(19)
(11) EP 1 157 090 B2

(12) NEUE EUROPÄISCHE PATENTSCHRIFT
Nach dem Einspruchsverfahren

(45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Entscheidung über den Einspruch:
27.08.2014  Patentblatt  2014/35

(45) Hinweis auf die Patenterteilung:
21.09.2005  Patentblatt  2005/38

(21) Anmeldenummer: 00909239.6

(22) Anmeldetag:  23.02.2000
(51) Internationale Patentklassifikation (IPC): 
C11D 17/00(2006.01)
(86) Internationale Anmeldenummer:
PCT/EP2000/001473
(87) Internationale Veröffentlichungsnummer:
WO 2000/052127 (08.09.2000 Gazette  2000/36)

(54)

VERFAHREN ZUR HERSTELLUNG MEHRPHASIGER WASCH- UND REINIGUNGSMITTELFORMKÖRPER

METHOD OF PREPARING MULTI-PHASE MOULDED DETERGENT AND/OR CLEANING AGENT ARTICLES

PROCEDE DE PRODUCTION DE CORPS MOULES DETERGENTS ET NETTOYANTS A PHASES MULTIPLES


(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

(30) Priorität: 03.03.1999 DE 19909271
13.07.1999 DE 19932568

(43) Veröffentlichungstag der Anmeldung:
28.11.2001  Patentblatt  2001/48

(73) Patentinhaber: Henkel AG & Co. KGaA
40589 Düsseldorf (DE)

(72) Erfinder:
  • HOLDERBAUM, Thomas
    D-40789 Monheim (DE)
  • BEAUJEAN, Hans-Josef
    D-41539 Dormagen (DE)
  • NITSCH, Christian
    D-40591 Düsseldorf (DE)
  • HÄRER, Jürgen
    D-40593 Düsseldorf (DE)
  • SEMRAU, Markus
    D-24644 Timmaspe (DE)
  • RICHTER, Bernd
    D-42799 Leichlingen (DE)


(56) Entgegenhaltungen: : 
EP-A- 0 055 100
EP-A1- 0 481 547
WO-A-00/04116
WO-A-99/27063
WO-A1-00/06689
WO-A1-99/27069
GB-A- 2 327 949
EP-A- 0 851 023
EP-A1- 0 922 756
WO-A-00/04122
WO-A-99/40171
WO-A1-99/06522
DE-A1- 19 834 181
   
       


    Beschreibung


    [0001] Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung mehrphasiger Formkörper, wobei die einzelnen Phasen eine unterschiedliche Zusammensetzung aufweisen können. Insbesondere eignet sich das vorgestellte Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern wie beispielsweise Bleichmitteltabletten, Fleckensalztabletten, Reinigungsmitteltabletten für das maschinelle Geschirrspülen, Waschmitteltabletten oder Wasserenthärtetabletten.

    [0002] Rundlaufpressen zur Herstellung von Tabletten aus den verschiedensten Stoffen und für die unterschiedlichsten Anwendungsgebiete sind aus dem Stand der Technik bekannt. Bei diesen Pressen weist eine um eine (zumeist vertikal stehende) Achse angetriebene Matrizenscheibe auf einem Kreis angeordnete Bohrungen (Matrizen) auf, den synchron mit der Scheibe umlaufende Preßstempelpaare zugeordnet sind. Die Preßstempel werden dabei durch Steuerkurven und Druckrollen abgesenkt bzw. angehoben, so daß die in die Matrize eingefüllte Mischung verdichtet und ausgestoßen wird. Während der Befüllung der Matrizenbohrungen mittel einer geeigneten Füllvorrichtung (Füllschuh) wird der Boden der Matrize durch den Unterstempel gebildet, wobei das Matrizenvolumen und damit die Dosierung der zu tablettierenden Mischung von der Höhe des Unterstempels in der Matrizenbohrung abhängt. Nach dem Einfüllen wird das Vorgemisch durch Absenken des Oberstempels mittels einer Druckrolle bzw. die Aufeinanderzubewegung gegenüberliegender Preßstempel auf eine gewünschte Höhe verdichtet, wobei moderne Preßstationen eine Vordruck- und eine Hauptdruckstation aufweisen. Im Anschluß an die Verdichtung werden Ober- und Unterstempel angehoben, wodurch die Tablette an einer bestimmten Stelle der Maschine aus der Matzrize austritt und durch geeignete Vorrichtungen (Abstreifer) von der Matrizenscheibe entfernt und einem Ablaufkanal zugeführt werden kann. Bei diesem Vorgang hebt sich der Oberstempel im allgemeinen stärker und schneller an als der Unterstempel.

    [0003] Mit Hilfe der bekannten Rundläuferpressen ist es nicht nur möglich, durchgehend homogen zusammengesetzte ("einphasige") Tabletten herzustellen; vielmehr sind durch Einbau mehrerer Füllschuhe und Druckrollen bzw. Auswurfschienen auch mehrschichtige Tabletten herstellbar. Dabei wird die zuerst eingefüllte Schicht gar nicht oder nur leicht vorverpreßt, und die Endverpressung erfolgt nach Befüllen der Matrize mit dem Vorgemisch für die letzte Schicht, um den Zusammenhalt der einzelnen Schichten zu verbessern. Auch die Herstellung anderer geometrischer Phasenaufteilungen wir beispielsweise Manteltabletten oder Ring/Kerntabletten (in der Pharmazie üblicherweise als Punkttabletten oder Bull-eye-Tabletten bezeichnet) gelingt mit herkömmlichen Rundläuferpressen, indem eine Transfer- und Zentriervorrichtung angebracht wird, die einen vorverpreßten Kern in die befüllte Matrize einlegt, bevor die gesamte Mischung endverpreßt wird.

    [0004] Die Form der Matrizenbohrungen und der Stempeloberflächen kann innerhalb weiter Grenzen variiert werden. So sind runde, ovale und eckige Tabletten mit planer ober gewölbter Oberfläche, oder mit abgeschrägten Kanten herstellbar.

    [0005] Aus der Batterieherstellung ist die Produktion von ringförmigen "Tabletten" mit der Rundläufertechnologie bekannt. Die später mit einem Kohlstift zu befüllenden Graphit-Mangan-Ringe werden dabei mit einem ringförmigen Unterstempel hergestellt, wobei in die Matrize von unten ein starr befestigter Mittendorn hineinragt, an dem sich der Unterstempel auf- und abwärts vorbeibewegt. Dabei ist der Unterstempel in seinem Unterteil mit zwei Kerben versehen, die an der Halterung des Mittendorns vorbeigleiten.

    [0006] Zu den vorstehend genannten Herstellverfahren existiert umfangreiches Schrifftum, insbesondere auf dem Anwendungsgebiet der Pharmazie. Neben Lehrbüchern zur pharmazeutischen Technologie wie "Hagers Handbuch der pharmazeutischen Praxis ", Band 2, 5. Aufl. 1991, Springer Verlag Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, Seite 938ff. oder K. H. Bauer, K.-H. Frömming, C. Führer "Pharmazeutische Technologie ", 4. Auflage 1997, Gustav Fischer Verlag Stuttgart, Jena. Lübeck, Ulm, Seite 299ff. existieren zahlreiche Spezialmonographien, beispielsweise das dreibändige Werk H. A. Liebermann, L. Lachmann, J B. Schwartz "Pharmaceutical Dosage Forms - Tablets", Verlag M. Dekker Inc., New York, 1989.

    [0007] Auch in der Patentliteratur existiert eine Vielzahl von Veröffentlichungen, die sich mit der Herstellung mehrschichtiger oder -phasiger Tabletten beschäftigen. So offenbart das US-Patent 5,158,728 (Sanderson et al) eine Vorrichtung zum Pressen zweischichtiger Tabletten, die eine spezielle Form aufweisen. Dreischichtige Tabletten, die bei der Batterieherstellung Verwendung finden, werden in der EP-A-0 307 209 (Sharp) beschrieben. Eine Rundläuferpresse für das Pressen zweischichtiger Tabletten wird auch in der deutschen Gebrauchsmusteranmeldung G 92 08 040.5 U1 beschreiben. Diese Presse weist eine Zwischenentnahmestation mit einem verstellbaren Auswerferkurvensegment und einer Ablaufweiche auf, durch die die Preßlinge einem Schlechtkanal oder einer Prüfstation zugelenkt werden können.

    [0008] Mehrphasige bzw. -schichtige Formkörper werden auch auf dem Gebiet der Wasch- und Reinigungsmittel beschrieben, wobei hier der Wirkstofftrennung eine erhöhte Bedeutung zukommt. So beschreiben die europäischen Patentanmeldungen EP 851 023, EP 851 024 und EP 851 025 (alle Unilever) mittels herkömmlicher Preßtechnologie herstellbare Zweischichttabletten, die in der ersten Schicht Gerüststoffe, Enzyme, ein Puffersystem und optional Bleichmittel enthalten, während in einer zweiten Schicht, ein Wachs, Acidifizierungsmittel sowie optional Persäuren und/oder antscaling-Polymere enthalten sind. Durch die Wahl des Schmelzpunktes der eingesetzten Wachse (35-50°C bzw. 55-70°C) kann eine temperaturgesteuerte Freisetzung der Wirkstoffe in der zweiten Schicht erfolgen.

    [0009] Ein anderes Herstellverfahren für zwei- oder mehrphasige Wasch- und Reinigungsmittelformkörper wird in der nicht vorveröffentlichten deutschen Patentanmeldung DE 198 31 704.2 (Henkel KGaA) beschrieben. Nach der Lehre dieser Schrift wird ein teilchenförmiges Vorgemisch zu Formkörpern verpreßt, welche eine Mulde aufweisen. Diese Mulde wird anschließend mit einer Schmelzsuspension oder -emulsion aus einer Hüllsubstanz, die einen Schmelzpunkt oberhalb von 30°C aufweist und einem oder mehreren in ihr dispergierten oder suspendierten Aktivstoff(en) bei Temperaturen oberhalb des Schmelzpunkts der Hüllsubstanz befüllt, wonach die Formkörper abgekühlt und optional nachbehandelt werden.

    [0010] Das letztgenannte Verfahren erlaubt es, vom herkömmlichen Schichtaufbau abweichende Formkörper herzustellen. Diese optische Differenzierung unterstreicht einerseits die Unverwechselbarkeit einess Produkts, andererseits werden ästhetische Vorteile erzielt, da der Wiederekennungseffekt bei optischer Differenzierung größer ist, wodurch die Verbraucherakzeptanz steigt.

    [0011] Weitere Wasch- bzw. Reinigungsmittelformkörper werden in GB-A-2327949, EP-A-0055100 und WO-A-00/04122 (Stand der Technik unter Art. 54(3)EPÜ) offenbart.

    [0012] Es bestand nun die Aufgabe, weitere Verfahren zu entwickeln, die die Herstellung mehrphasiger Wasch- und Reinigungsmittelformkörper erlauben. Dabei sollten diese Verfahren einerseits auch großtechnisch kostengünstig durchführbar sein und eine Trennung miteinander unverträglicher Inhaltsstoffe ermöglichen, andererseits sollten die nach dem bereitzustellenden Verfahren hergestellten Formkörper ein hohes Maß an optischer Eigeständigkeit aufweisen, welche die Verbraucherakzeptanz erhöht. Bekannte Formkörper-Ausführungsformen wie Mehrschichttabletten, Ringkerntabletten, Manteltabletten, Muldentabletten, Spiegeleitabletten usw. kamen dabei als Lösung nicht in Betracht.

    [0013] Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung mehrphasiger Wasch- und Reinigungsmittelformkörper, das die folgenden Schritte umfaßt:
    1. a) Verpressen eines teilchenförmigen Vorgemischs zu Formkörpern,
    2. b) Aufbringen eines oder mehrerer Haftvermittler enthaltend eine oder mehrere Substanzen aus der Gruppe der Wechse oder konzentrierte Salzlösungen oder Lösungen bzw. Suspensionen von wasserLöslichen bzw. - dispergierbaren Polymeren in Form von Haftvermittlerpunkten oder -linien auf eine oder mehrere Flächen der Formkörper,
    3. c) Aufbringen weiterer Aktivsubstanz in Form, eines verpressten Formkörpers,
    4. d) optionale Nachbehandlung (Nachformung) der auf die Oberfläche des Formkörpers aufgebrachten Aktivsubstanzen,


    [0014] Das erfindungsgemäße Verfahren stellt dabei in Schritt a) mit herkömmlicher Preßtechnologie ein- oder mehrphasige Formkörper her, auf die in den nachfolgenden Verfahrensschritten weitere Aktivsubstanzen aufgebracht werden. Dabei können - je nach Geometrie des in Schritt a) erzeugten Formkörpers - die weiteren Aktivsubstanzen nur auf eine, auf mehrere oder auf alle Flächen des Formkörpers aufgebracht werden. Hierbei sind der Gestaltungsvielfalt keine Grenzen gesetzt, so daß die weitere Aktivsubstanz in Form eines größeren Volumens oder mehrerer kleiner Volumina aufgebracht werden kann. Werden die Aktivsubstanzen in fester Form auf alle Flächen aufgebracht und erfolgt keine Nachformung, so ist der resultierende Formkörper mit einer Rumkugel vergleichbar, auf der Schokoladenstreusel aufgebracht sind.

    [0015] Das erfindungsgemäße Verfahren wird nachfolgend Schritt für Schritt näher erläutert.

    [0016] In Schritt a) wird mittels herkömmlicher Preßtechnologie ein teilchenförmiges Vorgemisch, welches Inhaltsstoffe von Wasch- und Reinigungsmitteln enthält, in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen.

    [0017] Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formkörpers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosierung auch bei hohen Formkörperdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempels ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt, wobei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimmten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formkörpers kommt. Je nach den physikalischen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zerdrückt und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elastischen Verformung immer weiter verkürzt, so daß die entstehenden Formkörper mehr oder minder große Hohlräume aufweisen können. Im letzten Schritt der Tablettierung wird der fertige Formkörper durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formkörpers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Größe noch ändern können.

    [0018] Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfach- oder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Verpressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenterpressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.

    [0019] Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Befüllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Nierderzugschienen und Aushebebahnen unterstützt. Die Befüllung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht.

    [0020] Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei- und mehrschichtiger Formkörper werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Verpressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formkörper pro Stunde.

    [0021] Im Rahmen der vorliegenden Erfindung für den Verfahrensschritt a) geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen GmbH, Berlin, Mapag Maschinenbau AG, Bern (CH) sowie Courtoy N.V., Halle (BE/LU). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D.

    [0022] Die Formkörper können dabei in vorbestimmter Raumform und vorbestimmter Größe gefertigt werden. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.

    [0023] Die portionierten Preßlinge können dabei jeweils als voneinander getrennte Einzelelemente ausgebildet sein, die der vorbestimmten Dosiermenge der Wasch- und/oder Reinigungsmittel entspricht. Ebenso ist es aber möglich, Preßlinge auszubilden, die eine Mehrzahl solcher Masseneinheiten in einem Preßling verbinden, wobei insbesondere durch vorgegebene Sollbruchstellen die leichte Abtrennbarkeit portionierter kleinerer Einheiten vorgesehen ist. Für den Einsatz von Textilwaschmitteln in Maschinen des in Europa üblichen Typs mit horizontal angeordneter Mechanik kann die Ausbildung der portionierten Preßlinge als Tabletten, in Zylinder- oder Quaderform zweckmäßig sein, wobei ein Durchmesser/Höhe-Verhältnis im Bereich von etwa 0,5 : 2 bis 2 : 0,5 bevorzugt ist. Handelsübliche Hydraulikpressen, Exzenterpressen oder Rundläuferpressen sind geeignete Vorrichtungen insbesondere zur Herstellung derartiger Preßlinge.

    [0024] Die Raumform einer anderen Ausführungsform der Formkörper ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen angepaßt, so daß die Formkörper ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflöst. Sollen erfindungsgemäße Reinigungsmitteltabletten für das maschinelle Geschirrspülen hergestellt werden, empfiehlt sich eine rechteckige Grundfläche, bei der die Höhe der Formkörper kleiner ist als die kleinere Rechteckseite. Abgerundete Ecken sind bei dieser Angebotsform bevorzugt.

    [0025] Ein weiterer bevorzugter Formkörper, der hergestellt werden kann, hat eine platten- oder tafelartige Struktur mit abwechselnd dicken langen und dünnen kurzen Segmenten, so daß einzelne Segmente von diesem "Riegel" an den Sollbruchstellen, die die kurzen dünnen Segmente darstellen, abgebrochen und in die Maschine eingegeben werden können. Dieses Prinzip des "riegelförmigen" Formkörperwaschmittels kann auch in anderen geometrischen Formen, beispielsweise senkrecht stehenden Dreiecken, die lediglich an einer ihrer Seiten längsseits miteinander verbunden sind, verwirklicht werden.

    [0026] Möglich ist es aber auch, daß die verschiedenen Komponenten nicht zu einer einheitlichen Tablette verpreßt werden, sondern daß in Schritt a) Formkörper erhalten werden, die mehrere Schichten, also mindestens zwei Schichten, aufweisen. Dabei ist es auch möglich, daß diese verschiedenen Schichten unterschiedliche Lösegeschwindigkeiten aufweisen. Hieraus können vorteilhafte anwendungstechnische Eigenschaften der Formkörper resultieren. Falls beispielsweise Komponenten in den Formkörpern enthalten sind, die sich wechselseitig negativ beeinflussen, so ist es möglich, die eine Komponente in der schneller löslichen Schicht zu integrieren und die andere Komponente in eine langsamer lösliche Schicht einzuarbeiten, so daß die erste Komponente bereits abreagiert hat, wenn die zweite in Lösung geht. Der Schichtaufbau der Formkörper kann dabei sowohl stapelartig erfolgen, wobei ein Lösungsvorgang der inneren Schicht(en) an den Kanten des Formkörpers bereits dann erfolgt, wenn die äußeren Schichten noch nicht vollständig gelöst sind, es kann aber auch eine vollständige Umhüllung der inneren Schicht(en) durch die jeweils weiter außen liegende(n) Schicht(en) erreicht werden, was zu einer Verhinderung der frühzeitigen Lösung von Bestandteilen der inneren Schicht(en) führt.

