(19)
(11) EP 1 154 202 B2

(12) NEUE EUROPÄISCHE PATENTSCHRIFT
Nach dem Einspruchsverfahren

(45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Entscheidung über den Einspruch:
09.12.2009  Patentblatt  2009/50

(45) Hinweis auf die Patenterteilung:
16.06.2004  Patentblatt  2004/25

(21) Anmeldenummer: 01110418.9

(22) Anmeldetag:  27.04.2001
(51) Internationale Patentklassifikation (IPC): 
F23N 1/02(2006.01)
F23N 5/12(2006.01)

(54)

Regeleinrichtung für einen Brenner

Control device for a burner

Dispositif de commmande pour un brûleur


(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

(30) Priorität: 12.05.2000 DE 10023265
26.05.2000 DE 10025769

(43) Veröffentlichungstag der Anmeldung:
14.11.2001  Patentblatt  2001/46

(73) Patentinhaber: Siemens Schweiz AG
8047 Zürich (CH)

(72) Erfinder:
  • Lochschmied, Rainer
    76287 Rheinstetten (DE)

(74) Vertreter: Maier, Daniel Oliver et al
Siemens AG CT IP Com E Postfach 22 16 34
80506 München
80506 München (DE)


(56) Entgegenhaltungen: : 
EP-A- 0 806 610
DE-A- 19 632 983
GB-A- 2 286 038
EP-A- 0 909 922
DE-A- 19 831 648
   
       


    Beschreibung


    [0001] Die Erfindung betrifft eine Regeleinrichtung für einen Brenner, welcher Brenner eine im Flammenbereich des Brenners angeordnete Ionisationselektrode umfasst, sowie ein Stellglied, welches die Brennstoffzufuhrmenge oder die Luftzufuhrmenge in Abhängigkeit von einem Stellsignal beeinflusst.

    [0002] Schon seit langem werden Ionisationselektroden zur Flammenüberwachung in Brennern verwendet. In der Regel wird aber das Verhältnis der Luftmenge zur Brennstoffmenge, oft Lambda genannt, bei jeder Leistungsanforderung entweder durch eine Steuerung oder durch eine Regelung mit Sensoren aufeinander abgestimmt. In der Regel soll Lambda bei jeder Leistungsanforderung leicht über dem stöchiometrischen Wert 1 sein, zum Beispiel 1,3.

    [0003] Luftzahlgeregelte Brenner reagieren, anders als gesteuerte Brenner, auf äußere Einflüsse, welche die Verbrennung verändern. Sie haben daher einen höheren Wirkungsgrad und damit eine höhere Effizienz sowie niedrigere Schadstoffemissionen und damit eine geringere Umweltbelastung. Die dafür benötigten Sensoren, oft Gassensoren, insbesondere Sauerstoffsensoren, oder Temperatursensoren, sind aber für diesen Zweck teuer, unzuverlässig, pflegebedürftig und / oder haben eine geringe Lebensdauer.

    [0004] Während vielen Jahren haben sich deswegen Brennerhersteller und Regeleinrichtungshersteller darum bemüht, die schon vorhandene Ionisationselektrode nicht nur für die Flammenüberwachung, sondern auch als Sensor zur Brennerregelung zu verwenden. DE-A1-3937290 beschreibt einen Versuchsaufbau zur Regelung des Gas-Luft-Verhältnisses, bei dem die Ionisationselektrode mit einer Gleichspannung gespeist wird. Dieses Prinzip eignet sich wenig zur Serienfertigung. Eine Überwachung der Flamme mit der gleichen Ionisationselektrode ist nicht möglich, da hierzu nur die Gleichrichtereigenschaft der Flamme verwendet werden darf.

    [0005] Vor einigen Jahren erschienen IT-95U000566 und EP-A1-909922, welche Regeleinrichtungen für Gasbrenner beschreiben. In vereinfachter Darstellung wird darin beschrieben, wie bei dynamisch schnellen Änderungen des Gas- oder Luftvolumenstroms das Stellglied anhand einer gespeicherten Kennlinie gesteuert wird. Dagegen findet bei langsamen Änderungen des Gas- oder Luftvolumenstroms eine Feineinstellung anhand der Regelung mit dem Ionisationssignal als Messgröße statt.

    [0006] Schnelle Änderungen der Brennstoffzufuhr oder Luftzufuhr entstehen typisch durch sprungartige Änderungen der Leistungsanforderung. Darüber hinaus können Luftzahländerungen und damit Änderungen des Gas- oder Luftvolumenstromes durch Änderung in der Brennstoffzusammensetzung, durch Luftdruckänderung, Änderungen des Gasdrucks, Temperaturänderungen, Verschmutzung und Abnutzung von mechanischen Brennerteilen etc. verursacht werden.

    [0007] Die gespeicherte Kennlinie in den Regeleinrichtungen aus IT-95U000566 und EP-A1-909922 legt bei jedem Luftdruck des Gebläses, und somit bei jeder angeforderten Leistung, ein Stellsignal fest, das einem annähernd erwünschten Stand des Stellgliedes für das Gasventil entspricht. Auch ist eine alternative Regeleinrichtung beschrieben, wonach der Luftvolumenstrom dem Gasvolumenstrom angepasst wird, und die Kennlinie näherungsweise die erwünschte Gebläsedrehzahl in Abhängigkeit der Stellgröße des Gasventils festlegt.

    [0008] Man erhält eine brennerspezifische Kennlinie dadurch, dass der Brenner unter je einer anderen Belastung mit wechselnden Stellgliedständen betrieben wird, wobei mit zusätzlichen Sensoren Emissionswerte und Wirkungsgrad gemessen und so die gewünschten Stellgrößen ermittelt werden.

    [0009] Luftzahlgeregelte Brenner haben Vorteile gegenüber Geräten, die mittels Kennlinien gesteuert sind. Bei konstanter Leistung lassen Änderungen von Temperatur, Brennstoffdruck, Luftdruck, Brennstoffzusammensetzung, Abnutzung und Verschmutzung von mechanischen Teilen etc. den eingestellten Arbeitspunkt wegdriften.

