[0001] The present invention relates generally to gas turbines, for example, for electrical
power generation, and more particularly to cooling circuits for the first nozzle stage
of a turbine.
[0002] The traditional approach for cooling turbine blades and nozzles is to extract high
pressure cooling air from a source, for example, from the intermediate and last stages
of the turbine compressor. A series of internal flow passages are typically used to
achieve the desired mass flow objectives for cooling the turbine blades. In contrast,
external piping is used to supply air to the nozzles, with air film cooling typically
being used and the air exiting into the hot gas stream of the turbine. In advanced
gas turbine designs, it has been recognized that the temperature of the hot gas flowing
past the turbine components could be higher than the melting temperature of the metal.
It is therefore necessary to establish a cooling scheme to more assuredly protect
the hot gas path components during operation. Steam has been demonstrated to be a
preferred cooling media for cooling gas turbine nozzles (stator vanes), particularly
for combined-cycle plants. See, for example, U.S. Patent No. 5,253,976. However, because
steam has a higher heat capacity than the combustion gas, it is inefficient to allow
the coolant steam to mix with the hot gas stream. Consequently, it is desirable to
maintain cooling steam inside the hot gas path components in a closed circuit. Certain
areas of the components of the hot gas path, however, cannot practically be cooled
with steam in a closed circuit. For example, the relatively thin structure of the
trailing edges of the nozzle vanes effectively precludes steam cooling of those edges.
Therefore, air cooling may be provided in the trailing edges of nozzle vanes. For
a complete description of the steam cooled nozzles with air cooling along the trailing
edge, reference is made to U.S. Patent No. 5,634,766.
[0003] The present invention provides a cooling system for cooling the hot gas components
of a nozzle stage of a gas turbine, in which closed circuit steam or air cooling and/or
open circuit air cooling systems may be employed. In the closed circuit system, a
plurality of nozzle vane segments are provided, each of which comprises one or more
nozzle vanes extending between inner and outer walls. The vanes have a plurality of
cavities in communication with compartments in the outer and inner walls for flowing
cooling media in a closed circuit for cooling the outer and inner walls and the vanes
per se. This closed circuit cooling system is substantially structurally similar to the steam
cooling system described and illustrated in the prior referenced U.S. Patent No. 5,634,766,
with certain exceptions as noted below. Thus, cooling media is provided to a plenum
in the outer wall of the segment for distribution therein and passage through impingement
openings in a plate for impingement cooling of the outer wall surface of the segment.
The spent impingement cooling media flows into leading edge and aft cavities extending
radially through the vane. Return intermediate cooling cavities extend radially and
lie between the leading edge and aft cavities. A separate trailing edge cavity may
also be provided. The cooling media that flows through the leading edge and aft cavities
flows into a plenum in the inner wall and through impingement openings in an impingement
plate for impingement cooling of the inner wall of the segment. The spent impingement
cooling media then flows through the intermediate return cavities for further cooling
of the vane.
[0004] Impingement cooling is also provided in the leading and aft cavities of the first
stage nozzle vane, as well as in the intermediate, return cavities of the vane. Inserts
in the leading and aft cavities comprise sleeves having a collar at their inlet ends
for connection with integrally cast flanges in the outer wall of the cavities and
extend through the cavities spaced from the walls thereof. These inserts have impingement
holes in opposition to the walls of the cavity whereby steam flowing into the inserts
flows outwardly through the impingement holes for impingement cooling of the vane
walls. Return or exit channels are provided along the inserts for channeling the spent
impingement cooling steam. Similarly, inserts in the return intermediate cavities
have impingement openings for flowing impingement cooling medium against the side
walls of the vane. These inserts also have return or exit channels for collecting
the spent impingement cooling steam and conducting it to the steam outlet.
[0005] As post impingement steam flow exits the aft cavities, it has conventionally experienced
an expansion into the plenum-type cavity of the inner wall that is defined by the
surface of the inner wall impingement plate. The impingement plate is curved to be
disposed generally in parallel to the fillet region of the aerofoil. Thus, the impingement
holes of the impingement plate in this region of the aerofoil fillet are oriented
such that their center lines are perpendicular to the surface of the fillet. However,
this also places many of these holes generally perpendicular to the flow exiting from
the aft cavities. Accordingly, the problem exists that the cooling media, such as
steam flow, exiting the aft cavities can adversely affect the performance of the steam
cooling impingement holes in this region by creating an unstable, low static pressure
steam supply to those holes.