    [0027] Nach dem Verpressen weisen die Wasch- und Reinigungsmittelformkörper eine hohe Stabilität auf. Die Bruchfestigkeit zylinderförmiger Formkörper kann über die Meßgröße der diametralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach



    [0028] Das zu verpressende Vorgemisch kann alle üblicherweise in Wasch- und Reinigungsmitteln enthaltenen Inhaltsstoffe enthalten, wobei die Zusammensetzung in Abhängigkeit vom Verwendungszweck des späteren Formkörpers variiert. So enthalten Waschmitteltabletten höhere Mengen an Tensiden als Reinigungsmitteltabletten für das maschinelle Geschirrspülen, während Bleichmitteltabletten und Wasserenthärtungstabletten üblicherweise tensidfrei formuliert werden. Auch die Menge und Art der eingesetzten Gerüststoffe, Bleichmittel usw. kann je nach gewünschtem Verwendungszweck variieren. Unabhängig vom Verwendungszweck enthalten die meisten Wasch- und Reinigungsmittelformkörper einen oder mehrere Stoffe aus der Gruppe der Builder. In den in Schritt a) des erfindungsgemäßen Verfahrens hergestellten Wasch- und Reinigungsmittelformkörpern können als Gerüststoff alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und auch die Phosphate.

    [0029] Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1 ·H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5 · yH2O bevorzugt, wobei β-Natriumdisilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.

    [0030] Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.

    [0031] Der einsetzbare feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
             nNa2O · (1-n)K2O · Al2O3 · (2 - 2,5)SiO2 · (3,5 - 5,5) H2O
    beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granularen Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.

    [0032] Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate.

    [0033] Als organische Cobuilder können in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörper insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.

    [0034] Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure. Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure. Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.

    [0035] Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.

    [0036] Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.

    [0037] Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.

    [0038] Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.

    [0039] Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.

    [0040] Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.

    [0041] Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.

    [0042] Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.

    [0043] Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE-A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.

    [0044] Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmeldung DE-A-195 40 086 offenbart wird, daß sie neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.

    [0045] Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.

    [0046] Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.

    [0047] Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 und EP-A-0 542 496 sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE-A-196 00 018. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.

    [0048] Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.

    [0049] Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.

    [0050] Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.

    [0051] Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.

    [0052] In erfindungsgemäß hergestellten Formkörpern für das maschinelle Geschirrspülen sind wasserlösliche Builder bevorzugt, da sie auf Geschirr und harten Oberflächen in der Regel weniger dazu tendieren, unlösliche Rückstände zu bilden. Übliche Builder, die in erfindungsgemäßen maschinellen Geschirrspülmitteltabletten zwischen 10 und 90 Gew.-% bezogen auf das zu verpressende Vorgemisch zugegen sein können, sind die niedermolekularen Polycarbonsäuren und ihre Salze, die homopolymeren und copolymeren Polycarbonsäuren und ihre Salze, die Carbonate, Phosphate und Silikate. Bevorzugt werden zur Herstellung von Formkörpern für das maschinelle Geschirrspülen Trinatriumcitrat und/oder Pentanatriumtripolyphosphat und/oder Natriumcarbonat und/oder Natriumbicarbonat und/oder Gluconate und/oder silikatische Builder aus der Klasse der Disilikate und/oder Metasilikate eingesetzt. Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat. Ebenfalls besonders bevorzugt ist ein Buildersystem, das eine Mischung aus Tripolyphosphat und Natriumcarbonat und Natriumdisilikat enthält.

    [0053] Im Rahmen der vorliegenden Erfindung sind Verfahrensvarianten bevorzugt, bei denen das in Schritt a) verpreßte teilchenförmige Vorgemisch Builder in Mengen von 20 bis 80 Gew.-%, vorzugsweise von 25 bis 75 Gew.-% und insbesondere von 30 bis 70 Gew.-%, jeweils bezogen auf das Vorgemisch, enthält.

    [0054] Das Vorgemisch kann außer den oben beschriebenen Gerüststoffen auch die bereits erwähnten waschaktiven Substanzen enthalten, die insbesondere für Waschmitteltabletten wichtige Inhaltsstoffe sind. Je nach herzustellendem Formkörper sind bei der Beantwortung der Fragen, ob und wenn ja welche Tenside man einsetzt, unterschiedliche Antworten möglich. Üblicherweise können Formkörper für das Waschen von Textilien die unterschiedlichsten Tenside aus den Gruppen der anionischen, nichtionischen, kationischen und amphoteren Tenside enthalten, während Formkörper für das maschinelle Geschirrspülen vorzugsweise nur schwachschäumende nichtionische Tenside enthalten und Wasserenthärtungstabletten oder Bleichmitteltabletten frei von Tensiden sind. Dem Fachmann sind bei der Inkorporation der Tenside in das zu verpressende Vorgemisch hinsichtlich der Formulierungsfreiheit keine Grenzen gesetzt.

    [0055] Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkem- oder Talgfettsäuren geeignet.

    [0056] Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestem sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.

    [0057] Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.

    [0058] Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.

    [0059] Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobemsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.

    [0060] Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.

    [0061] Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Tri-ethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.

    [0062] Werden im Rahmen der vorliegenden Erfindung Waschmitteltabletten hergestellt, so ist es bevorzugt, daß diese 5 bis 50 Gew.-%, vorzugsweise 7,5 bis 40 Gew.-% uns insbesondere 10 bis 20 Gew.-% anionische Tensid(e), jeweils bezogen auf das Formkörpergewicht, enthalten.

    [0063] Bei der Auswahl der anionischen Tenside, die in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern zum Einsatz kommen, stehen der Formulierungsfreiheit keine einzuhaltenden Rahmenbedingungen im Weg. Bevorzugte Waschmittelformkörper weisen jedoch einen Gehalt an Seife auf, der 0,2 Gew.-%, bezogen auf das Gesamtgewicht des Formkörpers, übersteigt. Bevorzugt einzusetzende anionische Tenside sind dabei die Alkylbenzolsulfonate und Fettalkoholsulfate, wobei bevorzugte Waschmittelformkörper 2 bis 20 Gew.-%, vorzugsweise 2,5 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.-% Fettalkoholsulfat(e), jeweils bezogen auf das Formkörpergewicht, enthalten Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.

    [0064] Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden.

    [0065] Eine weitere Klasse von nichtionischen Tensiden, die vorteilhaft eingesetzt werden kann, sind die Alkylpolyglycoside (APG). Einsetzbare Alkypolyglycoside genügen der allgemeinen Formel RO(G)z, in der R für einen linearen oder verzweigten, insbesondere in 2-Stellung methylverzweigten, gesättigten oder ungesättigten, aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Glycosidierungsgrad z liegt dabei zwischen 1,0 und 4,0, vorzugsweise zwischen 1,0 und 2,0 und insbesondere zwischen 1,1 und 1,4.

    [0066] Bevorzugt eingesetzt werden lineare Alkylpolyglucoside, also Alkylpolyglycoside, in denen der Polyglycosylrest ein Glucoserest und der Alkylrest ein n-Alkylrest ist.

    [0067] Die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper können bevorzugt Alkylpolyglycoside enthalten, wobei Gehalte der Formkörper an APG über 0,2 Gew.-%, bezogen auf den gesamten Formkörper, bevorzugt sind. Besonders bevorzugte Wasch- und Reinigungsmittelformkörper enthalten APG in Mengen von 0,2 bis 10 Gew.-%, vorzugsweise 0,2 bis 5 Gew.-% und insbesondere von 0,5 bis 3 Gew.-%.

    [0068] Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.

    [0069] Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I),

    in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.

    [0070] Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),

    in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.

    [0071] [Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.

    [0072] Bei der Herstellung von Formkörpern für das maschinelle Geschirrspülen kommen als Tenside prinzipiell ebenfalls alle Tenside in Frage. Bevorzugt sind für diesen Anwendungszweck aber die vorstehend beschriebenen nichtionischen Tenside und hier vor allem die schwachschäumenden nichtionischen Tenside. Besonders bevorzugt sind die alkoxylierten Alkohole, besonders die ethoxylierten und/oder propoxylierten Alkohole. Dabei versteht der Fachmann allgemein unter alkoxylierten Alkoholen die Reaktionsprodukte von Alkylenoxid, bevorzugt Ethylenoxid, mit Alkoholen, bevorzugt im Sinne der vorliegenden Erfindung die längerkettigen Alkohole (C10 bis C18, bevorzugt zwischen C12 und C16, wie z. B. C11-, C12-, C13-, C14-, C15-, C16- ,C17- und C18-Alkohole). In der Regel entstehen aus n Molen Ethylenoxid und einem Mol Alkohol, abhängig von den Reaktionsbedingungen ein komplexes Gemisch von Additionsprodukten unterschiedlichen Ethoxylierungsgrades. Eine weitere Ausführungsform besteht im Einsatz von Gemischen der Alkylenoxide bevorzugt des Gemisches von Ethylenoxid und Propylenoxid. Auch kann man gewünschtenfalls durch eine abschließende Veretherung mit kurzkettigen Alkylgruppen, wie bevorzugt der Butylgruppe, zur Substanzklasse der "verschlossenen" Alkoholethoxylaten gelangen, die ebenfalls im Sinne der Erfindung eingesetzt werden kann. Ganz besonders bevorzugt im Sinne der vorliegenden Erfindung sind dabei hochethoxylierte Fettalkohole oder deren Gemische mit endgruppenverschlossenen Fettalkoholethoxylaten.

    [0073] Wird das erfindungsgemäße Verfahren zur Herstellung von Reinigungsmitteltabletten für das maschinelle Geschirrspülen eingesetzt, so ist es bevorzugt, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch Tensid(e), vorzugsweise nichtionische(s) Tensid(e), in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 0,75 bis 7,5 Gew.-% und insbesondere von 1,0 bis 5 Gew.-%, jeweils bezogen auf das Vorgemisch, enthält.

    [0074] Unabhängig vom Einsatzzweck der herzustellenden Formkörper kann es vorteilhaft sein, wenn das in Schritt a) des erfindungsgemäßen Verfahrens zu verpressende Vorgemisch bestimmte physikalische Eigenschaften aufweist. Insbesondere sind hierbei erfindungsgemäße Verfahren bevorzugt, die dadurch gekennzeichnet sind, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch ein Schüttgewicht oberhalb von 600 g/l, vorzugsweise oberhalb von 700 g/l und insbesondere oberhalb von 800 g/l aufweist.

    [0075] Auch die Partikelgrößenverteilung des Vorgemischs kann Einfluß auf die Eigenschaften der in Schritt a) hergestellten Formkörper haben. Bevorzugte Verfahren sind dadurch gekennzeichnet, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch eine Teilchengrößenverteilung aufiveist, bei der weniger als 10 Gew.-%, vorzugsweise weniger als 7,5 Gew.-% und insbesondere weniger als 5 Gew.-% der Teilchen größer als 1600 µm oder kleiner als 200 µm sind. Vorzugsweise liegt die Teilchengrößenverteilung des in Schritt a) verpreßten Vorgemischs noch enger, so daß besonders bevorzugte Verfahren dadurch gekennzeichnet sind, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch eine Teilchengrößenverteilung aufweist, bei der mehr als 30 Gew.-%, vorzugsweise mehr als 40 Gew.-% und insbesondere mehr als 50 Gew.-% der Teilchen eine Teilchengröße zwischen 600 und 1000 µm aufweisen.

    [0076] Wie bereits eingangs beschrieben, können in Schritt a) selbstverständlich nicht nur einphasige Formkörper hergestellt werden, sondern auch mehrphasige bzw. -schichtige Formkörper, die in an sich bekannter Weise hergestellt werden, indem mehrere unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden. Besonders ist hierbei die Herstellung zweischichtiger Formkörper in Schritt a), indem zwei unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden, von denen eines ein oder mehrere Bleichmittel und das andere ein oder mehrere Enzyme enthält. Selbstverständlich kann nicht nur die Trennung von Bleichmittel und oxidationsempfindlichen Substanzen (Enzymen, Farb- und Duftstoffen) auf diese Weise realisiert werden, sondern auch die Trennung von Bleichmittel und Bleichaktivator, indem zwei unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden, von denen eines ein oder mehrere Bleichmittel und das andere ein oder mehrere Bleichaktivatoren enthält.

    [0077] Die genannten Inhaltsstoffe sowie weitere Inhaltsstoffe von Wasch- und Reinigungsmitteln wie beispielsweise Desintegrationshilfsmittel, Silberschutzmittel, optische Aufheller, Farbübertragungsinhibitoren, Korrosionsinhibitoren, pH-Stellmittel Tenside, Enzyme, Polymere, Fluoreszenzmittel, Schauminhibitoren, Antiredepositionsmittel, Vergrauungsinhibitoren und Mischungen hieraus können in den Vorgemischen enthalten sein, die in Schritt a) in an sich bekannter Weise verpreßt werden. Diese Stoffe werden nachstehend beschrieben.

    [0078] Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Auch beim Einsatz der Bleichmittel ist es möglich, auf den Einsatz von Tensiden und/oder Gerüststoffen zu verzichten, so daß reine Bleichmitteltabletten herstellbar sind. Sollen solche Bleichmitteltabletten zur Textilwäsche eingesetzt werden, ist der Einsatz von Natriumpercarbonat bevorzugt, unabhängig davon, welche weiteren Inhaltsstoffe in den Formkörpern enthalten sind. Werden Reinigungs- oder Bleichmitteltabletten für das maschinelle Geschirrspülen hergestellt, so können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesium-monoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N-nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxy-phthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.

    [0079] Als Bleichmittel in Formkörpern für das maschinelle Geschirrspülen können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet.

    [0080] Um beim Waschen oder Reinigen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in das zu verpressende Vorgemisch eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.

    [0081] Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Formkörper eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder - carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.

    [0082] Als Enzyme kommen in Vorgemischen für Reinigungsmitteltabletten insbesondere solche aus der Klassen der Hydrolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen zur Entfernung von Anschmutzungen wie protein-, fett- oder stärkehaltigen Verfleckungen bei. Zur Bleiche können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus und Humicola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere alpha-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen.

    [0083] Die Enzyme können an Trägerstoffe adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,5 bis etwa 4,5 Gew.-% betragen.

    [0084] In Vorgemischen für Waschmitteltabletten kommen neben den vorstehend genannten Enzymen zusätzlich noch Cellulasen in Betracht. Cellulasen und andere Glykosylhydrolasen können durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und -Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich verschiedene Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden.

    [0085] Sollen erfindungsgemäße Formkörper für das maschinelle Reinigen von Geschirr hergestellt werden, so können diese zum Schutze des Spülgutes oder der Maschine Korrosionsinhibitoren enthalten, wobei Silberschutzmittel im Bereich des maschinellen Geschirrspülens eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.

    [0086] Zusätzlich können Vorgemische für erfindungsgemäß hergestellte Waschmittelformkörper auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.

    [0087] Das zu verpressende Vorgemisch kann, wenn man Textilwaschmittelformkörper herstellen will, als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.

    [0088] Duftstoffe können den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern zugesetzt werden, um den ästhetischen Eindruck der entstehenden Produkte zu verbessern und dem Verbraucher neben der Reinigungsleistung und dem Farbeindruck ein sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat. Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat. Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat. Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, ∝-lsomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.

    [0089] Die Duftstoffe können direkt in das Vorgemisch eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.

    [0090] Um den Zerfall hochverdichteter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.

    [0091] Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.

    [0092] Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% eines oder mehrerer Desintegrationshilfsmittel, jeweils bezogen auf das Formkörpergewicht.

    [0093] Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reinigungsmittelformkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.

    [0094] Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Wasch- und Reinigungsmittelformkörper, die Sprengmittel in granularer oder gegebenenfalls cogranulierter Form enthalten, werden in den deutschen Patentanmeldungen DE 197 09 991 (Stefan Herzog) und DE 197 10 254 (Henkel) sowie der internationalen Patentanmeldung WO98/40463 (Henkel) beschrieben. Diesen Schriften sind auch nähere Angaben zur Herstellung granulierter, kompaktierter oder cogranulierter Cellulosesprengmittel zu entnehmen. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 µm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 µm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 µm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulosebasis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.

    [0095] Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kompaktierbar sind.

    [0096] In Schritt b) des erfindungsgemäßen Verfahrens werden Haftvermittler auf eine oder mehrere Flächen der Formkörper aufgebracht.

    [0097] Als Haftvermittler lassen sich Stoffe einsetzen die den Formkörperflächen, auf die sie aufgetragen werden, eine ausreichende Haftfähigkeit "(Klebrigkeit") verleihen, damit die im nachfolgenden Verfahrensschritt aufgebrachten Substanzen dauerhaft an der Fläche haften. Prinzipiell bieten sich hier die in der einschlägigen Klebstoffliteratur und insbesondere in den Monographien hierzu erwähnten Substanzen an, wobei im Rahmen der vorliegenden Erfindung dem Aufbringen von Schmelzen, welche bei erhöhter Temperatur haftvermittelnd wirken, nach Abkühlung aber nicht mehr klebrig, sondern fest sind, eine besondere Bedeutung zukommt.

