[0001] This invention relates to methods for marking materials, and the detection of such
marking.
[0002] There is a widespread requirement to be able to trace the path taken by a given material
as it moves from one location to another. The movement may be of natural materials
(for example, the flow of water in sub-surface aquifers) or materials which have been
processed or manufactured by man (for example, any article constructed by man in a
manufacturing process or natural resources such as grains and minerals). In these
situations there may be reasons why it is necessary to develop specific procedures
to trace these movements. It may be that direct observation is not possible, as when
following the path of a stream underground. It may be that it is necessary to monitor
the movement of goods without the direct knowledge of the transporters or, for legal
reasons, to prove that the appearance of a material at a particular point in the biosphere
was due to the same material originating from a known starting point.
[0003] For example, articles of manufacture may be stolen in transit or resold at a much
lower price than that set by the supplier by an unscrupulous distributor, for example
at car boot sales. A key problem in bringing a conviction is identification of the
particular articles sold, to establish that the goods have been stolen or resold from
a particular distributor. Problems also occur with liquids such as petroleum which
are routinely washed out of carriers into the sea. It is almost impossible to identify
which carrier has discharged the oil and as such prosecutions and convictions for
polluting the seas are rarely brought. Further problems are associated with the movement
of natural materials, for example the movement of grain. It is particularly difficult
to distinguish one batch of such natural materials from another. In the case of grain,
problems occur in the European Community with the grain being moved across several
different borders to collect a number of EU subsidies for the same batch of grain.
A method of marking the grain which may be readily detected is necessary to prevent
such fraud.
[0004] Various methods are known in the art for marking and detecting materials, many of
which make use of microtrace nucleic acid labels, particularly labels made of DNA.
Nucleic acids can provide a limitless amount of information, because of the variable
sequence of bases (adenine, cytosine, guanine and thymine [uracil in the case of RNA
which replaces thymine]) contained within the molecule. Probability terms can be calculated
for the frequency of a given sequence of bases and, so long as sufficient bases are
used, i.e., a sufficiently large DNA molecule is employed as the tag, then for all
practical purposes a unique microtrace can be defined. By using combinations of universal
sequences (accepted as industrial standards) and by varying levels of specific sequences,
it is possible to identify the type of generic product, the product's origin (company
specific sequences), the lot or batch, and even provide an identifier for a unit of
commerce.
[0005] Previous International Patent Application No. PCT/GB91/00719 (published as WO91/17265)
disclosed a method of monitoring the movement of a hydrocarbon by the addition of
hydrocarbon compatible DNA as a microtrace additive. International Application No.
PCT/GB93/O1822 (published as WO94/04918) discloses a method of marking a liquid and
subsequently detecting that the liquid has been marked which comprises adding an additive
to the liquid. The additive comprises two or more types of particles not visible to
the naked eye, each having different signal means or particles having two or more
different signal means. The signal means aid in the detection of the microbeads. One
of the signal means comprises nucleic acid, while the other signal is not a nucleic
acid tag. In each of the above methods, the unique microtrace comprising DNA molecules
is added to the material, the resulting material is sampled after movement thereof,
and the presence of the microtrace additive in the sample is detected, analysed and
decoded.
[0006] International Application No. PCT/GB94/01506 (published as WO95/02702) describes
a method of marking a solid article or item by adding to a liquid an additive comprising
microbeads not visible to the naked eye comprising two or more signal means to aid
their detection and code means to aid identification. The additive may comprise either
two or more microbeads each having different signal means, at least one microbeads
having a code means, or it may comprise a microbead having two or more different signal
means and at least one code means. The code means and one of the signal means comprises
a nucleic acid and another of said signal means comprises a non-nucleic acid signal
means. The liquid containing the additive is added to the solid and allowed to dry
in order to mark the solid. Subsequently, microbeads having signal means are detected
on the solid, the solid is sampled and the code means decoded. The method can be adapted
for use in monitoring an interaction between any material, article or item and a person
or animal, by making use of a device adapted to produce an aerosol containing a liquid
comprising an additive containing a plurality of microbeads.
[0007] International application No. PCT/GB93/01822 (published as WO94/04918) discloses
a method of marking a liquid and subsequently detecting that the liquid has been marked.
The method comprises: adding to the liquid an additive comprising a plurality of particles
in an amount no greater than 1 part weight of particles per 10
6 parts weight liquid, the particles comprising signal means to aid their detection
and not being visible in the liquid to the naked eye; sampling a position of the liquid
containing the additive, and detecting the presence of particles in the liquid, with
the proviso that the signal means does not consist solely of a nucleic acid tag.
[0008] In each of the above prior art methods, the microtrace nucleic acid or DNA disclosed
is a synthetic nucleic acid or DNA having a variable region flanked by regions having
pre-determined sequences. The sequence of the variable region gives each microtrace
nucleic acid or DNA molecule a unique, characteristic identity, while the pre-determined
sequences are common to all tags. The pre-determined sequences are recognised by primers
for amplification by the polymerase chain reaction (PCR) and are used for subsequent
sequencing. Thus, in order to determine the identity of the variable region in the
microtrace nucleic acid or DNA, the variable region is amplified using primers complementary
to the flanking regions having pre-determined sequences. The variable region is then
sequenced using the same primers, to determine the sequence of the variable region
and hence the identity of the tag. Alternatively, sequencing can be initiated from
a sequencing primer region incorporated into the tag between a flanking region and
the variable region. As each sequencing primer region can have a sequence unique to
a particular tag, this allows the use of two or more different nucleic acid or DNA
tags to mark the material.
[0009] Although the procedures described above are effective, the prior art methods essentially
provide only a "YES/NO" answer. In other words, they are able to determine whether
a particular sample contains a nucleic acid tag, and what the identity of the tag
is. As far as we are aware, however, no one has previously appreciated that it may
be desirable to determine the quantity of tag present in a marked material. The methods
described in the prior art have been concerned solely with the marking, detection
and identification of tags, without providing any indication how much of a nucleic
acid tag is present in the sample.
[0010] We have now found that it may be advantageous to determine how much of a marker or
tag is present in a marked material. We have recognised that the quantity of a tag
in a material can give valuable clues as to the past history and movements of the
material.
[0011] For example, by measuring the actual quantity of a tag in a material and comparing
this to the amount initially used to mark the material, it is possible to tell whether
a customer (whether deliberately or inadvertently) has diluted the material. The quantity
of tag in the material can also indicate whether contamination has taken place, and
the appropriate action can then be taken. Determining the quantity of a particular
marker is also useful when there are multiple sources of an environmental contamination.
Here, different suspected sources of contamination, for example, material at different
factories or plants, may be marked by different tags. A sample is taken from the polluted
effluent stream, and the presence of each of the different tags may be detected to
determine if the pollution is caused by a particular factory. Importantly, by measuring
the relative concentrations of each tag in the effluent stream, information is provided
on the relative contribution of each source to the environmental pollution. Appropriate
fines may then be imposed by the authorities on the polluting factories or plants
with the knowledge of the contribution of each factory or plant to the pollution.
[0012] There is therefore value in a method of marking a material and subsequent detection
which provides an indication of the quantity of marker present in the material, and
this has not been previously appreciated in the field.
[0013] It will also be appreciated that there are inherent problems with the prior art techniques.
In particular, several steps are involved in the detection of marker in the sample.
First of all, PCR reactions have to be carried out to amplify the microtrace DNA tag.
In order to determine if the reactions are successful, and to resolve the reaction
products from primer-dimers, unincorporated primers and nucleotides, the reaction
products may then be subjected to polyacrylamide gel electrophoresis, for example.
The reaction products are then excised from the gel and the amplified DNA purified
from the gel fragments. The purified DNA is then subjected to cycle sequencing to
determine the sequence of the variable regions. Finally, the sequence needs to be
interpreted and compared with a known database to determine the identity of the tag
used. The many steps involved in the detection phase of the prior art methods make
the procedure lengthy, time-consuming and laborious and therefore expensive to undertake.
[0014] Furthermore, for adequate separation of the PCR reaction products from primer-dimers,
unincorporated primers and deoxynucleotides, the length of the amplified DNA should
be relatively long. In general, experience shows that the amplified DNA should be
greater than 200 base pairs in length for good separation to be achieved using a normal
resolution gel. The need for a relatively long amplification product for good separation
needs to be balanced by the expense and difficulty involved in designing and synthesising
long (>100 nucleotides long) oligonucleotides for use as the tag. Therefore, although
it is more efficient and less expensive to synthesise smaller tags, it is correspondingly
more difficult to distinguish these small tags from amplification artefacts following
PCR.
[0015] There is therefore also an unfulfilled need for a method of marking a material and
subsequent detection which involves fewer steps and which can make use of relatively
short oligonucleotides as tags.
[0016] We provide, in accordance with a: first aspect of the invention, a method of detecting
whether a material has been marked by a marker comprising a nucleic acid tag, the
method comprising the steps of: (a) sampling a portion of the material; and (b) detecting
the presence of the nucleic acid tag in the sample, said method characterised in that
the quantity of nucleic acid tag present in the sample is determined to provide an
indication of the quantity of marker present in the material.
[0017] In a preferred embodiment, the method also comprises the prior step of: adding or
applying a marker comprising a nucleic acid tag to the material.
[0018] The nucleic acid tag is preferably amplified by means of a nucleic acid amplification
reaction. The quantity of nucleic acid tag present in a sample is preferably determined
by measuring the amount of amplification needed for the amount of amplified nucleic
acid to reach a pre-determined level. The amount of amplified nucleic acid in a nucleic
acid amplification reaction may be determined in a number of ways. The actual means
by which the amount of amplified nucleic acid is determined is not important, although
we will describe here a number of preferred ways by which the amount may be measured:
It will be appreciated that the more nucleic acid tag is initially present in a sample,
the less amplification is required to reach a particular pre-detemnined level of amplified
nucleic acid. It is therefore possible to calibrate the detection system using known
initial quantities of nucleic acid tags in a series of test reactions. The kinetics
of accumulation of amplified nucleic acid in a reaction can then be measured, and
compared to that of the test reactions. This allows one to determine how much nucleic
acid tag is present in a test sample, and hence how much nucleic acid is present in
the marked material. Various methods of nucleic acid amplification are known, for
example, polymerase chain reaction, ligase chain reaction, TMA, and NASBA, etc, and
these methods can be employed for the amplification of nucleic acid tags in the methods
according to the various aspects of the invention. However, the nucleic acid amplification
reaction preferably used is the polymerase chain reaction (PCR).
[0019] We envisage that the methods described here are suitably used with different embodiments
of nucleic acid tag, each of which contains at least one identifying sequence for
the tag. When we refer in this application to an "identifying sequence", we mean a
arrangement of nucleotides having a particular sequence, which sequence enables the
identity of the nucleic acid tag in which it is present to be determined. A pool of
nucleic acid tags may thus be generated, each of which has one or more different identifying
sequence(s). The remainder of each tag in the pool (in other words, regions not including
the identifying sequence or sequences) can have sequences common to all nucleic acid
tags in the pool. After a material is marked by a tag from the pool, a sample of material
can be taken. Detecting the presence of a particular identifying region in the sample
therefore provides a direct indication of the identity of the nucleic acid tag used
to mark the material.
[0020] In the detection methods, the nucleic acid tag is contacted with two oligonucleotide
primers in a nucleic acid amplification reaction. A first embodiment of the nucleic
acid tag (referred to here as a Type I tag) contains only one identifying sequence,
and only one of the oligonucleotide primers has a sequence which corresponds to this
identifying sequence. In another embodiment of the nucleic acid tag (referred to as
a Type II tag), two identifying sequences are present, and both oligonucleotide primers
have sequences corresponding to respective identifying sequences. In other words,
it may be said that a Type II tag is amplified using primers to its identifying sequences.
In another alternative embodiment of the tag, which we will refer to as a Type III
tag, only one identifying sequence is present which is flanked by primer regions,
and neither of the oligonucleotide primers has a sequence corresponding to the identifying
sequence.
[0021] The nucleic acid tag can therefore be said to be contacted with a first oligonucleotide
primer capable of priming amplification of the nucleic acid tag and having a sequence
corresponding to a first sequence contained in the nucleic acid tag. In a first embodiment
of a nucleic acid tag (Type I), the first sequence is the same sequence as the identifying
sequence, and the first oligonucleotide primer therefore has a sequence corresponding
to the identifying sequence. The other oligonucleotide primer in the amplification
reaction may correspond to any other sequence in the nucleic acid tag. All that is
essential is that one of the oligonucleotide primers is capable of priming from the
identifying sequence, so that the presence of nucleic acid amplification indicates
that the identifying sequence is present, and hence provides an indication of the
identity of the nucleic acid tag.
[0022] In a Type II tag, the nucleic acid tag also comprises a second identifying sequence,
in which case the nucleic acid tag is further contacted in the amplification reaction
with a second oligonucleotide primer having a sequence corresponding to the second
identifying sequence. The first oligonucleotide may have a sequence consisting of
the first identifying sequence and the second oligonucleotide a sequence complementary
to the second identifying sequence. Alternatively, the first oligonucleotide has a
sequence complementary to the first identifying sequence and the second oligonucleotide
a sequence consisting of the second identifying sequence. The two identifying sequences
may be adjacent to each other, or they may flank intervening sequences. In this embodiment,
amplification takes place in the presence of two oligonucleotide primers, and both
primers must be able to bind during the amplification reaction in order for successful
amplification to take place. The two identifying sequences in a Type II tag may have
identical sequences, or they may have different sequences. The latter arrangement
allows for a greater number of permutations of individually distinct nucleic acid
tags to be produced.