[0006] The present invention was developed in particular for the purposes of steam cooling
robustness in the area of the aerofoil fillet of the stage one nozzle.
[0007] The invention is thus embodied in structures that allow for the steam flow to exit
the aft cavities in a manner which substantially isolates the same from the impingement
holes in the vicinity of the exit of these cavities. This prevents the inner wall
and aerofoil fillet impingement holes from receiving an unpredictable steam supply
from the aft cavities.
[0008] The invention relates in particular to the configuration of the cavity insert and
the flash rib configuration at the radially inner end of the first stage nozzle. More
specifically, according to a first aspect of the invention, the invention is embodied
in an extending flange or skirt to channel exit flow from the respective insert to
isolate the same from impingement openings in the vicinity of the cavity exit ends.
In a first embodiment, a flash rib boss is defined peripherally of at least one of
the aft cavities and a flange or skirt extends radially inwardly from the boss. The
skirt, which extends from the impingement boss, channels the flow exiting the corresponding
aft vane cavity into the plenum radially inwardly of the impingement plate while shielding
the impingement holes in the vicinity of that vane cavity from an adverse influence
from the exiting steam flow.
[0009] In a second, alternate embodiment of the invention, the fin of the cavity insert
for at least one of the aft cavities is extended in a radial direction, longitudinally
of the insert so as to define a flange to channel the exit flow generally to an area
beyond the fillet region and thereby substantially preclude an adverse effect on the
impingement cooling in the vicinity of the cavity. Thus, in this embodiment, the fins
of the cavity insert are extended to act as flow directing skirts which shield the
impingement holes adjacent the cavity and the nozzle inner side wall.
[0010] A second aspect of the invention relates to the configuration of the interface between
the cavity insert and the flash rib boss at the radially inner end of the first stage
nozzle. More specifically, according to a second aspect of the invention, a gap between
a flash rib or impingement boss, provided at the juncture of the impingement plate
and the flash rib, and the cavity insert is controlled to minimize flow therebetween,
so that flow out of the cavities is substantially limited to the flow out of the return
or exit channel(s), where it will have a lesser impact on the impingement cooling
of the aerofoil fillet region. In a presently preferred embodiment of the invention,
the insert body defines a controlled gap with the flash rib boss irrespective of the
location of the flange or skirt-like extension structure. The gap is most preferably
controlled to about 0.02 inches.
[0011] These, as well as other objects and advantages of this invention, will be more completely
understood and appreciated by careful study of the following more detailed description
of the presently preferred exemplary embodiments of the invention taken in conjunction
with the accompanying drawings, in which:
FIGURE 1 is a schematic cross-sectional view of a first stage nozzle vane in which
a cooling media exit flow skirt structure embodying the invention may be provided;
FIGURE 2 is a schematic cross-sectional view of the first stage nozzle vane, adjacent
the radially outer end thereof;
FIGURE 3 is a schematic cross-sectional view similar to FIGURE 2 showing the configuration
of the cavity inserts mid span of the vane;
FIGURE 4 is a schematic cross-sectional view similar to FIGURES 2 and 3 showing exemplary
insert configurations adjacent the radially inner end of the vane;
FIGURE 5 is a schematic perspective view of a first stage nozzle vane segment taken
from the radially inner end of the vane segment;
FIGURE 6 is a schematic cross-sectional view taken along line A-A of FIGURE 5 illustrating
a first exemplary embodiment of the invention;
FIGURE 7 is a schematic cross-sectional view taken along line B-B of FIGURE 5 showing
the first exemplary embodiment;
FIGURE 8 is a schematic cross-sectional view taken along line C-C of FIGURE 5 showing
the first embodiment of the invention;
FIGURE 9 is a schematic cross-sectional view taken line A-A of FIGURE 5 illustrating
a second exemplary embodiment of the invention;
FIGURE 10 is a schematic cross-sectional view taken along line B-B of FIGURE 5 showing
the second embodiment of the invention; and
FIGURE 11 is a schematic cross-sectional view taken along line C-C of FIGRE 5 showing
the second embodiment of the invention.
[0012] As discussed previously, the present invention relates in particular to cooling circuits
for the first stage nozzles of a turbine, reference being made to the previously identified
patents for disclosures of various other aspects of the turbine, its construction
and methods of operation. Referring now to FIGURE 1, there is schematically illustrated
in cross-section a vane 10 comprising one of the plurality of circumferentially arranged
segments of the first stage nozzle. It will be appreciated that the segments are connected
one to the other to form an annular array of segments defining the hot gas path through
the first stage nozzle of the turbine. Each segment includes radially spaced outer
and inner walls 12 and 14, respectively, with one or more of the nozzle vanes 10 extending
between the outer and inner walls. The segments are supported about the inner shell
of the turbine (not shown) with adjoining segments being sealed one to the other.