    [0098] Erfindungsgemäße Verfahren, in denen in Schritt b) als Haftvermittler Schmelzen einer oder mehrerer Substanzen mit einen Schmelzbereich von 40°C bis 75 °C auf eine oder mehrere Flächen des Formkörpers aufgebracht werden, sind demnach bevorzugt.

    [0099] An die Haftvermittler, die in Verfahrensschritt Schritt b) aufgebracht werden, werden verschiedene Anforderungen gestellt, die zum einen das Schmelz- beziehungsweise Erstarrungsverhalten, zum anderen jedoch auch die Materialeigenschaften der Umhüllung im erstarrten Bereich bei Umgebungstemperatur betreffen. Da die auf den Formkörper aufgebrachte Schicht des Haftvermittlers die "aufgeklebten" Aktivstoffe bei Transport oder Lagerung dauerhaft halten soll, muß sie eine hohe Stabilität gegenüber beispielsweise bei Verpackung oder Transport auftretenden Stoßbelastungen aufweisen. Die Haftvermittler sollten also entweder zumindest teilweise elastische oder zumindest plastische Eigenschaften aufweisen, um auf eine auftretende Stoßbelastung durch elastische oder plastische Verformung zu reagieren und nicht zu zerbrechen. Die Haftvermittler sollten einen Schmelzbereich (Erstarrungsbereich) in einem solchen Temperaturbereich aufweisen, bei dem die aufzubringenden Aktivstoffe keiner zu hohen thermischen Belastung ausgesetzt werden. Andererseits muß der Schmelzbereich jedoch ausreichend hoch sein, um bei zumindest leicht erhöhter Temperatur noch eine wirksame Haftung der aufgebrachten Aktivstoffe zu bieten. Erfindungsgemäß weisen die Hüllsubstanzen bevorzugt einen Schmelzpunkt über 30°C auf. Die Breite des Schmelzbereichs der Haftvermittler hat ebenfalls unmittelbare Auswirkungen auf die Verfahrensdurchführung: Der mit Haftvermittler versehene Formkörper muß im darauffolgenden Verfahrensschritt in Kontakt mit den aufzubringenden Aktivsubstanzen gebracht werden - zwischenzeitlich darf die Haftfähigkeit nicht verloren gehen. Nach Aufnahme der Aktivsubstanzen sollte die Haftfähigkeit möglichst schnell reduziert werden, um unnötigen Zeitverlust zu vermeiden bzw. Anbackungen und Stauungen in nachfolgenden Verfahrensschritten bzw. der Handhabung und Verpackung zu vermeiden. Im falle des Einsatzes von Schmelzen kann die Verringerung der Haftfähigkeit durch Kühlen (beispielsweise Anblasen mit Kaltluft) unterstützt werden.

    [0100] Es hat sich als vorteilhaft erwiesen, wenn die Haftvermittler keinen scharf definierten Schmelzpunkt zeigen, wie er üblicherweise bei reinen, kristallinen Substanzen auftritt, sondern einen unter Umständen mehrere Grad Celsius umfassenden Schmelzbereich aufweisen.

    [0101] Die Haftvermittler weisen vorzugsweise einen Schmelzbereich auf, der zwischen etwa 45°C und etwa 75°C liegt. Das heißt im vorliegenden Fall, daß der Schmelzbereich innerhalb des angegebenen Temperaturintervalls auftritt und bezeichnet nicht die Breite des Schmelzbereichs. Vorzugsweise beträgt die Breite des Schmelzbereichs wenigstens 1°C, vorzugsweise etwa 2 bis etwa 3°C.

    [0102] Die oben genannten Eigenschaften werden in der Regel von sogenannten Wachsen erfüllt. Unter "Wachsen" wird eine Reihe natürlicher oder künstlich gewonnener Stoffe verstanden, die in der Regel über 40°C ohne Zersetzung schmelzen und schon wenig oberhalb des Schmelzpunktes verhältnismäßig niedrigviskos und nicht fadenziehend sind. Sie weisen eine stark temperaturabhängige Konsistenz und Löslichkeit auf.

    [0103] Nach ihrer Herkunft teilt man die Wachse in drei Gruppen ein, die natürlichen Wachse, chemisch modifizierte Wachse und die synthetischen Wachse.

    [0104] Zu den natürlichen Wachsen zählen beispielsweise pflanzliche Wachse wie Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, oder Montanwachs, tierische Wachse wie Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), oder Bürzelfett, Mineralwachse wie Ceresin oder Ozokerit (Erdwachs), oder petrochemische Wachse wie Petrolatum, Paraffinwachse oder Mikrowachse.

    [0105] Zu den chemisch modifizierten Wachsen zählen beispielsweise Hartwachse wie Montanesterwachse, Sassolwachse oder hydrierte Jojobawachse.

    [0106] Unter synthetischen Wachsen werden in der Regel Polyalkylenwachse oder Polyalkylenglycolwachse verstanden. Als Haftvermittler einsetzbar sind auch Verbindungen aus anderen Stoffklassen, die die genannten Erfordernisse hinsichtlich des Erweichungspunkts erfüllen. Als geeignete synthetische Verbindungen haben sich beispielsweise höhere Ester der Phthalsäure, insbesondere Dicyclohexylphthalat, das kommerziell unter dem Namen Unimoll® 66 (Bayer AG) erhältlich ist, erwiesen. Geeignet sind auch synthetisch hergestellte Wachse aus niederen Carbonsäuren und Fettalkoholen, beispielsweise Dimyristyl Tartrat, das unter dem Namen Cosmacol® ETLP (Condea) erhältlich ist. Umgekehrt sind auch synthetische oder teilsynthetische Ester aus niederen Alkoholen mit Fettsäuren aus nativen Quellen einsetzbar. In diese Stoffklasse fällt beispielsweise das Tegin® 90 (Goldschmidt), ein Glycerinmonostearat-palmitat. Auch Schellack, beispielsweise Schellack-KPS-Dreiring-SP (Kalkhoff GmbH) ist erfindungsgemäß als Haftvermittler einsetzbar.

    [0107] Ebenfalls zu den Wachsen im Rahmen der vorliegenden Erfindung werden beispielsweise die sogenannten Wachsalkohole gerechnet. Wachsalkohole sind höhermolekulare, wasserunlösliche Fettalkohole mit in der Regel etwa 22 bis 40 Kohlenstoffatomen. Die Wachsalkohole kommen beispielsweise in Form von Wachsestern höhermolekularer Fettsäuren (Wachssäuren) als Hauptbestandteil vieler natürlicher Wachse vor. Beispiele für Wachsalkohole sind Lignocerylalkohol (1-Tetracosanol), Cetylalkohol, Myristylalkohol oder Melissylalkohol. Die in Schritt b) aufzubringenden Haftvermittler können gegebenenfalls auch Wollwachsalkohole enthalten, worunter man Triterpenoid- und Steroidalkohole, beispielsweise Lanolin, versteht, das beispielsweise unter der Handelsbezeichnung Argowax® (Pamentier & Co) erhältlich ist. Ebenfalls zumindest anteilig als Bestandteil der Haftvermittler einsetzbar sind im Rahmen der vorliegenden Erfindung Fettsäureglycerinester oder Fettsäurealkanolamide aber gegebenenfalls auch wasserunlösliche oder nur wenig wasserlösliche Polyalkylenglycolverbindungen.

    [0108] Bevorzugt enthalten die beim erfindungsgemäßen Verfahrensschritt b) verwendeten Haftvermittler im überwiegenden Anteil Paraffinwachs. Das heißt, daß vorzugsweise wenigstens 50 Gew.-% der Haftvermittler, vorzugsweise mehr, aus Paraffinwachs bestehen. Besonders geeignet sind Paraffinwachsgehalte im Haftvermittler von etwa 60 Gew.-%, etwa 70 Gew.-% oder etwa 80 Gew.-%, wobei noch höhere Anteile von beispielsweise mehr als 90 Gew.-% besonders bevorzugt sind. In einer besonderen Ausführungsform der Erfindung besteht der in Schritt b) aufgebrachte Haftvermittler ausschließlich aus Paraffinwachs.

    [0109] Paraffinwachse weisen gegenüber den anderen genannten, natürlichen Wachsen im Rahmen der vorliegenden Erfindung den Vorteil auf, daß in einer alkalischen Reinigungsmittelumgebung keine Hydrolyse der Wachse stattfindet (wie sie beispielsweise bei den Wachsestem zu erwarten ist), da Paraffinwachs keine hydrolisierbaren Gruppen enthält.

    [0110] Paraffinwachse bestehen hauptsächlich aus Alkanen, sowie niedrigen Anteilen an Iso- und Cycloalkanen. Das erfindungsgemäß einzusetzende Paraffin weist bevorzugt im wesentlichen keine Bestandteile mit einem Schmelzpunkt von mehr als 70°C, besonders bevorzugt von mehr als 60°C auf. Anteile hochschmelzender Alkane im Paraffin können bei Unterschreitung dieser Schmelztemperatur in der Reinigungsmittelflotte nicht erwünschte Wachsrückstände auf den zu reinigenden Oberflächen oder dem zu reinigenden Gut hinterlassen. Solche Wachsrückstände führen in der Regel zu einem unschönen Aussehen der gereinigten Oberfläche und sollten daher vermieden werden. Die im erfindungsgemäßen Schritt b) eingesetzten Haftvermittler enthalten bevorzugt mindestens ein Paraffinwachs mit einem Schmelzpunkt von etwa 50°C bis etwa 55°C.

    [0111] Vorzugsweise ist der Gehalt des eingesetzten Paraffinwachses an bei Umgebungstemperatur (in der Regel etwa 10 bis etwa 30°C) festen Alkanen, Isoalkanen und Cycloalkanen möglichst hoch. Je mehr feste Wachsbestandteile in einem Wachs bei Raumtemperatur vorhanden sind, desto brauchbarer ist es im Rahmen der vorliegenden Erfindung als Haftvermittler in Schritt b). Mit zunehmenden Anteil an festen Wachsbestandteilen steigt die Belastbarkeit der Haftvermittler-Schicht gegenüber Stößen oder Reibung an anderen Oberflächen an, was zu einem länger anhaltenden Festhalten der umhüllten Aktivstoffe führt. Hohe Anteile an Ölen oder flüssigen Wachsbestandteilen können zu einer Schwächung der Partikelhaftung führen, wodurch die angeklebten Aktivstoffe sich vom Formkörper lösen.

    [0112] Die Haftvermittler können neben Paraffin als Hauptbestandteil noch eine oder mehrere der oben genannten Wachse oder wachsartigen Substanzen enthalten. Grundsätzlich sollten die Haftvermittler so beschaffen sein, daß die "Klebeschicht" wenigstens weitgehend wasserunlöslich ist. Die Löslichkeit in Wasser sollte bei einer Temperatur von etwa 30°C etwa 10 mg/l nicht übersteigen und vorzugsweise unterhalb 5 mg/l liegen.

    [0113] Wenn eine temperaturkontrollierte Freisetzung der angeklebten Aktivstoffe erwünscht ist, sollten die Haftvermittler eine möglichst geringe Wasserlöslichkeit, auch in Wasser mit erhöhter Temperatur, aufweisen, um eine temperaturunabhängige Freisetzung der umhüllten Aktivsubstanzen möglichst weitgehend zu vermeiden.

    [0114] Die in Verfahrensschritt b) aufzubringenden Haftvermittler können Reinsubstanzen oder Substanzgemische sein. Im letzteren Fall kann die Schmelze variierende Mengen an Haftvermittler und Hilfsstoffen enthalten.

    [0115] Das vorstehend beschriebene Prinzip dient der verzögerten Ablösung der in Schritt c) "angeklebten" Aktivsubstanzen zu einem bestimmten Zeitpunkt, beispielsweise im Reinigungsgang einer Geschirrspülmaschine und läßt sich besonders vorteilhaft anwenden, wenn im Hauptspülgang mit niedrigerer Temperatur (beispielsweise 55 °C) gespült wird, so daß die Aktivsubstanz aus der Klebeschicht erst im Klarspülgang bei höheren Temperaturen (ca. 70 °C) freigesetzt wird.

    [0116] Das genannte Prinzip läßt sich aber auch dahingehend umkehren, daß der bzw. die Aktivstoffe von der Klebeschicht nicht verzögert, sondern beschleunigt freigesetzt werden. Dies läßt sich im erfindungsgemäßen Verfahren in einfacher Weise dadurch erreichen, daß als Haftvermittler in Schritt b) nicht Löseverzögerer, sondern Lösebeschleuniger eingesetzt werden, so daß sich die aufgeklebten Aktivstoffe nicht langsamer vom Formkörper lösen, sondern schneller. Im Gegensatz zu den vorstehend beschriebenen schlecht wasserlöslichen Haftvermittlern, sind für die schnelle Ablösung bevorzugte Haftvermittler gut wasserlöslich. Die Wasserlöslichkeit der Haftvermittler kann durch bestimmte Zusätze noch deutlich gesteigert werden, beispielsweise durch Inkorporation von leicht löslichen Salzen oder Brausesystemen. Solche lösebeschleunigten Haftvermittler (mit oder ohne Zusätze von weiteren Löslichkeitsverbesserern) führen zu einer schnellen Ablösung und Freisetzung der Aktivsubstanzen zu Beginn des Reinigungsgangs.

    [0117] Die Lösebeschleunigung kann auch durch bestimmte geometrische Faktoren erreicht bzw. unterstützt werden. Detaillierte Ausführungen hierzu sind weiter unten zu finden.

    [0118] Als Haftvermittler für die beschleunigte Freisetzung der Aktivsubstanzen vom Wasch- und Reinigungsmittelformkörper eignen sich insbesondere die vorstehend erwähnten synthetischen Wachse aus der Gruppe der Polyethylenglycole und Polypropylenglycole.

    [0119] Erfindungsgemäß einsetzbare Polyethylenglycole (Kurzzeichen PEG) sind dabei Polymere des Ethylenglycols, die der allgemeinen Formel III
             H-(O-CH2-CH2)n-OH     (III)
    genügen, wobei n Werte bis über 100.000 annehmen kann. Maßgeblich bei der Bewertung, ob ein Polyethylenglycol erfindungsgemäß einsetzbar ist, ist dabei der Aggregatzustand des PEG bei, d.h. der Schmelzpunkt des PEG muß oberhalb von 30 °C liegen, so daß das Monomer (Ethylenglycol) sowie die niederen Oligomere mit n = 2 bis ca. 16 nicht einsetzbar sind, da sie einen Schmelzpunkt unterhalb von 30°C aufweisen. Die Polyethylenglycole mit höheren Molmassen sind polymolekular, d.h. sie bestehen aus Kollektiven von Makromolekülen mit unterschiedlichen Molmassen. Für Polyethylenglycole existieren verschiedene Nomenklaturen, die zu Verwirrungen führen können. Technisch gebräuchlich ist die Angabe des mittleren relativen Molgewichts im Anschluß an die Angabe "PEG", so daß "PEG 200" ein Polyethylenglycol mit einer relativen Molmasse von ca. 190 bis ca. 210 charakterisiert. Nach dieser Nomenklatur sind im Rahmen der vorliegenden Erfindung die technisch gebräuchlichen Polyethylenglycole PEG 1550, PEG 3000, PEG 4000 und PEG 6000 bevorzugt einsetzbar.

    [0120] Für kosmetische Inhaltsstoffe wird eine andere Nomenklatur verwendet, in der das Kurzzeichen PEG mit einem Bindestrich versehen wird und direkt an den Bindestrich eine Zahl folgt, die der Zahl n in der oben genannten Formel III entspricht. Nach dieser Nomenklatur (sogenannte INCI-Nomenklatur, CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997) sind erfindungsgemäß beispielsweise PEG-32, PEG-40, PEG-55, PEG-60, PEG-75, PEG-100, PEG-150 und PEG-180 erfindungsgemäß bevorzugt einsetzbar.

    [0121] Kommerziell erhältlich sind Polyethylenglycole beispielsweise unter den Handelsnamen Carbowax® PEG 540 (Union Carbide), Emkapol® 6000 (ICI Americas), Lipoxol® 3000 MED (HÜLS America), Polyglycol® E-3350 (Dow Chemical), Lutrol® E4000 (BASF) sowie den entsprechenden Handelsnamen mit höheren Zahlen.

    [0122] Erfindungsgemäß einsetzbare Polypropylenglycole (Kurzzeichen PPG) sind Polymere des Propylenglycols, die der allgemeinen Formel IV

    genügen, wobei n Werte bis ca. 1000 annehmen kann. Ähnlich wie bei den vorstehend beschriebenen PEG kommt es bei der Bewertung, ob ein Polypropylenglycol erfindungsgemäß einsetzbar ist, auf den Aggregatzustand des PPG an, d.h. der Schmelzpunkt des PPG muß oberhalb von 30 °C liegen, so daß das Monomer (Propylenglycol) sowie die niederen Oligomere mit n = 2 bis ca. 15 nicht einsetzbar sind, da sie einen Schmelzpunkt unterhalb von 30°C aufweisen.

    [0123] Neben den bevorzugt als Haftvermittlern einsetzbaren PEG und PPG sind selbstverständlich auch andere Stoffe einsetzbar, sofern sie eine genügend hohe Wasserlöslichkeit besitzen und einen Schmelzpunkt oberhalb von 30 °C aufweisen.

