| (19) |
 |
|
(11) |
EP 1 168 493 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
06.09.2006 Bulletin 2006/36 |
| (22) |
Date of filing: 22.06.2001 |
|
| (51) |
International Patent Classification (IPC):
|
|
| (54) |
Dual polarisation antennas
Antenne mit zwei Polarisationen
Antenne à deux polarisations
|
| (84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
| (30) |
Priority: |
28.06.2000 GB 0015693
|
| (43) |
Date of publication of application: |
|
02.01.2002 Bulletin 2002/01 |
| (73) |
Proprietor: Finglas Technologies Limited |
|
Finglas,
Dublin 11 (IE) |
|
| (72) |
Inventor: |
|
- Keung Piu Tang, William
Bancroft,
Milton Keynes MK13 0QF (GB)
|
| (74) |
Representative: Roberts, David Leslie et al |
|
Keith W. Nash & Co.,
90-92 Regent Street Cambridge CB2 1DP Cambridge CB2 1DP (GB) |
| (56) |
References cited: :
EP-A- 0 871 238 US-A- 4 401 988
|
WO-A-99/05754 US-A- 5 896 107
|
|
| |
|
|
- SANAD M: "A COMPACT DUAL-BROADBAND MICROSTRIP ANTENNA HAVING BOTH STACKED AND PLANAR
PARASITIC ELEMENTS" IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM
1996 DIGEST. BALTIMORE, JULY 21 - 26, 1996. HELD IN CONJUNCTION WITH THE USNC/URSI
NATIONAL RADIO SCIENCE MEETING, NEW YORK, IEEE, US, vol. 1, 21 July 1996 (1996-07-21),
pages 6-9, XP000782135 ISBN: 0-7803-3217-2
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] This invention relates to dual polarisation antennas.
[0002] Today, increasingly many wireless telecommunication systems employ a polarisation
diversity scheme to overcome the undesirable effect of multipath fading which is caused
by multiple reflection of radio signals in a mobile radio environment. Multipath fading
introduces unpredictable changes to the phase and polarisation characteristics of
the signals and often results in an amplification, or in some cases a cancellation,
of signals at specific locations. This random and large fluctuation of signal strength
caused by multipath fading can therefore severely affect system performance and reliability,
and in extreme cases leads to momentary loss of communication between mobile units
and base stations.
[0003] In a polarisation diversity system, the uncorrelated radio paths are provided by
two orthogonal polarisations, which are commonly either polarisations in vertical
and horizontal planes or in slant planes at +45° and -45°. One of the main advantages
of employing polarisation diversity is that the antenna elements needed to provide
the two polarisations can be physically integrated and manufactured as a single antenna
unit. This type of antenna is commonly referred to as a dual polarisation antenna.
[0004] A dual polarisation antenna has to meet certain electrical specifications, among
which the port-to-port isolation between the two polarisations is of particular importance
to system operators due to the advantage of lowering the performance required on other
expensive system components in a base station.
[0005] Published PCT patent specification No. WO99/05754 shows various dual polarisation
antenna arrays in which port-to-port isolation is improved using parasitic elements
which surround or flank the antenna elements, which are laterally spaced from the
antenna elements and which have an open frame-like structure, and discloses the preamble
of independent claim 1.
[0006] Many dual polarisation antennas are designed using microstrip transmission lines
to form the feed/reception network, which carries signals of the two polarisations
to and from the radiating elements in the antenna. The radiating elements that are
capable of radiating and receiving dual polarisation signals are designed with patch
technology due to the associated lower manufacturing cost and the desirable slim profile
of the antenna. These radiating patches are associated with the feed/reception channels
using aperture coupling techniques or other forms of coupling.
[0007] According to the invention there is provided an antenna for transmission/reception
of dual polarised radio signals, the antenna comprising feed lines, a radiating patch,
a panel and a parasitic element, wherein said feed lines feed rf signals to and from
said radiating patch, said radiating patch being of square or circular shape, and
said patch mounted parallel to said panel, wherein said panel, or a conductive surface
thereon, acts as ground plane, and wherein said parasitic element acts as a radiating
element for cancelling unwanted cross-couplings by radiation in the vicinity of the
patch, characterised in that the parasitic element is disposed in the volume between
said radiating patch.