[0023] It will be apparent that, where an amplification reaction is set up with at least
one oligonucleotide primer corresponding to an identifying sequence or sequences of
a Type I or Type II nucleic acid tag, the specificity of the amplification reaction
essentially resides in the particular oligonucleotide primer or primers used. If amplification
takes place, this means that the oligonucleotide primer or primers has recognised
a complementary identifying sequence in the nucleic acid tag. Conversely, absence
of amplification indicates that the particular identifying sequence is not present
in the tag present in the sample. This allows for the identity of an unknown nucleic
acid tag to be easily determined by setting up a series of nucleic acid amplification
media with different primers, and detecting which of the amplification media results
in successful amplification. It will be appreciated that the methods using the above
embodiments of nucleic acid tags allow for a "one-step" procedure to be performed,
in that detection, identification and quantitation of nucleic acid tag takes place
in one reaction. The presence of amplification indicates that nucleic acid tag is
present in the sample, and gives an indication of the identity of the nucleic acid
tag used to mark the material. At the same time, the quantity of amplified nucleic
acid can be measured to give an indication of the quantity of nucleic acid tag in
the sample and hence the material. There is therefore no need for further purification
of amplified tag and subsequent sequencing to determine identity. The nucleic acid
tags used in the invention can thus be much shorter than those previously used.
[0024] There is also disclosed herein a method of marking a material and subsequently detecting
that it has been marked, the method comprising the steps of: (a) adding or applying
a marker comprising a nucleic acid tag to the material, the nucleic acid tag comprising
at least one identifying sequence for the tag; (b) sampling a portion of the material
containing such marker and optionally separating the nucleic acid tag from the sample;
(c) amplifying at least a portion of the nucleic acid tag by means of a nucleic acid
amplification reaction which includes contacting the nucleic acid tag with a first
oligonucleotide having a sequence corresponding to the identifying sequence of the
nucleic acid tag; and (d) detecting amplification of nucleic acid as an indication
of the presence of marker in the sample and hence that the material has been marked.
[0025] There is also disclosed herein a method of detecting whether a material has been,
marked by a marker comprising a particular nucleic acid tag, the nucleic acid tag
comprising at least one identifying sequence for the tag, the method comprising the
steps of: (a) sampling a portion of the material and optionally separating any nucleic
acid tag present from the sample; (b) amplifying any nucleic acid tag present in the
sample by means of a nucleic acid amplification reaction which includes contacting
the nucleic acid tag with a first oligonucleotide having a sequence corresponding
to the identifying sequence of the nucleic acid tag; and (c) detecting amplification
of nucleic acid as an indication of the presence of the particular nucleic acid tag
in the sample and hence that the material has been marked by a marker comprising that
tag.
[0026] In preferred embodiments, the nucleic acid tag comprises at least are identifying
sequence for the tag, and the method additionally comprises the steps of: (c) amplifying
at least a portion of the nucleic acid tag by means of a nucleic acid amplification
reaction which includes contacting the nucleic acid tag with a first oligonucleotide
having a sequence corresponding to the identifying sequence of the nucleic acid tag;
and (d) determining the amount of amplification required for the amplified nucleic
acid to reach a pre-determined level as an indication of quantity of marker present
in the sample.
[0027] Conveniently, the method additionally comprises the steps of: (c) amplifying at least
a portion of the nucleic acid tag by means of a nucleic acid amplification reaction
which includes contacting the nucleic acid tag with a first oligonucleotide having
a sequence corresponding to the identifying sequence of the nucleic acid tag; and
(d) determining the amount of amplification required for the amplified nucleic acid
to reach a pre-determined level as an indication of quantity of marker present in
the sample and hence the quantity of marker in the material.
[0028] A third embodiment of the nucleic acid tag (Type III) has one identifying sequence
which is flanked by first and second regions of the nucleic acid tag containing priming
sites for nucleic acid amplification. The Type III tag is therefore amplified in a
nucleic acid amplification reaction by contacting it with a first oligonucleotide
primer having a sequence which does not correspond to the identifying sequence of
the tag. The other oligonucleotide primer in the amplification reaction has a sequence
which also does hot correspond to the identifying sequence. Thus, the first oligonucleotide
has a sequence which corresponds to a sequence contained in either the first or the
second region and the second oligonucleotide contains a sequence corresponding to
a sequence in the other of the first and second regions of the tag.
[0029] In this embodiment, a pool of nucleic acids can be generated with the first and second
regions being common to all tags in the pool, but with the identifying sequence distinct
for each member of the pool. Nucleic acid amplification can be conducted using oligonucleotide
primers having "generic" sequences, which bind to sequences in the first and second
regions of the tag. Detection of the identifying sequence and quantitation of amplified
nucleic acid can take place contemporaneously with the amplification, or afterwards.
[0030] In a preferred embodiment, there is provided a method of marking a material and subsequently
detecting that it has been marked, said method characterised in that it provides an
indication of the quantity of marker present in the material, the method comprising
the steps of: (a) adding or applying a marker comprising a nucleic acid tag to the
material, the nucleic acid tag comprising first and second regions flanking an identifying
sequence for the tag; (b) sampling a portion of the material containing such marker
and optionally separating the nucleic acid tag from the sample; (c) amplifying at
least a portion of the nucleic acid tag by means of a nucleic acid amplification reaction
which includes contacting the nucleic acid tag with a first oligonucleotide having
a sequence corresponding to said first region of the nucleic acid tag; and (d) determining
the amount of amplification required for the amplified nucleic acid to reach a pre-determined
level as an indication of quantity of marker present in the sample. Preferably, the
nucleic acid amplification reaction is a polymerase chain reaction.
[0031] In a preferred embodiment, there is provided a method of marking a material and subsequently
detecting that it has been marked, the method comprising the steps of: (a) adding
or applying a marker comprising a nucleic acid tag to the material, the nucleic acid
tag comprising first and second regions flanking an identifying sequence for the tag;
(b) sampling a portion of the material containing such marker and optionally separating
the nucleic acid tag from the sample; (c) contacting the nucleic acid tag with a first
oligonucleotide primer having a sequence corresponding to a sequence contained in
said first region of the nucleic acid tag and a oligonucleotide probe bearing a signal
means and having a sequence corresponding to said identifying sequence; (d) amplifying
at least a portion of the nucleic acid tag by means of a polymerase chain reaction
which includes a nucleic acid polymerase having 5' to 3' exonuclease activity in which
fragments bearing signal means are released from the oligonucleotide probe during
nucleic acid amplification; and (e) detecting released fragments as an indication
that amplification has taken place and hence that the material has been marked wherein
the quantity of nucleic acid tag present in the sample is determined to provide an
indication of the quantity of marker present in the sample. Preferably, the nucleic
acid tag is contacted with a second oligonucleotide primer capable of priming amplification
of the tag and having a sequence corresponding to a sequence contained in the second
region. In addition to having signal means, which is preferably a fluorescent label,
the oligonucleotide probe preferably also bears quenching means to attenuate a signal
from signal means. Such attenuation is preferably a result of Förster resonance energy
transfer through space. A detectable signal from a released fragment is preferably
at a substantially higher level than a signal detectable from the oligonucleotide
probe.
[0032] In accordance with a second aspect of the invention, we provide a method of marking
a material with a nucleic acid tag, the method comprising the steps of: (a) providing
a pool of nucleic acid tags, each nucleic acid tag comprising a generic region having
a sequence present in all nucleic acid tags within the pool, the generic region being
flanked by code regions having identifying sequences for the tag; (b) selecting a
particular nucleic acid tag from within the pool; and (c) adding or applying a marker
comprising the selected nucleic acid tag to the material.
[0033] In a preferred embodiment, there is provided a method of determining which particular
nucleic acid tag from a known pool of different nucleic acid tags has been used to
mark a material, each nucleic acid tag in the pool comprising at least one identifying
sequence for the tag, the method comprising the steps of: (a) sampling a portion of
the marked material and optionally separating the nucleic acid tag from the sample;
(b) setting up a plurality of nucleic acid amplification reaction media, each medium
containing an oligonucleotide having a sequence corresponding to the identifying sequence
of a different known nucleic acid tag in the pool and being capable of amplifying
a different nucleic acid tag from the pool; (c) contacting the nucleic acid tag of
the sample with each of said reaction media; and (d) detecting which of the reaction
media results in the amplification of nucleic acid tag as an indication of the identity
of the particular nucleic acid tag used to mark the material wherein the quantity
of nucleic acid tag present in the sample is determined to provide an indication of
the quantity of marker present in the sample.
[0034] There is also disclosed herein a kit for determining which particular nucleic acid
tag from a known pool of different nucleic acid tags has been used to mark a material,
each nucleic acid tag in the pool comprising at least one identifying sequence for
the tag, the kit comprising means for setting up a plurality of nucleic acid amplification
reaction media, each medium containing an oligonucleotide having a sequence corresponding
to the identifying sequence of a different known nucleic acid tag in the pool and
being capable of amplifying a different nucleic acid tag from the pool. The nucleic
acid tag preferably comprises a generic region having a sequence present in all nucleic
acid tags in the pool, and each nucleic acid amplification medium also preferably
comprises an oligonucleotide having a sequence corresponding to a sequence contained
in the generic region.
[0035] In preferred embodiments of the invention, the marker further comprises an indicator
means in addition to the nucleic acid tag, the presence of which is readily detectable
in any sampled portion of the material. The presence of the indicator means in a sample
indicates that nucleic acid tag is also present in the sample. Thus, a simple test
for the presence of indicator means and hence nucleic acid in a sample may be done
before detailed analysis of the identity or quantity of the tag is undertaken. The
indicator means may comprise a plurality of particles. The particles may be formed
of any suitable non-living or non-viable formerly living matter material, and the
particles may have any size or shape appropriate for the intended purpose. Generally,
particles having an average size not greater than about 5 micrometres are suitable
for most purposes. The particles preferably have an average size of from 0.01 to 5
micrometres, more preferably 0.05 to 1 micrometre, with a typical size about 0.25
or 0.5 micrometre. What is important is that they are not visible to the naked eye,
but can be detected easily. For this purpose, the particles may be labelled, for example,
with fluorescent dye.
[0036] Preferably, the indicator means comprises microbeads or microspheres, optionally
bearing a readily detectable label. Exemplary microbeads/spheres are commercially
available from Dynal (U.K.) of Wirral, Merseyside, UK, under the generic trade names
DYNABEADS and DYNASHPERES. The preparation of these beads is disclosed, in, for example,
European Patent Publication Nos. 91953, 10986 and 106873 and U.S. Patent Nos. 4186120,
4563510 and 4654267.
[0037] The methods according to the invention in its various aspects as described here provide
for quantitative determination of the amount of nucleic acid tag in a marked material.
We describe three preferred methods of quantitating the amount of amplified nucleic
acid in a reaction. As mentioned previously, the actual method of detection is not
relevant, although there are advantages in using the methods described here.
[0038] A preferred embodiment of the invention utilises a 5' nuclease assay for detection
and quantitation, which is a modification of the polymerase chain reaction (PCR).
The 5' nuclease assay was initially described in Holland et al.; 1991 (Holland, P.
M., Abramson, R. D., Watson, R. and Gelfand, D. H,
Proc. Natl. Acad Sci. USA 88, 7276-7280) and Holland et al., 1992 (Holland, P. M., Abramson, R. D., Watson,
R., Will, S., Saiki, R. K. and Gelfand, D. H,
Clinical Chemistry, 38, 462-463). This assay is also the subject of US Patent Nos. 5,210,015 and 5,487,972,
and of subsequent modifications. A commercial kit for conducting the 5' nuclease assay,
known as TAQMAN, is available from PE Biosystems.
[0039] In a 5' nuclease assay as applied here, the nucleic acid tag is contacted with a
labelled oligonucleotide probe, in addition to a first oligonucleotide primer having
a sequence corresponding to a first sequence in the tag, in the presence of a DNA
polymerase having a 5' to 3' exonuclease activity. The labelled oligonucleotide probe
is capable of binding to a sequence in the nucleic acid tag during amplification.
In the first embodiment of the nucleic acid tag having one identifying sequence (Type
I tag), the labelled probe binds to a sequence 5' to 3' downstream of the first oligonucleotide
primer. In the second embodiment of the nucleic acid tag (Type II tag), i.e., where
the nucleic acid tag has two identifying sequences and is further contacted with a
second oligonucleotide primer corresponding to the second identifying region, the
sequence which is bound by the probe is flanked by the first and second identifying
sequences. Thus, the labelled probe when bound to the nucleic acid tag during amplification
lies 5' to 3' downstream of one of the oligonucleotide primers.
[0040] In the third embodiment of the tag (Type III tag), the sequence bound by the probe
consists of the identifying sequence for the nucleic acid tag. Thus, in this embodiment,
the locations of the first and second regions (containing the priming sites) are such
that the first oligonucleotide primer bound to the nucleic acid tag lies 5' to 3'
upstream of the labelled probe bound to its corresponding identifying sequence. In
all the embodiments, the first oligonucleotide primer and the probe may lie adjacent
to each other. Alternatively, they may be separated by the presence of intervening
sequence in the nucleic acid tag. The probe is labelled with a signal means, preferably
a fluorescent tag.