    [0124] Erfindungsgemäß bevorzugte Verfahren sind dadurch gekennzeichnet, daß in Schritt b) als Haftvermittler eine oder mehrere Substanzen aus den Gruppen der Paraffinwachse, vorzugsweise mit einem Schmelzbereich von 50°C bis 55°C, und/oder der Polyethylenglycole (PEG) und/oder Polypropylenglycole (PPG) und/oder der natürlichen Wachse und/oder der Fettalkohole, aufgebracht werden.

    [0125] Außer Schmelzen können in Schritt b) des erfindungsgemäßen Verfahrens noch andere Substanzen als Haftvermittler aufgebracht werden. Hierzu eignen sich beispielsweise konzentrierte Salzlösungen, die nach Aufbringen der Aktivstoffe durch Kristallisation oder Verdunstung/Verdampfung in eine haftvermittelnde Salzkruste überführt werden. Es können selbstverständlich auch übersättigte Lösungen eingesetzt werden oder Lösungen von Salzen in Lösungsmittelgemischen.

    [0126] Als Haftvermittler in Schritt b) einsetzbar sind auch Lösungen bzw. Suspensionen von wasserlöslichen bzw. -dispergierbaren Polymeren, vorzugsweise Polycarboxylaten. Die genannten Stoffe wurden weiter oben aufgrund ihrer Cobuilder-Eigenschaften bereits beschrieben.

    [0127] Weitere besonders gut geeignete Haftvermittler sind Lösungen wasserlöslicher Substanzen aus der Gruppe (acetalisierter) Polyvinylalkohol, Polyvinylpyrrolidon, Gelatine und Mischungen hieraus.

    [0128] Polyvinylalkohole, kurz als PVAL bezeichnet, sind Polymere der allgemeinen Struktur
              [-CH2-CH(OH)-]n
    die in geringen Anteilen auch Struktureinheiten des Typs
             [-CH2-CH(OH)-CH(OH)-CH2]
    enthalten. Da das entsprechende Monomer, der Vinylalkohol, in freier Form nicht beständig ist, werden Polyvinylalkohole über polymeranaloge Reaktionen durch Hydrolyse, technisch insbesondere aber durch alkalisch kanalisierte Umesterung von Polyvinylacetaten mit Alkoholen (vorzugsweise Methanol) in Lösung hergestellt. Durch diese technischen Verfahren sind auch PVAL zugänglich, die einen vorbestimmbaren Restanteil an Acetatgruppen enthalten.

    [0129] Handelsübliche PVAL (z.B. Mowiol®-Typen der Firma Hoechst) kommen als weißgelbliche Pulver oder Granulate mit Polymerisationsgraden im Bereich von ca. 500-2500 (entsprechend Molmassen von ca. 20.000-100.000 g/mol) in den Handel und haben unterschiedliche Hydrolysegrade von 98-99 bzw. 87-89 Mol-%. Sie sind also teilverseifte Polyvinylacetate mit einem Restgehalt an Acetyl-Gruppen von ca. 1-2 bzw. 11-13 Mol-%.

    [0130] Die Wasserlöslichkeit von PVAL kann durch Nachbehandlung mit Aldehyden (Acetalisierung), durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichromaten, Borsäure, Borax verringern und so gezielt auf gewünschte Werte einstellen. Auch die rheologischen Eigenschaften von PVAL-Lösungen lassen sich durch Änderung der Molmasse bzw. der Konzentration auf die gewünschten Werte einstellen, je nachdem, wie die Lösung als Haftvermittler aufgetragen werden soll.

    [0131] Polyvinylpyrrolidone, kurz als PVP, bezeichnet, lassen sich durch die allgemeine Formel

    beschreiben.

    [0132] PVP werden durch radikalische Polymerisation von 1-Vinylpyrrolidon hergestellt. Handelsübliche PVP haben Molmassen im Bereich von ca. 2500-750.000 g/mol und werden als weiße, hygroskopische Pulver oder als wäßrige Lösungen angeboten.

    [0133] Gelatine ist ein Polypeptid (Molmasse: ca. 15.000->250.000 g/mol), das vornehmlich durch Hydrolyse des in Haut und Knochen von Tieren enthaltenen Kollagens unter sauren oder alkalischen Bedingungen gewonnen wird. Die Aminosäuren-Zusammensetzung der Gelatine entspricht weitgehend der des Kollagens, aus dem sie gewonnen wurde, und variiert in Abhängigkeit von dessen Provenienz. Die Verwendung von Gelatine als wasserlösliches Hüllmaterial ist insbesondere in der Pharmazie in Form von Hart- oder Weichgelatinekapseln äußerst weit verbreitet.

    [0134] Bevorzugt sind im Rahmen der vorliegenden Erfindung auch Haftvermittler aus der Gruppe Stärke und Stärkederivate, Cellulose und Cellulosederivate, insbesondere Methylcellulose und Mischungen hieraus.

    [0135] Stärke ist ein Homoglykan, wobei die Glucose-Einheiten α-glykosidisch verknüpft sind. Stärke ist aus zwei Komponenten unterschiedlichen Molekulargewichts aufgebaut: Aus ca. 20-30% geradkettiger Amylose (MG. ca. 50.000-150.000) und 70-80% verzweigtkettigem Amylopektin (MG. ca. 300.000-2.000.000), daneben sind noch geringe Mengen Lipide, Phosphorsäure und Kationen enthalten. Während die Amylose infolge der Bindung in 1,4-Stellung lange, schraubenförmige, verschlungene Ketten mit etwa 300-1200 Glucose-Molekülen bildet, verzweigt sich die Kette beim Amylopektin nach durchschnittlich 25 Glucose-Bausteinen durch 1,6-Bindung zu einem astähnlichen Gebilde mit etwa 1500-12000 Molekülen Glucose. Neben reiner Stärke sind zur Herstellung wasserlöslicher Beutel im Rahmen der vorliegenden Erfindung auch Stärke-Derivate, die durch polymeranaloge Reaktionen aus Stärke erhältlich sind. Solche chemisch modifizierten Stärken umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Stärken, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Stärke-Derivate einsetzen. In die Gruppe der Stärke-Derivate fallen beispielsweise Alkali-Stärken, Carboxymethyl-Stärke (CMS), Stärkeester und -ether sowie Amino-Stärken.

    [0136] Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Haftvermittler auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen.

    [0137] Bevorzugte Haftvermittler, die als wäßrige Lösung im erfindungsgemäßen Verfahren eingesetzt werden können, bestehen aus einem Polymer mit einer Molmasse zwischen 5000 und 500.000 Dalton, vorzugsweise zwischen 7500 und 250.000 Dalton und insbesondere zwischen 10.000 und 100.000 Dalton. Die nach Trocknung des Haftvermittlers zwischen den einzelnen Formkörperbereichen vorliegende Schicht des Haftvermittlers weist vorzugsweise eine Dicke von 1 bis 150 µm, vorzugsweise von 2 bis 100 µm, besonders bevorzugt von 5 bis 75 µm und insbesondere von 10 bis 50 µm, auf.
    Der dritte Verfahrensschritt umfaßt das Aufbringen von Aktivsubstanzen auf eine oder mehrere Flächen des mit Haftvermittlern versehenen Formkörpers. Die Aktivsubstanzen können hierbei in Form von Haftvermittlerpunkten oder -linien auf eine, mehrere oder alle Formkörperflächen aufgebracht werden.

    [0138] Das Aufbringen von festen Aktivsubstanzen auf die Flächen des in Schritt a) hergestellten und in Schritt b) mit Haftvermittlern versehenen Formkörpers gelingt mit Apparaten, die beispielsweise aus der Süßwarenindustrie bekannt sind. In Anlehnung an dieses Gebiet werden die in Schritt c) aufgebrachten festen Aktivsubstanzen nachfolgend als "Streusel" bezeichnet.

    [0139] Je nach Art der Streuseldosierung und in Abhängigkeit von Form und Größe der Streusel ist die Dosiergenauigkeit, mit der eine bestimmte Menge an weiterer Aktivsubstanz aufgebracht wird, unterschiedlich hoch. Generell ist diese Dosiergenauigkeit beim Aufbringen von Streuseln mit einer gewissen Schwankungsbreite von ca. +/- 10% behaftet. Als Aktivsubstanzen für solche auf die Formkörperoberfläche aufzubringenden festen Streusel haben sich insbesondere Stoffe bewährt, die sich im Wasch- bzw. Reinigungsgang schnell auflösen sollen, beispielsweise Enzyme.

    [0140] Die Herstellung der Streusel kann wie bereits erwähnt in unterschiedlicher Form und Größe erfolgen. Prinzipiell ist unter "Abstreuseln" auch das Aufkleben einer einzelnen Dosiereinheit auf eine Formkörperfläche zu verstehen, wobei diese einzelnen Dosiereinheit naturgemäß ein höheres Volumen aufweist als das Einzelvolumen von Dosiereinheiten, die mehrfach auf den Formkörper aufgebracht werden. Im Rahmen der vorliegenden Erfindung kann also beispielsweise ein halbkugelförmiger Streusel auf eine Fläche eines orthorhombischen Formkörpers aufgeklebt werden. Auch andere Formen für "Streusel " und Formkörper wie Würfel, Quader, Halbellipsoide, Zylindersegmente, Prismen usw. sind denk- und realisierbar.

    [0141] Bevorzugte Ausführungsformen des Verfahrensschritts c) sehen allerdings vor, daß die Anzahl der Streusel, die auf den Formkörper aufgebracht werden, größer ist als 1. So kann es optisch reizvoll sein, mehrere Flächen eines Formkörpers mit einem einzelnen Streusel zu versehen, quasi eine Erweiterung des vorstehend genannten Prinzips auf eine zweite, dritte, vierte usw. Formkörperseite, bis hin zur Belegung aller Flächen mit einem oder mehreren Streuseln.

    [0142] Da die vorstehend beschriebenen Ausführungsformen das gezielte Aufbringen eines einzelnen Streusels auf eine definierte Formkörperfläche erfordern, ist der apparative Aufwand zur Durchführung des Verfahrensschritts c) in diesen Fällen recht hoch. Aus Gründen der Verfahrensökonomie ist es daher bevorzugt, daß die aufzubringenden Streusel deutlich kleiner sind als der Formkörper selbst und in hoher Zahl auf eine oder mehrere Flächen aufgebracht werden, wobei Streuselmengen von über 10 bis hin zu mehreren Hundert zu bevorzugen sind.

    [0143] Solche Streusel haben dann vorteilhafterweise die Abmessungen üblicher Wasch- und Reinigungsmittel in Pulver-, Granulat-, Extrudat-, Schuppen- oder Plättchenform und werden in Schritt c) in mehrfacher Anzahl "aufgeklebt", was im einfachsten Fall durch Aufdrücken einer mit Haftvermittler versehenen Fläche in ein Bett aus Streuseln geschieht.

    [0144] Für Formkörper, bei denen die zusätzliche Aktivsubstanz in Schritt c) in Form einer oder mehrerer fester Dosiereinheiten aufgebracht werden soll, empfiehlt sich das Aufbringen auf plane Flächen des Formkörpers, beispielsweise die Deckel- und/oder Bodenfläche zylindrischer Formkörper bzw. eine, zwei, drei, vier, fünf oder sechs Flächen eines quaderförmigen Formkörpers. Bei solchen planen Flächen ist - wie vorstehend ausgeführt - das Aufbringen der zusätzlichen Aktivsubstanz in mehreren Dosiereinheiten bevorzugt. Das Aufbringen weiterer Aktivsubstanz in Form einer einzigen Dosiereinheit kann aber in Fällen bevorzugt sein, in denen die Fläche nicht plan ist. Anders ausgedrückt kann die Befestigung zusätzlicher Aktivsubstanz in Form einer einzigen Dosiereinheit in Schritt c) des erfindungsgemäßen Verfahrens durch eine geeignete Formkörperoberfläche unterstützt werden. So ist es erfindungsgemäß problemlos möglich, zwei separat hergestellte Formkörper, die formschlüssig an- oder ineinanderfügbar sind, miteinander zu verkleben.

    [0145] Neben dem Auf- oder Einfügen von einzelnen Dosiereinheiten, die durch andere Verfahren, beispielsweise Formpressen hergestellt worden sind, bieten sich insbesondere separat gefertigte Tabletten als einzelne Dosiereinheit an. Bevorzugte Verfahren sind daher dadurch gekennzeichnet, daß die einzelne Dosiereinheit ein separat hergestellter Formkörper ist.

    [0146] Der in Schritt a) hergestellte Formkörper kann jedwede geometrische Form annehmen, wobei insbesondere konkave, konvexe, bikonkave, bikonvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhombohedrische Formen bevorzugt sind. Auch völlig irreguläre Grundflächen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Weist der in Schritt a) hergestellte Formkörper Ecken und Kanten auf, so sind diese vorzugsweise abgerundet. Als zusätzliche optische Differenzierung ist eine Ausführungsform mit abgerundeten Ecken und abgeschrägten ("angefasten") Kanten bevorzugt.

    [0147] Völlig analog zu der vorstehend beschriebenen Herstellung von zweiphasigen Formkörpern durch An- kleben von zwei separat verpreßten Formkörpern können auch dreiphasige Formkörper hergestellt werden. Hier bietet sich entweder das An- kleben von drei separat hergestellten Formkörpern an, es ist aber auch möglich und bevorzugt, eine zweiphasige, beispielsweise eine zweischichtige, Tablette herzustellen und einen weiteren Formkörper an bzw. in diese einzufügen.

    [0148] Das genannte Prinzip läßt sich entsprechend auf weitere mehrphasige Wasch- und Reinigungsmittelformkörper erweitern. So lassen sich beispielsweise vierphasige Formkörper herstellen, indem zwei zweiphasige Formkörper miteinander verbunden werden. Im einfachsten Fall geschieht das im erfindungsgemäßen Verfahren durch die separate Herstellung von zwei zweiphasigen Tabletten, vorzugsweise durch Zweischichttablettierung, und die nachfolgende Verbindung beider Formkörper mittels Haftvermittler. Analog sind auch vierphasige 3:1-Formkörper herstellbar. Selbstverständlich können die zusammenzufügenden zweiphasigen Formkörper auch auf andere Art und Weise hergestellt werden.

    [0149] Die vorstehend genannten Möglichkeiten des Aneinanderfügens von Formkörpern können auch dazu genutzt werden, den gesamten Formkörper oder Teile hiervon schneller löslich zu gestalten. Werden beispielsweise zwei plane Formkörper mit Haftvermittler aneinandergeklebt, so ist unter Anwendungsbedingungen ein Wasserzutritt zum Klebstoff bei noch nicht angelöster Tablette nur an den Kanten des Formkörpers möglich. Selbst bei Verwendung gut wasserlöslicher Haftvermittler kann die Verbindung praktisch erst dann gelöst werden, wenn ein Teil des Gesamtformkörpers aufgelöst ist.

    [0150] Durch gezielte Applikation des Haftvermittlers lassen sich die genannten Nachteile überwinden. So ist es beispielsweise möglich und bevorzugt, beim Verbinden zweier Formkörper mit ihren planen Flächen "Haftvermittlerpunkte" an der Berührungskante bzw. an den Ecken aufzutragen. Diese sind dem Wasserzutritt bei Anwendung sofort ausgesetzt, so daß sich die beiden Formkörper schneller voneinander trennen. Werden auf diese Weise zwei würfelförmige Formkörper miteinander verbunden, muß der Haftvermittler nicht an allen vier Kanten aufgetragen werden. Es kann vielmehr zur noch schnelleren Trennung der Verbindung beitragen, nur an den vier Ecken Haftvermittlerpunkte aufzutragen. Zur noch schnelleren Trennung kann auf einzelne Haftvermittlerpunkte verzichtet werden, so daß beispielsweise nur zwei sich diagonal gegenüberstehende Berührungsecken mit Haftvermittler versehen werden.

    [0151] Zusammenfassend gilt: Wenn eine schnellere Auflösung des gesamten Formkörpers oder einzelner Teile gewünscht wird, ist eine schnelle Oberflächenvergrößerung durch Trennung der Haftverbindung optimal. Dies kann durch die Auswahl einer günstigen Form der Haftverbindung erreicht oder unterstützt werden. In solchen Fällen ist die Linienverklebung der Flächenverklebung vorzuziehen, wobei eine Punktverklebung besonders bevorzugt ist.

    [0152] Zusätzlich kann auch die Form der mit dem Haftvermittler zu verbindenden Formkörperteile die Auflösung beschleunigen. Hier sind Formkörper bevorzugt, die nach Auflösung der Haftvermittlerverbindung möglichst frei gegeneinander beweglich sind, also Grundkörper, die an ihren Außenflächen "Satellitenformkörper" aufweisen. Der Vielzahl geometrischer Ausgestaltungsmöglichkeiten sind dabei kaum Grenzen gesetzt. Aus verfahrensökonomischen Gründen sind allerdings Formkörper bevorzugt, die orthorhombisch, tetragonal oder kubisch sind. Formkörper mit kreisrunder Grundfläche lassen sich entlang ihrer Mantelfläche nur durch entsprechend bikonkav geformte Zwischenstücke verkleben, die ihrerseits schwerer tablettierbar sind. Dennoch ist auch das Aneinanderfügen solcher Formkörper erfindungsgemäß möglich.

