal to or smaller than 80/20. Examples C8-C12, Comparative Examples C4,C5.
[0308] Using the powders obtained in Examples C2-C6 and Comparative Example C3, compression
molding was conducted. The powders used in the respective examples and comparative
examples are shown next in Table C3.
Table C3
| Ex./Comp.Ex. No. |
Ex./Comp.Ex. No. of used powder |
| Example C8 |
Example C2 |
| Example C9 |
Example C3 |
| Example C10 |
Example C4 |
| Example C11 |
Example C5 |
| Example C12 |
Example C6 |
| Comp.Ex. C4,C5 |
Comp.Ex. C3 |
[0309] Described specifically, in each of these examples and comparative examples, the powder
was extruded into pellets at 355°C by a single-screw extruder of 25 mm in barrel diameter.
After the pellets were filled in a compression mold of configurations specified in
ASTM-D-638, compression molding was conducted at 360°C for 12 hours (Examples C8-C12,
Comparative Example C4) or under conditions of 360°C and 5 minutes (Comparative Example
C5). In all the examples and comparative examples, good molded products were obtained.
Using those molded products, a tensile test was performed at room temperature (23°C).
The results are shown in Table C4. In Table C4, "PA/PCE molar ratio" means the molar
ratio of phthalic anhydride to 1-phenyl-2-(3,4-dicarboxyphenyl)-acetylene anhydride.

[0310] The present invention is characterized in that concerning the molecule ends, the
molar ratio of the chemical formula (2a) to the chemical formula (2b) ranges from
1/99 to 80/2 as recited in certain claims. From the above-described results, it is
also evident that those having molar ratios of the chemical formula (2a) to the chemical
formula (2b) not reaching 1/99 are inferior in mechanical properties to those having
molar ratios of the chemical formula (2a) to the chemical formula (2b) equal to or
greater than 1/99.
Examples C13-C17, Comparative Examples C6-C8
[0311] In each of these examples and comparative examples, 1,4-bis(4-aminophenoxy)benzene
(292.34 g, 1.000 mol), 3,3',4,4'-biphenyltetracarboxylic acid dianhydride (138.28
g, 0.470 mol) and bis(3,4-dicarboxyphenyl) ether dianhydride (145.80 g, 0.470 mol)
were charged as monomers together with m-cresol (2,105 g) as a solvent into a vessel
equipped with a stirrer, a reflux condenser, a water trap and a nitrogen gas inlet
tube. The contents were heated with stirring to 200°C over 2 hours and 30 minutes
under a nitrogen atmosphere, and a reaction was conducted under 200°C reflux conditions
for 2 hours, whereby a solution of an end-unblocked polymer was obtained. During the
reaction, the corresponding end blocking agent(s) described in Table C5 and m-cresol
(200.0 mL) were charged into another vessel and were then heated beforehand at 100°C
for 1 hour under a nitrogen atmosphere to provide a solution. The solution of the
end blocking agent(s) was charged in its entirety into the solution of the end-unblocked
polymer, and reaction (s) was (were) then conducted under 200°C reflux conditions
for 2 hours. In Table C5, "PA" stands for phthalic anhydride, and "PCE" stands for
1-phenyl-2-(3,4-dicarboxyphenyl)acetylene anhydride.k
Table C5
| Ex./Comp.Ex. No. |
Charged amount of PA |
Charged amount of PCE |
PA/PCE molar ratio |
| |
[g] |
[mmol] |
[g] |
[mmol] |
|
| Example C13 |
33.77 |
228.0 |
2.979 |
12.0 |
95/5 |
| Example C14 |
31.99 |
216.0 |
5.958 |
24.0 |
90/10 |
| Example C15 |
28.44 |
192.0 |
11.96 |
48.0 |
80/20 |
| Example C16 |
21.33 |
144.0 |
23.83 |
96.00 |
60/40 |
| Example C17 |
14.21 |
96.00 |
35.75 |
144.0 |
40/60 |
| Comp.Ex. C6 |
5.332 |
36.00 |
50.64 |
204.0 |
15/85 |
| Comp.Ex. C7 |
0 |
0 |
59.58 |
240.0 |
0/100 |
| Comp.Ex. C8 |
35.55 |
240.0 |
0 |
0 |
100/0 |
[0312] The reaction mixture was thereafter cooled to 100°C. While maintaining the resultant
viscous polymer solution at 100°C, toluene (2 liters) which had been heated at 100°C
was charged into the polymer solution and further, toluene (6 liters) was charged
dropwise over 4 hours. After toluene (4 liters) was charged, the resulting mixture
was allowed to cool down to room temperature. A precipitate was then collected by
filtration. The precipitate was again suspended and allowed to reprecipitate in toluene
(4 liters). After the reprecipitate was collected by filtration and then provisionally
dried at 50°C for 24 hours, the reprecipitate was dried at 200°C under reduced pressure
for 12 hours under a gentle nitrogen gas stream. The yield of the thus-obtained powder
and the logarithmic viscosity number, glass transition temperature, 5% weight loss
temperature and melt viscosity (360°C/5 min.) are shown in Table C6.