It will therefore be appreciated that the outer and inner walls and the vanes extending
therebetween are wholly supported by the inner shell of the turbine and are removable
with the inner shell halves of the turbine upon removal of the outer shell as set
forth in U.S. Patent No. 5,685,693. For purposes of this description, the vane 10
will be described as forming the sole vane of a segment.
[0013] As shown in the schematic illustration of FIGURE 1, the vane has a leading edge 18,
a trailing edge 20, and a cooling steam inlet 22 to the outer wall 12. A return steam
outlet 24 also lies in communication with the nozzle segment. The outer wall 12 includes
outer side railings 26, a leading railing 28, and a trailing railing 30 defining a
plenum 32 with the outer cover plate 34 and an impingement plate 36 disposed in the
outer wall 12. (The terms outwardly and inwardly or outer and inner refer to a generally
radial direction). Disposed between the impingement plate 36 and the inner surface
38 of outer wall 12 are a plurality of structural ribs 40 extending between the side
walls 26, forward wall 28 and trailing wall 30. The impingement plate 36 overlies
the structural ribs 40 throughout the full extent of the plenum 32. Consequently,
steam entering through inlet port 22 into plenum 32 passes through the openings in
the impingement plate 36 for impingement cooling of the inner surface 38 of the outer
wall 12.
[0014] In this exemplary embodiment, the first stage nozzle vane 10 has a plurality of cavities,
for example, a leading edge cavity 42, two aft cavities 52, 54, four intermediate
return cavities 44, 46, 48 and 50, and also a trailing edge cavity 56.
[0015] As illustrated in FIGURE 1, the post-impingement cooling steam flows into a plenum
73 defined by the inner wall 14 and a lower cover plate 76. Structural ribs 75 are
integrally cast with the inner wall 14. Radially inwardly of the structural ribs 75
is an impingement plate 74. As a consequence, it will be appreciated that the spent
impingement cooling steam flowing from cavities 42, 52, and 54 flows into the plenum
73 for flow through the impingement openings of impingement plate 74 for impingement
cooling of the inner wall 14. The spent cooling steam flows by direction of the ribs
75 towards the openings (not shown in detail) for return flow through the cavities
44, 46, 48, and 50, respectively, to the steam outlet 24. Insert sleeves 64, 66, 68,
and 70 are disposed in the cavities 44, 46, 48, and 50 in spaced relation from the
side walls 88, 90 and partition walls 72, 78, 80, 82, 84, defining the respective
cavities. The impingement openings lie on opposite sides of the sleeves for flowing
the cooling media, e.g., steam, from within the insert sleeves through the impingement
openings for impingement cooling of the side walls 88, 90 of the vane, as generally
discussed above. The spent cooling steam then flows from the gaps between the insert
sleeves and the walls of the intermediate cavities to outlet 24 for return to the
coolant, e.g., steam, supply.
[0016] The air cooling circuit of the trailing edge cavity 56 of the combined steam and
air cooling circuit of the vane illustrated in FIGURE 1 generally corresponds to that
of the '766 patent and, therefore, a detailed discussion herein is omitted.
[0017] Referring to the nozzle vane structure shown in FIGURES 2-4, in the illustrated,
exemplary embodiment, seven cavities are provided for cooling steam flow. The first,
leading edge cavity 42 and the aft, sixth and seventh cavities 52, 54 are down-flow
cavities in this embodiment. The second through fifth cavities 44, 46, 48, 50, on
the other hand, are up-flow, steam return intermediate cavities. As mentioned above,
each of the steam flow cavities in this embodiment is provided with a respective cavity
insert. Thus, the leading edge cavity 42 and aft cavities 52, 54 each have an insert
sleeve, 58, 60, and 62, respectively, while each of the intermediate cavities 44,
46, 48 and 50 have similar insert sleeves 64, 66, 68, and 70, respectively, all such
insert sleeves being in the general form of hollow sleeves, having perforations as
described in greater detail herein below. The insert sleeves are preferably shaped
to correspond to the shape of the particular cavity in which the insert sleeve is
to be provided and sides of the sleeves are provided with a plurality of impingement
cooling openings, along portions of the insert sleeve which lie in opposition to the
walls of the cavity to be impingement cooled. For example, as shown in FIGURE 2, in
the leading edge cavity 42, the forward edge of the insert sleeve 58 would be arcuate
and the side walls would generally correspond in shape to the side walls of the cavity
42, with such walls of the insert sleeve having impingement openings along the length
thereof. The back side of the sleeve or insert sleeve 58, disposed in opposition to
the partition wall 72 separating cavity 42 from cavity 44, however, would not have
impingement openings. Similarly, in the aft cavities 52, 54, the side walls of the
insert sleeves 60 and 62 have impingement openings along the length thereof, whereas
the forward and aft walls of insert sleeves 60 and 62, facing cavity defining partition
walls 84 and 86, for example, are of a solid non-perforated material.