[0008] Preferably, the patch and the parasitic element are defined by metal areas formed
on mutually opposite surfaces of a patch panel which is conveniently mounted on the
support panel in spaced parallel relationship therewith.
[0009] The metal area defining the parasitic element is preferably in the shape of an elongated
strip, conveniently a curved strip. In a preferred embodiment the parasitic element
is a part-circular metal strip, subtending an angle of about 270° symmetrically disposed
with relation to the radiating patch.
[0010] The metal area of the patch is preferably capacitively coupled, by uncoated metal
areas, to two metal coated areas aligned along orthogonal axes for handling the orthogonally
polarised radio signals, the two metal coated areas forming part of the feed/reception
means.
[0011] The radiating patch and the parasitic element may form a patch assembly and the antenna
may have a plurality of such patch assemblies, in which case the feed/reception means
preferably take the form of a feed/reception network in the form of conductive tracks
formed by conductive metal areas deposited on the support panel.
[0012] The provision of the parasitic element achieves high port-to-port isolation of a
dual polarisation antenna.
[0013] A preferred antenna comprises an array of four separated radiating and receiving
patch assemblies, which are capable of handling two independent and orthogonally polarised
signals simultaneously. There are two input ports for each patch assembly and the
ports that correspond to the two polarisations are capacitively coupled to the corresponding
tracks of the feed/reception network. The parasitic elements, which form part of the
patch assemblies, provide a mechanism which effectively reduces the undesirable cross-polarisation
couplings created by radiation in the vicinity of the patch assemblies.
[0014] An antenna according to the invention will now be described, by way of example, with
reference to the accompanying drawings, in which:
Figure 1 is an isometric view of the antenna,
Figure 2 shows the antenna with its main components in exploded view but with certain detail
omitted for clarity,
Figure 3 is a view of the lower panel and upper panel of a patch assembly of the antenna of
Figures 2, and
Figure 4 shows a detail of one patch assembly of the antenna.
Figure 5 is a plan view of the antenna, looking in the direction of arrow II in Figure 2 but
with certain detail omitted for clarity, and
Figure 6 illustrates, in exploded view, the parts of a simplified antenna, also in accordance
with the invention.
[0015] The antenna shown in the drawing is a wide-band low profile dual polarisation antenna
capable of receiving and transmitting (either sequentially or simultaneously), orthogonally
polarised radio signals. The antenna comprises an array of four patch assemblies 1,
2, 3, 4 and an elongated, grounded panel 5. Panel 5 and patch assemblies 1, 2, 3,
4 are dielectric materials clad with copper in pre-determined patterns on one or both
surfaces, preferably by an etching process. Panel 5 and the four patch assemblies
1, 2, 3, 4 are mounted on an elongated supporting base panel 6 of aluminium.
[0016] The patch assemblies 1, 2, 3 and 4 are identical in this case and each comprises
a stack of two circular panels. Alternatively, the panels could be either square or
a combination of circular and square. The lower circular panel 11 is held in spaced
parallel relationship with respect to the panel 5 next beneath it by means of an insulating
spacer. The lower surface of the lower circular panel 11 has a parasitic radiating
element 12 formed by a copper track deposited on the lower surface of the panel 11.
The upper surface of the lower circular panel 11 is coated with copper in a circular
shape except for two arc-shaped slots 13, 14. The two slots 13, 14 are uncovered areas
on the otherwise copper coated surface, which separate the two copper areas 15, 16
defined by the two slots 13, 14 from the remaining area 17 of the copper coating.
The two slots 13, 14 are located near the edge of the circular panel and are disposed
symmetrically at 45° with respect to the axis of symmetry which passes centrally between
the two areas 15 and 16. The parasitic element 12 is also symmetrical with respect
to this axis, subtending an angle of 135° on each side of the axis. Moreover, the
element 12 is disposed wholly within the volume defined between the coating area 17
and the panel 6. In this case, the element 12 is wholly within the volume defined
between the coating area 17 and the panel 5, and lies within the plan area or "footprint"
of the area 17.