[0313] The present invention is characterized in that concerning the molecule ends, the
molar ratio of the chemical formula (2a) to the chemical formula (2b) ranges from
1/99 to 80/20 as recited in certain claims. From the above-described results, it is
also evident that those having molar ratios of the chemical formula (2a) to the chemical
formula (2b) greater than 80/20 are considerably inferior in moldability or formability
to those having molar ratios of the chemical formula (2a) to the chemical formula
(2b) equal to or smaller than 80/20. Examples C18-C22, Comparative Examples C9, C10.
[0314] Using the powders obtained in Examples C13-C17 and Comparative Example C8, compression
molding was conducted. The powders used in the respective examples and comparative
examples are shown next in Table C7.
Table C7
| Ex./Comp.Ex. No. |
Ex./Comp.Ex. No. of used powder |
| Example C18 |
Example C13 |
| Example C19 |
Example C14 |
| Example C20 |
Example C15 |
| Example C21 |
Example C16 |
| Example C22 |
Example C17 |
| Comp.Ex. C9,C10 |
Comp.Ex. C8 |
[0315] Described specifically, in each of these examples and comparative examples, the powder
was extruded into pellets at 355°C by a single-screw extruder of 25 mm in barrel diameter.
After the pellets were filled in a compression mold having a size of 10.0 mm in width
and 80.0 mm in length, compression molding was conducted at 360°C for 12 hours (Examples
18-22, Comparative Example 9) or under conditions of 360°C and 5 minutes (Comparative
Example 10). In all the examples and comparative examples, good molded products were
obtained. Those specimens were all of 10,0 mm ± 0.010 mm in width, 80.0 mm ± 0.010
mm in length and 1.500 mm ± 0.010 mm in thickness. Using those molded products, a
chemical resistance test was performed. Described specifically, each specimen was
held in place at portions 5.00 mm apart from opposite ends thereof, and was then adjusted
and fixed such that a displacement of 3.50 mm in the direction of the thickness would
be given when the specimen was bent by a jig maintained in contact with the specimen
at a center thereof (a portion 40.0 mm apart from the respective ends). Under those
conditions, the specimen was immersed in toluene or methyl ethyl ketone. One hour,
24 hours and 168 hours later, the specimen was taken out of the solvent and visually
observed for cracks.
[0316] The results of the chemical resistance test are shown in Table C8. In Table C8, "A",
"B" and "C" indicate "completely free of cracks", "cracks observed in a very small
number" and "cracks observed in a large number", respectively, in this order. Further,
"PA/PCE molar ratio" means the molar ratio of phthalic anhydride to 1-phenyl-2-(3,4-dicarboxy-phenyl)acetylene
anhydride, and "MEK" stands for methyl ethyl ketone.
Table C8
| Ex./Comp.Ex. No. |
Toluene immersion time |
MEK immersion time |
PA/PCE molar ratio |
| |
1hr. |
24hr. |
168hr. |
1hr. |
24hr. |
168hr. |
|
| Example C18 |
A |
A |
A |
B |
B |
B |
95/5 |
| Example C19 |
A |
A |
A |
A |
A |
B |
90/10 |
| Example C20 |
A |
A |
A |
A |
A |
B |
80/20 |
| Example C21 |
A |
A |
A |
A |
A |
A |
60/40 |
| Example C22 |
A |
A |
A |
A |
A |
A |
40/60 |
| Comp.Ex. C9 |
A |
B |
B |
B |
C |
C |
0/100 |
| Comp.Ex. C10 |
A |
B |
B |
B |
C |
C |
0/100 |
[0317] The present invention is characterized in that concerning the molecule ends, the
molar ratio of the chemical formula (2a) to the chemical formula (2b) ranges from
1/99 to 80/20 as recited in certain claims. From the above-described results, it is
evident that those having molar ratios of the chemical formula (2a) to the chemical
formula (2b) not reaching 1/99 are inferior in chemical resistance to those having
molar ratios of the chemical formula (2a) to the chemical formula (2b) equal to or
greater than 1/99.
Examples C23-C27, Comparative Examples C11-C13
[0318] In each of these examples and comparative examples, the following two reactions (A),
(B) were conducted.
(A) 1,3-Bis(3-aminophenoxy)benzene (292.34 g, 1.000 mol), pyromellitic dianhydride
(102.52 g, 0.470 mol), and 3,3',4,4'-benzophenonetetracarboxylic acid dianhydride
(151.45 g, 0.470 mol) were charged as monomers together with phthalic anhydride (10.66
g, 72.00 mmol) and 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene anhydride (11.92 g, 48.00
mmol) as end blocking agents, m-cresol (2,185g) as a solvent, and γ-picoline (13.970
g, 0.1500 mol) as a catalyst into a vessel equipped with a stirrer, a reflux condenser,
a water trap and a nitrogen gas inlet tube. The contents were heated with stirring
to 150°C, over 2 hours under a nitrogen atmosphere, and reactions were conducted at
150°C for 2 hours.
As end blocking agents, phthalic anhydride (5.33 g, 36.00 mmol) and 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene
anhydride (5.96 g, 24.00 mmol) were then charged, followed by the reactions at 150°C
for further 8 hours.
The reaction mixture was thereafter cooled to 60°C, the resulting viscous polymer
solution was discharged into methyl ethyl ketone (10 liters) which was under vigorous
agitation, and a precipitate was then collected by filtration. The precipitate was
again suspended and allowed to reprecipitate in methyl ethyl ketone (4 liters). After
the reprecipitate was collected by filtration and then provisionally dried at 50°C
for 24 hours, the reprecipitate was dried at 220°C for 12 hours under a nitrogen gas
stream, whereby polyimide powder was obtained.
(B) In each of these examples and comparative examples, polyimide powder was obtained
in exactly the same manner as in the reaction (A) except that upon preparation of
the make-up, the amount(s) of the end blocking agent(s) of the kind(s) was(were) changed
to only phthalic anhydride (17.77 g, 120.00 mmol) and that during the reactions, the
amount(s) of the end blocking agent (s) of the kind(s) was (were) changed to only
phthalic anhydride (8.89 g, 60.00 mmol)
[0319] The yields of the powders obtained in the two reactions (A), (B) and their logarithmic
viscosity numbers, glass transition temperatures, 5% weight loss temperatures and
melt viscosities (360°C/5 min.) are shown in Table C9.
[0320] Further, each powder was extruded into pellets at 355°C by a single-screw extruder
of 25 mm in barrel diameter. After the pellets were filled in a compression mold of
the shape specified in ASTM-D-638, compression molding was conducted under the conditions
described in Table C10.
Table C10
| Ex./Comp.Ex. No. |
Used powder |
Compression molding conditions |
| Examples C23 |
(A) |
345°C, 2 hr. |
| Examples C24 |
(A) |
345°C, 6 hr. |
| Examples C25 |
(A) |
345°C, 12 hr. |
| Examples C26 |
(A) |
345°C, 24 hr. |
| Examples C27 |
(A) |
345°C, 72 hr. |
| Comp.Ex. C11 |
(B) |
345°C, 2 hr. |
| Comp.Ex. C12 |
(B) |
345°C, 12 hr. |
| Comp.Ex. C13 |
(B) |
345°C, 72 hr. |
[0321] Using the specimens so obtained, a high-temperature, tensile test at room temperature
(23°C) was performed. The results are shown in Table C11.