[0041] During the synthesis phase of the PCR, the first oligonucleotide primer is extended
by the polymerase activity of the DNA polymerase. The labelled oligonucleotide probe
lying downstream will however be degraded by the 5' to 3' exonuclease activity of
the polymerase, and fragments bearing signal means will be released. The signal means
on the released fragments may therefore be detected as an indication of the progress
of the amplification reaction. In particular, the presence of such a signal indicates
that amplified nucleic acid is present. Thus, if a signal is detected this indicates
that the nucleic acid is present in the sample and hence that the material has been
marked. Furthermore, the amount of signal will be proportional to the amount of amplified
nucleic acid produced during the course of the reaction, so that measuring the level
of signal will give an indication of the amount of amplified nucleic acid.
[0042] Any polymerase having a 5' to 3' nuclease activity may be used in the 5' nuclease
assay. Mammalian or bacterial DNA polymerases, for example, DNA polymerase I from
E. coli, are therefore suitable for use in the method. For polymerase chain reaction, the
polymerase should be stable to heat. Thermostable polymerases are well known in the
art, for example, DNA polymerases from
Thermus aquaticus, Pyrococcus furiosis, Thermococcus litoralis, Thermus flavus, Thermus
thermophilus, etc.
[0043] In addition to being labelled by a signal means, the oligonucleotide probe may optionally
also be labelled with a quencher means, which operates to attenuate a signal detectable
from the fluorescent tag in an intact probe. It has been found that adequate attenuation
occurs when the signal means is at the 5' end of the oligonucleotide and the quencher
means is at the 3' end. It is thought that attenuation occurs means of Förster resonance
energy transfer through space (FRET, described by Förster, V. Th., (1948),
Annals Physics (Leipzig), 255-75). Thus, the proximity of the quenching means to the signal means
on the oligonucleotide probe causes a signal detectable from the signal means to be
attenuated, when the second oligonucleotide is intact. Such attenuation does not occur
when the labelled fragments are released by the exonuclease activity of the polymerase,
when the quencher means is separated from the signal means. In this case, the detectable
signal from the intact oligonucleotide probe is substantially lower than the detectable
signal from the released fragments, and the signal from the released fragments may
more readily be detected.
[0044] An alternative method of measuring the presence or amount of nucleic acid is by measuring
the incorporation of oligonucleotide primers into amplicons. For this purpose, the
first oligonucleotide primer, and/or second oligonucleotide primer (if present), is
conveniently labelled by a signal means. As amplification progresses, the primer(s)
are incorporated into amplified nucleic acid amplicons. A signal from a primer which
has been so incorporated is detected as a measure of the presence of amplified nucleic
acid in the reaction. Furthermore, such a signal may be measured to provide an indication
of the quantity of amplified nucleic acid in the reaction. The primer(s) may optionally
be labelled also with a quenching means which if present attenuates a detectable signal
from the signal means in a free oligonucleotide primer. When the oligonucleotide is
incorporated into an amplicon, however, the quenching means is not able to attenuate
the signal from the signal means. Thus, the signal detectable from a free oligonucleotide
(in solution) is at a substantially lower level than the signal detectable from an
incorporated primer. Preferably, the signal means is a fluorescent label and the attenuation
takes place by means of Förster resonance energy transfer through space.
[0045] Other ways of detecting and determining the amount of amplified nucleic acid are
also possible. Thus, for example, the amount of amplified nucleic acid during PCR
reaction may be quantitated periodically sampling the reaction. The amount of nucleic
acid material in the samples which is hybridisable to a nucleic acid probe is then
measured. The probe is a oligonucleotide having a sequence complementary to a sequence
contained in the nucleic acid tag, this sequence being flanked by the sequences bound
by the primers used in the amplification. It will be appreciated that this method
works because only amplified nucleic acid is capable of hybridising to such a probe.
The probe is preferably labelled so as to enable it to be detected more readily. Such
a detection principle is used in the PCR-LIGHT Quantitative PCR System manufactured
by Tropix/PE Applied Biosystems. In this system, one oligonucleotide primer is labelled
with biotin, and the PCR reaction is interrupted during the exponential phase of amplification.
A sample is taken from the reaction tube, and is bound to a streptavidin coated surface.
The bound product is then denatured, and the unbound strand removed. An "internal"
probe labelled with fluorescein is then contacted with the denatured PCR product,
and an anti-fluorescein antibody conjugated with alkaline phosphatase is added together
with a chemiluminescent substrate. Light emission measured in a luminometer indicates
the presence and quantity of amplification product.
[0046] The nucleic acid forming the tag may be deoxyribonucleic acid (DNA) or ribonucleic
acid (RNA). The tag may be made of protein conjugated to nucleic acid (protein-nucleic
acid, PNA). DNA is preferred because of its greater stability and resistance to nucleases.
Although the nucleic acid tag may be double stranded, it preferably consists of a
single stranded DNA molecule, more preferably, an oligonucleotide. Both naturally
occurring and synthetic nucleic acids are suitable for use as the tag. The term "naturally
occurring" refers to DNA or RNA molecules occurring in nature. The term "synthetic"
is applied to DNA or RNA synthesised in the laboratory using routine synthesis procedures
well known in the relevant art.
[0047] Preferably, the tag is a synthetic DNA oligonucleotide. Synthetic DNA may be formed
from the five naturally occurring bases: adenine, thymine, guanine, cytosine and uracil,
and non-naturally occurring bases, for example, inosine bases, and derivatized nucleotides,
such as 7-deazo-2'deoxyguanosine, alkylphosphonate oligodeoxynucleotides, phosphorothioate
oligodeoxynucleotides and α-anomeric oligodeoxynucleotides. In certain circumstances,
tags incorporating non-naturally occurring bases may have advantages over those containing
only naturally occurring bases, for example, in stability, because they are less likely
to be degraded by nuclease activity, or by chemically active substances or by environmental
conditions, such as heat or ultraviolet radiation. The use of tags incorporating non-naturally
occurring bases is limited only by their ability to be effectively detected by the
detection means. For tagging methods using the preferred PCR technology, the tag must
be capable of forming duplexes with PCR primers and function as a template for the
polymerases used in the PCR procedure.
[0048] Preferably, the nucleic acid is detected and quantitated at the same time as being
amplified. Various nucleic acid amplification technologies can be used in the method
described here, for example, Polymerase Chain Reaction (PCR), Ligase Chain Reaction
(LCR), NASBA and TMA. In a preferred embodiment, the method utilises PCR, disclosed
in U.S. Patent Nos. 4683202 and 4683195 and European Patent Publication Nos. 258017
and 237362.
[0049] Typically, the identifying sequence comprises at least 20 nucleotide bases to ensure
adequate specificity for any tag so that accidental contamination will not lead to
false results. The longer the sequence, the higher the potential information content
of the tag, but the more likely that degradation will become a problem. Furthermore,
synthesis of longer tags is more expensive and less efficient, as discussed above.
Preferably, the nucleic acid tag is between 60 to 125 base pairs or nucleotides in
length. More preferably, the nucleic acid tag is less than 90 nucleotides or base
pairs in length and most preferably the nucleic acid tag is about 63 nucleotides or
base pairs in length. This permits the hybridisation of two primers which are typically
about each 20 bases or nucleotides in length, and which, when hybridised to the tag,
are separated by a region in the tag of between about 20 to up to 85 bases/nucleotides
in length. This region may contain a binding region for a 5' nuclease probe, as described
in further detail below. The actual size of the tag is not important, as long as the
tag is of adequate size for primers of suitable size to recognise corresponding sequences
within the tag. For reasons of economy, the tags may be chosen to be as short as possible.
[0050] The label or signal means may be fluorescent substance, especially a fluorescent
dye. Suitable fluorescent dyes include (but are not limited to): allophycocyanine,
phycocyanine, phycoerythrine, rhodamine, oxazine, coumarin, fluoroscein derivatives,
for example, fluorescein isothiocyanate and carboxyfluoroscein diacetate, as well
as Texas red, acridine yellow/orange, ethidium bromide, propidium iodide, bis-benzamide
(commercially available from Hoechst under the trade name H33258) etc. Preferably,
the fluorescent label is FAM (6-carboxy-fluorescein) or TET (6-carboxy-4,7,2'7'-tetrachloro-fluorescein).
[0051] A nucleic acid tag chosen from the pool of tags is used to mark a material by applying
a marker comprising the chosen tag to the material. If the material to be marked is
a liquid, then it is merely necessary to add the oligonucleotide tag directly to the
liquid. If the material to be marked is a water-based liquid, then the tag may be
added directly to the liquid. If the material is hydrocarbon or oil based, the tag
may be suitably modified (e.g., by methylation) before adding to the material. In
the case of a solid material being marked, the oligonucleotide tag may first be dissolved
in a suitable liquid, which is then applied to the solid and allowed to dry. The oligonucleotide
tag may also be applied in the form of an aerosol, which is sprayed onto the solid.
In addition to the oligonucleotide tag, the marker may also additionally comprise
a binder or a detection means as described previously.
[0052] Subsequently, a sample may be taken from the marked material and directly subjected
to analysis, with optional pre-processing if necessary. For example, if the material
is a liquid, a small volume of the liquid may be taken and added directly to the amplification
reactions. Similarly, small solid particles (e.g., scapings) may also be added directly
to the amplification reactions. However, it is usually preferred in the case of a
solid material for the nucleic acid tag to be extracted from the solid beforehand.
This may conveniently be done by washing the solid material to which the marker has
been applied with a suitable water-based buffer.
[0053] Embodiments of the invention will now be described by way of example only and with
reference to the accompanying drawings, in which:
FIGURE 1 is a plot of detected fluorescent signal over background at each PCR cycle
for a series of starting concentrations (per ml) of nucleic acid tag; and
FIGURE 2 is a logarithmic plot derived from the data in Figure 1, showing the threshold
cycle (i.e., the cycle at which the detected signal is above the background level)
for a series of starting concentrations of nucleic acid tag.
Example I: Type I structure detected and quantitated with 5' nuclease assay
[0054] A Type I tag may be used to mark a material, and identified and quantitated by means
of the 5' nuclease assay.
[0055] A pool of single stranded DNA oligonucleotide tags is synthesised according to conventional
oligonucleotide synthesis methods as known in the art. The tags are preferably about
70 nucleotides (nt) in length, and contain only one identifying sequence within each
tag. For example, the pool may contain the following tags:

[0056] As can be seen above, the identifying sequence (Region C) is a variable region having
a particular sequence which is different from tag to tag. The sequence of this region
will therefore be unique to the particular tag on which the particular sequence is
disposed. Regions A and B, on the other hand, have the same sequences for all tags
in the pool, and can be referred to as "generic" sequences. In this case, if the identifying
sequence in a tag is 20 nucleotides long, then with 4 bases available, approximately
1.1 x 10
12 unique tags can be synthesised.
[0057] A single oligonucleotide tag is then chosen from the pool and used to mark a material
by applying a marker comprising the chosen tag, as described above. Subsequently,
a portion of the marked material is sampled, and the sample subjected to analysis
to determine the identity and/or the quantity of the tag in the sample. If necessary,
the oligonucleotide tag may be optionally extracted from the sample and subjected
to analysis.
[0058] For the purposes of detection and quantitation, a set of corresponding oligonucleotide
primer pairs is synthesised for use in a polymerase chain reaction (PCR) using conventional
DNA synthesis methods well known in the art. One oligonucleotide primer in each pair
of the set has a sequence consisting of a sequence in Region A of the pool of tags.
The other oligonucleotide primer in the pair has a sequence complementary to a sequence
in the variable identifying region (Region C) of a different oligonucleotide tag in
the pool. Thus, the number of primer pairs corresponds to the number of oligonucleotide
tags in the pool, and each primer pair in the set is capable of amplifying one (and
only one) of the oligonucleotide tags in the pool. It will be appreciated that the
design of the primer pairs and the oligonucleotide probe can be varied. Thus, one
oligonucleotide primer in a pair may have a sequence complementary to a sequence in
Region A, in which case the other primer will have a sequence consisting of a sequence
in Region C.
[0059] In addition to the primer pairs, a third oligonucleotide is constructed for use as
a probe in the 5'nuclease assay, again using conventional DNA synthesis methods. The
oligonucleotide probe has a sequence consisting of or complementary to a sequence
in Region B of the tags in the pool. As with the choice of PCR primers, due consideration
will have to given to the sequence of the labelled probe. In particular, the probe
sequence is chosen so that its melting point is preferably above that of both PCR
primers, so that during the amplification reaction, the probe is bound to its target
before any significant primer extension takes place.
[0060] The oligonucleotide probe is labelled with a fluorescent label such as FAM (6-carboxy-fluorescein)
or TET (6-carboxy-4,7,2'7'-tetrachloro-fluorescein). The fluorescent label is attached
to the probe by conventional means known in the art. In addition, it is possible nowadays
to order from commercial sources custom made probes with fluorescent or other labels
attached. As well as the fluorescent label, quenching means is also attached to the
probe, for example, by means of any conventional coupling process as known in the
art. The quenching means is preferably a quencher dye which, when present on the same
oligonucleotide probe as the fluorescent label, attenuates or reduces the fluorescence
signal observed from the fluorescent label preferably by Förster resonance energy
transfer (FRET). Thus, in an intact oligonucleotide probe, the signal from the fluorescent
label is reduced.
[0061] A series of 5' nuclease assay reactions is then set up. Each reaction tube contains
an aliquot portion of the sample containing the unknown oligonucleotide tag,
Taq DNA polymerase, dNTPs, magnesium chloride, and buffer. In addition, as PCR primers,
each reaction tube contains a different primer pair chosen from the set of oligonucleotide
primers described above, as well as an amount of the labelled oligonucleotide probe.