    [0010] Deswegen bewirken die Regeleinrichtungen nach IT-95U000566 und EP-A1-909922 bei Auftritt schneller Leistungsänderungen zwar eine Steuerung anhand der gespeicherten Kennlinie, kompensieren aber deren Unvollkommenheit, in dem sie den letzten Stand des Stellsignals zuerst auf konstanter Distanz entlang der Kennlinie zu einem neuen Wert verschieben.

    [0011] Ungefähr gleichzeitig hat der Inhaber von EP-A2-806610 Regeleinrichtungen entwickelt, welche ebenfalls eine Kennlinie für das Stellsignal gespeichert haben. Die Kennlinie dient ebenfalls im Grunde dazu, bei schnellen Leistungsänderungen das Stellsignal vorzusteuern, während der Ionisationsstrom noch den Tatsachen nacheilt.

    [0012] In DE-A-19831648 zeigt er ein Verfahren zur funktionalen Adaption einer Regelelektronik eines Gasheizgeräts an dessen typenspezifische Eigenschaften, das weitgehend selbstständig ablaufen soll. Mit der Regelelektronik sind in Abhängigkeit von einem verbrennungsabhängigen Ionisationssignal der Verbrennungsluft-Volumenstrom und der Brenngas-Volumenstrom steuerbar. Zur Adaption steuert die Regelelektronik vor dem eigentlichen Brennerbetrieb Brennvorgänge mit unterschiedlichen Luftvolumenströmen an und speichert die sich dabei ergebenden Kenndaten für den künftigen Brennerbetrieb.

    [0013] Einige der obengenannten Regeleinrichtungen aus dem Stand der Technik sind auf dem Markt, weisen aber erhebliche Nachteile auf. Sie brauchen nämlich trotzdem zusätzliche Sensoren und / oder halten bei dynamischen Veränderungen der Leistung das Luft-Gasverhältnis wenig stabil. Die Marktakzeptanz ist dementsprechend gering.

    [0014] Es hat sich gezeigt, dass eine wesentliche Verbesserung zur Regelung eines Brenners über die Ionisationselektrode in den Erfindungsmaßnahmen des Anspruchs 1 liegt.

    [0015] Überraschenderweise erbringen diese an sich leicht ausführbaren Maßnahmen den lang erwünschten Sprung in der Regelungsqualität. Der Aufbau einer erfindungsgemäßen Regeleinrichtung benötigt wenig Ressourcen, wie elektronische Bauteile und Rechnerkapazität eines Mikroprozessors. Für die einmalige Anfangseinstellung einer Regeleinrichtung auf einen gewissen Brennertyp müssen statt vorher eine, nun zwei oder mehr brennerspezifische Kennlinien festgestellt werden.

    [0016] Die Praxis hat gezeigt, dass das zweite Steuersignal überdurchschnittlich dazu beiträgt, die Steuerung des Stellsignals zu präzisieren.

    [0017] Die Regeleinrichtung kann übrigens so aufgebaut werden, dass sie selbst, bei Detektierung geeigneter Bedingungen, ein Einstellverfahren zur Erfassung von neuen Kenndaten durchführt. Somit findet eine gelegentliche oder regelmäßige Neukalibrierung statt, um etwaige schleichende Änderungen im Regelsystem, beispielsweise Abnutzung oder Verschmutzung der Ionisationselektrode, zu kompensieren. Eine andere Möglichkeit besteht darin, dass die Steuerkennlinien automatisch ermittelt werden, auch für Gase, die mittels den voreingestellten Kennlinien nicht erfasst werden.

    [0018] Die Kenndaten können beispielsweise als die Konstanten in einer Polynomentwicklung bis zur dritten Ordnung gestaltet sein. Die von der Polynomentwicklung annäherungsweise dargestellte Funktion legt eine Beziehung zwischen einem Eingabeparameter und dem Stellsignal fest.

    [0019] Als Eingabeparameter für die Steuerkurven dient zunächst die angeforderte Leistung, entweder in Form einer Stellgröße oder einer Messgröße, die der Leistung entspricht, also zum Beispiel der Gebläsedrehzahl. Natürlich können auch andere Größen als Eingangsgröße der Steuerkennlinien verwendet werden, z. B. Temperatursignale aller Art wie Brennertemperatur, Vorlauf- und Rücklauf- Temperatur, etc. Weitere Beispiele sind ein Druckdifferenzmesswert zur Bestimmung des Gas- oder Luftvolumenstroms, ein Gas- oder Luftvolumenstrom-Messgerät, oder direkt das Ansteuersignal zum Betrieb eines Gasventils oder einer Ölpumpe.

    [0020] Vorteilhaft hängen das erste und das zweite Verhalten des Stellgliedes von Eingangsparametern ab, welche die gleiche Größe darstellen. Das Maß der angeforderten Leistung, oder eine andere physikalische Größe, kann der Steuereinheit mittels eines einzelnen Eingangsparameters, wie der Stellgröße der Gebläsedrehzahl, oder mittels Eingangsparameter unterschiedlicher Art, wie Stellgröße und Messgröße der Gebläsedrehrahl, zugeführt werden.

    [0021] Notwendig ist dies aber nicht. Stehen insbesondere der Regeleinrichtung während des Betriebes weitere Messwerte zur Verfügung, aus denen sie zum Beispiel den aktuellen Energieinhalt oder den aktuellen Druck des zugeführten Brennstoffs direkt oder indirekt ermitteln kann, dann kann der zweite Eingabeparameter sogar eine andere Größe darstellen.

    [0022] Oft sind Brenner mit einem Temperatursensor für die Kesseltemperatur ausgerüstet. Eine Änderung des Energieinhaltes des zugeführten Brennstoffs hat eine Änderung der Kesseltemperatur zufolge. Bei einem solchen Brenner ist beispielsweise die Stellgröße der Gebläsedrehzahl der erste Eingabeparameter, und die zeitliche Änderung der Kesseltemperatur der zweite. Es sind Kenndaten gespeichert worden, welche ein erstes erwünschtes Verhalten des Stellgliedes bei unterschiedenen Leistungen, aber festem Energieinhalt des Brennstoffes und festen sonstigen Einflüssen bestimmen. Auch sind Kenndaten gespeichert worden, welche ein zweites Verhalten bei unterschiedlichen Energieinhalten und diesmal fester Leistung bestimmen.