    [0153] Eine verfahrenstechnische Vereinfachung der linien- bzw. punktförmigen Verklebung kann auch dadurch gewährleistet werden, daß die Formkörper aufgrund ihrer Geometrie formschlüssig und paßgenau aneinanderfügbar sind. Während beispielsweise bei zylinderförmigen Tabletten eine horizontale Verschiebung von Tabletten, die sich mit ihren runden Seiten berühren, möglich ist, läßt sich dies durch Erhebungen bzw. Vertiefungen auf den Kontaktflächen und entsprechende Vertiefungen bzw. Erhebungen auf den jeweils entgegengesetzten Flächen verhindern, wodurch das paßgenaue Auftragen von Klebepunkten erleichtert wird. Solche formschlüssig aneinanderreihbaren Wasch- oder Reinigungsmittelformkörper, die im Rahmen der vorliegenden Erfindung miteinander verklebt werden können, sind in der älteren deutschen Patentanmeldung DE 199 08 057.7 beschrieben, auf deren Inhalt hier ausdrücklich Bezug genommen wird.

    [0154] Unabhängig von der Form des bzw. der Formkörper(s), die als weitere Aktivsubstanz c) auf den in Schritt a) hergestellten Formkörper aufgebracht werden, sind insbesondere solche Aktivsubstanzformkörper c) bevorzugt, die Tenside enthalten, wobei es bevorzugt ist, diese Tenside in löseverzögerter Form bereitzustellen, um eine Freisetzung der Inhaltsstoffe aus dem verpreßten Teil c) erst im Klarspülgang zu erreichen.

    [0155] Solche Aktivsubstanzformkörper c) können dabei beispielsweise durch Tablettierung hergestellt werden. Besonders bevorzugt ist hierbei die Herstellung der Aktivsubstanzformkörper c) durch Verpressen partikelförmiger Zusammensetzungen. Hierzu haben sich insbesondere Klarspülerpartikel bewährt, wie sie in der älteren deutschen Patentanmeldung DE 199 14.364.1 (Henkel KGaA) beschrieben werden. Solche besonders bevorzugt zu verpressenden Partikel bestehen aus 30 bis 90 Gew.-% eines oder mehrerer Trägermaterialien, 5 bis 40 Gew.-% einer oder mehrerer Hüllsubstanzen mit einem Schmelzpunkt oberhalb von 30°C, 5 bis 40 Gew.-% eines oder mehrerer Aktivstoffe sowie 0 bis 10 Gew.-% weiteren Wirk- und Hilfsstoffen. Auf die Offenbarung dieser Schrift wird ausdrücklich Bezug genommen. Dennoch werden die wichtigsten Inhaltsstoffe dieser bevorzugt zu Aktivsubstanzformkörpern verpreßbaren "Klarspülerpartikel" nachfolgend beschrieben. Als Trägerstoffe a) kommen sämtliche bei Raumtemperatur festen Substanzen in Frage. Üblicherweise wird man dabei Stoffe auswählen, die im Reinigungsgang eine zusätzliche Wirkung entfalten, wobei sich Gerüststoffe besonders anbieten. In bevorzugten zu verpressenden teilchenförmigen Klarspülern sind als Trägermaterialien Stoffe aus der Gruppe der wasserlöslichen Wasch- und Reinigungsmittel-Inhaltsstoffe, vorzugsweise der Carbonate, Hydrogencarbonate, Sulfate. Phosphate und der bei Raumtemperatur festen organischen Oligocarbonsäuren in Mengen von 55 bis 85 Gew.-%, vorzugsweise von 60 bis 80 Gew.-% und insbesondere von 65 bis 75 Gew.-%, jeweils bezogen auf das Teilchengewicht, enthalten.

    [0156] Die genannten bevorzugten Trägerstoffe wurden weiter oben bereits ausführlich beschrieben.

    [0157] An die Hüllsubstanzen, die in den Klarspülerpartikeln, welche erfindungsgemäß bevorzugt zu Aktivsubstanzformkörpern c) verpreßt werden, werden verschiedene Anforderungen gestellt, die zum einen das Schmelz- beziehungsweise Erstarrungsverhalten, zum anderen jedoch auch die Materialeigenschaften der Umhüllung im erstarrten Zustand, d.h. im Klarspülerpartikel betreffen. Da die Klarspülerpartikel bei Transport oder Lagerung dauerhaft gegen Umgebungseinflüsse geschützt sein sollen, muß die Hüllsubstanz eine hohe Stabilität gegenüber beispielsweise bei Verpackung oder Transport auftretenden Stoßbelastungen aufweisen. Die Hüllsubstanz sollte also entweder zumindest teilweise elastische oder zumindest plastische Eigenschaften aufweisen, um auf eine auftretende Stoßbelastung durch elastische oder plastische Verformung zu reagieren und nicht zu zerbrechen. Die Hüllsubstanz sollte einen Schmelzbereich (Erstarrungsbereich) in einem solchen Temperaturbereich aufweisen, bei dem die zu umhüllenden Aktivstoffe keiner zu hohen thermischen Belastung ausgesetzt werden. Andererseits muß der Schmelzbereich jedoch ausreichend hoch sein, um bei zumindest leicht erhöhter Temperatur noch einen wirksamen Schutz für die eingeschlossenen Aktivstoffe zu bieten. Erfindungsgemäß weisen die Hüllsubstanzen einen Schmelzpunkt über 30°C auf.

    [0158] Es hat sich als vorteilhaft erwiesen, wenn die Hüllsubstanz keinen scharf definierten Schmelzpunkt zeigt, wie er üblicherweise bei reinen, kristallinen Substanzen auftritt, sondern einen unter Umständen mehrere Grad Celsius umfassenden Schmelzbereich aufweist.

    [0159] Die Hüllsubstanz weist vorzugsweise einen Schmelzbereich auf, der zwischen etwa 45°C und etwa 75°C liegt. Das heißt im vorliegenden Fall, daß der Schmelzbereich innerhalb des angegebenen Temperaturintervalls auftritt und bezeichnet nicht die Breite des Schmelzbereichs. Vorzugsweise beträgt die Breite des Schmelzbereichs wenigstens 1°C, vorzugsweise etwa 2 bis etwa 3°C.

    [0160] Die oben genannten Eigenschaften werden in der Regel von sogenannten Wachsen erfüllt. Unter "Wachsen" wird eine Reihe natürlicher oder künstlich gewonnener Stoffe verstanden, die in der Regel über 40°C ohne Zersetzung schmelzen und schon wenig oberhalb des Schmelzpunktes verhältnismäßig niedrigviskos und nicht fadenziehend sind. Sie weisen eine stark temperaturabhängige Konsistenz und Löslichkeit auf.

    [0161] Nach ihrer Herkunft teilt man die Wachse in drei Gruppen ein, die natürlichen Wachse, chemisch modifizierte Wachse und die synthetischen Wachse.

    [0162] Zu den natürlichen Wachsen zählen beispielsweise pflanzliche Wachse wie Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, oder Montanwachs, tierische Wachse wie Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), oder Bürzelfett, Mineralwachse wie Ceresin oder Ozokerit (Erdwachs), oder petrochemische Wachse wie Petrolatum, Paraffinwachse oder Mikrowachse.

    [0163] Zu den chemisch modifizierten Wachsen zählen beispielsweise Hartwachse wie Montanesterwachse, Sassolwachse oder hydrierte Jojobawachse.

    [0164] Unter synthetischen Wachsen werden in der Regel Polyalkylenwachse oder Polyalkylenglycolwachse verstanden. Als Hüllmaterialien einsetzbar sind auch Verbindungen aus anderen Stoffklassen, die die genannten Erfordernisse hinsichtlich des Erweichungspunkts erfüllen. Als geeignete synthetische Verbindungen haben sich beispielsweise höhere Ester der Phthalsäure, insbesondere Dicyclohexylphthalat, das kommerziell unter dem Namen Unimoll® 66 (Bayer AG) erhältlich ist, erwiesen. Geeignet sind auch synthetisch hergestellte Wachse aus niederen Carbonsäuren und Fettalkoholen, beispielsweise Dimyristyl Tartrat, das unter dem Namen Cosmacol® ETLP (Condea) erhältlich ist. Umgekehrt sind auch synthetische oder teilsynthetische Ester aus niederen Alkoholen mit Fettsäuren aus nativen Quellen einsetzbar. In diese Stoffklasse fällt beispielsweise das Tegin® 90 (Goldschmidt), ein Glycerinmonostearat-palmitat. Auch Schellack, beispielsweise Schellack-KPS-Dreiring-SP (Kalkhoff GmbH) ist erfindungsgemäß als Hüllmaterial einsetzbar.

    [0165] Ebenfalls zu den Wachsen im Rahmen der vorliegenden Erfindung werden beispielsweise die sogenannten Wachsalkohole gerechnet. Wachsalkohole sind höhermolekulare, wasserunlösliche Fettalkohole mit in der Regel etwa 22 bis 40 Kohlenstoffatomen. Die Wachsalkohole kommen beispielsweise in Form von Wachsestern höhermolekularer Fettsäuren (Wachssäuren) als Hauptbestandteil vieler natürlicher Wachse vor. Beispiele für Wachsalkohole sind Lignocerylalkohol (1-Tetracosanol), Cetylalkohol, Myristylalkohol oder Melissylalkohol. Die Umhüllung der erfindungsgemäß umhüllten Feststoffpartikel kann gegebenenfalls auch Wollwachsalkohole enthalten, worunter man Triterpenoid- und Steroidalkohole, beispielsweise Lanolin, versteht, das beispielsweise unter der Handelsbezeichnung Argowax® (Pamentier & Co) erhältlich ist. Ebenfalls zumindest anteilig als Bestandteil der Umhüllung einsetzbar sind im Rahmen der vorliegenden Erfindung Fettsäureglycerinester oder Fettsäurealkanolamide aber gegebenenfalls auch wasserunlösliche oder nur wenig wasserlösliche Polyalkylenglycolverbindungen.

    [0166] Besonders bevorzugte Hüllsubstanzen in den Klarspülerpartikeln sind solche aus der Gruppe der Polyethylenglycole (PEG) und/oder Polypropylenglycole (PPG) enthält, wobei Polyethylenglycole mit Molmassen zwischen 1500 und 36.000 bevorzugt, solche mit Molmassen von 2000 bis 6000 besonders bevorzugt und solche mit Molmassen von 3000 bis 5000 insbesondere bevorzugt sind.

    [0167] Hierbei sind Klarspülerpartikel besonders bevorzugt, die als einzige Hüllsubstanz Propylenglycole (PPG) und/oder Polyethylenglycole (PEG) enthalten. Erfindungsgemäß einsetzbare Polypropylenglycole (Kurzzeichen PPG) sind Polymere des Propylenglycols, die der allgemeinen bereits vorstehend genannten Formel III genügen, wobei n Werte zwischen 10 und 2000 annehmen kann. Bevorzugte PPG weisen Molmassen zwischen 1000 und 10.000, entsprechend Werten von n zwischen 17 und ca. 170, auf.

    [0168] Erfindungsgemäß bevorzugt einsetzbare Polyethylenglycole (Kurzzeichen PEG) sind dabei Polymere des Ethylenglycols, die der ebenfalls vorstehend genannten allgemeinen Formel IV genügen, wobei n Werte zwischen 20 und ca. 1000 annehmen kann. Die vorstehend genannten bevorzugten Molekulargewichtsbereiche entsprechen dabei bevorzugten Bereichen des Wertes n in Formel IV von ca. 30 bis ca. 820 (genau: von 34 bis 818), besonders bevorzugt von ca. 40 bis ca. 150 (genau: von 45 bis 136) und insbesondere von ca. 70 bis ca. 120 (genau: von 68 bis 113).

    [0169] Bevorzugt enthält die in den erfindungsgemäßen Klarspülerpartikeln enthaltene Hül-Isubstanz im überwiegenden Anteil Paraffinwachs. Das heißt, daß wenigstens 50 Gew.-% der insgesamt enthaltenen Hüllsubstanzen, vorzugsweise mehr, aus Paraffinwachs bestehen. Besonders geeignet sind Paraffinwachsgehalte (bezogen auf Gesamt-Hüllsubstanz) von etwa 60 Gew.-%, etwa 70 Gew.-% oder etwa 80 Gew.-%, wobei noch höhere Anteile von beispielsweise mehr als 90 Gew.-% besonders bevorzugt sind. In einer besonderen Ausführungsform der Erfindung besteht die Gesamtmenge der eingesetzten Hüllsubstanz ausschließlich aus Paraffinwachs.

    [0170] Paraffinwachse weisen gegenüber den anderen genannten, natürlichen Wachsen im Rahmen der vorliegenden Erfindung den Vorteil auf, daß in einer alkalischen Reinigungsmittelumgebung keine Hydrolyse der Wachse stattfindet (wie sie beispielsweise bei den Wachsestem zu erwarten ist), da Paraffinwachs keine hydrolisierbaren Gruppen enthält.

    [0171] Paraffinwachse bestehen hauptsächlich aus Alkanen, sowie niedrigen Anteilen an Iso- und Cycloalkanen. Das erfindungsgemäß einzusetzende Paraffin weist bevorzugt im wesentlichen keine Bestandteile mit einem Schmelzpunkt von mehr als 70°C, besonders bevorzugt von mehr als 60°C auf. Anteile hochschmelzender Alkane im Paraffin können bei Unterschreitung dieser Schmelztemperatur in der Reinigungsmittelflotte nicht erwünschte Wachsrückstände auf den zu reinigenden Oberflächen oder dem zu reinigenden Gut hinterlassen. Solche Wachsrückstände führen in der Regel zu einem unschönen Aussehen der gereinigten Oberfläche und sollten daher vermieden werden.

    [0172] Bevorzugte verpreßbare teilchenförmige Klarspüler enthalten als Hüllsubstanz mindestens ein Paraffinwachs mit einem Schmelzbereich von 50°C bis 60°C.

    [0173] Vorzugsweise ist der Gehalt des eingesetzten Paraffinwachses an bei Umgebungstemperatur (in der Regel etwa 10 bis etwa 30°C) festen Alkanen, Isoalkanen und Cycloalkanen möglichst hoch. Je mehr feste Wachsbestandteile in einem Wachs bei Raumtemperatur vorhanden sind, desto brauchbarer ist es im Rahmen der vorliegenden Erfindung. Mit zunehmenden Anteil an festen Wachsbestandteilen steigt die Belastbarkeit der Klarspülerpartikel gegenüber Stößen oder Reibung an anderen Oberflächen an, was zu einem länger anhaltenden Schutz der Partikel Aktivstoffe führt. Hohe Anteile an Ölen oder flüssigen Wachsbestandteilen können zu einer Schwächung der Partikel führen, wodurch Poren geöffnet werden und die Aktivstoffe den Eingangs genannten Umgebungseinflüssen ausgesetzt werden.

    [0174] Die Hüllsubstanz kann neben Paraffin als Hauptbestandteil noch eine oder mehrere der oben genannten Wachse oder wachsartigen Substanzen enthalten. Grundsätzlich sollte das die Hüllsubstanz bildende Gemisch so beschaffen sein, daß die Klarspülerpartikel und die aus ihnen hergestellten Aktivsubstanzformkörper c) wenigstens weitgehend wasserunlöslich sind. Die Löslichkeit in Wasser sollte bei einer Temperatur von etwa 30°C etwa 10 mg/l nicht übersteigen und vorzugsweise unterhalb 5 mg/l liegen.

    [0175] In jedem Fall sollte die Umhüllung jedoch eine möglichst geringe Wasserlöslichkeit, auch in Wasser mit erhöhter Temperatur, aufweisen, um eine temperaturunabhängige Freisetzung der Aktivsubstanzen möglichst weitgehend zu vermeiden.

    [0176] Das vorstehend beschriebene Prinzip dient der verzögerten Freisetzung von Inhaltsstoffen zu einem bestimmten Zeitpunkt im Reinigungsgang und läßt sich besonders vorteilhaft anwenden, wenn im Hauptspülgang mit niedrigerer Temperatur (beispielsweise 55 °C) gespült wird, so daß die Aktivsubstanz aus den Klarspülerpartikeln erst im Klarspülgang bei höheren Temperaturen (ca. 70 °C) freigesetzt wird.

    [0177] Bevorzugte erfindungsgemäß zu Aktivsubstanzformkörpern c) verpreßbare teilchenförmige Klarspüler sind dadurch gekennzeichnet, daß sie als Hüllsubstanz ein oder mehrere Stoffe mit einem Schmelzbereich von 40°C bis 75 °C in Mengen von 6 bis 30 Gew.-%, vorzugsweise von 7,5 bis 25 Gew.-% und insbesondere von 10 bis 20 Gew.-%, jeweils bezogen auf das Teilchengewicht, enthalten.

    Aktivstoff(e):



    [0178] Die in die erfindungsgemäß zu Aktivsubstanzformkörpern c) verpreßbaren Klarspülerpartikeln enthaltenen Aktivstoffe können bei der Verarbeitungstemperatur (d.h. bei der Temperatur, bei der die Partikel hergestellt werden) sowohl in fester als auch in flüssiger Form vorliegen.

    [0179] Die in den Klarspülerpartikeln enthaltenen Aktivstoffe erfüllen bestimmte Aufgaben. Durch die Trennung bestimmter Substanzen oder durch die zeitlich beschleunigte oder verzögerte Freisetzung zusätzlicher Substanzen kann dadurch die Reinigungsleistung verbessert werden. Aktivstoffe, die bevorzugt in die Klarspülerpartikel eingearbeitet werden, sind daher solche Inhaltsstoffe von Wasch- und Reinigungsmitteln, die entscheidend am Wasch- bzw. Reinigungsprozeß beteiligt sind.

    [0180] In bevorzugt zu Aktivsubstanzformkörpern c) verpreßbaren Klarspülerpartikeln sind daher als Aktivstoff ein oder mehrere Stoffe aus den Gruppen der Tenside, Enzyme, Bleichmittel, Bleichaktivator, Korrosionsinhibitoren, Belagsinhibitoren, Cobuilder und/oder Duftstoffe in Mengen von 6 bis 30 Gew.-%, vorzugsweise von 7,5 bis 25 Gew.-% und insbesondere von 10 bis 20 Gew.-%, jeweils bezogen auf das Teilchengewicht, enthalten.