The number of reaction tubes corresponds to the number of different oligonucleotide
tags in the pool. Since each primer pair of the set is only capable of amplifying
one and only one of the oligonucleotide tags in the pool of tags, the fact that a
successful PCR reaction has occurred in a particular reaction tube indicates that
the primer pair in that tube has recognised corresponding sequences in the oligonucleotide
tag and enabled amplification of that tag. The identity of the oligonucleotide tag
used to mark the material can therefore easily be determined by running the PCR reactions
and determining which of the reactions is successful. Of course, if it is suspected
that a sample contains a particular tag, then it is necessary only to run one PCR
reaction with the appropriate primer pair to see if amplification takes place. Similarly,
if the tag is believed to belong to a small number of candidate tags, a reduced number
of reactions can be run with the appropriate primer pairs.
[0062] The advantage of the 5' nuclease assay is that quantitation of tag can take place
at the same time as detection of amplification. A single fluorescence signal is produced,
the presence of which indicates that amplification has taken place (and hence provides
the identity of the tag), while the strength of the signal is determined to provide
an indication of the amount of tag in the sample (as described in more detail below).
[0063] When the labelled probe and the primers are hybridised to their respective complementary
sequences, the structure of the tag is such that the labelled probe lies 5' to 3'
downstream of one of the primers. As the DNA polymerase extends the primer bound to
the tag, it encounters the labelled probe bound to the tag. The 5' to 3' nuclease
activity of the polymerase degrades the labelled probe, and releases labelled fragments
into the reaction medium. Depending on the structure of the tag, however, the primers
and the probe, the labelled probe when hybridised to the tag may even lie immediately
downstream (i.e., adjacent) of the primer. In this case, the exonuclease activity
proceeds to degrade the labelled probe without any primer extension taking place.
As mentioned above, in an intact oligonucleotide probe, the signal from the fluorescent
label is reduced, but when labelled fragments are released, the signal is no longer
attenuated and may be detected by appropriate means, for example, a fluorescence detector.
As amplification progresses, the strength of the signal should increase exponentially,
as an increasing number of labelled fragments are released into the medium. The strength
of the signal may be determined and used to determine the initial concentration of
the tag in the sample as described below. The reaction vessels used in the assay have
walls which are transparent to the fluorescent signal, and the signal may therefore
be detected during the course of the PCR reaction without the reaction needing to
be interrupted.
[0064] Prior to the amplification reactions being run, the detection system is calibrated
using known initial quantities of oligonucleotide tags in a series of test reactions.
FIGURE I is a graph showing the level of fluorescent signal detected over the background
level (Y axis) at each cycle of the PCR reaction (X axis), for a series of initial
concentrations (10
4, 10
6, 10
8, 10
10 per ml) of nucleic acid tag. Oligonucleotides A2, B2 and C2 have concentrations of
10
4/ml, A3, B3 and C3 have concentrations of 10
6/ml, A4, B4 and C4 have concentrations of 10
8/ml while A5, B5 and C5 have concentrations of 10
10/ml. The horizontal bar, shows the background level of fluorescent signal, which is
set to be equal to zero. As can be seen, the threshold cycle, in other words the cycle
at which the signal becomes detectable over the background level (i.e., the point
at which the curve starts to rise), is different for different initial concentrations
of tag. The more tag is initially present in the sample, the earlier in the reaction
the signal becomes significant. The data used for Figure 1 is tabulated in Table 1
below.

[0065] The data gathered during the calibration may be plotted to generate a standard curve.
FIGURE 2 is a graph showing the threshold cycle (in other words, the cycle at which
the signal is detectable over background) as the Y axis, plotted against the logarithm
of the initial starting concentration. It will be seen that the threshold cycle is
directly proportional to the log of the initial starting concentration. In an ideal
case, the slope of the line should be -3.3.
[0066] In order to determine the initial concentration of the tag in the test reaction,
the level at which the signal is detectable over background is determined. This threshold
cycle is then compared to the standard curve to provide the initial concentration
of the tag in the sample. The concentration of the tag in the sample can of course
be used to determine the concentration of the tag in the marked material.
Example II: Type II structure detected and quantitated with 5' nuclease assay
[0067] A Type II tag may be used to mark a material, and identified and quantitated by means
of the 5' nuclease assay.
[0068] A pool of single stranded DNA oligonucleotide tags is synthesised according to conventional
oligonucleotide synthesis methods as known in the art. The tags are preferably about
70 nucleotides (nt) in length, and contain two identifying sequences within each tag.
For example, the pool may contain the following tags:

[0069] As shown above, in a Type II tag Regions A and C are variable regions having identifying
sequences which are different from tag to tag. Region B, on the other hand, is a "generic"
sequence having the same sequence for all tags in the pool. In the above pool, since
the identifying sequences are now 40 (2 x 20) nucleotides long, approximately 2.2
x 10
12 different tags are available. Thus, using a Type II tag instead of a Type I tag increases
the number of tags available for marking.
[0070] The material is marked and sampled in the same way as described above in Example
I. The subsequent identification and quantitation of the tag is as also as described
above in Example I, except that since there are now two identifying regions, both
of each pair of primers in the primer set are designed to prime amplification of a
single tag in the pool. In other words, one oligonucleotide primer in a pair of the
set has a sequence consisting of a sequence in Region A of a oligonucleotide tag of
the pool, while the other primer in the pair has a sequence complementary to a sequence
in Region C of the same oligonucleotide tag. Alternatively, one primer has a sequence
complementary to a sequence in Region A and the other a sequence consisting of a sequence
in Region C. Thus, each pair of primers is capable of amplifying one and only one
of the tags in the pool. In addition to the primer pairs, a third labelled oligonucleotide
probe is synthesised as described in Example I above.
[0071] The 5' nuclease assay is conducted in the same way as described in Example I.
[0072] As with a Type I tag, the presence of a successful amplification provides the identity
of the tag, and the level at which the signal is detectable over background is determined
and compared with a standard curve to provide the initial concentration of the tag
in the sample. Needless to say, the concentration of the tag in the marked material
may be calculated easily from the concentration of the tag in the sample.
Example III: Type I or Type II tag detected and quantitated by measuring incorporation
of labelled primers into amplicons
[0073] A Type I tag or a Type II tag may be used to mark a material, and identified and
quantitated by detecting and determining the amount of incorporation of labelled oligonucleotide
primer into amplicons (amplification products).
[0074] A pool of single stranded DNA oligonucleotide tags is synthesised according to conventional
oligonucleotide synthesis methods as known in the art. The tags are preferably about
70 nucleotides (nt) in length, and contain one (Type I) or two (Type II) identifying
sequences within each tag. For example, the pool may contain the following Type I
tags:

[0076] The design and synthesis of the tags, and the marking and sampling of the material,
is as described in Example I above. In a Type I tag (SEQ IDs 5 and 6), Region A is
the same for all tags in the pool, while Region B is the identifying sequence which
is different in each tag in the pool. In the Type II tag, both Regions A and B (SEQ
IDs 7 and 8) are identifying sequences. A set of primer pairs is synthesised as described
above in Example I (in the case of a Type I tag) and Example II (in the case of a
Type II tag). As before, each pair of primers is capable of amplifying one and only
one tag within the pool. At least one of the primers in each pair should be labelled
with a signal means (e.g., fluorescent tag) and a quenching means, as described above
in relation to the labelled oligonucleotide probe in Example I.
[0077] A series of PCR amplification reactions is set up as described in Example I above,
except that the labelled oligonucleotide probe for the 5' nuclease assay is not present
in the reaction mix.
[0078] The fluorescent tag and quenching means are chosen such that in a free primer in
solution, the quenching means attenuates the signal from the fluorescent tag. This
attenuation takes place by means of Förster resonance energy transfer through space.
When the labelled oligonucleotide primer is extended by the DNA polymerase and incorporated
into an amplification product (amplicon) however, the quenching means does not attenuate
the signal from the fluorescent tag, and a signal from the fluorescent tag may be
detected. As amplification proceeds, the level of detectable signal should increase
exponentially. The higher the concentration of tag initially present in the sample,
the lower the cycle number at which the signal is detectable over background. By calibrating
the detection apparatus in the same manner as described in Example I, a standard curve
can be produced, which will allow the quantity of tag to be determined. Again, the
presence of the signal can be determined at the same time as the level of the signal,
to provide the identity of the tag as well as its quantity in the sample.
Example IV: Type I or Type II tag detected and quantitated by directly measuring amplification
product
[0079] A Type I tag or a Type II tag may be used to mark a material, and identified and
quantitated by directly detecting and determining the amount of amplification products
produced during the PCR reaction. The amplification products are detected and quantitated
using the PCR-LIGHT Quantitative PCR System manufactured by Tropix/PE Applied Biosystems.
[0080] A pool of single stranded DNA oligonucleotide tags is synthesised according to conventional
oligonucleotide synthesis methods as known in the art. The tags are preferably about
70 nucleotides (nt) in length, and contain one (Type I) or two (Type II) identifying
sequences within each tag. For example, the pool may contain the following Type I
tags:

[0081] Alternatively, the pool may contain the following Type II tags:

[0082] The design and synthesis of the tags is as described in Example I above. In a Type
I tag (SEQ IDs 9 and 10), "generic" Regions A and B are the same for all tags in the
pool, while Region C is the identifying sequence which is different in each tag in
the pool. In the Type II tag, both Regions A and C (SEQ IDs 7 and 8) are identifying
sequences, while Region B is common between all the tags in the pool. For PCR amplification,
a set of primer pairs is synthesised as described above in Example I (in the case
of a Type I tag) and Example II (in the case of a Type II tag). As before, each pair
of primers is capable of amplifying one and only one tag within the pool.
[0083] To enable the amplification products to be captured, one of the primers in each pair
is labelled with biotin.
[0084] The marking and sampling of the material is as described in Example I above. A series
of PCR reactions is set up, each reaction tube containing a different primer pair
chosen from the set of oligonucleotide primers, as described in Example I. Detection
and quantitation of amplification product is effected by periodically taking a sample
from each reaction tube during the exponential phase of amplification. The sample
is applied to a microplate whose wells are coated with streptavidin. Unincorporated
biotin labelled primer as well as any amplification products are captured in the well.
The wells are then washed several times with buffer. The amplification products are
then denatured to expose single stranded DNA bound to the microplate, and the complementary
strands are washed away. A fluorescein labelled probe having a sequence complementary
to the generic sequence of Region B is added to the microplate and allowed to hybridise
to the bound single stranded DNA. An anti-fluorescein antibody conjugated with alkaline
phosphatase is then added together with a chemiluminescent substrate, and light emission
detected and measured in a luminometer. The presence of light emission indicates a
successful amplification and hence the identity of the nucleic acid tag, while the
quantity of light emitted indicates the amount of amplification product. As described
above in relation to Example I, this can be compared against a standard curve to give
the initial concentration of the tag in the sample and hence in the marked material.
Example V: Type III tag detected and quantitated by 5' nuclease assay
[0085] A Type III may be used to mark a material, and identified and quantitated by means
of the 5' nuclease assay.
[0086] A pool of single stranded DNA oligonucleotide tags is synthesised according to conventional
oligonucleotide synthesis methods as known in the art. The tags are preferably about
70 nucleotides (nt) in length, and contain one identifying sequence. For example,
the pool may contain the following tags:

[0087] In a Type III tag, only one identifying sequence which is different from tag to tag
is present (Region B). Regions A and C have sequences which are common to all tags
in the pool. A single oligonucleotide tag is chosen from the pool and used to mark
a material as described above in Example I. Subsequently, a portion of the marked
material is sampled and subjected to analysis to determine its identity and/or the
quantity of the tag in the sample. For this, a pair of oligonucleotide primers is
synthesised one of which has a sequence consisting of a sequence in Region A and the
other a sequence complementary to a sequence in Region C. Alternatively, one primer
may have a sequence complementary to a sequence in Region A and the other a sequence
consisting of a sequence in Region C. In addition, a set of labelled oligonucleotide
probes is also synthesised, each probe in the set having a sequence complementary
or corresponding to a sequence in Region B of a single tag in the pool. The probes
are labelled by using fluorescent tags having different emission maxima. Thus, for
example, one probe in the set may be labelled with rhodamine, and another with fluorescein
isothiocyanate (FITC). Each probe is also bound to a quenching means, which attenuates
the signal from the fluorescent tag in an intact oligonucleotide probe.
[0088] To identify and quantitate the tag used to mark the material, a 5' nuclease reaction
is set up containing the pair of oligonucleotide primers in addition to a number of
differently labelled probes of the set. As the primer pair is complementary to sequences
in the "generic" regions of the pool, any tag present in the sample will be amplified
whatever its identity. However, only one of the labelled probes will bind to the oligonucleotide
tag during the reaction. As described above in Example I, a labelled probe hybridised
to its complementary sequence in the tag will lie 5' to 3' downstream of a amplification
primer hybrised to the tag, and the 5' to 3' exonuclease activity of the
Taq DNA polymerase will degrade the labelled probe during DNA synthesis to release labelled
fragments. As above, the quenching means is not capable of attenuating the signal
from a fluorescent tag in a released fragment. Since various fluorescent tags are
used to label the different probes present in the 5' nuclease reaction, the fluorescent
signal emitted from the 5' nuclease reaction will have one of several wavelengths
depending on which particular probe is degraded. In order to detect the emitted signal,
therefore, a multichannel detector capable of detecting emitted radiation in a number
of different wavelengths is used. Since it is known which fluorophore was used to
label which probe, detection of the wavelength (or colour) of the emitted light will
indicate which labelled probe was bound to the tag and degraded during the reaction,
and hence provide the identity of the oligonucleotide tag within the pool which was
used to mark the material. The strength of the signal increases exponentially during
a successful reaction, and appropriate calibration of the detection system will allow
the initial concentration of the oligonucleotide tag to be determined, as explained
above in Example I.