[0322] From the foregoing, it is evident that the crosslinkable-group-containing polyimide
according to the present invention can be significantly improved in mechanical properties
by annealing, and it is also appreciated that this effect cannot be expected from
the conventional polyimides of the comparative examples.
Examples C28-C32, Comparative Examples C14-C16
[0323] In each of these examples and comparative examples, bis (3,4-dicarboxyphenyl) ether
dianhydride and 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride were charged in their
corresponding amounts shown in Table C12 together with 1,3-bis(4-aminophenoxy)benzene
(292.34 g, 1.000 mol), all as monomers, into a vessel equipped with a stirrer, a reflux
condenser, a water trap and a nitrogen gas inlet tube. As a solvent, m-cresol was
also charged in its corresponding amount shown in Table C12. The contents were heated
with stirring to 200°C over 2 hours and 30 minutes under a nitrogen atmosphere, and
a reaction was conducted under 200°C reflux conditions for 2 hours, whereby a solution
of an end-unblocked polymer was obtained. In Table C12, "ODPA" stands for bis(3,4-dicarboxyphenyl)
ether dianhydride, and "HQDA" stands for 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride.
Table C12
| Ex./Comp.Ex. No. |
Charged amount of ODPA |
Charged amount of HQDA |
Charged amount of m-cresol [g] |
| |
[g] |
[mol] |
[g] |
[mol] |
|
| Example C28 |
208.47 |
0.6720 |
115.87 |
0.2880 |
2267 |
| Examples C29,31 |
201.95 |
0.6510 |
112.25 |
0.2790 |
2226 |
| Examples C30,32 |
195.44 |
0.6300 |
108.63 |
0.2700 |
2186 |
| Comp.Ex.C14 |
208.47 |
0.6720 |
115.87 |
0.2880 |
2267 |
| Comp.Ex.C15 |
201.95 |
0.6510 |
112.25 |
0.2790 |
2226 |
| Comp.Ex.C16 |
195.44 |
0.6300 |
108.63 |
0.2700 |
2186 |
[0324] During the reaction, the corresponding end blocking agents described in Table C13
and m-cresol (200.0 mL) were charged into another vessel and were then heated beforehand
at 100°C for 1 hour under a nitrogen atmosphere to provide a solution. The solution
of the end blocking agents was charged in its entirety into the solution of the end-unblocked
polymer, and reactions were then conducted under 200°C reflux conditions for 2 hours.
In Table C13, "PA" stands for phthalic anhydride, and "PCE" stands for 1-phenyl-2-(3,4-dicarboxyphenyl)-acetylene
anhydride.
Table C13
| Ex./Comp.Ex. No. |
Charged amount of PA |
Charged amount of PCE |
PA/PCE molar ratio |
| |
[g] |
[mmol] |
[g] |
[mmol] |
|
| Example C28 |
16.59 |
112.0 |
11.92 |
48.00 |
70/30 |
| Example C29 |
29.03 |
196.0. |
20.85 |
84.00 |
70/30 |
| Example C30 |
41.47 |
280.0 |
29.79 |
120.0 |
70/30 |
| Example C31 |
20.74 |
140.0 |
34.75 |
140.0 |
50/50 |
| Example C32 |
29.62 |
200.0 |
49.45 |
200.0 |
50/50 |
| Comp.Ex. C14 |
3.555 |
24.00 |
33.76 |
136.0 |
15/85 |
| Comp.Ex. C15 |
6.221 |
42.00 |
59.08 |
238.0 |
15/85 |
| Comp.Ex. C16 |
8.887 |
60.00 |
84.40 |
340.0 |
15/85 |
[0325] The reaction mixture was thereafter cooled to 60°C, the resulting viscous polymer
solution was discharged into methyl ethyl ketone (10 liters) which was under vigorous
agitation, and a precipitate was then collected by filtration. The precipitate was
again suspended and allowed to reprecipitate in methyl ethyl ketone (4 liters). After
the reprecipitate was collected by filtration and then provisionally dried at 50°C
for 24 hours, the reprecipitate was dried at 220°C for 12 hours under a nitrogen gas
stream, whereby polyimide powder was obtained.
[0326] The logarithmic viscosity number, glass transition temperature and melt viscosity
(360°C/5 min., 15 min., 30 min.) of the thus-obtained polyimide powder are shown in
Table C14.