[0018] It will be appreciated that the insert sleeves received in cavities 42, 44, 46, 48,
50, 52, and 54 are spaced from the walls of the cavities to enable cooling media,
e.g., steam, to flow through the impingement openings to impact against the interior
wall surfaces of the cavities, hence cooling the wall surfaces. In the illustrated
embodiment, the inserts are spaced from the walls of the cavities, by cavity ribs,
schematically shown at 42a, 44a, 46a, 50a, 52a, and 54a. To minimize degradation of
the cooing impingement flow downstream, the cavity ribs further direct the steam to
the return or exit channel(s) 58a, 60 b, 60a, 62b, 64b, 64a, 66b, 66a, 68b, 68a, 70b,
70a, defined in the illustrated embodiment between the imperforate walls of the inserts
and the respective cavity walls 72, 84, 86, 78, 80, 82.
[0019] To accommodate the ever increasing volume of post-impingement flow, the inserts have
a transitioning or profile changing configuration. Thus, for example, with reference
to the leading edge cavity, the cavity insert is substantially D-shaped at the radial
outer end of the vane, where the cooling media first enters this cavity (FIG. 2).
The cooling media flows through impingement holes (not shown in this view) to impinge
upon the vane outer walls to impingement cool the same. The cavity ribs 42a defined
at spaced locations along the length of the cavity 42 encourage this spent cooling
steam to flow in a chord-wise direction to be collected at the aft dump channel 58a
of the leading edge cavity insert, as shown in FIGURES 3 and 4. As illustrated, progressing
radially inwardly along the vane, the aft dump channel 58a of this insert 58 increases
in dimension as the spent cooling medium flow volume increases relative to the remaining
cooling flow that has yet to flow out through the impingement holes in the insert.
Thus, along the length of the vane, the insert 58 of the leading edge cavity 42 changes
profile from a generally D-shape to a generally C-shape. The aft down-flow cavities
52, 54 similarly define a gradually transitioning configuration in the direction of
flow as shown by comparison of FIGURES 2, 3 and 4. In this example, the insert 60
in aft cavity 52 transitions from a generally rectangular profile to an H-shaped profile,
and the insert 62 in aft cavity 54 transitions from a generally triangular or narrow
edged rectangular profile to a generally V-shaped profile.
[0020] Similarly, the up-flow cavities define a maximum insert dimension at the radially
inner end of the vane (FIG. 4) and define progressively changing cross-sectional configurations.
Thus, at the radially inner end of the vane, these inserts 64, 66, 68, 70 are generally
rectangular. However, as the aft and forward dump channels 64a, 64b; 66a, 66b; 68a,
68b; 70a, 70b gradually increase in size along the flow direction of the cooling media,
the cavities assume what might be characterized as an H or I beam shape. In these
cavities as well, cavity ribs 44a, 46a, 48a, 50a are defined at spaced locations along
the length of the respective cavity to space the inserts from the vane wall and to
encourage spend cooling medium to flow in a chord-wise direction to the forward and
aft dump channels.
[0021] As noted above, the present invention was developed in particular for the purposes
of steam cooling robustness in the area of the aerofoil fillet of the stage one nozzle
vanes. Thus, the invention relates in particular to the configuration of the cavity
insert and the flash rib configuration at the radially inner end of the vanes of the
first stage nozzle. FIGURE 5 is a perspective view of the radially inner end of the
nozzle vane segment, with details of the intermediate, return cavities and inserts
omitted for clarity. As described more particularly below, the invention is embodied
in an extension defined at the radially inner end of the sixth and seventh cavities,
in particular, to channel exit flow from the respective inserts, to shield the steam
cooling impingement holes adjacent the inner wall aerofoil fillet region 92 of the
nozzle from the steam flow exiting these aft nozzle cavities 52, 54.