[0089] It will be appreciated that the advantage of using a 5' nuclease assay with Type
III tags is that it is possible theoretically to identify and quantitate the tag by
using a single amplification reaction. This technique is limited only by the number
of distinct fluorescent tags available to label the different oligonucleotide probes,
and by the ability of the multichannel detectors to discriminate between the wavelengths
of emitted signal. Current multichannel detectors are capable of detecting up to eight
distinct wavelengths, meaning that at present it is possible to have eight differently
labelled oligonucleotide probes in the 5' nuclease reaction. Several such reactions
therefore need to be carried out depending on the size of the pool of tags. However,
as the technology progresses, we expect that it will be possible in the future to
have a "one-tube" detection and quantitation process.
Example VI: Detailed Example Illustrating Type II tag in 5' Nuclease Assay
[0090] Two stages are involved in the design of oligonucleotide tags, random sequence generation
and primer/probe design. In the first stage, a large number of random DNA sequences
of 100 bases in length is first generated using PC/Gene software purchased from Oxford
Molecular Limited, United Kingdom. Any software capable of generating random DNA sequences
may be used. The sequences are chosen to have nominal equal composition for all four
bases, and the generated sequences exported into appropriate primer/probe design software
for the second stage of primer/probe design.
[0091] The software used to design the primers and probe is "Primer Express" from PE Applied
Biosystems. "Primer Express" is available as part of the software for operating the
PE-ABI 7700 analytical hardware used to undertake 5' nuclease assays, which hardware
is also produced and sold by PE Applied Biosystems. The detailed operation of the
software is described in the bundled manuals accompanying the software. The "Primer
Express" software applies the normal rules for PCR primer design (e.g., the need to
avoid hairpins, the need for the primers to have matching T
m, etc) to the design of the primers. In addition, the software avoids significant
complementarity between the probe and either of the PCR primers and ensures that the
probe is complementary to the sequence of interest and binds to a region between the
two primers. The software also ensures that the probe has a T
m at least 10 degrees Celsius higher than either amplification primer, and does not
have a G at the 5' end of the probe.
[0092] Once a random oligonucleotide sequence has been imported into the "Primer Express"
software, the software is instructed to create a new probe and primer design. The
software is then instructed using the "Find Primers/Probe Now" function to determine
the first 200 primer and probe combinations conforming to the default set of parameters
supplied with the software. The default settings are as follow: minimum T
m for both primers is set at 50 degrees C, maximum T
m is set at 60 degrees C, and optimal T
m is set at 58 degrees C. The maximal T
m difference between the primers is 2 degrees. The GC content of the primers is set
to have a minimum of 20%, a maximum of 80%, with no 3' GC clamp for either primer.
The minimum length of the primer is set to be 9, the maximum 40 and the optimal length
is 20. The minimum T
m of the amplicon is set to be 0 degrees, the maximum T
m is 85 degrees, while the minimum and maximum lengths of the amplicon are 50 and 150
respectively. The probe T
m is set to be at least 10 degrees higher than the T
m of the primers, and the sequence of the probe is set to not begin with a G. the maximum
base repeat of the primers is set at 3 residues, while the primer secondary structure
requirements are set to be: maximum consecutive base pair 3, maximum total base pair
8. The primers and probe combination with the lowest penalty score in respect of the
oligonucleotide are then identified, and the probe sequence is then used as a basis
for designing primers for the other random oligonucleotide sequences as described
below.
[0093] The "common probe sequence" identified above is introduced into the next random oligonucleotide
imported into the "Primer Express" software. For this purpose, the editing functions
of the "Primer Express" software are utilised, as described in more detail in the
operating manual for the software. Experience has shown that the best place to insert
the probe sequence is around base position 35. The inserted probe sequence can then
be fixed using the software, and the "Find Primers/Probe Now" routine undertaken again
to locate the optimal primer pairs on the resulting sequence (i.e., the random sequence
with the probe inserted). It will be appreciated that since the software is instructed
to fix the probe sequence, this sequence will be the same in every case. However,
the primer pairs determined for the different random oligonucleotides will vary because
the regions flanking the common probe region are different, being created randomly.
The best optimal primer pair is chosen for use, even if this pair has a higher penalty
score than the best non-optimal pair.
[0094] It will be apparent that the insertion of the probe sequence into a random oligonucleotide
creates a sequence larger than 100 bases. This can be remedied in two ways. First,
the random oligonucleotides generated in the first stage can be chosen to be about
70 bases in length, instead of 100 bases. Thus, insertion of the probe sequence will
allow the entire length of the sequence to be less than about 100 bases in length,
and the "Find Primers/Probe Now" routine can be applied to this sequence.. This however
does not always give satisfactory results as the position at which the probe is inserted
will affect the outcome of the primer finding routine. In some cases, no satisfactory
primer pairs can be generated, and the particular random oligonucleotide will need
to be discarded and the above procedure attempted on the next random oligonucleotide.
[0095] Alternatively, the random oligonucleotides generated in the first stage can be maintained
at 100 bases in length. The probe sequence is inserted into the random oligonucleotide
sequences, and once satisfactory primer pairs have been established, the resulting
oligonucleotide can be edited in the "Primer Express" software to remove any redundant
sequences. For example, it may be found that there are extraneous sequences present
in the oligonucleotide lying outside the primer sequences. In other words, the primer
sequences may not be at the extreme ends of the oligonucleotide sequence. In this
case, the oligonucleotide may be edited to remove these sequences to reduce the length
of the oligonucleotide, and the "Find Primers/Probe Now" routine can be undertaken
again on the edited sequence.
[0096] It should be noted that the use of the "Primer Express" software in designing oligonucleotide
primers and probes should only be viewed as an aid to maximise the chances of the
5' nuclease assay working well. The only absolute criterion to be applied is whether
the assay actually works in reality. Thus, only a probe sequence that has performed
well in an assay should be selected as the common probe sequence, and an untried probe
sequence should never be used as the basis for tag design. Even if the probe works
well with one particular set of primers against one specific target, it may not always
work well. All DNA designs should be tried before the tag is released for commercial
purposes.
[0097] The oligonucleotide tags, primers and probe sequences are then ordered commercially
from custom synthesis facilities. In order to minimise the risk of contamination,
different synthesis houses should be used for the synthesis of the oligonucleotide
tags and primers. Otherwise primers can be contaminated with various tags, leading
to "negative" controls giving a positive signal and a consequent decrease in the sensitivity
of detection. Ideally, a third synthesis house should be used for the production of
the probe. The labelled probes should be provided in buffer and should be protected
from light.
[0098] The assay conditions should be standardised by using a single buffer mixture mix,
with the only variants being the primers used and the sample of the material to be
analysed. Since the 5' nuclease assay is based on polymerase chain reaction, the requirements
for establishing a successful PCR assays should be adhered to. These requirements
have been set out in detail in various publications, and it is considered that the
person skilled in the art will be aware of these requirements.
[0099] The 5' nuclease assay is conducted using the same components as normal PCR except
for the addition of the labelled probe. The PCR components are purchased from PE-Applied
Biosystems as the "Taqman PCR Core Reagent Kit" which has part number N8080288. The
components of the kit are as follows: Buffer A at 10X stock concentration for buffering
pH and providing reference fluorescent dye, magnesium chloride at 25mM stock concentration
for providing Mg
2+ ions required for activity of DNA polymerase, dATP at 10mM stock concentration (adenine
nucleotide required for DNA extension), dUTP at 10mM stock concentration (uracil nucleotide
required for DNA extension), dGTP at 10mM stock concentration (guanine nucleotide
required for DNA extension), dCTP at 10mM stock concentration (cytosine nucleotide
required for DNA extension), and uracil N glycosidase (UNG) at 1 Unit/microlitre to
prevent DNA carry-over from one assay to the next. The UNG enzyme is inactivated during
the PCR reaction but will hydrolyse any DNA containing uracil at the start of the
PCR process. Thus, the enzyme prevents any DNA from being carried over from one PCR
reaction to the next. The PCR vials should not be opened to prevent DNA carry-over.
[0100] The oligonucleotide primers and the labelled probes should be formulated as 5 micromolar
stock solutions in a suitable buffer which has the following composition: 1 mM Tris-HCl
at pH 8.3, 5 mM KCl and 0.2mM magnesium chloride. The primers and probe solutions
are aliquotted into a number of vials and stored frozen until required. No vial should
be allowed to go through more than 5 freeze/thaw cycles.
[0101] The "Taqman PCR Core Reagent Kit" and the 5 micromolar probe stock solutions are
then mixed together as follow: 100 microlitres of Buffer A, 220 microlitres of magnesium
chloride, 20 microlitres of dATP, 20 microlitres of dUTP, 20 microlitres of dGTP,
20 microlitres of dCTP, 5 microlitres of AmpliTaq Gold
(Taq DNA polymerase), 10 microlitres of UNG, 25 microlitres of labelled probe and 120
microlitres of water. The resulting 560 microlitres is sufficient for 40 assays if
14 microlitres is used per assay vial. To each of the assay vials is then added 4.5
microlitres of each of the forward and reverse primers, 5 microlitres of the 5 micromolar
stock solutions described above and 2 microlitres of the sample containing the tag
to be analysed. The resulting solution has the following final concentrations of each
component: 1X Buffer A, 5 mM magnesium chloride, 0.2 mM dATP, 0.2 mM dUTP, 0.2 mM
dGTP, 0.2 mM dCTP, 0.025 Units/microlitre AmpliTaq Gold, 0.05 Units/microlitre UNG,
0.125 micromolar labelled probe, 0.9 micromolar forward primer and 0.9 micromolar
reverse primer. The final concentration of the target tag is unknown.
[0102] Either optical 96-well plates or optical tubes may be used as reaction containers.
The former is catalogue number N8010560 and the latter catalogue number N8010933 available
from PE-Applied Biosystems. Both of these require optical caps (catalogue number N8010935
from PE-Applied Biosystems). The ABI Prism 7700 Sequence Detector, made by PE-Applied
Biosystems, is used for conducting the PCR and detecting fluorescent signal and should
be operated in accordance with the manufacturer's instructions.
1. A method of detecting whether one out of a plurality of materials has been marked
by a marker comprising a nucleic acid tag wherein the sequence of the nucleic tag
is specific for that material, the method comprising the steps of:
(a) sampling a portion of the material; and
(b) detecting the presence of the nucleic acid tag in the sample,
said method
characterised in that the quantity of nucleic acid tag present in the sample is determined to provide an
indication of the quantity of marker present in the material.
2. A method as claimed in claim 1 additionally comprising prior to step (a) the step
of:
(i) adding or applying a marker comprising a nucleic acid tag to the material.
3. A method as claimed in Claim 1 or Claim 2, which further comprises the step of amplifying
at least a portion of the nucleic acid tag by means of a nucleic acid amplification
reaction, the amount of amplification required for the amount of amplified nucleic
acid tag to reach a pre-determined level being determined as an indication of the
quantity of nucleic acid tag present in the sample.
4. A method as claimed in claim 1, wherein the nucleic acid tag comprises at least one
identifying sequence for the tag, the method additionally comprising the steps of:
(c) amplifying at least a portion of the nucleic acid tag by means of a nucleic acid
amplification reaction which includes contacting the nucleic acid tag with a first
oligonucleotide primer having a sequence corresponding to the identifying sequence
of the nucleic acid tag; and
(d) determining the amount of amplification required for the amplified nucleic acid
tag to reach a pre-determined level as an indication of quantity of marker present
in the sample.
5. A method as claimed in claim 1 wherein the nucleic acid tag comprises first and second
regions flanking an identifying sequence for the tag; step (b) additionally comprising
separating the nucleic acid tag from the sample; the method additionally comprising
the steps of:
(c) amplifying at least a portion of the nucleic acid tag by means of a nucleic acid
amplification reaction which includes contacting the nucleic acid tag with a first
oligonucleotide primer having a sequence corresponding to said first region of the
nucleic acid tag, and
(d) determining the amount of amplification required for the amplified nucleic acid
tag to reach a pre-determined level as an indication of quantity of marker present
in the sample.
6. A method as claimed in claim 2, wherein the nucleic acid tag comprises first and second
regions flanking an identifying sequence for the tag, and wherein step (b) additionally
comprises the step of:
(c) contacting the nucleic acid tag with a first oligonucleotide primer having a sequence
corresponding to a sequence contained in said first region of the nucleic acid tag
and an oligonucleotide probe bearing a signal means and having a sequence corresponding
to said identifying sequence;
(d) amplifying at least a portion of the nucleic acid tag by means of a polymerase
chain reaction which includes a nucleic acid polymerase having 5' to 3' exonuclease
activity in which fragments bearing signal means are released from the oligonucleotide
probe during nucleic acid amplification; and
(e) detecting released fragments as an indication that amplification has taken place
and hence that the material has been marked.