[0327] It is appreciated from the results that the crosslinkable-group-containing polyimide
according to the present invention, even at various molecular weights (or logarithmic
viscosity numbers correlating with the molecular weights), has good melt fluidity
and is better in moldability or formability than the polyimides of the comparative
examples.
Examples C33-C37, Comparative Examples C17-C19
[0328] The powders which were obtained in Examples C28-C32 and Comparative Examples C14-C16
were separately placed on heat-resistant dishes, annealed under nitrogen gas at 420°C
for 1 hour, and then quenched. Thereafter, their glass transition temperatures and
5% weight loss temperatures were measured. The results are shown in Table C15.
[0329] In Table C15, "Tg" indicates a glass transition temperature, and "Td5" designates
a 5% weight loss temperature.

[0330] From these results, it is appreciated that, when annealed, the crosslinkable-group-containing
polyimide according to the present invention is significantly improved in glass transition
temperature but the polyimides of the comparative examples are not improved.
Examples C38-C39, Comparative Example C20
[0331] Using the polyimide powders employed above in Examples C29,C31 and Comparative Example
C15, their melt viscosities were measured in a similar manner as in Examples A80-A82.
[0332] Further, with respect to those powders, their gel times at various temperatures were
measured in a similar manner as in Examples A83-A87.
[0333] The results are shown in Table C16. Incidentally, ">120" which appears in Table C16
indicates that no gel point was reached within the measuring time.

[0334] From the results, it is evident that over a wide temperature range, the crosslinkable-group-containing
polyimide according to the present invention has high stability in melt viscosity
and is resistant to gelation and hence, is excellent in moldability or formability.
Experiment D Series
[0335] In Example D1 to Example D25, a description will be made about certain examples out
of the present invention, in each of which 50 to 100 mole % of recurring structural
units in a backbone structure are of a recurring unit structure represented by:

wherein G represents a divalent aromatic group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group, a hexafluoroisopropylidene group, a 3-oxyphenoxy group, a
4-oxyphenoxy group, a 4'-oxy-4-biphenoxy group and a 4-[1-(4-oxyphenyl)-1-methylethyl]phenoxy
group.
Examples D1-D7, Comparative Examples D1-D3
[0336] In each of these examples and comparative examples, m-phenylenediamine (108.14 g,
1.000 mol) and 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride (378.18 g, 0.940 mol).
were charged as monomers together with the corresponding end blocking agent(s), the
kind(s) and amount(s) of which are shown in Table D1, and m-cresol (1,750 g) and N,N-dimethylacetamide
(195 g) as solvents into a vessel equipped with a stirrer, a reflux condenser, a water
trap and a nitrogen gas inlet tube. The contents were heated with stirring to 200°C
over 2 hours and 30 minutes under a nitrogen atmosphere, and reactions were conducted
under 200°C reflux conditions for 4 hours. In Table D1, "PA" stands for phthalic anhydride,
and "PCE" stands for 1-phenyl-2-(3,4-dicarboxyphenyl)-acetylene anhydride.
Table D1
| Ex./Comp.Ex. No. |
Charged amount of PA |
Charged amount of PCE |
PA/PCE molar ratio |
| |
[g] |
[mmol] |
[g] |
[mmol] |
|
| Example D1 |
17.60 |
118.8 |
0.2979 |
1.200 |
99/1 |
| Example D2 |
16.89 |
114.0 |
1.489 |
6.000 |
95/5 |
| Example D3 |
16.00 |
108.8 |
2.979 |
12.00 |
90/10 |
| Example D4 |
14.22 |
96.00 |
5.958 |
24.00 |
80/20 |
| Example D5 |
10.66 |
72.00 |
11.92 |
48.00 |
60/40 |
| Example D6 |
7.110 |
48.00 |
17.87 |
72.00 |
40/60 |
| Example D7 |
3.555 |
24.00 |
23.83 |
96.00 |
20/80 |
| Comp.Ex. D1 |
2.666 |
18.00 |
25.32 |
102.0 |
15/85 |
| Comp.Ex. D2 |
0 |
0 |
29.79 |
120.0 |
0/100 |
| Comp.Ex. D3 |
17.77 |
120.0 |
0 |
0 |
100/0 |
[0337] The temperature was then lowered to 190°C, at which the corresponding end blocking
agent (s), the kind(s) and amount(s) of which are shown in Table D1, was(were) charged
again. The resulting contents were heated again, and the reactions were then conducted
under 200°C reflux conditions for further 4 hours.
[0338] Thereafter, the reaction mixture was cooled to 100°C and then discharged into toluene
(10 liters) which was under vigorous agitation, and a precipitate was then collected
by filtration. The precipitate was again suspended and allowed to reprecipitate in
toluene (4 liters). After the reprecipitate was collected by filtration and then provisionally
dried at 50°C for 24 hours, the reprecipitate was dried at 220°C for 12 hours under
a nitrogen gas stream. The logarithmic viscosity number, glass transition temperature,
5% weight loss temperature and melt viscosity (360°C/5 min.) of the thus-obtained
powder are shown in Table D2.