    [0023] In diesem Szenario ermittelt die Regeleinrichtung anhand von Kesseltemperaturänderungen, welche dem zeitlichen Verlauf der Stellgröße der Gebläsedrehzahl nicht entsprechen, etwaige Änderungen des aktuellen Energieinhalts des zugeführten Brennstoffs und erzeugt mittels der Kenndaten für das zweite Verhalten und unter Betrachtung des Ionisationssignals eine korrigierte leistungsabhängige Steuerkurve. Das Stellsignal wird im Falle einer dynamischen Leistungsänderung die so korrigierte Steuerkurve zum Beispiel auf gleichbleibender Distanz folgen.

    [0024] Als Brenner kommen Brenner unterschiedlichster Bauart in Frage, zum Beispiel Vormisch-Gasbrenner oder atmosphärische Brenner mit und ohne Hilfsgebläse. Bei atmosphärischen Brennern ohne Hilfsgebläse kann der Luftvolumenstrom z. B. über eine Luftklappe o. ä. gesteuert werden.

    [0025] Der Regler erzeugt das Stellsignal zumindest zeitweise durch Verarbeitung der Steuersignale und bestimmt die Verarbeitung zumindest zeitweise in Abhängigkeit vom Ionisationssignal.

    [0026] Dies beinhaltet einige Varianten. Beispielsweise erzeugt die Steuereinheit in einem quasi-stabilen Zustand keine Steuersignale. Die Regeleinrichtung macht dann eine reine Regelung über das Ionisationssignal. Sobald aber eine schnelle Zustandsänderung auftritt, schaltet die Regeleinrichtung auf die schnell reagierende und genaue Steuerung durch eine Verarbeitung der Steuersignale um. Die Weise, in der die Steuersignale verarbeitet werden, ist vorher vom Ionisationssignal festgelegt worden und bleibt während der ganzen Steuerungsperiode gleich. Die Steuerung wird erst wieder durch eine Regelung ersetzt, wenn der Zustand sich beruhigt hat und das Ionisationssignal dem aktuellen Zustand nachgeeilt ist. Gemäss einer Alternative aber werden die Steuersignale dauerhaft erzeugt, und es tragen sowohl die Steuersignale als auch das Ionisationssignal kontinuierlich zum Stellsignal bei. Mischvarianten sind auch möglich.

    [0027] In jedem Fall ist es so, dass der Regler zumindest zeitweise die Steuersignale gewichtet und aufaddiert und dass der Regler die Gewichtung zumindest zeitweise in Abhängigkeit vom Ionisationssignal bestimmt.

    [0028] In einer vorteilhaften Ausführung der Erfindung dämpft der Regler schnelle Schwankungen des Ionisationssignals im Vergleich zu langsame Schwankungen vor der Verarbeitung der Steuersignale ab. Insbesondere ist der Regler mit einem Tiefpassfilter für das Ionisationssignal oder für ein durch Verarbeitung erzeugtes Folgesignal ausgestattet, oder mit einer Integriereinheit für das Ionisationssignal oder für ein durch Verarbeitung erzeugtes Folgesignal.

    [0029] Die Verarbeitung der Steuersignale wird durch diese Maßnahmen erst mit gewisser Verzögerung und / oder Glättung des Ionisationssignals angepasst, damit der sowieso zu träge Ionisationssignalverlauf nach einer plötzlichen Zustandsänderung das Stellsignal nicht stört. Erst wenn die Lage sich wieder beruhigt hat, wird das Ionisationssignal langsam auf die Verarbeitung der Steuersignale einwirken, um eine Feinabstimmung zu erbringen.

    [0030] In einer weiteren Ausführung der Erfindung sind in der Steuereinheit zudem Kenndaten zur Bestimmung eines Verhaltens des Ionisationssignals gespeichert, erzeugt die Steuereinheit zumindest zeitweise ein Sollwertsignal und erzeugt der Regler das Stellsignal zumindest zeitweise in Abhängigkeit vom Sollwertsignal.

    [0031] Durch diese Maßnahmen kann die Reglereinrichtung, beziehungsweise ihr Reglerprogramm, einfach gestaltet werden und eine große Zuverlässigkeit erreichen. Optional kalibriert die Regeleinrichtung selbst gelegentlich oder regelmäßig diese Kenndaten.

    [0032] In der genannten Ausführungsform der Erfindung ist der Regler vorteilhaft mit einer Vergleichseinheit ausgestattet, welche zumindest zeitweise das Sollwertsignal oder ein durch Verarbeitung erzeugtes Folgesignal vom Ionisationssignal subtrahiert. In dieser Ausführungsform kann der Regler das Stellsignal so erzeugen, dass das Ionisationssignal auf das Sollwertsignal hin geregelt wird. Durch die obengenannte Integriereinheit kann diese Differenz zu Null geregelt werden.

    [0033] Eine weitere Ausführung der Erfindung betrifft die gespeicherten Kenndaten. Vorteilhaft ist das erste Verhalten des Stellgliedes während eines Brennerbetriebes mit einem ersten Brennstoff bestimmt worden, und das zweite Verhalten des Stellgliedes während eines Brennerbetriebes mit einem bezüglich des Energieinhaltes unterschiedlichen zweiten Brennstoff, insbesondere wenn der spezifische Energieinhalt eines Brennstoffs mindestens 5 % höher als der eines anderen Brennstoffs ist.

    [0034] Es hat sich gezeigt, dass die Kennlinien ab diesem Grenzwert dermaßen voneinander verschieden sind, dass sie der Regeleinrichtung wesentliche Zusatzinformationen gegenüber einer Regeleinrichtung mit nur einer gespeicherten Kennlinie geben. Dies lässt das Ausmaß einiger Vorteile, welche die Erfindung mit sich bringt, wesentlich ansteigen.

    [0035] In diese Ausführung haben sich die Kenndaten zur Bestimmung der beiden Verhalten des Stellgliedes aus Messungen ergeben. Alternativerweise aber werden nur die Kenndaten für das erste Verhalten des Stellgliedes anhand von Messergebnisse bestimmt. Die Kenndaten für das zweite Verhalten werden dann aus diesen berechnet. Dies ist nur möglich, wenn ein Fachmann ein geeignetes Wissen über das Verhalten des Stellgliedes unter den unterschiedlichen Umständen hat.