7. A method as claimed in claim 2, wherein the nucleic acid tag comprises at least one
identifying sequence for the tag, the method additionally comprising the steps of:
(c) amplifying at least a portion of the nucleic acid tag by means of a nucleic acid
amplification reaction which includes contacting the nucleic acid tag with a first
oligonucleotide having a sequence corresponding to the identifying sequence of the
nucleic acid tag; and
(d) determining the amount of amplification required for the amplified nucleic acid
tag to reach a pre-determined level as an indication of quantity of marker present
in the sample and hence the quantity of marker in the material.
8. A method as claimed in claim 2, wherein step (i) comprises the steps of:
(ii) providing a pool of nucleic acid tags, each nucleic acid tag comprising a generic
region having a sequence present in all nucleic acid tags within the pool, the generic
region being flanked by code regions having identifying sequences for the tag;
(ii) selecting a particular nucleic acid tag from within the pool; and
(iv) adding or applying a marker comprising the selected nucleic acid tag to the material.
9. A method as claimed in claim 1, wherein the nucleic acid tag is from a known pool
of different nucleic acid tags, each nucleic acid tag in the pool comprising at least
one identifying sequence for the tag, in which step (b) comprises the steps of:
(c) setting up a plurality of nucleic acid amplification reaction media, each medium
containing an oligonucleotide having a sequence corresponding to the identifying sequence
of a different known nucleic acid tag in the pool and being capable of amplifying
a different nucleic acid tag from the pool;
(d) contacting the nucleic acid tag of the sample with each of said reaction media;
and
(e) detecting which of the reaction media results in the amplification of nucleic
acid tag as an indication of the identity of the particular nucleic acid tag used
to mark the material.
10. A method as claimed in any one of claims 3, 4 or 7, in which the nucleic acid amplification
reaction is a polymerase chain reaction (PCR).
11. A method as claimed in Claim 10 as dependent on claim 3, in which the nucleic acid
tag is contacted with a first oligonucleotide primer having a sequence corresponding
to a first sequence contained in the nucleic acid tag and capable of priming amplification
of the nucleic acid tag.
12. A method as claimed in Claim 11, in which the first sequence is an identifying sequence
for the nucleic acid tag.
13. A method as claimed in Claim 10 as dependent on claims 4 or 7 or as claimed in claim
11 or 12, in which the nucleic acid tag is contacted with an oligonucleotide probe
bearing a signal means and having a sequence corresponding to a second sequence contained
in the nucleic acid tag, the PCR reaction including a nucleic acid polymerase having
5' to 3' exonuclease activity to cause the release of fragments bearing signal means
from the oligonucleotide probe during nucleic acid amplification.
14. A method as claimed in Claim 12, in which the nucleic acid tag further comprises a
second identifying sequence, the nucleic acid tag being contacted with a second oligonucleotide
primer capable of priming amplification of the tag and having a sequence corresponding
to the second identifying sequence.
15. A method as claimed in Claim 13 as dependent on Claim 11, in which the second sequence
is an identifying sequence for the nucleic acid tag.
16. A method as claimed in Claim 13, in which the nucleic acid tag further comprises a
second identifying sequence for the nucleic acid tag, the first and second identifying
sequences flanking said second sequence.
17. A method as claimed in Claim 16, in which the nucleic acid tag is contacted with a
second oligonucleotide primer capable of priming amplification of the tag and having
a sequence corresponding to said second identifying sequence.
18. A method as claimed in any one of Claims 4, 7 or 10 to 15 in which the amount of amplified
nucleic acid in the amplification reaction is determined by measuring nucleic acid
material hybridisable to a nucleic acid probe, the nucleic acid probe having a sequence
corresponding to a sequence contained in the nucleic acid tag, said sequence not being
nor overlapping with a sequence used to prime nucleic acid amplification.
19. A method as claimed in any one of Claims 4, 5, 7, 13, 16 or 17, in which the nucleic
acid amplification reaction is a polymerase chain reaction, the first oligonucleotide
being a primer capable of priming amplification of the nucleic acid tag.
20. A method as claimed in Claim 2 wherein the nucleic acid tag comprises first and second
regions flanking an identifying sequence for the tag; step (b) additionally comprising
separating the nucleic acid tag from the sample; the method additionally comprising
the steps of:
(c) amplifying at least a portion of the nucleic acid tag by means of a polymerase
chain reaction which includes contacting the nucleic acid tag with a first oligonucleotide
primer having a sequence corresponding to said first region of the nucleic acid tag,
the first oligonucleotide primer being capable of priming amplification of the nucleic
acid tag, and
(d) determining the amount of amplification required for the amplified nucleic acid
tag to reach a pre-determined level as an indication of quantity of marker present
in the sample,
and in which the nucleic acid tag is contacted with an oligonucleotide probe bearing
a signal means and having a sequence corresponding to said identifying sequence, the
PCR reaction including a nucleic acid polymerase having 5' to 3' exonuclease activity
to cause the release of fragments bearing signal means from the oligonucleotide probe
during nucleic acid amplification.
21. A method as claimed in any one of Claims 5, 11, 12, 14 or 19 , in which the first
oligonucleotide primer bears a signal means, a signal from a first oligonucleotide
primer incorporated into an amplified nucleic acid being measured to provide an indication
of the amount of amplified nucleic acid in the reaction.
22. A method as claimed in Claim 19 as dependent on Claim 4, in which the first oligonucleotide
primer bears a signal means, a signal from a first oligonucleotide primer incorporated
into an amplified nucleic acid being detected to provide an indication that amplification
has taken place.
23. A method as claimed in Claim 21 or 22, in which a signal detectable from a first oligonucleotide
primer incorporated into an amplified nucleic acid is at a higher level than a signal
detectable from the first oligonucleotide primer when it is not so incorporated.
24. A method as claimed in Claim 23, in which the first oligonucleotide primer bears quenching
means to attenuate a signal from the signal means when the first oligonucleotide primer
is not incorporated.
25. A method as claimed in Claim 23, in which the first oligonucleotide primer bears quenching
means to attenuate a signal from the signal means borne on the first oligonucleotide
primer.
26. A method as claimed in any one of Claims 6, 19 or 20, in which the nucleic acid tag
is contacted with a second oligonucleotide primer capable of priming amplification
of the tag and having a sequence corresponding to a sequence contained in the second
region.
27. A method as claimed in any one of Claims 13, 15 to 17 or 20 or Claim 26 as dependent
on Claim 20, in which signal from signal means borne on released fragments is measured
to provide an indication of the amount of amplified nucleic acid in the reaction.
28. A method as claimed in any one of Claims 13, 15 to 17, 26 or 27, in which a signal
detectable from a released fragment is at a higher level than a signal detectable
from an oligonucleotide probe.
29. A method as claimed in Claim 28, in which the oligonucleotide probe bears quenching
means to attenuate a signal from signal means borne on the oligonucleotide probe.
30. A method as claimed in any of Claims 6, 13, 15 to 17, 20 to 25 or 26 to 29, in which
the signal means is a fluorescent label.
31. A method as claimed in any one of Claims 24, 25, 28 or claim 30 as dependent on Claim
29, in which the quenching means attenuates the signal from the signal means by Förster
resonance energy transfer through space.
32. A method as claimed in any one of the preceding claims, in which the marker further
comprises indicator means, the presence of said indicator means being detectable in
a sampled portion of the material as an indication that nucleic acid tag is present
in said sampled portion.
33. A method as claimed in any one of the preceding claims, in which the step of sampling
a portion of the marked material further comprises the step of separating the nucleic
acid tag from the sample.
34. A method of marking a material with a nucleic acid tag, the method comprising the
steps of:
(a) providing a pool of nucleic acid tags, each nucleic acid tag comprising a generic
region having a sequence present in all nucleic acid tags within the pool, the generic
region being flanked by code regions having identifying sequences for the tag;
(b) selecting a particular nucleic acid tag from within the pool; and
(c) adding or applying a marker comprising the selected nucleic acid tag to the material.
35. A method as claimed in any preceding claim, in which the nucleic acid tag consists
of DNA.
36. A method as claimed in any preceding claim, in which the nucleic acid tag is a single
stranded DNA oligonucleotide.
1. Verfahren zum Detektieren, ob eines aus einer Mehrzahl von Materialien durch einen
Marker mit einer Nukleinsäuremarkierung markiert wurde, bei welchem die Sequenz der
Nukleinsäuremarkierung spezifisch für das Material ist, wobei das Verfahren die Schritte
aufweist:
(a) Beproben eines Teils des Materials; und
(b) Detektieren des Vorhandenseins der Nukleinsäuremarkierung in der Probe,
dadurch gekennzeichnet, dass die Menge der in der Probe vorhandenen Nukleinsäuremarkierung bestimmt wird, um einen
Hinweis auf die Menge des in dem Material vorhandenen Markers zu liefern.
2. Verfahren nach Anspruch 1, vor dem Schritt (a) zusätzlich mit dem Schritt:
(i) Hinzufügen oder Aufbringen eines Markers mit einer Nukleinsäuremarkierung auf
dem Material.
3. Verfahren nach Anspruch 1 oder 2, welches ferner umfasst den Schritt einer Verstärkung
wenigstens eines Teils der Nukleinsäuremarkierung mit Hilfe einer Nukleinsäure-Verstärkungsreaktion,
wobei der Verstärkungsbetrag der benötigt wird, dass der Betrag der verstärkten Nukleinsäuremarkierung
ein vorbestimmtes Niveau erreicht, als ein Hinweis für die Menge der in der Probe
vorhandenen Nukleinsäuremarkierung bestimmt wird.
4. Verfahren nach Anspruch 1, in welchem die Nukleinsäuremarkierung wenigstens eine
die Markierung identifizierende Sequenz aufweist, wobei das Verfahren zudem die Schritte
umfasst:
(c) Verstärken wenigstens eines Teils der Nukleinsäuremarkierung mit Hilfe einer Nukleinsäure-Verstärkungsreaktion,
welche ein Berühren der Nukleinsäuremarkierung mit einem ersten Oligonukleotid-Primer
beinhaltet, der eine Sequenz entsprechend der die Nukleinsäuremarkierung identifizierenden
Sequenz aufweist; und
(d) Bestimmen des Verstärkungsbetrages, der erforderlich ist, damit die verstärkte
Nukleinsäuremarkierung ein vorbestimmtes Niveau als Hinweis für eine in der Probe
vorhandene Menge des Markers erreichen kann.
5. Verfahren nach Anspruch 1, in welchem die Nukleinsäuremarkierung eine erste und zweite
Region umfasst, welche eine die Markierung identifizierende Sequenz flankieren; wobei
Schritt (b) zusätzlich ein Trennen der Nukleinsäuremarkierung von der Probe umfasst;
wobei das Verfahren zudem die Schritte umfasst:
(c) Verstärken wenigstens eines Teils der Nukleinsäuremarkierung mit Hilfe einer Nukleinsäure-Verstärkungsreaktion,
welche ein Berühren der Nukleinsäuremarkierung mit einem ersten Oligonukleotid-Primer
beinhaltet, der eine Sequenz entsprechend der ersten Region der Nukleinsäuremarkierung
aufweist, und
(d) Bestimmen des Verstärkungsbetrages, der erforderlich ist, damit die verstärkte
Nukleinsäuremarkierung ein vorbestimmtes Niveau als Hinweis auf eine Menge eines in
der Probe vorhandenen Markers erreichen kann.
6. Verfahren nach Anspruch 2, in welchem die Nukleinsäuremarkierung eine erste und eine
zweite Region umfasst, welche eine die Markierung identifizierende Sequenz flankieren,
und wobei der Schritt (b) zusätzlich den Schritt umfasst:
(c) Berühren der Nukleinsäuremarkierung mit einem ersten Oligonukleotid-Primer, der
aufweist eine Sequenz entsprechend einer in der ersten Region der Nukleinsäuremarkierung
enthaltenden Sequenz und einen Oligonukleotid-Fühler, der eine Signaleinrichtung trägt
und eine Sequenz entsprechend der identifizierenden Sequenz aufweist;
(d) Verstärken wenigstens eines Teils der Nukleinsäuremarkierung mit Hilfe einer Polymerase-Kettenreaktion,
welche eine Nukleinsäure-Polymerase mit einer 5' bis 3' Exonuklease-Aktivität beinhaltet,
in welcher Fragmente, die Signaleinrichtungen tragen, von dem Oligonukleotid-Fühler
während der Nukleinsäureverstärkung freigegeben werden; und
(e) Detektieren freigegebener Fragmente als einen Hinweis, dass eine Verstärkung stattgefunden
hat, und somit, dass das Material markiert wurde.
7. Verfahren nach Anspruch 2, in welchem die Nukleinsäuremarkierung wenigstens eine
die Markierung identifizierende Sequenz umfasst, wobei das Verfahren zudem die Schritte
umfasst:
(c) Verstärken wenigstens eines Teils der Nukleinsäuremarkierung mit Hilfe einer Nukleinsäure-Verstärkungsreaktion,
welche ein Berühren der Nukleinsäuremarkierung mit einem ersten Oligonukleotid beinhaltet,
das eine Sequenz entsprechend der die Nukleinsäuremarkierung identifizierenden Sequenz
aufweist; und
(d) Bestimmen des Verstärkungsbetrages, der erforderlich ist, damit die verstärkte
Nukleinsäuremarkierung ein vorbestimmtes Niveau als Hinweis auf eine Menge des in
der Probe vorhandenen Markers und somit der Menge des Markers im Material erreichen
kann.