[0022] A first embodiment of a fin or skirt extension embodying the invention is shown in
the cross-sectional views of FIGURES 6, 7 and 8. As shown, the radially inward end
of the sixth cavity insert 60 and the seventh cavity insert 62 each includes a respective
fin 94, 96 for directing flow into the plenum 73 at the radially inner end of the
vane 10. A flash rib boss 98 is defined at least part peripherally of the opening
at the radially inner end of the vane, at the interface of the impingement plate 74
and the flash rib 100. To shield the impingement holes 102 in the aerofoil fillet
region 92 from the exit flow, in the first embodiment of the invention a flange or
skirt 104 extends radially from the flash rib boss 98.
[0023] The configuration of the flash rib/impingement boss and skirt structure for the sixth
and seventh cavities can best be seen in FIGURES 7 and 8, respectively, which also
show the relationship of the boss/skirt 98, 104 to the impingement plate 74.
[0024] With reference to FIGURE 7, the impingement boss and skirt are attached to the nozzle
flash rib 100 and the skirt 104 extends radially inwardly of the vane to channel exit
flow from the respective insert 60, 62 to isolate the same from the impingement openings
102 in the vicinity of the cavity exit ends. As an embodiment of the second aspect
of the invention, the flash rib boss 98 defines a prescribed gap G with the adjacent
fins 94, 96 of the insert. Gap G is preferably on the order of about .02 inches. This
controlled gap minimizes the flow of post-impingement steam from the cavity 52, between
the cavity fin 94 and the flash rib 100, so that the exit flow is substantially limited
to flow via the exit channels 60b, 60a. Nevertheless, the minimal flow through the
gap G will be shielded from the impingement holes 102 in the fillet region 92 by the
skirt 104 of the flash rib boss 98. Indeed, the skirt that extends from the flash
rib boss channels such gap flow with the flow exiting the vane cavity, shown by arrow
A, into the plenum generally radially inwardly of the impingement plate 74 while shielding
the impingement holes 102 in the vicinity of the vane cavity from an adverse influence
of the steam flow.
[0025] FIGURE 8 similarly illustrates the provision of a flash rib boss and skirt for channeling
flow through the seventh cavity to substantially shield the impingement holes 102
in the vicinity of that cavity from an adverse influence from that exiting flow shown
as arrow B. In this embodiment too, the insert 62 of the seventh cavity includes a
fin 96 that terminates in a conventional manner in the vicinity of the flash rib 100.
The flash rib boss 98 is further provided in this embodiment to define a narrow, controlled
gap G to the fin 96 of the insert. A gap of .02 inches is provided in the presently
preferred embodiment. The flow channeling skirt 104 extending radially inwardly from
the flash rib boss 98 again shields the impingement holes 102 in the impingement plate
74 adjacent the nozzle inner side wall from an adverse affect due to the flow exiting
from the insert exit channel 62b and/or flow between the fin 96 and the flash rib
boss 98.
[0026] In accordance with a second, alternate embodiment of the invention shown in FIGURES
9-11, the fins 194, 196 of the cavity inserts for the sixth and seventh cavities are
extended in a radial direction, longitudinally of the insert, to define flanges for
channeling exit flow beyond the fillet region 92 and thereby minimize the exit flow's
adverse effect on the impingement holes 102 in the vicinity of the cavity. Thus, in
this embodiment, the fins of the cavity insert are extended to act as flow directing
flanges or skirts 194, 196 which shield the impingement holes adjacent the cavity
and the nozzle inner wall 14. In this embodiment as well, a flash rib boss 198 is
provided at the flash rib 100 so as to control the gap between the insert fins, referred
to as flanges or skirts in this embodiment, to about 0.02 inches in the presently
preferred embodiment. This controlled gap minimizes the flow of post-impingement steam
from the cavities 52, 54, between the insert flange 194, 196 and the flash rib boss
98, so that the exit flow is substantially limited to flow via the exit channels 60b,
60a, 62b, where the insert flanges 194, 196 can direct it into the plenum, beyond
the fillet region 92.