[0339] The present invention is characterized in that concerning the molecule ends, the
molar ratio of the chemical formula (2a) to the chemical formula (2b) ranges from
1/99 to 80/20 as recited in certain claims. From the above-described results, it is
also evident that those having molar ratios of the chemical formula (2a) to the chemical
formula (2b) greater than 80/20 are considerably inferior in moldability or formability
to those having molar ratios of the chemical formula (2a) to the chemical formula
(2b) equal to or smaller than 80/20.
Examples D8-D12, Comparative Examples D4,D5.
[0340] Using the powders obtained in Examples D2-D6 and Comparative Example D3, compression
molding was conducted. The powders used in the respective examples and comparative
examples are shown next in Table D3.
Table D3
| Ex./Comp.Ex. No. Ex./Comp.Ex. No. |
Ex./Comp.Ex.No. of used powder |
| Example D8 |
Example D2 |
| Example D9 |
Example D3 |
| Example D10 |
Example D4 |
| Example D11 |
Example D5 |
| Example D12 |
Example D6 |
| Comp.Ex. D4,D5 |
Comp.Ex. D3 |
[0341] Described specifically, in each of these examples and comparative examples, the powder
was extruded into pellets at 355°C by a 25-mm, single-screw extruder. After the pellets
were filled in a compression mold of configurations specified in ASTM-D-638, compression
molding was conducted at 360°C for 12 hours (Examples D8-D12, Comparative Example
D4) or under conditions of 360°C and 5 minutes (Comparative Example 5). In all the
examples and comparative examples, good molded products were obtained. Using those
molded products, a tensile test was performed at room temperature (23°C). The results
are shown in Table D4. In Table D4, "PA/PCE molar ratio" means the molar ratio of
phthalic anhydride to 1-phenyl-2-(3,4-dicarboxyphenyl)-acetylene anhydride.

[0342] The present invention is characterized in that concerning the molecule ends, the
molar ratio of the chemical formula (2a) to the chemical formula (2b) ranges from
1/99 to 80/20 as recited in certain claims. From the above-described results, it is
also evident that those having molar ratios of the chemical formula (2a) to the chemical
formula (2b) not reaching 1/99 are inferior in mechanical properties to those having
molar ratios of the chemical formula (2a) to the chemical formula (2b) equal to or
greater than 1/99.
Examples D13-D22, Comparative Examples D6-D10
[0343] In each of these examples and comparative examples, the following two reactions (A),
(B) were conducted.
(A) m-Phenylenediamine (108.14 g, 1.000 mol), 3,4'-diaminodiphenyl ether (80.10 g,
0.400 mol) and bis(3,4-dicarboxyphenyl) sulfone dianhydride (336.78 g, 0.940 mol)
were charged as monomers together with phthalic anhydride (10.66 g, 72.00 mmol) and
1-phenyl-2-(3,4-dicarboxyphenyl)acetylene anhydride (11.92 g, 48.00 mmol) as end blocking
agents, m-cresol (2,730 g) as a solvent, and γ-picoline (13.970 g, 0.1500 mol) as
a catalyst into a vessel equipped with a stirrer, a reflux condenser, a water trap
and a nitrogen gas inlet tube. The contents were heated with stirring to 150°C over
2 hours under a nitrogen atmosphere, and reactions were conducted at 150°C for 2 hours.
As end blocking agents, phthalic anhydride (5.33 g, 36.00 mmol) and 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene
anhydride (5.96 g, 24.00 mmol) were then charged, followed by the reactions at 150°C
for further 8 hours. The reaction mixture was thereafter cooled to 60°C and then discharged
into methyl ethyl ketone (10 liters) which was under vigorous agitation, and a precipitate
was then collected by filtration. The precipitate was again suspended and allowed
to reprecipitate in methyl ethyl ketone (4 liters). After the reprecipitate was collected
by filtration and then provisionally dried at 50°C for 24 hours, the reprecipitate
was dried at 220°C for 12 hours under a nitrogen gas stream, whereby polyimide powder
was obtained.
(B) In each of these examples and comparative examples, polyimide powder was obtained
in exactly the same manner as in the reaction (A) except that upon preparation of
the make-up, the amount(s) of the end blocking agent(s) of the kind(s) was(were) changed
to only phthalic anhydride (17.77 g, 120.00 mmol) and that during the reactions, the
amount(s) of the end blocking agent(s) of the kind(s) was(were) changed to only phthalic
anhydride (8.89 g, 60.00 mmol).
[0344] The yields of the powders obtained in the two reactions (A), (B) and the logarithmic
viscosity numbers, glass transition temperatures, 5% weight loss temperatures and
melt viscosities (360°C/5 min.) of the polyimide powders are shown in Table D5.
[0345] Further, each powder was extruded into pellets at 355°C by a 25-mm, single-screw
extruder. After the pellets were filled in a compression mold of the shape specified
in ASTM-D-638, compression molding was conducted under the conditions described in
Table D6.
Table D6
| Ex./Comp.Ex. No. |
Used powder |
Compression molding conditions |
| Examples D13, D18 |
(A) |
360°C, 72 hr. |
| Examples D14, D19 |
(A) |
360°C, 24 hr. |
| Examples D15, D20 |
(A) |
360°C, 12 hr. |
| Examples D16, D21 |
(A) |
360°C, 6 hr. |
| Examples D17, D22 |
(A) |
360°C, 2 hr. |
| Comp.Ex. D6, D9 |
(B) |
360°C, 72 hr. |
| Comp.Ex. D7, D10 |
(B) |
360°C, 12 hr. |
| Comp.Ex. D8, D11 |
(B) |
360°C; 2 hr. |
[0346] Using the specimens so obtained, a tensile test at room temperature (23°C) and a
high-temperature tensile test at 177°C were performed. The results are shown in Table
D7.

[0347] From the above results, it is evident that, when annealed, the crosslinkable-group-containing
polyimide according to the present invention is significantly improved in room-temperature
and high-temperature mechanical properties. It is also appreciated that this effect
cannot be expected from the conventional polyimides of the comparative examples.
Examples D23-25, Comparative Examples D12-13
[0348] Using the polyimide powders employed above in Examples D4-D6 and Comparative Example
D1,D3, their melt viscosities were measured in a similar manner as in Examples A80-A82.
[0349] Further, with respect to those powders, their gel times at various temperatures were
measured in a similar manner as in Examples A83-A87.
[0350] Further, those powders were separately extruded into pellets under conditions of
320°C to 360°C, and compression molding and an MEK resistance test were performed
in a similar manner as in Examples A18-A22.
[0351] The results are shown in Table D8. Incidentally, ">120" which appearsin Table D8
indicates that no gel point was reached within the measuring time.