    [0036] In einer Variante der obengenannten Ausführung werden die Kenndaten für das zweite Verhalten statt mittels brennerspezifischer Messungen anhand von fachmännischen Kenntnissen über die in der Praxis zugeführten Brennstoffmischungen festgestellt.

    [0037] Die Einstellung einer Regeleinrichtung auf einen gewissen Brennertyp findet also vorteilhaft dadurch statt, dass zwei oder mehr brennerspezifische Kennlinien während des Betriebes mit unterschiedlichen Brennstoffen, beispielsweise Gasmischungen in unterschiedlichen Verhältnissen, festgestellt werden.

    [0038] Die Erfindung betrifft auch ein Verfahren zum Einstellen einer erfinderischen Regeleinrichtung. Gemäss diesem Verfahren wird zuerst ein Brenner mit einer erfinderischen Regeleinrichtung und mit zusätzlichen Sensoren zur Feststellung der Qualität der Verbrennung ausgestattet. Dann betreibt man den Brenner mit einem ersten Brennstoff mit gewissem Energieinhalt auf unterschiedlichen Leistungswerten je mit unterschiedlichen Stellgliedständen, wobei man aus den Sensorergebnissen für jeden Leistungswert einen erwünschten Stellgliedstand feststellt. Aus den erwünschten Stellgliedständen werden Kenndaten zur Bestimmung des ersten Verhaltens des Stellgliedes festgestellt. Danach betreibt man den Brenner mit einem zweiten Brennstoff mit einem unterschiedlichen Energieinhalt auf unterschiedlichen Leistungswerten je mit unterschiedlichen Stellgliedständen, wobei man aus den Sensorergebnissen für jeden Leistungswert einen erwünschten Stellgliedstand feststellt, und stellt jetzt aus den erwünschten Stellgliedständen Kenndaten zur Bestimmung des zweiten Verhaltens des Stellgliedes fest. Optional wiederholt man diese Schritte für einen dritten oder sogar weitere Brennstoffe. Schließlich werden die festgestellten Kenndaten in einer oder mehreren Regeleinrichtungen gespeichert. Wie oben beschrieben wurde, bringt es Vorteile mit sich, dass der spezifische Energieinhalt eines Brennstoffs mindestens 5 % höher als der eines anderen Brennstoffs ist.

    [0039] Alternativerweise betreibt man den Brenner mit einer Brennstoffzufuhr unter einem ersten Druck auf unterschiedlichen Leistungswerten je mit unterschiedlichen Stellgliedständen, wobei man aus den Sensorergebnissen für jeden Leistungswert einen erwünschten Stellgliedstand feststellt. Aus den erwünschten Stellgliedständen werden Kenndaten zur Bestimmung des ersten Verhaltens des Stellgliedes festgestellt. Danach betreibt man den Brenner mit einer Brennstoffzufuhr unter einem unterschiedlichen zweiten Druck auf unterschiedlichen Leistungswerten je mit unterschiedenen Stellgliedständen, wobei man aus den Sensorergebnissen für jeden Leistungswert einen erwünschten Stellgliedstand feststellt. Aus den erwünschten Stellgliedständen werden jetzt Kenndaten zur Bestimmung des zweiten Verhaltens des Stellgliedes festgestellt. Zum Abschluss speichert man die festgestellten Kenndaten in einer Regeleinrichtung. Die Erfindungswirkung ist besonders ausgeprägt, wenn die Unterschiede in den Brennstoffzufuhrdrücken 9 % überschreiten, das heißt, wenn ein Brennstoffzufuhrdruck mindestens 9 % höher als ein anderer ist.

    Figur 1 zeigt ein Blockschaltbild eines Ionisationsauswerters in einer Regeleinrichtung gemäss der Erfindung,

    Figur 2 zeigt ein Blockschaltbild einer Regeleinrichtung gemäss der Erfindung, und

    Figur 3 zeigt das Stellsignal einer Regeleinrichtung gemäss der Erfindung.



    [0040] Fig. 1 zeigt schematisch das Funktionsprinzip eines Ionisationsauswerters 14 in einer Regeleinrichtung gemäss der Erfindung. In einer Ersatzschaltung ist die Flamme 1 durch eine Diode 1a und einen Widerstand 1b dargestellt. Über L und N ist eine Wechselspannung von beispielsweise 230V angelegt. Wenn eine Flamme 1 vorhanden ist, fließt wegen der Flammendiode 1a durch den Blockkondensator 3 in der positiven Halbwelle ein größerer Strom als in der negativen Halbwelle. Dadurch bildet sich zwischen L und einem zum Zweck des Berührschutzes angebrachten Widerstandes 2 eine positive Gleichspannung UB am Blockkondensator 3 aus.

    [0041] Durch einen Entkopplungswiderstand 4 fließt daher ein Gleichstrom von N zum Blockkondensator 3. Die Höhe des Gleichstromes hängt dabei von UB und damit direkt vom Flammenwiderstand 1b ab. Der Flammenwiderstand 1b beeinflusst ebenfalls den Wechselstrom durch den Entkoppelwiderstand 4, allerdings in unterschiedlichem Maß gegenüber dem Gleichstrom. Durch den Widerstand 4 fließt somit ein Gleichstrom und ein Wechselstrom wie oben beschrieben.

    [0042] Dem Widerstand 4 ist nun ein Hochpass 5 und ein Tiefpass 6 nachgeschaltet. Durch den Hochpass 5 wird der Wechselstrom ausgefiltert und der Gleichspannungsanteil abgeblockt. Durch den Tiefpass wird der vom Flammenwiderstand 1b abhängige Gleichspannungsanteil ausgefiltert und der Wechselstrom im wesentlichen abgeblockt. In einem Verstärker 7 wird der aus dem Hochpass 5 fließende Wechselstrom verstärkt und eine Referenzspannung URef zuaddiert. In einem Verstärker 8 wird der aus dem Hochpass 6 fließende Gleichstrom mit eventuell geringen Wechselstromanteilen verstärkt und die Referenzspannung URef zuaddiert.

    [0043] Die Referenzspannung URef kann beliebig, zum Beispiel URef = 0 gewählt werden, sie wird jedoch vorzugsweise so gewählt, dass die Verstärker und Komparatoren nur eine Versorgung benötigen.