    [0181] Durch das Einarbeiten von Tensiden in aufgeschmolzenes Hüllmaterial läßt sich eine Schmelzsuspension bzw. -emulsion herstellen, welche im fertigen Klarspülerpartikel bzw. im fertig verpreßten erfindungsgemäßen Formkörper, zu einem vorherbestimmbaren Zeitpunkt zusätzliche waschaktive Substanz bereitstellt. Beispielsweise lassen sich auf diese Weise verpreßbare Klarspülerpartikel für das maschinelle Geschirrspülen herstellen, die das zusätzliche Tensid aus dem erfindungsgemäßen Formkörper erst bei Temperaturen freisetzen, welche haushaltsübliche Geschirrspülmaschinen erst im Klarspülgang erreichen. Auf diese Weise steht im Klarspülgang zusätzlich Tensid zur Verfügung, welches das Ablaufen des Wassers beschleunigt und so Flecken am Spülgut wirkungsvoll verhindert. Bei geeigneter Menge an erstarrter Schmelzsuspension bzw. -emulsion in den Klarspülerpartikeln kann so auf die Verwendung heute üblicher zusätzlicher Klarspülmittel verzichtet werden.

    [0182] In bevorzugt zu Aktivsubstanzformkörpern c) verpreßbaren Klarspülerpartikeln ist/sind daher der bzw. die Aktivstoff(e) ausgewählt aus der Gruppe der nichtionischen Tenside, insbesondere der alkoxylierten Alkohole. Diese Substanzen wurden bereits ausführlich beschrieben.

    [0183] Eine weitere Klasse von Aktivsubstanzen, die sich mit besonderem Vorteil in die erfindungsgemäß verpreßbaren Klarspülerpartikel einarbeiten lassen, sind Bleichmittel. Hierbei können Partikel hergestellt und zu Aktivsubstanzformkörpern c) verpreßt werden, die das Bleichmittel erst beim Erreichen bestimmter Temperaturen freisetzen, beispielsweise fertig konfektionierte Reinigungsmittel, die im Vorspülgang enzymatisch reinigen und erst im Hauptspülgang das Bleichmittel freisetzen. Auch sind Reinigungsmittel für das maschinelle Geschirrspülen so herstellbar, daß im Klarspülgang zusätzliches Bleichmittel freigesetzt werden und so schwierige Flecken, beispielsweise Teeflecken wirkungsvoller entfernen.

    [0184] In bevorzugt zu Aktivsubstanzformkörpern c) verpreßbaren teilchenförmigen Klarspülerpartikeln ist/sind daher der bzw. die Aktivstoff(e) ausgewählt aus der Gruppe der Sauerstoff- oder Halogen-Bleichmittel, insbesondere der Chlorbleichmittel. Auch diese Substanzen wurden bereits ausführlich beschrieben.

    [0185] Eine weitere Klasse von Verbindungen, die bevorzugt als Aktivsubstanzen in den erfindungsgemäß verpreßbaren Klarspülerpartikeln eingesetzt werden können, sind die Bleichaktivatoren. Auch die wichtigen Vertreter aus dieser Stoffgruppe wurden bereits beschrieben. Im Rahmen der vorliegenden Erfindung bevorzugt zu Aktivsubstanzformkörpern c) verpreßbaren Klarspülerpartikel enthalten als Aktivsubstanz Bleichaktivatoren, insbesondere aus den Gruppen der mehrfach acylierten Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), der N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), der acylierten Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA).

    [0186] Eine weitere wichtige Ausführungsform der vorliegenden Erfindung sieht das Verpressen enzymhaltiger Klarspülerpartikel zu Aktivsubstanzformkörpern c) vor, welche nachfolgend am Basisformkörper befestigt werden. Solche Klarspülerpartikel enthalten als Aktivstoff(e) Enzyme, welche weiter oben ausführlich beschrieben wurden. Besonders bevorzugt sind hierbei als teilchenförmige Partikel solche, die 40 bis 99,5 Gew.-%, vorzugsweise 50 bis 97,5 Gew.-%, besonders bevorzugt 60 bis 95 Gew.-% und insbesondere 70 bis 90 Gew.-% einer oder mehrerer Hüllsubstanz(en), die einen Schmelzpunkt oberhalb von 30°C aufweist/aufweisen, 0,5 bis 60 Gew.-%, vorzugsweise 1 bis 40 Gew.-%, besonders bevorzugt 2,5 bis 30 Gew.-% und insbesondere 5 bis 25 Gew.-% einer oder mehreren in der/den Hüllsubstanz(en) dispergierten flüssigen Enzymzubereitung(en) sowie 0 bis 20 Gew.-%, vorzugsweise 0 bis 15 Gew.-%, besonders bevorzugt 0 bis 10 Gew.-% und insbesondere 0 bis 5 Gew.-% sowie optional weitere Trägermaterialien. Hilfs- und/oder Wirkstoffe enthalten. Die Hüllsubstanzen sind hierbei bevorzugt Polyethylenglycole und/oder Polypropylenglycole, als Aktivsubstanzen haben sich flüssige Enzymzubereitungen bewährt. Solche Flüssigenzymkonzentrate beruhen entweder homogen auf einer Basis Propylenglykol/Wasser oder heterogen als Slurry, oder sie liegen in mikroverkapselter Struktur vor. Bevorzugte Flüssigproteasen sind z.B. Savinase® L, Durazym® L. Esperase® L, und Everlase® der Fa. Novo Nordisk, Optimase® L, Purafect® L, Purafect® OX L, Properase® L der Fa. Genencor International, und BLAP® L der Fa. Biozym Ges.m.b.H.. Bevorzugte Amylasen sind Termamyl® L, Duramyl® L, und BAN® der Fa. Novo Nordisk, Maxamyl® WL und Purafect® HPAm L der Fa. Genencor International. Bevorzugte Lipasen sind Lipolase® L, Lipolase® ultra L und Lipoprime® L der Fa. Novo Nordisk und Lipomax® L der Fa. Genencor International.

    [0187] Als Slurries oder mikroverkapselte Flüssigprodukte können z.B. Produkte wie die mit SL bzw. LCC bezeichneten Produkte der Fa. Novo Nordisk eingesetzt werden. Die genannten handelsüblichen Flüssigenzymzubereitungen enthalten beispielsweise 20 bis 90 Gew.-% Propylenglycol bzw. Gemische aus Propylenglycol und Wasser. Im Rahmen der vorliegenden Erfindung bevorzugt verpreßbare Enzympartikel sind dadurch gekennzeichnet, daß sie eine oder mehrere Flüssig-Amylase-Zubereitungen und/oder eine oder mehrere Flüssig-Protease-Zubereitungen enthalten.

    [0188] Als Aktivsubstanzen lassen sich auch Duftstoffe in die erfindungsgemäß zu verpressenden Klarspülerpartikel einarbeiten. Sämtliche weiter oben ausführlich beschriebenen Duftstoffe können dabei als Aktivsubstanz verwendet werden. Bei Einarbeitung von Duftstoffen in die Klarspülerpartikel resultieren Reinigungsmittel, die das gesamte oder einen Teil des Parfüms zeitverzögert freisetzen. Auf diese Weise sind erfindungsgemäß beispielsweise Reinigungsmittel für das maschinelle Geschirrspülen herstellbar, bei denen der Verbraucher auch nach beendigter Geschirreinigung beim Öffnen der Maschine die Parfümnote erlebt. Auf diese Weise kann der unerwünschte "Alkaligeruch", der vielen maschinellen Geschirrspülmitteln anhaftet, beseitigt werden.

    [0189] Auch Korrosionsinhibitoren lassen sich als Aktivstoff in die Klarspülerpartikel einbringen, wobei auf die dem Fachmann geläufigen Substanzen zurückgegriffen werden kann. Als Belagsinhibitor hat sich beispielsweise eine Kombination aus Enzym (z.B. Lipase) und Kalkseifendispergiermittel bewährt.

    Hilfsstoffe:



    [0190] Bei außergewöhnlich niedrigen Temperaturen, beispielsweise bei Temperaturen unter 0°C, kann der Klarspülerpartikel bei Stoßbelastung oder Reibung oder beim Verpressen zum Aktivsubstanzformkörper c) zerbrechen. Um die Stabilität bei solch niedrigen Temperaturen zu verbessern, können den Hüllsubstanzen gegebenenfalls Additive zugemischt werden. Geeignete Additive müssen sich vollständig mit dem geschmolzenen Wachs vermischen lassen, dürfen den Schmelzbereich der Hüllsubstanzen nicht signifikant ändern, müssen die Elastizität der Umhüllung bei tiefen Temperaturen verbessern, dürfen die Durchlässigkeit der Umhüllung gegenüber Wasser oder Feuchtigkeit im allgemeinen nicht erhöhen und dürfen die Viskosität der Schmelze des Hüllmaterials nicht soweit erhöhen, daß eine Verarbeitung erschwert oder gar unmöglich wird. Geeignet Additive, welche die Sprödigkeit einer im wesentlichen aus Paraffin bestehenden Umhüllung bei tiefen Temperaturen herabsetzen, sind beispielsweise EVA-Copolymere, hydrierte Harzsäuremethylester, Polyethylen oder Copolymere aus Ethylacrylat und 2-Ethylhexylacrylat.

    [0191] Ein weiteres zweckmäßiges Additiv bei der Verwendung von Paraffin als Umhüllung ist der Zusatz einer geringen Menge eines Tensids, beispielsweise eines C12-18-Fettalkoholsulfats. Dieser Zusatz bewirkt eine bessere Benetzung des einzubettenden Materials durch die Umhüllung. Vorteilhaft ist ein Zusatz des Additivs in einer Menge von etwa < 5 Gew.-%, bevorzugt < etwa 2 Gew.-%, bezogen auf die Hüllsubstanz. Der Zusatz eines Additivs kann in vielen Fällen dazu führen, daß auch Aktivsubstanzen umhüllt werden können, die ohne Additivzusatz in der Regel nach dem Schmelzen des Umhüllungsmaterials einen zähen, plastischen Körper aus Paraffin und teilgelöster Aktivsubstanz bilden.

    [0192] Es kann auch von Vorteil sein, der Hüllsubstanz weitere Additive hinzuzufügen, um beispielsweise ein frühzeitiges Absetzen der Aktivstoffe zu verhindern. Dies ist insbesondere bei der Herstellung der erfindungsgemäßen Klarspülerpartikel ohne Trägerstoffe anzuraten. Die hierzu einsetzbaren Antiabsetzmittel, die auch als Schwebemittel bezeichnet werden, sind aus dem Stand der Technik, beispielsweise aus der Lack- und Druckfarbenherstellung, bekannt. Um beim Übergang vom plastischen Erstarrungsbereich zum Feststoff Sedimentationserscheinungen und Konzentrationsgefälle der zu umhüllenden Substanzen zu vermeiden, bieten sich beispielsweise grenzflächenaktive Substanzen, in Lösungsmitteln dispergierte Wachse, Montmorillonite, organisch modifizierte Bentonite, (hydrierte) Ricinusölderivate, Sojalecithin, Ethylcellulose, niedermolekulare Polyamide, Metallstearate. Calciumseifen oder hydrophobierte Kieselsäuren an. Weitere Stoffe, die die genannten Effekte bewirken, stammen aus den Gruppen der Antiausschwimmittel und der Thixotropiermittel und können chemisch als Silikonöle (Dimethylpolysiloxane, Methylphenylpolysiloxane, Polyether-modifizierte Methylalkylpolysiloxane), oligomere Titanate und Silane, Polyamine, Salze aus langkettigen Polyaminen und Polycarbonsäuren, Amin/Amid-funktionelle Polyester bzw. Amin/Amid-funktionelle Polyacrylate bezeichnet werden.

    [0193] Zusatzmittel aus den genannten Stoffklassen sind kommerziell in ausgesprochener Vielfalt erhältlich. Handelsprodukte, die im Rahmen des erfindungsgemäßen Verfahrens vorteilhaft als Additiv zugesetzt werden können, sind beispielsweise Aerosil® 200 (pyrogene Kieselsäure, Degussa), Bentone® SD-1, SD-2, 34, 52 und 57 (Bentonit, Rheox), Bentone® SD-3, 27 und 38 (Hectorit, Rheox), Tixogel® EZ 100 oder VP-A (organisch modifizierter Smectit, Südchemie), Tixogel® VG, VP und VZ (mit QAV beladener Montmorillonit, Südchemie), Disperbyk® 161 (Blockcopolymer, Byk-Chemie), Borchigen® ND (sulfogruppenfreier Ionenaustauscher, Borchers), Ser-Ad® FA 601 (Servo), Solsperse® (aromatisches Ethoxylat, ICI), Surfynol®-Typen (Air Products), Tamol®- und Triton®-Typen (Rohm&Haas), Texaphor®963, 3241 und 3250 (Polymere, Henkel), Rilanit®-Typen (Henkel), Thixcin® E und R (Ricinusöl-Derivate, Rheox), Thixatrol® ST und GST (Ricinusöl-Derivate, Rheox), Thixatrol® SR, SR 100, TSR und TSR 100 (Polyamid-Polymere, Rheox), Thixatrol® 289 (Polyester-Polymer, Rheox) sowie die unterschiedlichen M-P-A®-Typen X, 60-X, 1078-X, 2000-X und 60-MS (organische Verbindungen, Rheox).

    [0194] Die genannten Hilfsmittel können in den erfindungsgemäß zu verpressenden Klarspülerpartikeln je nach Umhüllungsmaterial und Aktivsubstanz in variierenden Mengen eingesetzt werden. Übliche Einsatzkonzentrationen für die vorstehend genannten Antiabsetz-, Antiausschwimm-, Thioxotropier- und Dispergiermittel liegen im Bereich von 0,5 bis 8,0 Gew.-%, vorzugsweise zwischen 1,0 und 5,0 Gew.-%, und besonders bevorzugt zwischen 1,5 und 3,0 Gew.-%, jeweils bezogen auf die Gesamtmenge an Hüllsubstanz und Aktivstoffen.

    [0195] Im Rahmen der vorliegenden Erfindung bevorzug zupressende teilchenförmige Klarspüler enthalten weitere Hilfsstoffe aus der Gruppe der Antiabsetzmittel, Schwebemittel, Antiausschwimmittel, Thixotropiermittel und Dispergierhilfsmittel in Mengen von 0,5 bis 9 Gew.-%, vorzugsweise zwischen 1 und 7,5 Gew.-%, und besonders bevorzugt zwischen 1,5 und 5 Gew.-%, jeweils bezogen auf das Teilchengewicht.

    [0196] Insbesondere bei der Herstellung von Schmelzsuspensionen bzw. -emulsionen, die Aktivstoffe enthalten, welche bei der Verarbeitungstemperatur flüssig sind, ist der Einsatz spezieller Emulgatoren vorteilhaft. Es hat sich gezeigt, daß insbesondere Emulgatoren aus der Gruppe der Fettalkohole, Fettsäuren, Polyglycerinester und der Polyoxyalkylensiloxane äußerst gut geeignet sind. Weitere Einzelheiten zur Herstellung der erfindungsgemäßen Klarspülerpartikel folgen weiter unten.

    [0197] Unter Fettalkoholen werden dabei die aus nativen Fetten bzw. Ölen über die entsprechenden Fettsäuren (siehe unten) erhältlichen Alkohole mit 6 bis 22 Kohlenstoffatomen verstanden. Diese Alkohole können je nach der Herkunft des Fetts bzw. Öls, aus dem sie gewonnen werden, in der Alkylkette substituiert oder stellenweise ungesättigt sein.

    [0198] Als Emulgatoren werden in den erfindungsgemäßen Klarspülerpartikeln daher bevorzugt C6-22-Fettalkohole, vorzugsweise C8-22-Fettalkohole und insbesondere C12-18-Fettalkohole unter besonderer Bevorzugung der C16-18-Fettalkohole, eingesetzt.

    [0199] Als Emulgatoren können auch sämtliche aus pflanzlichen oder tierischen Ölen und Fetten gewonnenen Fettsäuren verwendet werden. Die Fettsäuren können unabhängig von ihrem Aggregatzustand gesättigt oder ein- bis mehrfach ungesättigt sein. Auch bei den ungesättigten Fettsäuren sind die bei Raumtemperatur festen Spezies gegenüber den flüssigen bzw. pastösen bevorzugt. Selbstverständlich können nicht nur "reine" Fettsäuren eingesetzt werden, sondern auch die bei der Spaltung aus Fetten und Ölen gewonnenen technischen Fettsäuregemische, wobei diese Gemische aus ökonomischer Sicht wiederum deutlich bevorzugt sind.

    [0200] So lassen sich als Emulgatoren im Rahmen der vorliegenden Erfindung beispielsweise einzelne Spezies oder Gemische folgender Säuren einsetzen: Caprylsäure, Pelargonsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Octadecan-12-olsäure, Arachinsäure, Behensäure, Lignocerinsäure, Cerotinsäure, Melissinsäure, 10-Undecensäure, Petroselinsäure, Petroselaidinsäure, Ölsäure, Elaidinsäure, Ricinolsäure, Linolaidinsäure, α- und β-Eläosterainsäure, Gadoleinsäure Erucasäure, Brassidinsäure. Selbstverständlich sind auch die Fettsäuren mit ungerader Anzahl von C-Atomen einsetzbar, beispielsweise Undecansäure, Tridecansäure, Pentadecansäure, Heptadecansäure, Nonadecansäure, Heneicosansäure, Tricosansäure, Pentacosansäure, Heptacosansäure.