[0017] The upper circular panel 18 of each patch assembly is held in spaced parallel relationship
with respect to the lower circular panel 11 next beneath it by means of an insulating
spacer. The upper circular panel 18 is made of dielectric material with a circular
pattern of copper coating 19 on the lower surface of the panel. This upper circular
panel could be made of a solid metal, such as aluminium.
[0018] It will be appreciated that both the surface 19 and the area 17 act as radiating
patches.
[0019] The upper surface of the panel 5 is copper coated while the lower surface has a feed/reception
network comprising two channels 20 and 21 each terminating in a respective terminal
22 or 23. The channels 20 and 21 are essentially mirror images of each other and are
formed by copper tracks deposited on the lower surface of the panel 5. Each channel
divides into four separate feed lines 20a, 20b, 20c, 20d and 21a, 21b, 21c, 21d respectively.
Each feed line terminates in an open circuit whereby a small metal pin 24 is used
to connect the corresponding feed line, through the panel 5, to the lower circular
panel of a patch assembly. The patch assemblies 1, 2, 3, 4 and panel 5 are supported
on the support base panel 6 by means of spacer 25 (Figure 4).
[0020] In use as a transmitting antenna, input signals are applied to the terminals 22 and
23, with signals polarised in one plane being applied to the terminal 22 and signals
polarised in the orthogonal plane being applied to the terminal 23. The input signals
are conducted along the feed channels 20 and 21 to the feed lines 20a, 20b, 20c, 20d
and 21a, 21b, 21c, 21d respectively. At the open end of each feed line, the conductive
pin 24 conducts the signals from the corresponding feed line to the area 15 or 16.
By means of capacitive coupling through the slots 13, 14, signals are coupled to the
area 17 of the copper coating on the upper surface of the lower circular panel. The
position (i.e. distance from the edge) and dimension (i.e. arc length) of the two
slots 13, 14 are selected for best impedance matching. The relative permittivity,
thickness and, dimensions of the lower panel and the upper circular panel of the patch
assembly are selected for optimal broadband impedance matching, the upper circular
panelling electro magnetically coupled to the area 17.
[0021] Unwanted cross-couplings created by radiation from within the patch assemblies 1,
2, 3, 4 are significantly reduced by the parasitic elements 12 formed on the lower
surfaces of the lower circular panels. Each parasitic element 12 acts as a radiating
element which radiates energy of the two polarisations into the vicinity of the patch
assembly. This radiation, when adjusted properly, can actively cancel the unwanted
cross-coupling radiation in the region, which results in high isolation between the
polarisations. The position, shape, length and width of each parasitic element are
selected for optimal isolation at the frequencies of interest.
[0022] Figure 6 illustrates a simplified antenna having only one patch assembly which in
structure corresponds to one of the patch assemblies 1 to 4 of Figures 1 to 4. The
antenna of Figure 6 is devoid of the panel 5 and the feed/reception tracks, signals
being conducted to the respective areas 15, 16 by conductive cables rods or pins 26.
As before, the areas 15, 16 are capacitively coupled to the main conductive area 17
on the upper surface of the lower panel 11, the lower surface of which has an arcuate
parasitic element 12 subtending an angle of about 270° symmetrically arranged with
respect to the areas 15 and 16. The parasitic element 12 lies wholly within the volume
defined between the coating area 17 and the 6, and within the plan area or "footprint"
of the coating area 17.
1. An antenna for transmission/reception of dual polarised radio signals, the antenna
comprising feed lines (20-23, 15, 16)) a radiating patch (17), a panel (5, 6), and
a parasitic element (12), wherein said feed lines (20-23, 15, 16) feed rf signals
to and from said radiating patch (17), said radiating patch being of square or circular
shape, and said patch mounted parallel to said panel (5, 6), wherein said panel (5,
6), or a conductive surface thereon, acts as ground plane, and wherein said parasitic
element (12) acts as a radiating element for cancelling unwanted cross-couplings by
radiation in the vicinity of the patch (17) characterised in that the parasitic element is disposed in the volume between said radiating patch (17)
and said panel (5, 6)
2. An antenna according to claim 1 in which the panel (5, 6) comprises a support panel
on which the radiating patch (17) is mounted.