    [0044] An einem Komparator 9 werden die aus dem Verstärker 7 austretende Wechselspannung und die aus dem Verstärker 8 austretende Gleichspannung miteinander verglichen und ein pulsweitenmoduliertes (PWM) Signal erzeugt. Ändert sich die Amplitude der Netzspannung, so ändern sich Wechselspannung und Gleichspannung im gleichen Verhältnis, das PWM-Signal ändert sich nicht. Der Signalhub des PWM-Signals kann mittels der Verstärker 7 und 8 in einem weiten Bereich zwischen τ = 0 und τ = 50% Tastverhältnis eingestellt werden.

    [0045] Der Gleichspannungsanteil U- wird in einem Komparator 10 mit der Referenzspannung URef verglichen. Ist eine Flamme vorhanden, ist der Gleichspannungsanteil größer als die Referenzspannung (U= > URef) und der Komparatorausgang des Komparators 10 schaltet auf 0. Ist keine Flamme vorhanden, so ist der Gleichspannungsanteil ungefähr gleich der Referenzspannung (U= ≈ URef). Wegen dem, dem Gleichspannungsanteil überlagerten, geringen Wechselspannungsanteil, den der Tiefpass 6 nicht ausfiltert, unterschreitet der Gleichspannungsanteil kurzzeitig die Referenzspannung und am Komparatorausgang des Komparators 10 erscheinen Impulse. Diese Impulse werden auf ein nachtriggerbares Monoflop 11 gegeben.

    [0046] Das Monoflop 11 wird so getriggert, dass die aus dem Komparator 10 ausgegebene Impulsfolge schneller kommt als die Impulsdauer des Monoflops ist. Dadurch erscheint, wenn keine Flamme vorhanden ist, am Ausgang des Monoflops konstant eine 1. Ist eine Flamme vorhanden, so wird das Monoflop nicht getriggert und am Ausgang erscheint permanent eine 0. Das nachtriggerbare Monoflop 11 bildet somit einen "missing pulse detector", welcher das dynamische Ein-/Aus-Signal in ein statisches Ein-/Aus-Signal umwandelt.

    [0047] Beide Signale, das PWM-Signal und das Flammensignal können nun separat weiterverarbeitet werden oder aber mittels eines Oder-Gliedes 12 verknüpft werden. Als Ausgang des Oder-Gliedes 12 zeigt sich bei vorhandener Flamme ein PWM-Signal, dessen Tastverhältnis ein Maß für den Flammenwiderstand 1b ist. Dieses Ionisationssignal 13 wird dem in Figur 2 gezeigten Regler 26 zugeführt. Ist keine Flamme vorhanden, ist der Ausgang des Oder-Gliedes permanent auf 1. Das Ionisationssignal 13 kann über einen nicht dargestellten Optokoppler übertragen werden, um eine Schutztrennung zwischen der Netzseite und der Schutzkleinspannungsseite zu erreichen.

    [0048] Figur 2 zeigt ein Blockschaltbild einer Regeleinrichtung 15 gemäss der Erfindung. Die Ionisationselektrode 16 ragt in die Flamme 1. Das Gasventil 17 wird vom Stellsignal 18 auf direkte oder indirekte Weise, zum Beispiel über einen Motor, gesteuert. Etwaig ist noch ein mechanischen Druckregler zwischengeschaltet.

    [0049] Ein Luftgebläse 19 wird auf eine Drehzahl angesteuert, die hier als Eingabeparameter verwendet wird. Die Drehzahl entspricht einer Leistungsanforderung 22. Das Drehzahlsignal 20 wird über ein Filter 21 zu der Steuereinheit 23 geführt, welche als Programmteil zum Ablauf in einem Mikroprozessor gestaltet worden ist. Dort sind Kenndaten gespeichert, welche die Kennlinien eines ersten und eines zweiten Steuersignals 24 und 25 festlegen. Der Regler 26 gewichtet und addiert die beide Steuersignale und ermittelt so das Stellsignal 18. Diese Verarbeitung der Steuersignale hängt vom Ionisationssignal 13 ab.

    [0050] Das Ionisationssignal 13 wird vom Regler 26 zuerst mittels eines Tiefpassfilters 27 geglättet, um Störimpulse und Flackern zu unterdrücken. In einer Vergleichseinheit 28 wird ein von der Steuereinheit 23 erzeugtes und über einer Korrektureinheit 29 geführtes Sollwertsignal 30 subtrahiert. Aus dem Folgesignal dieser Verarbeitung des Ionisationssignals wird von einem Proportionalregler 31 und einer parallelen Integriereinheit 32 ein interner Regelwert x ermittelt, der die beiden Steuersignale 24 und 25 gewichtet und damit das Stellsignal 18 fein abregelt.

    [0051] Der Regelwert x kann alternativerweise durch einen PID-Regler oder einen Zustandsregler aus dem Folgesignal erzeugt werden.

    [0052] Figur 3 zeigt wie das Stellsignal 18 einer Regeleinrichtung 15 gemäss der Erfindung abhängig vom Drehzahlsignal 20 verläuft. Die Kennlinien der Steuersignale 24 und 25 betreffen je ein Brenngas mit ziemlich tiefem, respektiv hohem kalorischem Wert.

    [0053] In einem quasi-stabilen Zustand, in dem das Brenngas einen mittleren Verbrennungswert hat und die Verbrennungswerte auch wegen sonstigen Umständen von den Kennlinien abweichen, regelt die Regeleinrichtung 15 über die Gewichtung der Steuersignale 24 und 25 das Stellsignal auf einen für das Luft-Gasverhältnis nahezu optimalen Wert 33. Diese Feinregelung entspricht einer vertikalen Bewegung des Stellsignalwertes in der Figur 3.

    [0054] Findet jetzt ein schrittartiger Anstieg der Leistungsanforderung 22 statt, und eine entsprechende Änderung des Drehzahlsignals 20, dann bleibt die Gewichtung der beiden Steuersignale vorerst kaum berührt. Die Steuersignale 24 und 25 selbst aber steigen je rasch mit der Drehzahländerung auf ihre entsprechend höheren Werte entlang die Kennlinien an, und das Stellsignal 18 steigt ebenso rasch zu dem Wert 34 mit. Dieser gesteuerter Wert 34 des Stellsignals ist schon sehr genau, das heißt, ist nahe an einem für das Luft-Gasverhältnis optimalen Wert. Sobald das Ionisationssignal 13 sich wieder auf den neuen Zustand eingespielt hat, typisch nach einigen wenigen Sekunden, regelt es die Gewichtung der Steuersignale 24 und 25 wieder fein. Dabei bewegt sich in der Figur 3 das Stellsignal 18 vertical zu einem Wert 35.