    [0201] In bevorzugten Klarspülerpartikeln werden als Emulgator(en) C6-22-Fettsäuren, vorzugsweise C8-22-Fettsäuren und insbesondere C12-18-Fettsäuren unter besonderer Bevorzugung der C16-18--Fettsäuren, eingesetzt.

    [0202] Besonders bevorzugte Emulgatoren sind im Rahmen der vorliegenden Erfindung Polyglycerinester, insbesondere Ester von Fettsäuren mit Polyglycerinen. Diese bevorzugten Polyglycerinester lassen sich durch die allgemeine Formel V beschreiben

    in der R1 in jeder Glycerineinheit unabhängig voneinander für H oder einen Fettacylrest mit 8 bis 22 Kohlenstoffatomen, vorzugsweise mit 12 bis 18 Kohlenstoffatomen, und n für eine Zahl zwischen 2 und 15, vorzugsweise zwischen 3 und 10, steht.

    [0203] Diese Polyglycerinester sind insbesondere mit den Polymerisationsgraden n = 2, 3, 4, 6 und 10 bekannt und kommerziell verfügbar. Da Stoffe der genannten Art auch in kosmetischen Formulierungen weite Verbreitung finden, sind etliche dieser Substanzen auch in der INCI-Nomenklatur klassifiziert (CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997). Dieses kosmetische Standardwerk beinhaltet beispielsweise Informationen zu den Stichworten POLYGLYCERYL-3-BEESWAX, POLYGLYCERYL-3-CETYL ETHER, POLYGLYCERYL-4-COCOATE, POLYGLYCERYL-10-DECALINOLEATE, POLY-GLYCERYL-10-DECAOLEATE, POLYGLYCERYL-10-DECASTEARATE, POLY-GLYCERYL-2-DIISOSTEARATE, POLYGLYCERYL-3-DIISOSTEARATE, POLY-GLYCERYL-10-DIISOSTEARATE, POLYGLYCERYL-2-DIOLEATE, POLY-GLYCERYL-3-DIOLEATE, POLYGLYCERYL-6-DIOLEATE, POLYGLYCERYL-10-DIOLEATE, POLYGLYCERYL-3-DISTEARATE, POLYGLYCERYL-6-DISTEARATE, POLYGLYCERYL-10-DISTEARATE, POLYGLYCERYL-10-HEPTAOLEATE, POLY-GYLCERYL-12-HYDROXYSTEARATE, POLYGLYCERYL-10-HEPTASTEARATE, POLYGLYCERYL-6-HEXAOLEATE, POLYGLYCERYL-2-ISOSTEARATE, POLY-GLYCERYL-4-ISOSTEARATE, POLY-GLYCERYL-6-ISOSTEARATE, POLY-GLYCERYL-10-LAURATE, POLY-LYCERYLMETHACRYLATE, POLYGLYCERYL-10-MYRISTATE, POLYGLYCERYL-2-OLEATE, POLYGLYCERYL-3-OLEATE, POLYGLYCERYL-4-OLEATE, POLYGLYCERYL-6-OLEATE, POLYGLYCERYL-8-OLEATE, POLYGLYCERYL-10-OLEATE, POLYGLYCERYL-6-PENTAOLEATE, POLYGLYCERYL-10-PENTAOLEATE, POLYGLYCERYL-6-PENTASTEARATE, POLYGLYCERYL-10-PENTASTEARATE, POLYGLYCERYL-2-SESQUI-IOSOSTEARATE, POLYGLYCERYL-2-SESQUIOLEATE, POLYGLYCERYL-2-STEARATE, POLYGLYCERYL-3-STEARATE, POLYGLYCERYL-4-STEARATE, POLYGLYCERYL-8-STEARATE, POLYGLYCERYL-10-STEARATE, POLY-GLYCERYL-2-TETRAISOSTEARATE, POLYGLYCERYL-10-TETRAOLEATE. POLYGLYCERYL-2-TETRASTEARATE, POLYGLYCERYL-2-TRIISOSTEARATE. POLYGLYCERYL-10-TRIOLEATE, POLYGLYCERYL-6-TRISTEARATE. Die kommerziell erhältlichen Produkte unterschiedlicher Hersteller, die im genannten Werk unter den vorstehend genannten Stichwörtern klassifiziert sind, lassen sich im erfindungsgemäßen Verfahrensschritt b) vorteilhaft als Emulgatoren einsetzen.

    [0204] Eine weitere Gruppe von Emulgatoren, die in den erfindungsgemäßen Klarspülerpartikeln Verwendung finden können, sind substituierte Silicone, die mit Ethylen- bzw. Propylenoxid umgesetzte Seitenketten tragen. Solche Polyoxyalkylensiloxane können durch die allgemeine Formel VI beschrieben werden

    in der jeder Rest R1 unabhängig voneinander für -CH3 oder eine Polyoxyethylen- bzw. -propylengruppe -[CH(R2)-CH2-O]xH-Gruppe, R2 für -H oder -CH3, x für eine Zahl zwischen 1 und 100, vorzugsweise zwischen 2 und 20 und insbesondere unter 10, steht und n den Polymerisationsgrad des Silikons angibt.

    [0205] Optional können die genannten Polyoxyalkylensiloxane auch an den freien OH-Gruppen der Polyoxyethylen- bzw. Polyoxypropylen-Seitenketten verethert oder verestert werden. Das unveretherte und unveresterte Polymer aus Dimethylsiloxan mit Polyoxyethylen und/oder Polyoxypropylen wird in der INCI-Nomenklatur als DIMETHICONE COPOLYOL bezeichnet und ist unter den Handelsnamen Abil® B (Goldschmidt), Alkasil® (Rhöne-Poulenc), Silwet® (Union Carbide) oder Belsil® DMC 6031 kommerziell verfügbar.

    [0206] Das mit Essigsäure veresterte DIMETHICONE COPOLYOL ACETATE (beispielsweise Belsil DMC 6032, -33 und -35, Wacker) und der DIMETHICONE COPOLYOL BUTYL ETHER (bsp KF352A, Shin Etsu) sind im Rahmen der vorliegenden Erfindung ebenfalls als Emulgatoren einsetzbar.

    [0207] Bei den Emulgatoren gilt wie bereits bei den Umhüllungsmaterialien und den zu umhüllenden Substanzen, daß sie über einen breit variierenden Bereich eingesetzt werden können. Üblicherweise machen Emulgatoren der genannten Art 1 bis 25 Gew.-%, vorzugsweise 2 bis 20 Gew.-% uns insbesondere 5 bis 10 Gew.-% des Gewichts der Summe aus Hüllmaterialien und Aktivstoffen aus.

    [0208] Im Rahmen der vorliegenden Erfindung bevorzugt zu verpressende teilchenförmige Klarspüler enthalten zusätzlich Emulgatoren aus der Gruppe der Fettalkohole, Fettsäuren, Polyglycerinester und/oder Polyoxyalkylensiloxane in Mengen von 0,1 bis 5 Gew.-%, vorzugsweise von 0,2 bis 3,5 Gew.-%, besonders bevorzugt von 0,5 bis 2 Gew.-% und insbesondere von 0,75 bis 1,25 Gew.-%, jeweils bezogen auf das Teilchengewicht.

    [0209] Neben dem Aufbringen verformbarer Substanzen auf plane Formkörperflächen kann auch ein Einbringen solcher Substanzen in Kavitäten des Formkörpers und Fixierung durch den Nachverformungsschritt d) erfolgen. Es ist erfindungsgemäß beispielsweise möglich, eine verformbare Masse zu verprillen und diese Prills auf den Formkörper aufzupressen. Das Prillen ist ein dem Fachmann bekanntes Formgebungsverfahren für die Herstellung körniger Körper aus schmelzbaren Stoffen durch Erstarren der Tropfen einer versprühten Schmelze, wobei die Substanzen beispielsweise an der Spitze eines Turmes in definierter Tröpfchengröße eingesprüht werden, im freien Fall erstarren und am Boden des Turmes als Granulat anfallen. Alternativ kann auch ein Versprühen auf gekühlte Flächen erfolgen. Die Prills können vor dem Auf- bzw. Einpressen auf die Formkörperoberflächen oder Kavitäten weiterbehandelt werden, beispielsweise durch Oberflächenbehandlung. Es ist selbstverständlich auch möglich, in einem vorgelagerten Verfahrensschritt aus den Prills Preßlinge herzustellen, die in Schritt d) des erfindungsgemäßen Verfahrens haftfest mit dem Formkörper verbunden werden.

    [0210] Wie bereits weiter oben ausgeführt, lassen sich als Aktivsubstanzen sämtliche Inhaltsstoffe von Wasch- und Reinigungsmitteln in Schritt c) auf die Oberfläche des Formkörpers aufbringen, wobei durch Haftvermittler die Haftfähigkeit gewährleistet oder erhöht wird. Wird/werden der/die entsprechende(n) Aktivstoff(e) gleichzeitig aus dem Vorgemisch der Tablettierung in Schritt a) entfernt, resultiert eine Wirkstofftrennung, die dem gesamten Formkörper vorteilhafte Eigenschaften verleihen kann. In bevorzugten Verfahren sind der bzw. die Aktivstoff(e), die in Schritt c) auf eine oder mehrere Flächen des Formkörpers aufgebracht werden, ausgewählt aus der Gruppe der Enzyme, Bleichmittel, Bleichaktivatoren, Tenside, Korrosionsinhibitoren, Belagsinhibitoren, Cobuilder und/oder Duftstoffe. Auch Soil-repellent-Polymere lassen sich bevorzugt in Schritt c) aufbringen.

    [0211] Besonders bevorzugt ist das Aufbringen von Bleichmitteln als Aktivsubstanz, so daß bevorzugte Verfahren dadurch gekennzeichnet sind, daß der bzw. die Aktivstoff(e), die in Schritt c) auf eine oder mehrere Flächen des Formkörpers aufgebracht werden, ausgewählt sind aus der Gruppe der Sauerstoff- oder Halogen-Bleichmittel, insbesondere der Chlorbleichmittel.

    [0212] Auch andere Substanzen, die einen entscheidenden Einfluß auf die Bleichleistung haben, lassen sich bevorzugt auf die Formkörperoberfläche aufbringen. So sind Verfahren bevorzugt, bei denen der bzw. die Aktivstoff(e), die in Schritt c) auf eine oder mehrere Flächen des Formkörpers aufgebracht werden, ausgewählt sind aus der Gruppe der Bleichaktivatoren, insbesondere aus den Gruppen der mehrfach acylierten Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), der N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), der acylierten Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA). Hier lassen sich analog auch die beschriebenen Bleichkatalysatoren wie Mn- und Co-Komplexe usw. einsetzen.

    [0213] Das erfindungsgemäße Verfahren erlaubt - wie bereits erwähnt - in Schritt c) das Aufbringen einer einzelnen Dosiereinheit der zusätzlichen Aktivsubstanz ebenso wie das Aufbringen mehrerer Dosiereinheiten bis hin zu mehreren hundert "Streuseln". Erfindungsgemäß sind dabei Verfahren bevorzugt, bei denen die Aktivsubstanz in Schritt c) in Form einer einzelnen Dosiereinheit aufgebracht wird, deren Volumen das 0,05- bis 1-fache, vorzugsweise das 0,1- bis 0,75-fache und insbesondere das 0,15- bis 0,5-fache des Volumens des Formkörpers, auf den die Aktivsubstanz aufgebracht wird, ausmacht. Sollen mehrere Dosiereinheiten aufgebracht werden, sind Verfahren bevorzugt, bei denen die Aktivsubstanz in Schritt c) in Form von 2 bis 20 Dosiereinheiten auf eine oder mehrere Flächen des Formkörpers aufgebracht wird, wobei das Volumen einer dieser Dosiereinheiten das 0,0025- bis 0,5-fache, vorzugsweise das 0,005- bis 0,375-fache und insbesondere das 0,0075- bis 0,25-fache des Volumens des Formkörpers, auf den die Aktivsubstanz aufgebracht wird, ausmacht. Besonders bevorzugt ist im Rahmen der vorliegenden Erfindung das "Abstreuseln" des gesamten Formkörpers (oder einzelner Flächen davon), so daß besonders bevorzugte Verfahren dadurch gekennzeichnet sind, daß die Aktivsubstanz in Schritt c) in Form von mehr als 20, vorzugsweise von mehr als 50 und insbesondere von mehr als 100 Dosiereinheiten auf eine oder mehrere Flächen des Formkörpers aufgebracht wird.

    [0214] In Verfahrensschritt d) wird optional eine Nachformung der auf die Formkörperfläche(n) aufgebrachten Aktivsubstanzen vorgenommen. Die Nachformung kann durch Aufpressen eines Formwerkzeugs auf die betreffende(n) Formkörperseite(n) erfolgen, wobei es auch möglich ist, Walzen mit strukturierter Oberfläche über die Formkörperseite rollen zu lassen.

    Beispiele:


    Herstellung von Reinigungsmitteltabletten für das maschinelle Geschirrspülen


    Verfahrensschritt a): Herstellung von Formkörpern:



    [0215] Durch Verpressen zweier unterschiedlicher Vorgemische wurden zwei rechteckige Formkörper hergestellt. Tablette 1 hatte ein Gewicht von 18 g, Tablette 2 ein Gewicht von 7 g.

    [0216] Die Zusammensetzung (in Gew.-% bezogen auf des jeweilige Vorgemisch) der beiden Vorgemische zeigt die nachstehende Tabelle:
      Vorgemisch 1 (Unterphase) Vorgemisch 2 (Oberphase)
    Natriumcarbonat 32,7 -
    Natriumtripolyphosphat 52,0 91,4
    Natriumperborat 10,0 -
    Tetraacetylethylendiamin 2,5 -
    Benzotriazol 0,3 -
    C12-Fettalkohol mit 3 EO 2,5 -
    Farbstoff - 0,2
    Enzyme - 6,0
    Parfüm - 0,4
    Polyethylenglycol 400 - 2,0

    Verfahrensschritt b): Aufbringen von Haftvermittler:



    [0217] Durch Erhitzen von PEG wurde eine Schmelze bereitet, die punktförmig auf die Oberseite der Tablette 1 aufgebracht wurde.

    Verfahrensschritt c): Aufbringen von Aktivsubstanzin fester Form:



    [0218] Auf die mit Haftvermittler versehenen Tablette 1 wurde Tablette 2 geklebt. Durch Abkühlenlassen des Formkörpers auf Raumtemperatur entstand eine zweischichtige Tablette. Der Vergleichsformkörper V wurde nach bekanntem Stand der Technik auf einer Rundläuferpresse hergestellt, indem die Vorgemische für Tablette 1 und 2 im Verhältnis 18:7 Gramm zu einer konventionellen zweiphasigen Tablette verpresst wurden.

    [0219] Anschliessend wurde das Auflöseverhalten der beiden Tabletten bestimmt. Hierzu wurden 2 Liter entionisiertes Wasser (25°C) in einem Becherglas vorgelegt, die Tabletten in einem Gitterkorb eingetaucht, und unter Rühren mit einem Propellerrührer (Durchmesser 4,5 cm, 800 Umdrehungen pro Minute) gelöst. Zeitgleich mit dem Eintauchen der Tablette wurde eine Heizquelle eingeschaltet, die das Wasser mit einer Rate von 3°C/Minute auf 55°C aufheizt und die Leitfähigkeit als Funktion der Zeit registriert. Das Leitfähigkeitsmaximum der zweischichtigen Tablette wurde nach 12 Minuten, das der konventionellen zweiphasigen Tablette nach 21 Minuten erreicht. Die zweischichtige Tablette liefert ausserdem eine bessere Reinigungsleistung an enzymatischen Anschmutzungen.


    Ansprüche

    1. Verfahren zur Herstellung mehrphasiger Wasch- und Reinigungsmittelformkörper, gekennzeichnet durch die Schritte

    a) Verpressen eines teilchenförmigen Vorgemischs zu Formkörpern,

    b) Aufbringen eines oder mehrerer Haftvermittler enthaltend eine oder mehrere Substanzen aus der Gruppe der Wachse oder konzentrierte Salzlösungen oder Lösungen bzw. Suspensionen von wasserlöslichen bzw. -dispergierbaren Polymeren in Form von Haftvermittlerpunkten oder -linien auf eine oder mehrere Flächen der Formkörper,

    c) Aufbringen weiterer Aktivsubstanz in Form eines verpressten Formkörpers,

    d) optionale Nachbehandlung (Nachformung) der auf die Oberfläche des Formkörpers aufgebrachten Aktivsubstanzen,


     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch Builder in Mengen von 20 bis 80 Gew.-%, vorzugsweise von 25 bis 75 Gew.-% und insbesondere von 30 bis 70 Gew.-%, jeweils bezogen auf das Vorgemisch, enthält.
     
    3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch Tensid(e), vorzugsweise nichtionische(s) Tensid(e), in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 0,75 bis 7,5 Gew.-% und insbesondere von 1,0 bis 5 Gew.-%, jeweils bezogen auf das Vorgemisch, enthält.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch ein Schüttgewicht oberhalb von 600 g/l, vorzugsweise oberhalb von 700 g/l und insbesondere oberhalb von 800 g/l aufweist.
     
    5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch eine Teilchengrößenverteilung aufweist, bei der weniger als 10 Gew.-%, vorzugsweise weniger als 7,5 Gew.-% und insbesondere weniger als 5 Gew.-% der Teilchen größer als 1600 µm oder kleiner als 200 µm sind.
     