3. An antenna according to either of the preceding claims, in which the radiating patch
is either one of a first radiating patch (17) situated immediately adjacent the first
panel and a second radiating patch (19) which is mounted adjacent the first patch
(17) so that the first patch (17) is interposed between the second patch and the panel;
the first radiating patch (17) being capacitatively coupled to the feed/reception
means, the second patch (19) being electromagnetically coupled to the first patch.
4. An antenna according to any of claims 1 to 3, wherein the patch (17) and the parasitic
element (12) are defined by metal areas formed on mutually opposite surfaces of a
patch panel (11).
5. An antenna according to claim 4 when appended to claim 2, wherein the patch panel
(11) is mounted on the support panel (6) in spaced parallel relationship therewith.
6. An antenna according to claim 4 or 5, wherein the metal area defining the parasitic
element (12) is in the shape of an elongated strip.
7. An antenna according to claim 6, wherein the elongated strip (12) is a curved strip.
8. An antenna according to any of claims 4 to 7, wherein a metal area (17) defining the
patch is capacitively coupled, by uncoated areas (13, 14), to two metal coated areas
(15, 16) aligned along orthogonal axes, the areas being operable to handle the orthogonally
polarised radio signals, the two metal coated areas forming part of the feed/reception
means (20, 21, 22, 23, 15, 16).
9. An antenna according to claim 8, when appended to claim 7, wherein the parasitic element
(12) is an arcuate metal strip, subtending an angle of about 270° symmetrically disposed
with relation to an axis of symmetry of the radiating patch, which axis passes centrally
between said metal coated areas (15, 16) which form part of the feed/reception means
(20, 21, 22, 23, 15, 16).
10. An antenna according to any of the preceding claims, wherein the radiating patch (17)
and the parasitic element (12) form a patch assembly (1) and the antenna has a plurality
of such patch assemblies (1, 2, 3, 4).
11. An antenna according to claim 10, wherein the feed/reception means take the form of
a feed/reception network having conductive tracks (20, 21, 22, 23) formed by conductive
metal areas deposited on the panel.
12. An antenna according to claim 11 and comprising an array of four separated radiating
and receiving patch assemblies (1, 2, 3, 4), which are capable of handling two independent
and orthogonally polarised signals simultaneously, there being two input ports (15,
16) for each patch assembly and the ports that correspond to the two polarisations
capacitively coupling the patch assemblies to the corresponding tracks (20, 21, 22,
23) of the feed/reception network.
13. An antenna according to any of the preceding claims, in which the parasitic element
(12) is interposed between the radiating patch and the panel.
1. Antenne für die Übertragung/den Empfang von doppelt-polarisierten Funksignalen, wobei
die Antenne Speiseleitungen (20-23, 15, 16), ein abstrahlendes Feld (17), eine Tafel
(5, 6) und ein parasitäres Element (12) umfaßt, wobei die Speiseleitungen (20-23,
15, 16) HF-Signale zu dem abstrahlenden Feld (17) hin speisen und von diesem weg,
wobei das abstrahlende Feld von quadratischer oder kreisförmiger Gestalt ist und das
Feld parallel zu der Tafel (5, 6) befestigt ist, wobei die Tafel (5, 6) oder eine
leitende Oberfläche darauf als eine Masseebene wirkt und wobei das parasitäre Element
(12) als ein abstrahlendes Element zum Aufheben unerwünschter Kreuzkopplungen durch
Strahlung in der Nähe des Felds (17) wirkt, dadurch gekennzeichnet, daß das parasitäre Element in dem Volumen zwischen dem abstrahlenden Feld (17) und der
Tafel (5, 6) angeordnet ist.
2. Antenne nach Anspruch 1, bei der die Tafel (5, 6) eine Stütztafel umfaßt, auf der
das abstrahlende Feld (17) angebracht ist.