[0352] From the results, it is evident that over a wide temperature range, the crosslinkable-group-containing
polyimide according to the present invention has is also excellent in chemical resistance
despite their high stability in melt viscosity, good resistance to gelation and excellent
moldability or formability over a wide temperature range.
Experiment E Series
[0353] In Example E1 to Example E22, a description will be made about certain examples out
of the present invention, in each of which 50 to 100 mole % of recurring structural
units in a backbone structure are of a recurring unit structure represented by:

wherein X, Z and R are groups to be indicated next, respectively, that is,
X represents a divalent linking group selected from the group consisting of an
ether group and an isopropylidene group;
Z represents a divalent linking group selected from the group consisting of:

and
R represents a tetravalent aromatic group selected from the group consisting of:

wherein G represents a divalent aromatic group selected from the group consisting
of a direct bond, a carbonyl group, a sulfone group, a sulfide group, an ether group,
an isopropylidene group, a hexafluoroisopropylidene group,.a 3-oxyphenoxy group, a
4-oxyphenoxy group, a 4'-oxy-4-biphenoxy group and a 4-[1-(4-oxyphenyl)-1-methylethyl]phenoxy
group, and a position of each bond, said position being unspecified, is a para-position
or meta-position.
Examples E1-E7, Comparative Examples E1-E3
[0354] In each of these examples and comparative examples, 1,3-bis[4-(4-aminophenoxy)-α,α-dimethylbenzyl]benzene
(528.69 g, 1.000 mol) and 3,3',4,4'-biphenyltetracarboxylic acid dianhydride (276.57
g, 0.940 mol) were charged as monomers together with the corresponding end blocking
agent(s), the kind(s) and amount(s) of which are shown in Table E1, and m-cresol (3,220
g) as a solvent into a vessel equipped with a stirrer, a reflux condenser, a water
trap and a nitrogen gas. inlet tube. The contents were heated with stirring to 200°C
over 2 hours and 30 minutes under a nitrogen atmosphere, and reactions were conducted
under 200°C reflux conditions for 4 hours. In Table E1, "PA" stands for phthalic anhydride,
and "PCE" stands for 1-phenyl-2-(3,4-dicarboxyphenyl)-acetylene anhydride.
Table E1
| Ex./Comp.Ex. No. |
Charged amount of PA |
Charged amount of PCE |
PA/pCE molar ratio |
| |
[g] |
[mmol] |
[g] |
[mmol] |
|
| Example E1 |
17.60 |
118.8 |
0.2979 |
1.200 |
99/1 |
| Example E2 |
16.89 |
114.0 |
1.489 |
6.000 |
95/5 |
| Example E3 |
16.00 |
108.0 |
2.979 |
12.00 |
90/10 |
| Example E4 |
14.22 |
96.00 |
5.958 |
24.00 |
80/20 |
| Example E5 |
10.66 |
72.00 |
11.92 |
48.00 |
60/40 |
| Example E6 |
7.110 |
48.00 |
17.87 |
72.00 |
40/60 |
| Example E7 |
3.555 |
24.00 |
23.83 |
96.00 |
20/80 |
| Comp.Ex. E1 |
2.666 |
18.00 |
25.32 |
102.0 |
15/85 |
| Comp.Ex. E2 |
0 |
0 |
29.79 |
120.0 |
0/100 |
| Comp.Ex. E3 |
17.77 |
120.0 |
0 |
0 |
100/0 |
[0355] The temperature was then lowered to 190°C, at which the corresponding end blocking
agent (s), the kind (s) and amount (s) of which are shown in Table E1, was (were)
charged again. The resulting contents were heated again, and the reactions were then
conducted under 200°C reflux conditions for further 4 hours.
[0356] Thereafter, the reaction mixture was cooled to 100°C and then discharged into toluene
(10 liters) which was under vigorous agitation, and a precipitate was then collected
by filtration. The precipitate was again suspended and allowed to reprecipitate in
toluene (4 liters). After the reprecipitate was collected by filtration and then provisionally
dried at 50°C for 24 hours, the reprecipitate was dried at 220°C for 12 hours under
a nitrogen gas stream. The logarithmic viscosity number, glass transition temperature,
5% weight loss temperature and melt viscosity (360°C/5 min.) of the thus-obtained
powder are shown in Table E2.

[0357] The present invention is characterized in that concerning the molecule ends, the
molar ratio of the chemical formula (2a) to the chemical formula (2b) ranges from
1/99 to 80/20 as recited in certain claims. From the above-described results, it is
also evident that those having molar ratios of the chemical formula (2a) to the chemical
formula (2b) greater than 80/20 are considerably inferior in moldability or formability
to those having molar ratios of the chemical formula (2a) to the chemical formula
(2b) equal to or smaller than 80/20. Examples E8-E12, Comparative Examples E4,E5.
[0358] Using the powders obtained in Examples E2-E6 and Comparative Example E3, compression
molding was conducted. The powders used in the respective examples and comparative
examples are shown next in Table E3.
Table E3
| Ex./Comp.Ex. No. |
Ex./Comp.Ex. No. of used powder |
| Example E8 |
Example E2 |
| Example E9 |
Example E3 |
| Example E10 |
Example E4 |
| Example E11 |
Example E5 |
| Example E12 |
Example E6 |
| Comp.Ex. E4,E5 |
Comp.Ex. E3 |
[0359] Described specifically, in each of these examples and comparative examples, the powder
was extruded into pellets at 355°C by a 25-mm, single-screw extruder. After the pellets
were filled in a compression mold of configurations specified in ASTM-D-638, compression
molding was conducted at 360°C for 12 hours (Examples E8-E12, Comparative Example
E4) or under conditions of 360°C and 5 minutes (Comparative Example E5). In all the
examples and comparative examples, good molded products were obtained. Using those
molded products, a tensile test was performed at room temperature (23°C). The results
are shown in Table E4. In Table E4, "PA/PCE molar ratio" means the molar ratio of
phthalic anhydride to 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene anhydride.