8. Verfahren nach Anspruch 2, in welchem der Schritt (i) die Schritte umfasst:
(ii) Bereitstellen eines Pools von Nukleinsäuremarkierungen, wobei jede Nukleinsäuremarkierung
eine generische Region mit einer Sequenz aufweist, die in allen Nukleinsäuremarkierungen
in dem Pool vorhanden ist, wobei die generische Region durch Code-Regionen mit die
Markierung identifizierenden Sequenzen flankiert ist;
(ii) Auswählen einer speziellen Nukleinsäuremarkierung aus dem Pool; und
(iv) Hinzufügen oder Aufbringen eines Markers mit der ausgewählten Nukleinsäuremarkierung
auf das Material.
9. Verfahren nach Anspruch 1, in welchem die Nukleinsäuremarkierung aus einem bekannten
Pool unterschiedlicher Nukleinsäuremarkierungen stammt, wobei jede Nukleinsäuremarkierung
im Pool wenigstens eine die Markierung identifizierende Sequenz umfasst, wobei Schritt
(b) die Schritte umfasst:
(c) Einrichten einer Mehrzahl von Nukleinsäuren-Verstärkungsreaktionsmedien, wobei
jedes Medium ein Oligonukleotid enthält, das eine Sequenz aufweist, welches der eine
andere bekannte Nukleinsäuremarkierung in dem Pool identifizierenden Sequenz entspricht
und eine andere Nukleinsäuremarkierung aus dem Pool verstärken kann;
(d) Berühren der Nukleinsäuremarkierung der Probe mit jedem der Reaktionsmedien; und
(e) Detektieren, welches der Reaktionsmedien zu der Verstärkung der Nukleinsäuremarkierung
als Hinweis auf die Identität der speziellen Nukleinsäuremarkierung führt, welche
zum Markieren des Materials verwendet wurde.
10. Verfahren nach einem der Ansprüche 3, 4 oder 7, in welchem die Nukleinsäure-Verstärkungsreaktion
eine Polymerase-Kettenreaktion (PCR) ist.
11. Verfahren nach Anspruch 10, soweit abhängig von Anspruch 3, in welchem die Nukleinsäuremarkierung
mit einem ersten Oligonukleotid-Primer in Berührung gebracht wird, der eine Sequenz
aufweist, die einer in der Nukleinsäuremarkierung enthaltenden ersten Sequenz entspricht
und die Verstärkung der Nukleinsäuremarkierung initiieren kann.
12. Verfahren nach Anspruch 11, in welchem die erste Sequenz eine die Nukleinsäuremarkierung
identifizierende Sequenz ist.
13. Verfahren nach Anspruch 10, soweit abhängig von den Ansprüchen 4 oder 7, oder nach
Anspruch 11 oder 12, in welchem die Nukleinsäuremarkierung mit einem Oligonukleotid-Fühler
berührt wird, der eine Signaleinrichtung trägt und eine Sequenz aufweist, die einer
in der Nukleinsäuremarkierung enthaltenen zweiten Sequenz entspricht, wobei die PCT-Reaktion
eine Nukleinsäure-Polymerase mit einer 5' bis 3' Exonuklease-Aktivität beinhaltet,
um die Freigabe von die Signaleinrichtung tragenden Fragmenten von dem Oligonukleotid-Fühler
während der Nukleinsäureverstärkung zu veranlassen.
14. Verfahren nach Anspruch 12, in welchem die Nukleinsäuremarkierung ferner eine zweite
identifizierende Sequenz umfasst, wobei die Nukleinsäuremarkierung mit einem zweiten
Oligonukleotid-Primer in Berührung gebracht wird, der eine Verstärkung der Markierung
initiieren kann und eine Sequenz aufweist, die der zweiten identifizierenden Sequenz
entspricht.
15. Verfahren nach Anspruch 13, soweit abhängig von Anspruch 11, in welchem die zweite
Sequenz eine die Nukleinsäuremarkierung identifizierende Sequenz ist.
16. Verfahren nach Anspruch 13, in welchem die Nukleinsäuremarkierung ferner eine zweite
identifizierende Sequenz für die Nukleinsäuremarkierung umfasst, wobei die erste und
die zweite identifizierende Sequenz die zweite Sequenz flankieren.
17. Verfahren nach Anspruch 16, in welchem die Nukleinsäuremarkierung mit einem zweiten
Oligonukleotid-Primer in Kontakt gebracht wird, der eine Verstärkung der Markierung
initiieren kann und eine Sequenz aufweist, die der zweiten identifizierenden Sequenz
entspricht.
18. Verfahren nach einem der Ansprüche 4, 7 oder 10 bis 15, in welchem die Menge der
verstärkten Nukleinsäure in der Verstärkungsreaktion durch Messen des an einen Nukleinsäurefühler
hybridisierbaren Nukleinsäurematerials bestimmt wird, wobei der Nukleinsäurefühler
eine Sequenz hat, die einer Sequenz entspricht, die in der Nukleinsäuremarkierung
enthalten ist, wobei die Sequenz keine Sequenz ist, die zum Initiieren der Nukleinsäureverstärkung
verwendet wird und diese nicht überlagert.
19. Verfahren nach einem der Ansprüche 4, 5, 7, 13, 16 oder 17, in welchem die Nukleinsäure-Verstärkungsreaktion
eine Polymerase-Kettenreaktion ist, wobei das erste Oligonukleotid ein Primer ist,
der die Verstärkung der Nukleinsäuremarkierung initiieren kann.
20. Verfahren nach Anspruch 2, in welchem die Nukleinsäuremarkierung eine erste und eine
zweite Region aufweist, welche eine identifizierende Sequenz für die Markierung flankiert;
wobei der Schritt (b) zudem ein Trennen der Nukleinsäuremarkierung von der Probe umfasst;
wobei das Verfahren zudem die Schritte umfasst:
(c) Verstärken wenigstens eines Teils der Nukleinsäuremarkierung mit Hilfe einer Polymerase-Kettenreaktion,
welche ein Berühren der Nukleinsäuremarkierung mit einem ersten Oligonukleotid-Primer
beinhaltet, der eine Sequenz entsprechend der ersten Region der Nukleinsäuremarkierung
aufweist, wobei der erste Oligonukleotid-Primer eine Verstärkung der Nukleinsäuremarkierung
initiieren kann,und
(e) Bestimmen des Verstärkungsbetrages, der erforderlich ist, damit die verstärkte
Nukleinsäuremarkierung ein vorbestimmtes Niveau als Hinweis auf eine Menge eines in
der Probe vorhandenen Markers erreichen kann,
und in welcher die Nukleinsäuremarkierung mit einem Nukleotid-Fühler in Kontakt gebracht
wird, der eine Signaleinrichtung trägt und eine Sequenz aufweist, die der identifizierenden
Sequenz entspricht, wobei die PCR-Reaktion eine Nukleinsäure-Polymerase mit 5' bis
3' Exonuklease-Aktivität beinhaltet, um die Freigabe von Fragmenten, welche die Signaleinrichtung
tragen, von dem Oligonukleotid-Fühler während der Nukleinsäureverstärkung zu veranlassen.
21. Verfahren nach einem der Ansprüche 5, 11, 12, 14 oder 19, in welchem der erste Oligonukleotid-Primer
eine Signaleinrichtung trägt, wobei ein Signal von einem ersten Oligonukleotid-Primer,
der in einer verstärkten Nukleinsäure eingebaut ist, gemessen wird, um einen Hinweis
auf die Menge der verstärkten Nukleinsäure in der Reaktion zu liefern.
22. Verfahren nach Anspruch 19, soweit abhängig von Anspruch 4, in welchem der erste
Oligonukleotid-Primer eine Signaleinrichtung trägt, wobei ein Signal von einem ersten
Oligonukleotid-Primer, der in eine verstärkte Nukleinsäure eingebaut ist, detektiert
wird, um einen Hinweis zu liefern, dass eine Verstärkung stattgefunden hat.
23. Verfahren nach Anspruch 21 oder 22, in welchem ein von einem ersten Oligonukleotid-Primer,
der in eine verstärkte Nukleinsäure eingebaut ist, erfasstes Signal auf einem höheren
Niveau liegt als ein Signal, das von dem ersten Oligonukleotid-Primer erfasste, wenn
dieser nicht eingebaut ist.
24. Verfahren nach Anspruch 23, in welchem der erste Oligonukleotid-Primer eine Vergütungseinrichtung
trägt, um ein Signal von der Signaleinrichtung zu verstärken, wenn der erste Oligonukleotid-Primer
nicht eingebaut ist.
25. Verfahren nach Anspruch 23, in welchem der erste Oligonukleotid-Primer eine Vergütungseinrichtung
trägt, um ein Signal von der Signaleinrichtung, die auf dem erste Oligonukleotid-Primer
liegt, zu verstärken.
26. Verfahren nach einem der Ansprüche 6, 19 oder 20, in welchem die Nukleinsäuremarkierung
mit einem zweiten Oligonukleotid-Primer in Kontakt gebracht wird, der eine Verstärkung
der Markierung initiieren kann und eine Sequenz aufweist, die einer in der zweiten
Region enthaltenen Sequenz entspricht.
27. Verfahren nach einem der Ansprüche 13, 15 bis 17 oder 20 oder Anspruch 26, soweit
abhängig von Anspruch 20, in welchem ein Signal von der auf den frei gegebenen Fragmenten
getragenen Signaleinrichtung gemessen wird, um einen Hinweis der Menge der verstärkten
Nukleinsäure in der Reaktion zu liefern.
28. Verfahren nach einem der Ansprüche 13, 15 bis 17, 26 oder 27, in welchem ein von
einem frei gegebenen Fragment detektierbares Signal auf einem höheren Niveau liegt
als ein von einem Oligonukleotid-Fühler detektierbares Signal.
29. Verfahren nach Anspruch 28, in welchem der Oligonukleotid-Fühler eine Vergütungseinrichtung
trägt, um ein Signal von der auf dem Oligonukleotid-Fühler liegenden Signaleinrichtung
zu verstärken.
30. Verfahren nach einem der Ansprüche 6, 13, 15 bis 17, 20 bis 25 oder 26 bis 29, in
welchem die Signaleinrichtung ein fluoreszierendes Etikett ist.
31. Verfahren nach einem der Ansprüche 24, 25, 28 oder Anspruch 30, soweit abhängig von
Anspruch 29, in welchem die Vergütungseinrichtung das Signal von der Signaleinrichtung
durch eine Förster-Resonanzenergieübertragung durch den Raum verstärkt wird.
32. Verfahren nach einem der vorstehenden Ansprüche, in welchem der Marker ferner ein
Indikatormittel umfasst, wobei das Vorhandensein des Indikatormittels in einem beprobten
Teil des Materials als Hinweis detektierbar ist, dass eine Nukleinsäuremarkierung
in dem beprobten Teil vorhanden ist.
33. Verfahren nach einem der vorstehenden Ansprüche, in welchem der Schritt des Beprobens
eines Teils des markierten Materials ferner den Schritt eines Trennens der Nukleinsäuremarkierung
von der Probe umfasst.
34. Verfahren zum Markieren eines Materials mit einer Nukleinsäuremarkierung, wobei das
Verfahren die Schritte umfasst:
(a) Bereitstellen eines Pools von Nukleinsäuremarkierungen, wobei jede Nukleinsäuremarkierung
eine generische Region mit einer Sequenz aufweist, die in alle Nukleinsäuremarkierungen
im Pool vorhanden ist, wobei die generische Region durch Code-Regionen mit die Markierung
identifizierenden Sequenzen flankiert ist;
(b) Auswählen einer speziellen Nukleinsäuremarkierung aus dem Pool; und
(c) Hinzufügen oder Aufbringen eines Markers mit der ausgewählten Nukleinsäuremarkierung
auf das Material.
35. Verfahren nach einem der vorstehenden Ansprüche, in welchem die Nukleinsäuremarkierung
aus DNA besteht.
36. Verfahren nach einem der vorstehenden Ansprüche, in welchem die Nukleinsäuremarkierung
ein einzelsträngiges DNA-Oligonukleotid ist.
1. Procédé pour détecter si un matériau, parmi une pluralité de matériaux, a été marqué
par un marqueur comprenant une étiquette d'acide nucléique dans laquelle la séquence
de l'étiquette nucléique est spécifique à ce matériau, le procédé comprenant les étapes
consistant à :
a) échantillonner une partie du matériau ; et
b) détecter la présence de l'étiquette d'acide nucléique dans l'échantillon,
ledit procédé étant
caractérisé en ce que la quantité d'étiquette d'acide nucléique présente dans l'échantillon est déterminée
pour fournir une indication de la quantité de marqueur présent dans le matériau.
2. Procédé selon la revendication 1 comprenant en outre avant l'étape (a) l'étape consistant
à :
i) ajouter ou appliquer un marqueur comprenant une étiquette d'acide nucléique au
matériau.
3. Procédé selon la revendication 1 ou la revendication 2, qui comprend en outre l'étape
d'amplification d'au moins une partie de l'étiquette d'acide nucléique au moyen d'une
réaction d'amplification d'acide nucléique, la quantité d'amplification nécessaire
pour la quantité d'étiquette d'acide nucléique amplifiée devant atteindre un niveau
prédéfini qui est déterminé en tant qu'une indication de la quantité d'étiquette d'acide
nucléique présente dans l'échantillon.