3. Antenne nach einem der vorhergehenden Ansprüche, bei der das abstrahlende Feld ein
erstes abstrahlendes Feld (17) unmittelbar neben der ersten Tafel oder ein zweites
abstrahlendes Feld (19) ist, das neben dem ersten Feld (17) angebracht ist, so daß
das erste Feld (17) zwischen dem zweiten Feld und der Tafel angeordnet ist; wobei
das erste abstrahlende Feld (17) kapazitiv an das Speise-/Empfangsmittel gekoppelt
ist, wobei das zweite Feld (19) elektromagnetisch an das erste Feld gekoppelt ist.
4. Antenne nach einem der Ansprüche 1 bis 3, wobei das Feld (17) und das parasitäre Element
(12) definiert sind durch auf zueinander gegenüberliegenden Oberflächen einer Feldtafel
(11) ausgebildete Metallbereiche.
5. Antenne nach Anspruch 4, bei Anhang an Anspruch 2, wobei die Feldtafel (11) auf der
Stütztafel (6) in einer beabstandeten parallelen Beziehung dazu angebracht ist.
6. Antenne nach Anspruch 4 oder 5, wobei der das parasitäre Element (12) definierende
Metallbereich in Gestalt eines länglichen Streifens vorliegt.
7. Antenne nach Anspruch 6, wobei der längliche Streifen (12) ein gekrümmter Streifen
ist.
8. Antenne nach einem der Ansprüche 4 bis 7, wobei ein das Feld definierender Metallbereich
(17) durch unbeschichtete Bereiche (13, 14) kapazitiv an zwei metallbeschichtete Bereiche
(15, 16) gekoppelt ist, die entlang orthogonaler Achsen ausgerichtet sind, wobei die
Bereiche dahingehend betätigt werden können, die orthogonal polarisierten Funksignale
zu verarbeiten, wobei die zwei metallbeschichteten Bereiche Teil der Speise-/Empfangsmittel
(20, 21, 22, 23, 15, 16) bilden.
9. Antenne nach Anspruch 8, bei Anhang an Anspruch 7, wobei das parasitäre Element (12)
ein gekrümmter Metallstreifen ist, der einem Winkel von etwa 270°, symmetrisch angeordnet
in Bezug auf eine Symmetrieachse des abstrahlenden Felds, die Zentral zwischen den
metallbeschichteten Bereichen (15, 16) hindurchläuft, gegenüberliegt, wobei die metallbeschichteten
Bereiche Teil der Speise-/Empfangsmittel (20, 21, 22, 23, 15, 16) bilden.
10. Antenne nach einem der vorhergehenden Ansprüche, wobei das abstrahlende Feld (17)
und das parasitäre Element (12) eine Feldanordnung (1) bilden und die Antenne mehrere
derartiger Feldanordnungen (1, 2, 3, 4) aufweist.
11. Antenne nach Anspruch 10, wobei die Speise-/Empfangsmittels die Form eines Speise-/Empfangsnetzes
mit Leiterbahnen (20, 21, 22, 23) annimmt, die durch auf der Tafel abgeschiedene leitende
Metallbereiche gebildet werden.
12. Antenne nach Anspruch 11 und ein Array aus vier getrennten abstrahlenden und empfangenden
Feldanordnungen (1, 2, 3, 4) umfassend, die in der Lage sind, gleichzeitig zwei unabhängig
und orthogonal polarisierte Signale zu verarbeiten, wobei es zwei Eingabeports (15,
16) für jede Feldanordnung gibt und die den beiden Polarisationen entsprechenden Ports
die Feldanordnungen kapazitiv an die entsprechenden Bahnen (20, 21, 22, 23) des Speise-/Empfangsnetzes
koppeln.
13. Antenne nach einem der vorhergehenden Ansprüche, bei der das parasitäre Element (12)
zwischen dem abstrahlenden Feld und der Tafel angeordnet ist.
1. Antenne d'émission/réception de signaux radio à double polarisation, l'antenne comprenant
des lignes d'alimentation (20 à 23, 15, 16), un répartiteur rayonnant (17), un panneau
(5, 6) et un élément parasite (12), dans laquelle lesdites ligne d'alimentation (20
à 23, 15, 16) alimentent des signaux rf vers et depuis ledit répartiteur rayonnant
(17), ledit répartiteur rayonnant étant d'une forme carrée ou circulaire, et ledit
répartiteur étant monté parallèlement audit panneau (5, 6), dans laquelle ledit panneau
(5, 6), ou une surface conductrice sur celui-ci, sert de plan de masse, et dans lequel
ledit élément parasite (12) sert d'élément rayonnant pour supprimer des couplages
réciproques indésirables par rayonnement au voisinage du répartiteur (17) caractérisée en ce que l'élément parasite est disposé dans le volume entre ledit répartiteur rayonnant (17)
et ledit panneau (5, 6).