[0027] For completeness, various aspects of the invention are set out in the following numbered
clauses:-
1. A turbine vane segment for forming part of a stage of a turbine, comprising:
inner and outer walls spaced from one another;
a turbine vane extending between said inner and outer walls and having leading and
trailing edges, said vane including a plurality of discrete cavities between the leading
and trailing edges and extending lengthwise of said vane for flowing a cooling medium
in a substantially closed circuit through said vane;
an impingement plate mounted to said inner wall in spaced relation to an inner surface
thereof, said impingement plate having openings enabling passage of the cooling medium
for impingement cooling of said inner wall;
an inner cover plate mounted to said inner wall and spaced from said inner surface
with said impingement plate therebetween, thereby to define a plenum of said inner
wall between said impingement plate and said cover plate and an impingement gap between
said impingement plate and said inner surface,
at least one of said cavities of said vane being in communication with said plenum
of said inner wall via an opening in said vane, to enable passage of the cooling medium
from said at least one cavity into said plenum, and
an extension structure for channeling cooling media flow exiting said at least one
cavity into said plenum and for substantially shielding at least a portion of said
impingement plate adjacent a periphery of said opening from said exiting flow.
2. A turbine vane segment as in clause 1, wherein a flash rib boss is defined at a
junction of at least one of said vane and said inner wall with said impingement plate
at a radially inner end of said at least one cavity.
3. A turbine vane segment as in clause 2, wherein said flash rib boss includes a radially
inwardly extending skirt defining said extension structure for channeling cooling
media flow exiting said at least one cavity into said plenum and for substantially
shielding at least a portion of said impingement plate disposed adjacent a periphery
of said opening from said exiting flow.
4. A turbine vane segment as in clause 1, wherein an insert sleeve is disposed within
said at least one cavity and spaced from the inner wall of said vane to define a gap
therebetween, said insert having an inlet for flowing the cooling medium into said
insert sleeve, said insert sleeve having a plurality of openings therethrough for
flowing the cooling medium through said sleeve into said gap for impingement against
an inner wall surface of said vane.
5. A turbine vane segment according to clause 4, further including a plurality of
cavity ribs projecting inwardly of said interior wall surface at spaced locations
along the length of said vane, said insert sleeve engaging said ribs to define gaps
between said insert sleeve and said interior wall surface of said vane at spaced locations
along said vane.
6. A turbine vane segment according to clause 4, wherein said insert sleeve and said
inner wall surface of said vane define a channel therebetween along a side wall of
said vane in communication with said gaps for receiving the cooling medium flowing
into said gaps.
7. A turbine vane segment according to clause 6, further including a plurality of
cavity ribs projecting inwardly of 'said interior wall surface at spaced locations
along the length of said vane, said insert sleeve engaging said ribs to define gaps
between said insert sleeve and said interior wall surface of said vane at spaced locations
along said vane and wherein said ribs terminate short of fully encompassing said at
least one cavity whereby terminal ends of said ribs define ends of said gaps opening
into said channel.
8. A turbine vane segment as in clause 4, wherein said insert sleeve further comprises
at least one exit flow directing fin at a radially inner end thereof.
9. A turbine vane segment as in clause 8, wherein said at least one exit flow directing
fin extends radially substantially beyond a junction of at least one of said vane
and said inner wall with said impingement plate at a radially inner end of said at
least one cavity, whereby said at least one exit fin defines at least one flange that
channels cooling media flow exiting said at least one cavity into said plenum and
substantially shields at least a portion of said impingement plate adjacent a periphery
of said opening from said exiting flow.
10. A turbine vane segment as in clause 8, further comprising a flash rib boss defined
at a junction of at least one of said vane and said inner wall with said impingement
plate at a radially inner end of said at least one cavity, and disposed in facing
relation to said at least one fin of said insert sleeve.
11. A turbine vane segment as in clause 10, wherein said flash rib boss defines a
predetermined gap with said at least one fin of said insert sleeve.
12. A turbine vane segment as in clause 11, wherein said gap is about 0.02 inches.
13. A turbine vane segment as in clause 10, wherein said flash rib boss includes a
radially inwardly extending skirt defining said extension structure for channeling
cooling media flow exiting said at least one cavity into said plenum and for substantially
shielding at least a portion of said impingement plate adjacent a periphery of said
opening from said exiting flow.
14. A turbine vane segment as in clause 10, wherein said at least one exit flow directing
fin extends radially substantially beyond an interface of said insert sleeve and said
flash rib boss, whereby said at least one exit fin defines at least one flange to
channel cooling media flow exiting said at least one cavity into said plenum and substantially
shield at least a portion of said impingement plate adjacent a periphery of said opening
from said exiting flow.