    Ansprüche

    1. Regeleinrichtung (15) für einen Brenner mit einer im Flammenbereich des Brenners angeordneten Ionisationselektrode (16) und mit einem Stellglied (17), welches die Brennstoffzuführmenge oder die Luftzufuhrmenge in Abhängigkeit von einem Stellsignal (18) beeinflusst, ausgestattet mit einem der Ionisationselektrode (16) nachgeschalteten Ionisationsauswerter (14), welcher ein Ionisatiönssignal (13) erzeugt, mit einer Steuereinheit (23), in der Kenndaten zur Bestimmung eines ersten Verhaltens des Stellgliedes (17) gespeichert sind, welche zumindest zeitweise ein erstes Steuersignal (24) erzeugt, und mit einem Regler (26), welcher das Stellsignal (18) zumindest zeitweise in Abhängigkeit vom Ionisationssignal (13) und zumindest zeitweise in Abhängigkeit vom ernsten Steuersignal (24) erzeugt, wobei in der Steuereinheit (23) Kenndaten zur Bestimmung eines zweiten Verhaltens des Stellgliedes (17) gespeichert sind, die Steuereinheit (23) zumindest zeitweise ein zweites Steuersignal (25) erzeugt und der Regler (26) das Stellsignal (18) zumindest zeitweise in Abhängigkeit vom zweiten Steuersignal (25) erzeugt,
    dadurch gekennzeichnet, dass der Regler (26) das Stellsignal (18) zumindest teilweise durch Verarbeitung der Steuersignale (24,. 25) erzeugt, wobei der Regler (26) zumindest zeitweise die Steuersignale (24, 25) gewichtet und aufaddiert und der Regler (26) die Gewichtung zumindest zeitweise in Abhängigkeit vom Ionisationssignal (13) bestimmt.
     
    2. Regeleinrichtung nach.Anspruch 1,
    dadurch gekennzeichnet, dass
    der Regler (26) vor der Verarbeitung der Steuersignale (24,25) schnelle Schwankungen des Ionisationssignals (13) im Vergleich zu langsamen Schwankungen abdämpft.
     
    3. Regeleinrichtung nach Anspruch 2,
    dadurch gekennzeichnet, dass
    der Regler (26) mit einem Tiefpassfilter (27) für das Idnisationssignal (13) oder für ein durch Verarbeitung erzeugtes Folgesignal ausgestattet, ist.
     
    4. Regeleinrichtung, nach Anspruch 3,
    dadurch gekennzeichnet, dass
    der Regler (26) mit einer Integriereinheit (32) für das Ionisationssignal (13) oder für ein durch Verarbeitung erzeugtes Folgesignal ausgestattet ist.
     
    5. Regeleinrichtung nach jedem der vorgehenden Ansprüche,
    dadurch gekennzeichnet, dass
    in der Steuereinheit (23) zudem Kenndaten zur Bestimmung eines Verhaltens des Ionisationssignals (13) gespeichert sind,
    die Steuereinheit (23) zumindest zeitweise ein Sollwertsignäl (30) erzeugt und
    der Regler (26) das Stellsignal (18) zumindest zeitweise in Abhängigkeit vom Sollwertsignal (23) erzeugt.
     
    6. Regeleinrichtung nach Anspruch 5,
    dadurch gekennzeichnet, dass
    der Regler (26) mit einer Vergleichseinheit ausgestattet ist, welche zumindest zeitweise das Sollwertsignal (30) oder ein durch Verarbeitung erzeugtes Folgesignal vom Ionisationssignal (13) oder von einem durch Verarbeitung erzeugten Folgesignal subtrahiert.
     
    7. Regeleinrichtung nach Anspruch 5 oder 6,
    dadurch gekennzeichnet, dass
    der Regler (26) das Stellsignal (18) so erzeugt, dass das Ionisationssignal (13) auf das Sollwertsignal (30) hin geregelt wird.
     
    8. Regeleinrichtung nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das erste Verhalten des Stellgliedes (17) während eines Brennerbetriebes mit einem ersten Brennstoff bestimmt worden ist und
    das zweite Verhalten des Stellgliedes (17) während eines Brennerbetriebes mit einem bezüglich des Energieinhaltes unterschiedlichen zweiten Brennstoff bestimmt worden ist.
     
    9. Regeleinrichtung nach Anspruch 8,
    dadurch gekennzeichnet, dass
    der spezifische Energieinhalt eines Brennstoffs mindestens 5% höher als der eines anderen Brennstoffs ist.
     
    10. Verfahren zum Einstellen einer Regeleinrichtung für Brenner nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    man einen Brenner mit einer Regeleinrichtung (15) und mit zusätzliche Sensoren zur Feststellung der Qualität der Verbrennung ausstattet,
    man den Brenner mit einem ersten Brennstoff mit gewissem Energieinhalt auf unterschiedliche Leistungswerte je mit unterschiedlichen Stellgliedständen betreibt, wobei man aus den Sensorergebnissen für jeden Leistungswert einen erwünschten Stellgliedstand feststellt,
    man aus den erwünschten Stellgliedständen Kenndaten zur Bestimmung des ersten Verhaltens des Stellgliedes (17) feststellt; man den Brenner mit einem zweiten Brennstoff mit einem unterschiedlichen Energieinhalt auf unterschiedlichen Leistungswerten je mit unterschiedlichen Stellgliedständen betreibt, wobei man aus den Sensorergebnissen für jeden Leistungswert einen erwünschten Stellgliedstand feststellt, man aus den erwünschten Stellgliedständen Kenndaten zur Bestimmung des zweiten Verhaltens des Stellgliedes (17) feststellt und man die festgestellten Kenndaten in der Regeleinrichtung (15) speichert.
     