[0360] The present invention is characterized in that concerning the molecule ends, the
molar ratio of the chemical formula (2a) to the chemical formula (2b) ranges from
1/99 to 80/20 as recited in certain claims. From the above-described results, it is
also evident that those having molar ratios of the chemical formula (2a) to the chemical
formula (2b) not reaching 1/99 are inferior in mechanical properties to those having
molar ratios of the chemical formula (2a) to the chemical formula (2b) equal to or
greater than 1/99. Examples E13-E22, Comparative Examples E6-E11
[0361] In each of these examples and comparative examples, the following two reactions (A),(B)
were conducted.
(A) 4,4'-Bis[4-(4-amino-α,α-dimethylbenzyl)phenoxy]-diphenyl sulfone (668.85 g, 1,000
mol) and pyromellitic dianhydride (205.03 g, 0.940 mol) were charged as monomers together
with phthalic anhydride (10.66 g, 72.00 mmol) and 1-phenyl-2-(3,4-dicarboxy-phenyl)acetylene
anhydride (11.92 g, 48.00 mmol) as end blocking agents, m-cresol (2, 730 g) as a solvent,
and γ-picoline (13.970 g, 0.1500 mol) as a catalyst into a vessel equipped with a
stirrer, a reflux condenser, a water trap and a nitrogen gas inlet tube. The contents
were heated with stirring to 150°C over 2 hours under a nitrogen atmosphere, and reactions
were conducted at 150°C for 2 hours.
As end blocking agents, phthalic anhydride (5.33 g, 36.00 mmol) and 1-phenyl-2-(3,4-dicarboxyphenyl)acetylene
anhydride (5.96 g, 24.40 mmol) were then charged, followed by the reactions at 150°C
for further 8 hours.
The reaction mixture was thereafter cooled to 60°C and then discharged into methyl
ethyl ketone (10 liters) which was under vigorous agitation, and a precipitate was
then collected by filtration. The precipitate was again suspended and allowed to reprecipitate
in methyl ethyl ketone (4 liters). After the reprecipitate was collected by filtration
and then provisionally dried at 50°C for 24 hours, the reprecipitate was dried at
220°C for 12 hours under a nitrogen gas stream, whereby polyimide powder was obtained.
(B) In each of these examples and comparative examples, polyimide powder was obtained
in exactly the same manner as in the reaction (A) except that upon preparation of
the make-up, the amount(s) of the end blocking agent(s) of the kind(s) was(were) changed
to only phthalic anhydride (17.77 8,120.00 mmol) and that during the reactions, the
amount(s) of the end blocking agent(s) of the kind(s) was(were) changed to only phthalic
anhydride (8.89 g, 60.00 mmol).
[0362] The yields of the powders obtained in the two reactions (A), (B) and the logarithmic
viscosity numbers, glass transition temperatures, 5% weight loss temperatures and
melt viscosities (360°C/5 min.) of the polyimide powders are shown in Table E5.
[0363] Further, each powder was extruded into pellets at 355°C by a 25-mm, single-screw
extruder. After the pellets were filled in a compression mold of the shape specified
in ASTM-D-638, compression molding was conducted under the conditions described in
Table E6.
Table E6
| Ex./Comp.Ex: No. |
Used powder |
Compression molding conditions |
| Examples E13, E18 |
(A) |
360°C, 72 hr. |
| Examples E14, E19 |
(A) |
360°C, 24 hr. |
| Examples E15, E20 |
(A) |
360°C, 12 hr. |
| Examples E16, E21 |
(A) |
360°C, 6 hr. |
| Examples E17, E22 |
(A) |
360°C, 2 hr. |
| Comp.Ex. E6, E9 |
(B) |
360°C, 72 hr. |
| Comp.Ex. E7, E10 |
(B) |
360°C, 12 hr. |
| Comp.Ex. E8, E11 |
(B) |
350°C, 2 hr. |
[0364] Using the specimens so obtained, a tensile test at room temperature (23°C) and a
high-temperature tensile test at 177°C were performed. The results are shown in Table
E7.

[0365] From the above results, it is evident that, when annealed, the crosslinkable-group-containing
polyimide according to the present invention is significantly improved in room-temperature
and high-temperature mechanical properties. It is also appreciated that this effect
cannot be expected from the conventional polyimides of the comparative examples.
Experiment F Series
[0366] In Example F1 to Example F16, a description will be made about certain examples out
of the present invention, in each of which as crosslinkable-group-containing end blocking
agent(s), one or more end blocking agents other than those represented by the chemical
formula (2a) are used or one or more end blocking agents other than those represented
by the chemical formula (2a) are used in combination.
[0367] In each of these examples arid comparative example, a 15% (W/W) polyamic acid varnish
was obtained in a similar manner as in Examples A33-A37 by using dimethylacetamide
as a solvent and 4,4'-bis(3-aminophenoxy)biphenyl (368.43 g, 1.000 mol), pyromellitic
dianhydride (142.00 g, 0.651 mol) and 3,3',4,4'-benzophenonetetracarboxylic acid dianhydride
(89.90 g, 0.279 mol) as monomers together with the corresponding end blocking agent(s)
the amount(s) and kind(s) of which are shown in Table A29.
[0368] Using the thus-obtained varnishes, films were prepared under similar conditions as
in Examples 33-37. Employing those films, a chemical resistance test was performed
in toluene in a similar manner as in Examples A70-A75. The results are shown together
with the logarithmic viscosity numbers of the varnishes in Table F1.
[0369] Incidentally, "A", "B" and "C" in Table F1 indicate "completely free of cracks",
"cracks observed in a very small number" and "cracks observed in a large number",
respectively, in this order.