15. A stator vane segment, comprising:
inner and outer walls spaced from one another;
a vane extending between said inner and outer walls and having leading and trailing
edges, said vane including a plurality of discrete cavities between the leading and
trailing edges and extending lengthwise of said vane for flowing a cooling medium
therethrough;
said outer wall defining at least one cooling media plenum;
said inner wall defining at least one cooling media plenum;
a cooling medium inlet enabling passage of the cooling medium into said plenum of
said outer wall;
said vane having a first opening communicating said plenum of said outer wall with
at least one of said cavities to enable passage of the cooling medium between said
one plenum and said one cavity, said vane having a second opening communicating said
one cavity with said cooling media plenum of said inner wall, and said vane having
a third opening communicating said cooling media plenum of said inner wall with at
least another of said cavities to enable passage of the cooling medium in a substantially
closed circuit between said cooling media plenum of said outer wall, said one cavity,
said cooling media plenum of said inner wall, and said another cavity; and
an insert sleeve within each of said one cavity and said another cavity and spaced
from interior wall surfaces thereof, each said insert sleeve having an inlet for flowing
the cooling medium into said insert sleeve, each said insert sleeve having a plurality
of openings therethrough for flowing the cooling medium through said sleeve openings
into said space between said sleeve and said interior wall surfaces for impingement
against said interior wall surface of said vane;
wherein said inner wall has an impingement plate mounted thereto in spaced relation
to an inner surface thereof and a cover spaced from said inner surface with said impingement
plate therebetween, thereby to define said plenum of said inner wall between said
impingement plate and said cover and an impingement gap between said impingement plate
and said inner surface, said second opening of said vane being in communication with
said plenum of said inner wall to enable passage of the cooling medium, said impingement
plate having openings enabling passage of the cooling medium for impingement cooling
of said inner wall, and further comprising an extension structure for channeling cooling
media flow exiting said one cavity into said plenum and for substantially shielding
a portion of said impingement plate at a periphery of said second opening from said
exiting flow.
16. A stator vane segment as in clause 15, wherein an impingement boss is defined
at a junction of at least one of said vane and said inner wall with said impingement
plate at a radially inner end of said at least one cavity.
17. A stator vane segment as in clause 16, wherein said flash rib boss includes a
radially inwardly extending skirt defining said extension structure for channeling
cooling media flow exiting said at least one cavity into said plenum and for substantially
shielding at least a portion of said impingement plate disposed adjacent a periphery
of said opening from said exiting flow.
18. A stator vane segment according to clause 15, further including a plurality of
cavity ribs projecting inwardly of said interior wall surface at spaced locations
along the length of said vane, said insert sleeve engaging said ribs to define gaps
between said insert sleeve and said interior wall surface of said vane at spaced locations
along said vane, said insert sleeve and said inner wall surface of said vane defining
a channel therebetween along a side wall of said vane in communication with said gaps
for receiving the cooling medium flowing into said gaps.
19. A stator vane segment as in clause 16, wherein said insert sleeve further comprises
at least one exit flow directing fin at a radially inner end thereof.
20. A stator vane segment as in clause 19, wherein said at least one exit flow directing
fin extends radially substantially beyond said flash rib boss, whereby said at least
one extended fin defines said extension structure that channels cooling media flow
exiting said at least one cavity into said plenum and substantially shields at least
a portion of said impingement plate adjacent a periphery of said opening from said
exiting flow.
21. A stator vane segment as in clause 19, wherein said flash rib boss defines a predetermined
gap with said at least one fin of said insert sleeve.
22. A stator vane segment as in clause 21, wherein said gap is about 0.02 inches.
23. A stator vane segment as in clause 19, wherein said flash rib boss includes a
radially inwardly extending skirt defining said extension structure for channeling
cooling media flow exiting said at least one cavity into said plenum and for substantially
shielding at least a portion of said impingement plate adjacent a periphery of said
opening from said exiting flow.
1. A turbine vane segment for forming part of a stage of a turbine, comprising:
inner and outer walls spaced from one another;
a turbine vane extending between said inner and outer walls and having leading and
trailing edges, said vane including a plurality of discrete cavities between the leading
and trailing edges and extending lengthwise of said vane for flowing a cooling medium
in a substantially closed circuit through said vane;
an impingement plate mounted to said inner wall in spaced relation to an inner surface
thereof, said impingement plate having openings enabling passage of the cooling medium
for impingement cooling of said inner wall;
an inner cover plate mounted to said inner wall and spaced from said inner surface
with said impingement plate therebetween, thereby to define a plenum of said inner
wall between said impingement plate and said cover plate and an impingement gap between
said impingement plate and said inner surface,
at least one of said cavities of said vane being in communication with said plenum
of said inner wall via an opening in said vane, to enable passage of the cooling medium
from said at least one cavity into said plenum, and
an extension structure for channeling cooling media flow exiting said at least one
cavity into said plenum and for substantially shielding at least a portion of said
impingement plate adjacent a periphery of said opening from said exiting flow.