    11. Verfahren zum Einstellen einer Regeleinrichtung, für Brenner nach Anspruch 10,
    dadurch gekennzeichnet, dass
    der spezifische Energieinhalt eines Brennstoffs mindestens 5% höher als der eines anderen Brennstoffs ist.
     
    12. Verfahren zum Einstellen einer Regeleinrichtung für Brenner nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass
    man den Brenner mit einer Brennstoffzufuhr unter einem ersten Druck auf unterschiedlichen Leistungswerten je mit unterschiedlichen Stellgliedständen betreibt, wobei man aus den Sensorergebnissen für jeden Leistungswert einen erwünschten Stellgliedstand feststellt, man aus den erwünschten Stellgliedständen Kenndaten zur Bestimmung des ersten Verhaltens des Stellgliedes (17) feststellt,
    man den Brenner mit einer Brennstoffzufuhr unter einem unterschiedlichen zweiten Druck auf unterschiedlichen Leistungswerten je mit unterschiedlichen Stellgliedständen betreibt, wobei man aus den Sensorergebnissen für jeden Leistungswert einen erwünschten Stellgliedstand feststellt,
    man aus den erwünschten Stellgliedständen Kenndaten zur Bestimmung des zweiten Verhaltens des Stellgliedes (17) feststellt und
    man die festgestellten Kenndaten in der Regeleinrichtung (15) speichert.
     
    13. Verfahren zum Einstellen einer Regeleinrichtung für Brenner nach Anspruch 12,
    dadurch gekennzeichnet, dass
    ein Brennstoffzufuhrdruck mindestens 9 % höher als der andere ist.
     


    Claims

    1. A regulating device (15) for a burner, comprising an ionisation electrode (16) arranged in the flame region of the burner, a setting member (17) which influences the feed amount of fuel or the feed amount of air in dependence on a setting signal (18), equipped with an ionisation evaluating device (14) which is connected downstream of the ionisation electrode (16) and which produces an ionisation signal (13), a control unit (23) in which characteristic data for determining a first mode of behaviour of the setting member (17) are stored and which at least at times produces a first control signal (24), and a regulator (26) which produces the setting signal (18) at least at times in dependence on the ionisation signal (13) and at least at times in dependence on the first control signal (24), and that in the control unit (23) are stored characteristic data for determining a second mode of behaviour of the setting member (17), the control unit (23) produces at least at times a second control signal (25), and the regulator (26) produces the setting signal (18) at least at times in dependence on the second control signal (25), characterised in that the regulator (26) produces the setting signal (18) at least in part by processing of the control signals (24, 25), arid the regulator (26) determines the processing at least at times in dependence on the ionisation signal (13) and the regulator (26) at least at times weights and adds up the control signals (24, 25) and the regulator (26) determines the weighting at least at times in dependence on the ionisation signal (13).
     
    2. A regulating device according to claim 1 characterised in that prior to processing of the control signals (24, 25) the regulator (26) damps rapid fluctuations in the ionisation signal (13) in comparison with slow fluctuations.
     
    3. A regulating device according to claim 2 characterised in that the regulator (26) is equipped with a low pass filter (27) for the ionisation signal (13) or for a sequence signal produced by processing.
     
    4. A regulating device according to claim 3 characterised in that the regulator (26) is equipped with an integrating unit (32) for the ionisation signal (13) or for a sequence signal produced by processing.
     
    5. A regulating device according to each of the preceding claims characterised in that characteristic data for determining a mode of behaviour of the ionisation signal (13) are also stored in the control unit (23), the control unit (23) produces at least at times a reference value signal (30), and the regulator (26) produces the setting signal (18) at least at times in dependence on the reference value signal (30).
     
    6. A regulating device according to claim 5 characterised in that the regulator (26) is equipped with a comparison unit which at least at times subtracts the reference value signal (30) or a sequence signal produced by processing from the ionisation signal (13) or from a sequence signal produced by processing.
     
    7. A regulating device according to claim 5 or claim 6 characterised in that the regulator (26) so produces the setting signal (18) that the ionisation signal (13) is regulated to the reference value signal (30).
     
    8. A regulating device according to one of the preceding claims characterised in that the first mode of behaviour of the setting member (17) has been determined during a burner operation with a first fuel and, the second mode of behaviour of the setting member (17) has been determined during a burner operation with a second fuel which differs in respect of the energy content.
     
    9. A regulating device according to claim 8 characterised in that the specific energy content of a fuel is at least 5% higher than that of another fuel.
     
    10. A method of setting a regulating device for burners according to one of the preceding claims characterised in that a burner is equipped with a regulating device (15) and with additional sensors for establishing the quality of combustion, the burner is operated with a first fuel with a certain energy content at different output values with respective different setting member statuses, wherein a desired setting member status is established from the sensor results for each output value, characteristic data for determining the first mode of behaviour of the setting member (17) are established from the desired setting member statuses, the burner is operated with a second fuel with a different energy content at different output values with respective different setting member statuses, wherein a desired setting member status is established from the sensor results for each output value, characteristic data for determining the second mode of behaviour of the setting member (17) are established from the desired setting member statuses, and the established characteristic data are stored in a regulating device(15).
     
    11. A method of setting regulating devices for burners according to claim 10 characterised in that the specific energy content of a fuel is at least 5% higher than that of another fuel.
     
    12. A method of setting a regulating device for burners according to claim 10 or claim 11 characterised in that the burner is operated with a fuel feed under a first pressure at different output values with respective different setting member statuses, wherein a desired setting member status is established from the sensor results for each output value, characteristic data for determining the first mode of behaviour of the setting member (17) are established from the desired setting member statuses, the burner is operated with a fuel feed under a different second pressure at different output values with respective different setting member statuses, wherein a desired setting member status is established from the sensor results for each output value, characteristic data for determining the second mode of behaviour of the setting member (17) are established from the desired setting member statuses, and the established characteristic data are stored in a regulating device (15).
     
    13. A method of setting a regulating device for burners according to claim 12 characterised in that a fuel feed pressure is at least 9% higher than another.
     