    6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch eine Teilchengrößenverteilung aufweist, bei der mehr als 30 Gew.-%, vorzugsweise mehr als 40 Gew.-% und insbesondere mehr als 50 Gew.-% der Teilchen eine Teilchengröße zwischen 600 und 1000 µm aufweisen.
     
    7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß in Schritt a) mehrschichtige Formkörper in an sich bekannter Weise hergestellt werden, indem mehrere unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden.
     
    8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß in Schritt a) zweischichtige Formkörper hergestellt werden, indem zwei unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden, von denen eines ein oder mehrere Bleichmittel und das andere ein oder mehrere Enzyme enthält.
     
    9. Verfahren nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß in Schritt a) zweischichtige Formkörper hergestellt werden, indem zwei unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden, von denen eines ein oder mehrere Bleichmittel und das andere ein oder mehrere Bleichaktivatoren enthält.
     
    10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß in Schritt b) als Haftvermittler Schmelzen einer oder mehrerer Substanzen mit einen Schmelzbereich von 40°C bis 75 °C auf eine oder mehrere Flächen des Formkörpers aufgebracht werden.
     
    11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß in Schritt b) als Haftvermittler eine oder mehrere Substanzen aus den Gruppen der Paraffinwachse, vorzugsweise mit einem Schmelzbereich von 50°C bis 55°C, und/oder der Polyethylenglycole (PEG) und/oder Polypropylenglycole (PPG) und/oder der natürlichen Wachse und/oder der Fettalkohole, aufgebracht werden.
     
    12. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß in Schritt b) als Haftvermittler Lösungen bzw. Suspensionen von wasserlöslichen bzw. -dispergierbaren Polymeren, vorzugsweise Polycarboxylaten, auf eine oder mehrere Flächen des Formkörpers aufgebracht werden.
     
    13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß der bzw. die Aktivstoff(e), die in Schritt c) auf eine oder mehrere Flächen des Formkörpers aufgebracht werden, ausgewählt sind aus der Gruppe der Enzyme, Bleichmittel, Bleichaktivatoren, Tenside, Korrosionsinhibitoren, Belagsinhibitoren, Cobuilder und/oder Duftstoffe.
     
    14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß der bzw. die Aktivstoff(e), die in Schritt c) auf eine oder mehrere Flächen des Formkörpers aufgebracht werden, ausgewählt sind aus der Gruppe der Sauerstoff- oder Halogen-Bleichmittel, insbesondere der Chlorbleichmittel.
     
    15. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß der bzw. die Aktivstoff(e), die in Schritt c) auf eine oder mehrere Flächen des Formkörpers aufgebracht werden, ausgewählt sind aus der Gruppe der Bleichaktivatoren, insbesondere aus den Gruppen der mehrfach acylierten Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), der N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), der acylierten Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA).
     
    16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Aktivsubstanz in Schritt c) in Form einer einzelnen Dosiereinheit aufgebracht wird, deren Volumen das 0,05- bis 1-fache, vorzugsweise das 0,1- bis 0,75-fache und insbesondere das 0,15- bis 0,5-fache des Volumens des Formkörpers, auf den die Aktivsubstanz aufgebracht wird, ausmacht.
     
    17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß in Schritt b) Haftvermittler auf eine Fläche der einzelnen Dosiereinheit aufgetragen wird.
     
    18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß das Auftragen des/der Haftvermittler(s) auf eine Fläche der einzelnen Dosiereinheit erfolgt, wobei vorzugsweise haftvermittlerübertragende Walzen, Bürsten oder Vliese eingesetzt werden.
     
    19. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Aktivsubstanz in Schritt c) in Form von 2 bis 20 Dosiereinheiten auf eine oder mehrere Flächen des Formkörpers aufgebracht wird, wobei das Volumen einer dieser Dosiereinheiten das 0,0025- bis 0,5-fache, vorzugsweise das 0,005- bis 0,375-fache und insbesondere das 0,0075- bis 0,25-fache des Volumens des Formkörpers, auf den die Aktivsubstanz aufgebracht wird, ausmacht.
     
    20. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Aktivsubstanz in Schritt c) in Form von mehr als 20, vorzugsweise von mehr als 50 und insbesondere von mehr als 100 Dosiereinheiten auf eine oder mehrere Flächen des Formkörpers aufgebracht wird.
     
    21. Verfahren nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß Verfahrensschritt d) das Aufpressen eines Formwerkzeugs auf die Fläche(n) des Formkörpers umfaßt, auf die Aktivsubstanz aufgebracht wurde.
     


    Claims

    1. Process for producing moulded multiphase washing and cleaning agent articles, characterised by the steps of

    a) compressing a particulate pre-mixture into moulded articles,

    b) depositing one or more adhesion promoters, comprising one or more substances from the group of waxes or concentrated salt solutions or solutions or suspensions of water-soluble or water-dispersible polymers, in the form of points or lines of adhesion promoters onto one or more surfaces of the moulded articles,

    c) depositing further active substance in the form of a compressed moulded article,

    d) optional after-treatment (post-forming) of the active substances deposited onto the surface of the moulded article.


     
    2. Process according to Claim 1, characterised in that the particulate pre-mixture compressed in step a) comprises builders in amounts of 20 to 80 wt %, preferably of 25 to 75 wt % and in particular of 30 to 70 wt %, based in each case on the pre-mixture.
     
    3. Process according to one of Claims 1 or 2, characterised in that the particulate pre-mixture compressed in step a) comprises surfactant(s), preferably non-ionic surfactant(s), in amounts of 0.5 to 10 wt %, preferably of 0.75 to 7.5 wt % and in particular of 1.0 to 5 wt %, based in each case on the pre-mixture.
     
    4. Process according to one of Claims 1 to 3, characterised in that the particulate pre-mixture compressed in step a) has a bulk density above 600 g/l, preferably above 700 g/l and in particular above 800 g/l.
     
    5. Process according to one of Claims 1 to 4, characterised in that the particulate pre-mixture compressed in step a) has a particle size distribution, in which less than 10 wt %, preferably less than 7.5 wt % and in particular less than 5 wt % of the particles are larger than 1600 µm or smaller than 200 µm.
     
    6. Process according to Claim 5, characterised in that the particulate pre-mixture compressed in step a) has a particle size distribution, in which more than 30 wt %, preferably more than 40 wt % and in particular more than 50 wt % of the particles have a particle size between 600 and 1000 µm.
     
    7. Process according to one of Claims 1 to 6, characterised in that multilayer moulded articles are produced in step a) in a manner known per se by pressing a plurality of different particulate pre-mixtures onto one another.
     
    8. Process according to Claim 7, characterised in that two-layer moulded articles are produced in step a) by pressing two different particulate pre-mixtures onto one another, of which one comprises one or more bleaching agents and the other one or more enzymes.
     
    9. Process according to one of Claims 7 or 8, characterised in that two-layer moulded articles are produced in step a) by pressing two different particulate pre-mixtures onto one another, of which one comprises one or more bleaching agents and the other one or more bleach activators.
     
    10. Process according to one of Claims 1 to 9, characterised in that in step b) melts of one or more substances having a melting range of 40 °C to 75 °C are deposited as adhesion promoters onto one or more surfaces of the moulded article.
     
    11. Process according to Claim 10, characterised in that the adhesion promoters deposited in step b) are one or more substances from the groups of paraffin waxes, preferably having a melting range of 50 °C to 55 °C, and/or of polyethylene glycols (PEG) and/or polypropylene glycols (PPG) and/or of natural waxes and/or of fatty alcohols.
     
    12. Process according to one of Claims 1 to 9, characterised in that the adhesion promoters deposited onto one or more surfaces of the moulded article in step b) are solutions or suspensions of water-soluble or water-dispersible polymers, preferably polycarboxylates.
     
    13. Process according to one of Claims 1 to 12, characterised in that the active substance(s) which is/are deposited in step c) onto one or more surfaces of the moulded article is/are selected from the group of enzymes, bleaching agents, bleach activators, surfactants, corrosion inhibitors, scale inhibitors, co-builders and/or fragrances.
     
    14. Process according to Claim 13, characterised in that the active substance(s) which is/are deposited onto one or more surfaces of the moulded article in step c) is/are selected from the group of oxygen or halogen bleaching agents, in particular of chlorine bleaching agents.
     
    15. Process according to Claim 13, characterised in that the active substance(s) which is/are deposited in step c) onto one or more surfaces of the moulded article is/are selected from the group of bleach activators, in particular from the groups of polyacylated alkylenediamines, in particular tetraacetyl ethylenediamine (TAED), of N-acyl imides, in particular N-nonanoylsuccinimide (NOSI), of acylated phenolsulfonates, in particular n-nonanoyl- or isononanoyloxybenzene-sulfonate (n- and iso-NOBS respectively), n-methylmorpholiniumacetonitrile methylsulfate (MMA).
     
    16. Process according to one of Claims 1 to 15, characterised in that the active substance is deposited in step c) in the form of a single dosage unit, whose volume amounts to 0.05 to 1 times, preferably 0.1 to 0.75 times and in particular 0.15 to 0.5 times the volume of the moulded article, onto which the active substance is deposited.
     
    17. Process according to Claim 16, characterised in that adhesion promoter is deposited in step b) onto one surface of the single dosage unit.
     
    18. Process according to Claim 17, characterised in that the adhesion promoter(s) is/are deposited onto one surface of the single dosage unit, wherein adhesion promoter-transferring rolls, brushes or nonwovens are preferably employed.
     
    19. Process according to one of Claims 1 to 15, characterised in that the active substance is deposited in step c) in the form of 2 to 20 dosage units onto one or more surfaces of the moulded article, wherein the volume of one of these dosage units is 0.0025 to 0.5 times, preferably 0.005 to 0.375 times and in particular 0.0075 to 0.25 times the volume of the moulded article, onto which the active substance is deposited.
     
    20. Process according to one of Claims 1 to 15, characterised in that the active substance is deposited in step c) in the form of more than 20, preferably of more than 50 and in particular of more than 100 dosage units onto one or more surfaces of the moulded article.
     
    21. Process according to one of Claims 1 to 20, characterised in that process step d) comprises the pressing of a mould tool onto the surface(s) of the moulded article, onto which active substance had been deposited.
     


    Revendications

    1. Procédé pour la production de corps moulés polyphasiques d'agents de lavage et de nettoyage, caractérisé par les étapes dans lesquelles :

    a) on comprime un prémélange particulaire pour obtenir des corps moulés ;

    b) on applique un ou plusieurs promoteurs de l'adhérence contenant une ou plusieurs substances choisies parmi le groupe des cires ou des solutions salines concentrées ou des solutions, respectivement des suspensions de polymères solubles dans l'eau, respectivement aptes à être dispersés dans l'eau, sous la forme de points ou de lignes faisant office de promoteurs de l'adhérence sur une ou plusieurs surfaces des corps moulés ;

    c) on applique une autre substance active sous la forme d'un corps moulé comprimé ;

    d) on soumet à un traitement ultérieur facultatif (façonnement ultérieur) les substances actives appliquées sur la surface du corps moulé.


     
    2. Procédé selon la revendication 1, caractérisé en ce que le prémélange particulaire comprimé à l'étape a) contient des builders dans des quantités de 20 à 80 % en poids, de préférence de 25 à 75 % en poids et en particulier de 30 à 70 % en poids, chaque fois rapportés au prémélange.
     
    3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que le prémélange particulaire comprimé à l'étape a) contient plusieurs agents tensioactifs, de préférence un ou plusieurs agents tensioactifs non ioniques dans des quantités de 0,5 à 10 % en poids, de préférence de 0,75 à 7,5 % en poids et en particulier de 1,0 à 5 % en poids, chaque fois rapportés au prémélange.
     
    4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le prémélange particulaire comprimé à l'étape a) présente une densité apparente supérieure à 600 g/l, de préférence supérieure à 700 g/l et en particulier supérieure à 800 g/l.
     
    5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le prémélange particulaire comprimé à l'étape a) présente une distribution granulométrique dans laquelle moins de 10 % en poids, de préférence moins de 7,5 % en poids et en particulier moins de 5 % en poids des particules sont supérieures à 1600 µm ou inférieures à 200 µm.
     
    6. Procédé selon la revendication 5, caractérisé en ce que le prémélange particulaire comprimé à l'étape a) présente une distribution granulométrique dans laquelle plus de 30 % en poids, de préférence plus de 40 % en poids et en particulier plus de 50 % en poids des particules présentent une granulométrie entre 600 et 1000 µm.
     
    7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que, à l'étape a), on produit des corps moulés multicouches d'une manière connue en soi en comprimant l'un sur l'autre plusieurs prémélanges particulaires différents.
     
    8. Procédé selon la revendication 7, caractérisé en ce que, à l'étape a), on produit des corps moulés bicouches en comprimant l'un sur l'autre deux prémélanges particulaires différents, l'un contenant un ou plusieurs agents de blanchiment et l'autre contenant une ou plusieurs enzymes.
     
    9. Procédé selon l'une quelconque des revendications 7 ou 8, caractérisé en ce que, à l'étape a), on produit des corps moulés bicouches en comprimant l'un sur l'autre deux prémélanges particulaires différents, l'un contenant un ou plusieurs agents de blanchiment et l'autre contenant un ou plusieurs activateurs du blanchiment.
     
    10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que, à l'étape b), on applique, à titre de promoteurs de l'adhérence, des masses fondues d'une ou de plusieurs substances dont la plage de fusion s'élève de 40 °C à 75 °C sur une ou plusieurs surfaces du corps moulé.
     
    11. Procédé selon la revendication 10, caractérisé en ce que, à l'étape b), on applique, à titre de promoteurs de l'adhérence, une ou plusieurs substances choisies parmi les groupes des cires de paraffine, de préférence qui possèdent une plage de fusion de 50 °C à 55 °C et/ou des polyéthylèneglycols (PEG) et/ou des polypropylèneglycols (PPG) et/ou des cires naturelles et/ou des alcools gras.
     
    12. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que, à l'étape b), on applique, à titre de promoteurs de l'adhérence, des solutions, respectivement des suspensions de polymères solubles dans l'eau, respectivement aptes à être dispersés dans l'eau, de préférence de polycarboxylates, sur une ou plusieurs surfaces du corps moulé.
     
    13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que la, respectivement les substances actives que l'on applique à l'étape c) sur une ou plusieurs surfaces du corps moulé, sont choisies parmi le groupe des enzymes, des agents de blanchiment, des activateurs du blanchiment, des agents tensioactifs, des inhibiteurs de la corrosion, des inhibiteurs du dépôt, des cobuilders et/ou des parfums.
     
    14. Procédé selon la revendication 13, caractérisé en ce que la, respectivement les substances actives que l'on applique à l'étape c) sur une ou plusieurs surfaces du corps moulé, sont choisies parmi le groupe des agents de blanchiment oxygénés ou halogénés, en particulier des agents de blanchiment chlorés.
     
    15. Procédé selon la revendication 13, caractérisé en ce que la, respectivement les substances actives que l'on applique à l'étape c) sur une ou plusieurs surfaces du corps moulé, sont choisies parmi le groupe des activateurs du blanchiment, en particulier parmi les groupes des alkylènediamines plusieurs fois acylées, en particulier de la tétraacétyléthylènediamine (TAED), des N-acylimides, en particulier du N-nonanoylsuccinimide (NOSI), des phénolsulfonates acylés, en particulier du n-nonanoyl- ou de l'isononanoyl-oxybenzènesulfonate, (n-, respectivement iso-NOBS) du N-méthyl-morpholinium-acétonitrile-méthylsulfate (MMA).
     
    16. Procédé selon l'une quelconque des revendications 1 à 15, caractérisé en ce qu'on applique la substance active à l'étape c) sous la forme d'une unité de dosage individuelle dont le volume représente de 0,5 à 1 fois, de préférence de 0,1 à 0,75 fois et en particulier de 0,15 à 0,5 fois le volume du corps moulé sur lequel on applique la substance active.
     
    17. Procédé selon la revendication 16, caractérisé en ce que, à l'étape b), on applique des promoteurs de l'adhérence sur une surface de l'unité de dosage individuelle.
     
    18. Procédé selon la revendication 17, caractérisé en ce que l'application du/des promoteurs de l'adhérence a lieu sur une surface de l'unité de dosage individuelle, en mettant en oeuvre de préférence des rouleaux, des brosses ou des non-tissés pour promouvoir l'adhérence.
     
    19. Procédé selon l'une quelconque des revendications 1 à 15, caractérisé en ce qu'on applique la substance active à l'étape c) sous la forme de 2 à 20 unités de dosage sur une ou plusieurs surfaces du corps moulé, le volume d'une de ces unités de dosage représentant de 0,0025 à 0,5 fois, de préférence de 0,005 à 0,375 fois, et en particulier de 0,0075 à 0,25 fois le volume du corps moulé sur lequel on applique la substance active.
     
    20. Procédé selon l'une quelconque des revendications 1 à 15, caractérisé en ce qu'on applique la substance active à l'étape c) sous la forme de plus de 20, de préférence de plus de 50, et en particulier de plus de 100 unités de dosage sur une plusieurs surfaces du corps moulé.
     
    21. Procédé selon l'une quelconque des revendications 1 à 20, caractérisé en ce que l'étape opératoire d) comprend la compression d'un moule sur la/les surfaces du corps moulé sur lequel la substance active a été appliquée.
     






    Angeführte Verweise

    IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



    Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

    In der Beschreibung aufgeführte Patentdokumente




    In der Beschreibung aufgeführte Nicht-Patentliteratur