4. Procédé selon la revendication 1, dans lequel l'étiquette d'acide nucléique comprend
au moins une séquence d'identification de l'étiquette, le procédé comprenant en outre
les étapes consistant à :
c) amplifier au moins une partie de l'étiquette d'acide nucléique au moyen d'une réaction
d'amplification d'acide nucléique qui comprend la mise en contact de l'étiquette d'acide
nucléique avec une première amorce d'oligonucléotide ayant une séquence correspondant
à la séquence d'identification de l'étiquette d'acide nucléique ; et
d) déterminer la quantité d'amplification nécessaire pour que l'étiquette d'acide
nucléique amplifiée atteigne un niveau prédéfini en tant qu'une indication de la quantité
de marqueur présent dans l'échantillon.
5. Procédé selon la revendication 1, dans lequel l'étiquette d'acide nucléique comprend
la première et la seconde région flanquant une séquence d'identification de l'étiquette
; une étape (b) comprenant en outre la séparation de l'étiquette d'acide nucléique
de l'échantillon ; le procédé comprenant en outre les étapes consistant à :
c) amplifier au moins une partie de l'étiquette d'acide nucléique au moyen d'une réaction
d'amplification d'acide nucléique qui comprend la mise en contact de l'étiquette d'acide
nucléique avec une première amorce d'oligonucléotide ayant une séquence correspondant
à ladite première région de l'étiquette d'acide nucléique, et
d) déterminer la quantité d'amplification nécessaire pour que l'étiquette d'acide
nucléique amplifiée atteigne un niveau prédéfini en tant qu'une indication de la quantité
de marqueur présent dans l'échantillon.
6. Procédé selon la revendication 2, dans lequel l'étiquette d'acide nucléique comprend
la première et la seconde région flanquant une séquence d'identification de l'étiquette,
et dans laquelle une étape (b) comprend en outre les étapes consistant à :
c) mettre en contact l'étiquette d'acide nucléique avec une première amorce d'oligonucléotide
ayant une séquence correspondant à la séquence contenue dans ladite première région
de l'étiquette d'acide nucléique et une sonde d'oligonucléotide comportant un moyen
de signalisation et ayant une séquence correspondant à ladite séquence d'identification
;
d) amplifier au moins une partie de l'étiquette d'acide nucléique au moyen d'une réaction
en chaîne par polymérase qui comprend une polymérase d'acide nucléique ayant une activité
d'exonucléase de 5' à 3' dans laquelle des fragments comportant un moyen de signalisation
sont libérés de la sonde d'oligonucléotide pendant l'amplification d'acide nucléique
; et
e) détecter les fragments libérés en tant qu'une indication que l'amplification s'est
produite et que par conséquent, le matériau a été marqué.
7. Procédé selon la revendication 2, dans lequel l'étiquette d'acide nucléique comprend
au moins une séquence d'identification de l'étiquette, le procédé comprenant en outre
les étapes consistant à :
c) amplifier au moins une partie de l'étiquette d'acide nucléique au moyen d'une réaction
d'amplification d'acide nucléique qui comprend la mise en contact de l'étiquette d'acide
nucléique avec un premier oligonucléotide ayant une séquence correspondant à la séquence
d'identification de l'étiquette d'acide nucléique ; et
d) déterminer la quantité d'amplification nécessaire pour que l'étiquette d'acide
nucléique amplifiée atteigne un niveau prédéfini en tant qu'une indication de la quantité
de marqueur présent dans l'échantillon et par conséquent, de la quantité de marqueur
présent dans le matériau.
8. Procédé selon la revendication 2, dans lequel une étape (i) comprend les étapes consistant
à :
ii) fournir un pool d'étiquettes d'acide nucléique, chaque étiquette d'acide nucléique
comprenant une région générique ayant une séquence présente dans toutes les étiquettes
d'acide nucléique à l'intérieur du pool, la région générique étant flanquée par des
régions codantes ayant des séquences d'identification pour l'étiquette ;
iii) sélectionner une étiquette d'acide nucléique particulière dans le pool ; et
iv) ajouter ou appliquer un marqueur comprenant l'étiquette d'acide nucléique sélectionnée
au matériau.
9. Procédé selon la revendication 1, dans lequel l'étiquette d'acide nucléique provient
d'un pool connu de différentes étiquettes d'acide nucléique, chaque étiquette d'acide
nucléique du pool comprenant au moins une séquence d'identification de l'étiquette,
dans lequel une étape (b) comprend les étapes consistant à :
c) paramétrer une pluralité de milieux de réaction d'amplification d'acide nucléique,
chaque milieu contenant un oligonucléotide ayant une séquence correspondant à la séquence
d'identification d'une étiquette d'acide nucléique différente connue et étant apte
à amplifier une étiquette d'acide nucléique différente à partir du pool ;
d) mettre en contact l'étiquette d'acide nucléique de l'échantillon avec chacun desdits
milieux de réaction ; et
e) détecter quel est le milieu de réaction qui provoque l'amplification de l'étiquette
d'acide nucléique en tant qu'une indication de l'identité de l'étiquette d'acide nucléique
particulière utilisée pour marquer le matériau.
10. Procédé selon l'une quelconque des revendications 3, 4 ou 7, dans lequel la réaction
d'amplification d'acide nucléique est une réaction en chaîne par polymérase (PCR).
11. Procédé selon la revendication 10 dépendant de la revendication 3, dans lequel l'étiquette
d'acide nucléique est mise en contact avec une première amorce d'oligonucléotide ayant
une séquence correspondant à la première séquence contenue dans l'étiquette d'acide
nucléique et qui est apte à amorcer une amplification de l'étiquette d'acide nucléique.
12. Procédé selon la revendication 11, dans lequel la première séquence est une séquence
d'identification pour l'étiquette d'acide nucléique.
13. Procédé selon la revendication 10 dépendant des revendications 4 ou 7, ou selon la
revendication 11 ou 12, dans lequel l'étiquette d'acide nucléique est mise en contact
avec une sonde d'oligonucléotide comportant un moyen de signalisation et ayant une
séquence correspondante à une seconde séquence contenue dans l'étiquette d'acide nucléique,
la réaction de PCR comprenant une polymérase d'acide nucléique ayant une activité
d'exonucléase de 5' à 3' afin de provoquer la libération de fragments comportant un
moyen de signalisation à partir de la sonde d'oligonucléotide pendant l'amplification
d'acide nucléique.
14. Procédé selon la revendication 12, dans lequel l'étiquette d'acide nucléique comprend
en outre une seconde séquence d'identification, l'étiquette d'acide nucléique étant
mise en contact avec une seconde amorce d'oligonucléotide apte à amorcer l'amplification
de l'étiquette et ayant une séquence correspondant à la seconde séquence d'identification.
15. Procédé selon la revendication 13 dépendant de la revendication 11, dans lequel la
seconde séquence est une séquence d'identification de l'étiquette d'acide nucléique.
16. Procédé selon la revendication 13, dans lequel l'étiquette d'acide nucléique comprend
en outre une seconde séquence d'identification pour l'étiquette d'acide nucléique,
la première et la seconde séquence d'identification flanquant ladite seconde séquence.
17. Procédé selon la revendication 16, dans lequel l'étiquette d'acide nucléique est mise
en contact avec une seconde amorce d'oligonucléotide apte à amorcer l'amplification
de l'étiquette et ayant une séquence correspondant à ladite seconde séquence d'identification.
18. Procédé selon l'une quelconque des revendications 4, 7 ou 10 à 15, dans lequel la
quantité d'acide nucléique amplifié pendant la réaction d'amplification est définie
par une mesure du matériau d'acide nucléique pouvant être hybridé à une sonde d'acide
nucléique, la sonde d'acide nucléique ayant une séquence correspondant à une séquence
contenue dans l'étiquette d'acide nucléique, ladite séquence n'étant pas et ne chevauchant
pas une séquence utilisée pour amorcer l'amplification d'acide nucléique.
19. Procédé selon l'une quelconque des revendications 4, 5, 7, 13, 16 ou 17, dans lequel
la réaction d'amplification de l'acide nucléique est une réaction en chaîne par polymérase,
le premier oligonucléotide étant une amorce apte à amorcer l'amplification de l'étiquette
d'acide nucléique.
20. Procédé selon la revendication 2, dans lequel l'étiquette d'acide nucléique comprend
la première et la seconde région flanquant une séquence d'identification de l'étiquette
; une étape (b) comprenant en outre une séparation de l'étiquette d'acide nucléique
de l'échantillon ; le procédé comprenant en outre les étapes consistant à :
c) amplifier au moins une partie de l'étiquette d'acide nucléique au moyen d'une réaction
en chaîne par polymérase qui comprend la mise en contact de l'étiquette d'acide nucléique
avec une première amorce d'oligonucléotide ayant une séquence correspondant à ladite
première région de l'étiquette d'acide nucléique, la première amorce d'oligonucléotide
étant apte à amorcer l'amplification de l'étiquette d'acide nucléique, et
d) déterminer la quantité d'amplification nécessaire pour que l'étiquette d'acide
nucléique atteigne un niveau prédéfini en tant qu'une indication de la quantité de
marqueur présent dans l'échantillon,
et dans lequel l'étiquette d'acide nucléique est mise en contact avec une sonde d'oligonucléotide
comportant un moyen de signalisation et ayant une séquence correspondant à ladite
séquence d'identification, la réaction de PCR comprenant une polymérase d'acide nucléique
ayant une activité d'une exonucléase de 5' à 3' pour provoquer la libération de fragments
comportant un moyen de signalisation à partir de la sonde d'oligonucléotide pendant
l'amplification de l'acide nucléique.
21. Procédé selon l'une quelconque des revendications 5, 11, 12, 14 ou 19, dans lequel
la première amorce d'oligonucléotide comporte un moyen de signalisation, un signal
d'une première amorce d'oligonucléotide incorporée dans un acide nucléique amplifié
étant mesuré pour fournir une indication de la quantité d'acide nucléique amplifié
dans la réaction.
22. Procédé selon la revendication 19 dépendant de la revendication 4, dans lequel la
première amorce d'oligonucléotide comporte un moyen de signalisation, un signal d'une
première amorce d'oligonucléotide incorporée dans un acide nucléique amplifié étant
détecté pour indiquer que l'amplification s'est produite.
23. Procédé selon la revendication 21 ou 22, dans lequel un signal détectable d'une première
amorce d'oligonucléotide incorporée dans un acide nucléique amplifié est à un niveau
plus élevé qu'un signal détectable de la première amorce d'oligonucléotide lorsqu'elle
n'est pas ainsi incorporée.
24. Procédé selon la revendication 23, dans lequel la première amorce d'oligonucléotide
comporte un moyen de désactivation pour atténuer un signal du moyen de signalisation
lorsque la première amorce d'oligonucléotide n'est pas incorporée.
25. Procédé selon la revendication 23, dans lequel la première amorce d'oligonucléotide
comporte un moyen de désactivation pour atténuer un signal du moyen de signalisation
présent sur la première amorce d'oligonucléotide.
26. Procédé selon l'une quelconque des revendications 6, 19 ou 20, dans lequel l'étiquette
d'acide nucléique est mise en contact avec une seconde amorce d'oligonucléotide apte
à amorcer une amplification de l'étiquette et ayant une séquence correspondant à une
séquence contenue dans la seconde région.
27. Procédé selon l'une quelconque des revendications 13, 15 ou 17 à 20 ou selon la revendication
26 dépendant de la revendication 20, dans lequel le signal du moyen de signalisation
présent sur les fragments libérés est mesuré pour fournir une indication de la quantité
d'acide nucléique amplifié dans la réaction.
28. Procédé selon l'une quelconque des revendications 13, 15 à 17, 26 ou 27, dans lequel
un signal détectable d'un fragment libéré est à un niveau plus élevé qu'un signal
détectable d'une sonde d'oligonucléotide.
29. Procédé selon la revendication 28, dans lequel la sonde d'oligonucléotide comporte
un moyen de désactivation pour atténuer un signal du moyen de signalisation présent
sur la sonde d'oligonucléotide.
30. Procédé selon l'une quelconque des revendications 6, 13, 15 à 17, 20 à 25 ou 26 à
29, dans lequel le moyen de signalisation est un marqueur fluorescent.
31. Procédé selon l'une quelconque des revendications 24, 25, 28 ou selon la revendication
30 dépendant de la revendication 29, dans lequel le moyen de désactivation atténue
le signal du moyen de signalisation par un transfert d'énergie par résonance de type
Förster dans l'espace.
32. Procédé selon l'une quelconque des revendications précédentes, dans lequel le marqueur
comprend en outre un moyen d'indication, la présence dudit moyen d'indication pouvant
être détectée dans une partie échantillonnée du matériau en tant qu'une indication
de la présence de l'étiquette d'acide nucléique dans ladite partie échantillonnée.
33. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape
consistant à échantillonner une partie du matériau marqué comprend en outre l'étape
consistant à séparer l'étiquette d'acide nucléique de l'échantillon.
34. Procédé de marquage d'un matériau avec une étiquette d'acide nucléique, le procédé
comprenant les étapes consistant à :
a) fournir un pool d'étiquettes d'acide nucléique, chaque étiquette d'acide nucléique
comprenant une région générique ayant une séquence présente dans toutes les étiquettes
d'acide nucléique du pool, la région générique étant flanquée par des régions codantes
ayant des séquences d'identification de l'étiquette ;
b) sélectionner une étiquette d'acide nucléique particulière dans le pool ; et
c) ajouter ou appliquer un marqueur comprenant l'étiquette d'acide nucléique sélectionnée
au matériau.
35. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étiquette
d'acide nucléique consiste en de l'ADN.
36. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étiquette
d'acide nucléique est un oligonucléotide ADN simple brin.