    Revendications

    1. Dispositif (15) de commande d'un brûleur comprenant une électrode (16) d'ionisation disposée dans la zone de flamme du brûleur et un actionneur (17) qui influe sur la quantité de combustible apporté ou la quantité d'air apportée en fonction d'un signal (18) de réglage, muni d'un évaluateur (14) d'ionisation monté en aval de l'électrode (16) d'ionisation et produisant un signal (13) d'ionisation, comprenant une unité (23) dans laquelle sont mémorisées des données caractéristiques pour la détermination d'un premier comportement de l'actionneur (17) et qui produit au moins de temps en temps un premier signal (24) de commande, et comprenant un régulateur (26) qui produit le signal (18) de réglage au moins de temps en temps en fonction du signal (13) d' ionisation et au moins de temps en temps en fonction du premier signal (24) de commande, et que dans l'unité (23) de commande sont mémorisées des données caractéristiques de détermination d'un deuxième comportement de l'actionneur (17), l'unité (23) de commande produit au moins de temps en temps un deuxième signal (25) de commande et le régulateur (26) produit le signal (18) de réglage au moins de temps en temps en fonction du deuxième signal (25) de commande, caractérisé en ce que le régulateur (26) produit le signal (18) de commande au moins de temps en temps par traitement des signaux (24, 25) de commande, et le régulateur (26) détermine le traitement au moins de temps en temps en fonction du signal (13) d'ionisation, et que le régulateur (26) pondère et additionne au moins de temps en temps les signaux (24, 25) de commande et le régulateur (26) détermine la pondération au moins de temps en temps en fonction du signal (13) d'ionisation.
     
    2. Dispositif de commande suivant la revendication 1, caractérisé en ce que le régulateur (26) amortit avant le traitement des signaux (24, 25) de commande des fluctuations rapides du signal (13) d'ionisation par rapport à des fluctuations lentes.
     
    3. Dispositif de commande suivant la revendication 2, caractérisé en ce que le régulateur (26) est muni d' un filtre (27) passe-bas du signal (13) d'ionisation ou d'un signal provenant du traitement.
     
    4. Dispositif de commande suivant la revendication 3, caractérisé en ce que le régulateur (26) est muni d' une unité d'intégration (32) du signal (13) d'ionisation ou d'un signal provenant du traitement.
     
    5. Dispositif de commande suivant chacune des revendications précédentes, caractérisé en ce que dans l'unité (23) de commande sont mémorisées en outre des données caractéristiques pour la détermination d'un comportement du signal (13) d'ionisation, l'unité (23) de commande produit au moins de temps en temps un signal (30) de valeur de consigne, et le régulateur (26) produit le signal (18) de réglage au moins de temps en temps en fonction du signal (30) de valeur de consigne.
     
    6. Dispositif de commande suivant la revendication 5, caractérisé en ce que le régulateur (26) est équipé d'une unité de comparaison qui soustrait au moins de temps en temps le signal (30) de valeur de consigne ou le signal provenant du traitement du signal (13) d'ionisation ou d'un signal provenant du traitement.
     
    7. Dispositif de commande suivant la revendication 5 ou 6, caractérisé en ce que le régulateur (26) produit le signal (18) de réglage de façon à ce que le signal (13) d' ionisation soit réglé sur le signal (30) de valeur de consigne.
     
    8. Dispositif de commande suivant l'une des revendications précédentes, caractérisé en ce que le premier comportement de l'actionneur (17) a été déterminé pendant un fonctionnement du brûleur avec un premier combustible, et le deuxième comportement de l'actionneur (17) a été déterminé pendant un fonctionnement du brûleur avec un deuxième combustible différent pour ce qui concerne la teneur en énergie.
     
    9. Dispositif de commande suivant la revendication 8, caractérisé en ce que la teneur en énergie de l'un des combustibles est supérieure d'au moins 5 % à celle de l'autre combustible.
     
    10. Procédé de réglage d'un dispositif de commande de brûleur suivant l'une des revendications précédentes, caractérisé en ce que on équipe un brûleur d'un dispositif (15) de commande et de capteurs supplémentaires pour déterminer la qualité de la combustion, on fait fonctionner le brûleur avec un premier combustible ayant une certaine teneur en énergie à des valeurs de puissance différentes, respectivement, avec des états différents de l'actionneur, en déterminant à partir des résultats des capteurs pour chaque valeur de puissance un état souhaité de l'actionneur, on détermine à partir des états souhaités de l'actionneur des données caractéristiques pour la détermination du premier comportement de l'actionneur (17), on fait fonctionner le brûleur avec un deuxième combustible ayant une teneur en énergie différente à des valeurs de puissance différentes avec, respectivement, des états différents de l'actionneur, en déterminant à partir des résultats des capteurs pour chaque valeur de puissance un état souhaité de l' actionneur, on détermine à partir des états souhaités de l'actionneur des données caractéristiques pour la détermination du deuxième comportement de l'actionneur (17), et on mémorise des données caractéristiques déterminées dans le dispositif (15) de commande.
     
    11. Procédé de réglage de dispositif de commande de brûleur suivant la revendication 10, caractérisé en ce que la teneur en énergie spécifique de l'un des combustibles est supérieure d'au moins 5 % à celle de l'autre combustible.
     
    12. Procédé de réglage de dispositif de commande de brûleur suivant la revendication 10 ou 11, caractérisé en ce que on fait fonctionner le brûleur avec un apport de combustible sous une première pression à des valeurs de puissance différentes avec, respectivement, des états différents de l'actionneur, en déterminant à partir des résultats des capteurs pour chaque valeur de puissance un état souhaité de l' actionneur, on détermine à partir des états souhaités de l'actionneur des données caractéristiques pour la détermination du premier comportement de l'actionneur (17), on fait fonctionner le brûleur avec un apport de combustible sous une deuxième pression différente à des valeurs de puissance différentes avec, respectivement, des états différents de l'actionneur, en déterminant à partir des résultats des capteurs pour chaque valeur de puissance un état souhaité de l'actionneur, on détermine à partir des états souhaité des l'actionneur des données caractéristiques de détermination du deuxième comportement de l'actionneur (17), et on mémorise les données caractéristiques déterminées dans le dispositif (15) de commande.
     
    13. Procédé de réglage de dispositif de commande de brûleur suivant la revendication 12, caractérisé en ce que l'une des pressions d'apport du combustible est supérieure d'au moins 9 % à l'autre.
     




    Zeichnung














    Angeführte Verweise

    IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



    Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

    In der Beschreibung aufgeführte Patentdokumente