[0370] From the above results, it is evident that crosslinkable-group-containing polyimides
according to the present invention, which have various structures, are far superior
in chemical resistance to similar polymers having no crosslinkable groups.
Examples F7-F10, Comparative Example F2
[0371] In each of these examples and comparative example, 1,3-bis(4-aminophenoxy)benzene
(292.34 g, 1.000 mol), 3,3',4,4'-biphenyltetracarboxylic acid dianhydride (158.87
g, 0.540 mol), bis(3,4-dicarboxyphenyl) ether dianhydride (167.51 g, 0.540 mol) were
charged as monomers together with N-methyl-2-pyrrolidone (3,506 g) as a solvent into
a vessel equipped with a stirrer, a reflux condenser, a water trap and a nitrogen
inlet tube. The contents were stirred for 12 hours under a nitrogen atmosphere. The
end blocking agent(s), the kind(s) and amount(s) of which are shown in Table F2, was
(were) charged, followed by stirring for 12 hours under a nitrogen atmosphere.
[0372] To the polymer solution so obtained, acetic anhydride (408 g) and γ-picoline (23.5g)
were added, followed by stirring at 60°C for 3 hours under a nitrogen atmosphere.
[0373] The resultant viscous polymer solution was discharged into toluene (20 liters) which
was under vigorous agitation, and a precipitate was then collected by filtration.
The precipitate was again suspended and allowed to reprecipitate in toluene (4 liters).
After the reprecipitate was collected by filtration and then provisionally dried at
50°C for 24 hours, the reprecipitate was dried at 150°C under reduced pressure for
12 hours under a gentle nitrogen gas stream.
[0374] Using the polyimide powders so obtained, their gel times at 150°C were measured in
exactly the same manner as in Examples A83-A87.
[0375] The results are shown together with the logarithmic viscosity numbers of the thus-obtained
polyimide powders in Table F2. Incidentally, ">120" which appears in Table F2 indicates
that no gel point was reached within the measuring time.

[0376] From the results, it is evident that the crosslinkable-group-containing polyimide
according to the present invention is resistant to gelation and hence, is excellent
in moldability or formability.
Examples F11-F16, Comparative Example F3
[0377] In each of these examples and comparative examples, 4,4'-bis(3-aminophenoxy)biphenyl
(368.43 g, 1.000 mol), pyromellitic dianhydride (102.52 g, 0.470 mol) and 3,3',4,4'-biphenyltetracarboxylic
acid dianhydride (138.28 g, 0.470 mol) were charged as monomers together with m-cresol
(1,630 g) as a solvent into a vessel equipped with a stirrer, a reflux condenser,
a water trap and a nitrogen gas inlet tube. The contents were heated with stirring
to 200°C over 2 hours and 30 minutes under a nitrogen atmosphere, and a reaction was
conducted under 200°C reflux conditions for 2 hours, whereby a solution of an end-unblocked
polymer was obtained. During the reaction, the corresponding end blocking agent(s)
described in Table F3 and m-cresol (200.0 mL) were charged into another vessel and
were then heated beforehand at 100°C for 1 hour under a nitrogen atmosphere to provide
a solution. The solution of the end blocking agent(s) was charged in its entirety
into the solution of the end-unblocked polymer, and reaction(s) was(were) then conducted
under 200°C reflux conditions for 2 hours.
[0378] The reaction mixture was thereafter cooled to 100°C. While maintaining the resultant
viscous polymer solution at 100°C, toluene (4 liters) was charged dropwise into the
polymer solution over 4 hours. After toluene (3 liters) which had been heated at 80°C
was charged, the resulting mixture was allowed to cool down to room temperature. Toluene
(3 liters) was added further, followed by stirring for 1 hour. A precipitate was then
collected by filtration. The precipitate was again suspended and allowed to reprecipitate
in toluene (4 liters). After the reprecipitate was collected by filtration and then'
provisionally dried at 50°C for 24 hours, the reprecipitate was dried at 200°C under
reduced pressure for 12 hours under a gentle nitrogen gas stream.
[0379] Using the polyimide powders so obtained, their gel times at 360°C were measured in
exactly the same manner as in Examples A83-A87.
[0380] The results are shown together with the logarithmic viscosity numbers of the thus-obtained
polyimide powders in Table F3.

[0381] From the foregoing, it is evident that the crosslinkable-group-containing polyimide
according to the present invention is excellent in moldability or formability although
its gel time is observed to vary somewhat depending on the crosslinkable groups. It
is also appreciated that the polyimide of the comparative example undergoes quick
gelation and its melt moldability or formability is hence extremely poor.
[0382] The present invention has made it possible to provide crosslinked thermoplastic polyimides
having various excellent properties inherent to polyimides, namely, high heat resistance,
excellent mechanical properties, superb sliding property, low water absorption property,
outstanding electrical properties, high thermal oxidation resistance, high chemical
resistance and high radiation resistance, especially those improved more markedly
in heat resistance, chemical resistance and mechanical properties, melt-moldable or
formable, crosslinkable-group-containing polyimides, crosslinkable-group-containing
polyamic acids as precursors of the crosslinkable-group-containing polyimides, and
production processes thereof.