2. Antenne selon la revendication 1, dans laquelle le panneau (5, 6) comprend un panneau
de support sur lequel est monté le répartiteur rayonnant (17).
3. Antenne selon l'une ou l'autre des revendications précédentes, dans laquelle le répartiteur
rayonnant est soit l'un d'un premier répartiteur rayonnant (17) situé à proximité
immédiate du premier panneau et d'un deuxième répartiteur rayonnant (19) qui est monté
à proximité du premier répartiteur (17) de telle sorte que le premier répartiteur
(17) soit interposé entre le deuxième répartiteur et le panneau ; le premier répartiteur
rayonnant (17) étant couplé capacitivement aux moyens d'alimentation/réception, le
deuxième répartiteur (19) étant couplé électromagnétiquement au premier répartiteur.
4. Antenne selon l'une quelconque des revendications 1 à 3, dans laquelle le répartiteur
(17) et l'élément parasite (12) sont définis par des zones métalliques formées sur
des surfaces mutuellement opposées d'un panneau de répartition (11).
5. Antenne selon la revendication 4, dépendant de la revendication 2, dans laquelle le
panneau de répartition (11) est monté sur le panneau de support (6) espacé parallèlement
à celui-ci.
6. Antenne selon la revendication 4 ou 5, dans laquelle la zone métallique définissant
l'élément parasite (12) a la forme d'une bande allongée.
7. Antenne selon la revendication 6, dans laquelle la bande allongée (12) est une bande
courbe.
8. Antenne selon l'une quelconque des revendications 4 à 7, dans laquelle une zone métallique
(17) définissant le répartiteur est couplée capacitivement, par des zones non revêtues
(13, 14), à deux zones métalliques revêtues (15, 16) alignées de long d'axes orthogonaux,
les zones étant exploitables pour prendre en charge les signaux radio polarisés orthogonalement,
les deux zones métalliques revêtues faisant partie des moyens d'alimentation/réception
(20, 21, 22, 23, 15, 16).
9. Antenne selon la revendication 8, dépendant de la revendication 7, dans laquelle l'élément
parasite (12) est une bande métallique arquée, sous-tendant un angle d'environ 270°
disposée symétriquement par rapport à un axe de symétrie du répartiteur rayonnant,
lequel axe passe centralement entre lesdites zones métalliques revêtues (15, 16) qui
font partie des moyens d'alimentation/réception (20, 21, 22, 23, 15, 16).
10. Antenne selon l'une quelconque des revendications précédentes, dans laquelle le répartiteur
rayonnant (17) et l'élément parasite (12) forment un ensemble répartiteur (1) et l'antenne
comporte une pluralité de tels ensembles répartiteurs (1, 2, 3, 4).
11. Antenne selon la revendication 10, dans laquelle les moyens d'alimentation/réception
ont la forme d'un réseau d'alimentation/réception comportant des pistes conductrices
(20, 21, 22, 23) formées par des zones métalliques conductrices déposées sur le panneau.
12. Antenne selon la revendication 11 et comprenant un réseau de quatre ensembles répartiteurs
rayonnants et récepteurs séparés (1, 2, 3, 4), lesquels sont capables de prendre en
charge deux signaux indépendants et polarisés orthogonalement, deux ports d'entrée
(15, 16) étant prévus pour chaque ensemble répartiteur et les ports qui correspondent
aux deux polarisations couplant capacitivement les ensembles répartiteurs aux pistes
correspondantes (20, 21, 22, 23) du réseau d'alimentation/réception.
13. Antenne selon l'une quelconque des revendications précédentes, dans laquelle l'élément
parasite (12) est interposé entre le répartiteur rayonnant et le panneau.