2. A turbine vane segment as in claim 1, wherein a flash rib boss is defined at a junction
of at least one of said vane and said inner wall with said impingement plate at a
radially inner end of said at least one cavity.
3. A turbine vane segment as in claim 2, wherein said flash rib boss includes a radially
inwardly extending skirt defining said extension structure for channeling cooling
media flow exiting said at least one cavity into said plenum and for substantially
shielding at least a portion of said impingement plate disposed adjacent a periphery
of said opening from said exiting flow.
4. A turbine vane segment as in claim 1, wherein an insert sleeve is disposed within
said at least one cavity and spaced from the inner wall of said vane to define a gap
therebetween, said insert having an inlet for flowing the cooling medium into said
insert sleeve, said insert sleeve having a plurality of openings therethrough for
flowing the cooling medium through said sleeve into said gap for impingement against
an inner wall surface of said vane.
5. A turbine vane segment according to claim 4, further including a plurality of cavity
ribs projecting inwardly of said interior wall surface at spaced locations along the
length of said vane, said insert sleeve engaging said ribs to define gaps between
said insert sleeve and said interior wall surface of said vane at spaced locations
along said vane.
6. A turbine vane segment according to claim 4, wherein said insert sleeve and said inner
wall surface of said vane define a channel therebetween along a side wall of said
vane in communication with said gaps for receiving the cooling medium flowing into
said gaps.
7. A turbine vane segment as in claim 4, wherein said insert sleeve further comprises
at least one exit flow directing fin at a radially inner end thereof.
8. A stator vane segment, comprising:
inner and outer walls spaced from one another;
a vane extending between said inner and outer walls and having leading and trailing
edges, said vane including a plurality of discrete cavities between the leading and
trailing edges and extending lengthwise of said vane for flowing a cooling medium
therethrough;
said outer wall defining at least one cooling media plenum;
said inner wall defining at least one cooling media plenum;
a cooling medium inlet enabling passage of the cooling medium into said plenum of
said outer wall;
said vane having a first opening communicating said plenum of said outer wall with
at least one of said cavities to enable passage of the cooling medium between said
one plenum and said one cavity, said vane having a second opening communicating said
one cavity with said cooling media plenum of said inner wall, and said vane having
a third opening communicating said cooling media plenum of said inner wall with at
least another of said cavities to enable passage of the cooling medium in a substantially
closed circuit between said cooling media plenum of said outer wall, said one cavity,
said cooling media plenum of said inner wall, and said another cavity; and
an insert sleeve within each of said one cavity and said another cavity and spaced
from interior wall surfaces thereof, each said insert sleeve having an inlet for flowing
the cooling medium into said insert sleeve, each said insert sleeve having a plurality
of openings therethrough for flowing the cooling medium through said sleeve openings
into said space between said sleeve and said interior wall surfaces for impingement
against said interior wall surface of said vane;
wherein said inner wall has an impingement plate mounted thereto in spaced relation
to an inner surface thereof and a cover spaced from said inner surface with said impingement
plate therebetween, thereby to define said plenum of said inner wall between said
impingement plate and said cover and an impingement gap between said impingement plate
and said inner surface, said second opening of said vane being in communication with
said plenum of said inner wall to enable passage of the cooling medium, said impingement
plate having openings enabling passage of the cooling medium for impingement cooling
of said inner wall, and further comprising an extension structure for channeling cooling
media flow exiting said one cavity into said plenum and for substantially shielding
a portion of said impingement plate at a periphery of said second opening from said
exiting flow.
9. A stator vane segment as in claim 8, wherein an impingement boss is defined at a junction
of at least one of said vane and said inner wall with said impingement plate at a
radially inner end of said at least one cavity.
10. A stator vane segment according to claim 8, further including a plurality of cavity
ribs projecting inwardly of said interior wall surface at spaced locations along the
length of said vane, said insert sleeve engaging said ribs to define gaps between
said insert sleeve and said interior wall surface of said vane at spaced locations
along said vane, said insert sleeve and said inner wall surface of said vane defining
a channel therebetween along a side wall of said vane in communication with said gaps
for receiving the cooling medium flowing into said gaps.