(19)
(11) EP 1 172 620 A1

(12) DEMANDE DE BREVET EUROPEEN

(43) Date de publication:
16.01.2002  Bulletin  2002/03

(21) Numéro de dépôt: 01401844.4

(22) Date de dépôt:  10.07.2001
(51) Int. Cl.7F25J 3/04
(84) Etats contractants désignés:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Etats d'extension désignés:
AL LT LV MK RO SI

(30) Priorité: 12.07.2000 FR 0009100

(71) Demandeur: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE
75321 Paris Cédex 07 (FR)

(72) Inventeurs:
  • Fuentes, François
    78110 Le Vesinet (FR)
  • Dubettier, Richard
    94210 La Varenne (FR)
  • Zundel, Carina
    75011 Paris (FR)

(74) Mandataire: Conan, Philippe Claude et al
L'Air Liquide D.S.P.I. 75, quai d'Orsay
75321 Paris Cedex 07
75321 Paris Cedex 07 (FR)

   


(54) Installation de distillation d'air et de production d'électricité et procédé correspondant


(57) Cette installation (1) comprend d'une part un appareil de distillation d'air (4), présentant au moins une sortie (25) d'un fluide riche en azote et une sortie (32) d'un produit à fournir à l'état liquide, et d'autre part une unité (3) à turbine à gaz comprenant une chambre de combustion (17) et une turbine de production d'électricité (18) dont l'admission est raccordée à une sortie de la chambre de combustion. Elle comprend en outre des moyens (13) de détente d'un fluide riche en azote pour produire une énergie frigorifique permettant de fournir ledit produit liquide, l'appareil de distillation d'air étant raccordé en parallèle à ces moyens (13) de détente et à l'admission de la turbine de fourniture d'électricité pour les alimenter en au moins un fluide riche en azote. Cette installation comprend des moyens (41, 42) de réglage des débits des flux de fluide riche en azote envoyés respectivement vers les moyens (13) de détente et vers la turbine (18) de production d'électricité, et des moyens (40) de détermination de la puissance électrique à produire avec la turbine (18) de production d'électricité.




Description


[0001] La présente invention concerne une installation de distillation d'air et de production d'électricité, du type comprenant d'une part un appareil de distillation d'air, présentant au moins une sortie d'un fluide riche en azote et une sortie d'un produit à fournir à l'état liquide, et d'autre part une unité à turbine à gaz comprenant une chambre de combustion et une turbine de production d'électricité dont l'admission est raccordée à une sortie de la chambre de combustion, l'installation comprenant en outre des moyens de détente d'un fluide riche en azote pour produire une énergie frigorifique permettant de fournir ledit produit liquide, l'appareil de distillation d'air étant raccordé en parallèle à ces moyens de détente et à l'admission de la turbine de fourniture d'électricité pour les alimenter en au moins un fluide riche en azote.

[0002] Il est fréquent sur les sites industriels qu'une unité à turbine à gaz côtoie un appareil de distillation d'air. L'unité à turbine à gaz et l'appareil de distillation d'air fonctionnent généralement de manière indépendante.

[0003] L'unité à turbine à gaz participe par exemple à l'alimentation d'un réseau de distribution électrique.

[0004] L'appareil de distillation d'air fournit des produits issus de la distillation de l'air, typiquement un fluide riche en azote et un fluide riche en oxygène. L'un au moins de ces produits est habituellement fourni à l'état liquide, ce qui facilite son stockage.

[0005] La puissance électrique instantanée maximale que peut fournir une unité à turbine à gaz est généralement limitée par les caractéristiques du compresseur qu'une telle unité comporte habituellement en amont de sa chambre de combustion.

[0006] On connaît également de EP-A-0 465 193 une installation du type précité. Dans cette installation, le flux de fluide riche en azote envoyé vers la turbine de production d'électricité permet d'augmenter la puissance maximale fournie par l'unité à turbine à gaz au-delà de la limite imposée par les caractéristiques du compresseur de cette unité. Ainsi, il est possible, grâce à cette caractéristique, de modifier une installation de distillation d'air et de production d'électricité pour répondre à une augmentation permanente des besoins des consommateurs du réseau de distribution électrique.

[0007] Toutefois, l'installation décrite dans ce document ne permet pas de s'adapter aux variations saisonnières des besoins des consommateurs d'un tel réseau.

[0008] Un but de l'invention est de résoudre ce problème en fournissant une installation du type précité permettant de s'adapter facilement aux variations temporaires des besoins en électricité des consommateurs d'un réseau de distribution alimenté par cette installation.

[0009] A cet effet, l'invention a pour objet une installation du type précité, caractérisée en ce qu'elle comprend des moyens de réglage des débits des flux de fluide riche en azote envoyés respectivement vers les moyens de détente et vers la turbine de production d'électricité, et des moyens de détermination de la puissance électrique à produire avec la turbine de production d'électricité.

[0010] Selon des modes particuliers de réalisation, l'installation peut comprendre l'une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou selon toutes les combinaisons techniquement possibles :
  • les moyens de détente comprennent une turbine ;
  • l'installation comprend un échangeur thermique de refroidissement du produit liquide à fournir raccordé à une sortie des moyens de détente ;
  • l'installation comprend un échangeur thermique de refroidissement de l'air à distiller raccordé à une sortie des moyens de détente ;
  • l'installation comprend des moyens de compression d'un fluide riche en azote disposés entre l'appareil de distillation d'air et l'admission de la turbine de production d'électricité ;
  • l'installation comprend des moyens de chauffage d'un fluide riche en azote disposés entre l'appareil de distillation d'air et l'admission de la turbine de production d'électricité ;
  • l'appareil de distillation d'air est raccordé en parallèle aux moyens de détente et à la turbine de production d'électricité par une même sortie de fluide riche en azote ;
  • l'installation comprend une unité de pilotage des moyens de réglage des débits adaptée pour augmenter le débit du flux de fluide riche en azote alimentant la turbine de production d'électricité lorsque la puissance électrique à produire augmente ; et
  • l'unité de pilotage est adaptée pour diminuer le débit du flux de fluide riche en azote alimentant la turbine de production d'électricité lorsque la puissance électrique à produire diminue.


[0011] L'invention a en outre pour objet un procédé de production d'électricité et de distillation d'air à l'aide d'une installation telle que définie ci-dessus, caractérisé en ce que l'on augmente le débit du flux de fluide riche en azote alimentant la turbine de production d'électricité lorsque la puissance électrique à produire augmente.

[0012] Selon une variante, on diminue le débit du flux de fluide riche en azote alimentant la turbine de production d'électricité lorsque la puissance électrique à produire diminue.

[0013] L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés, sur lesquels :
  • la figure 1 est une vue schématique d'une installation selon l'invention, et
  • la figure 2 est une vue schématique d'une variante de l'installation de la figure 1.


[0014] La figure 1 représente une installation 1 de distillation d'air et de fourniture d'électricité qui comprend une unité 2 de distillation d'air et une unité 3 à turbine à gaz.

[0015] L'unité 2 de distillation d'air comprend essentiellement :
  • un appareil de distillation d'air sous forme d'une double colonne 4 comportant une colonne moyenne pression 5, une colonne basse pression 6 et un vaporiseur-condenseur 7,
  • une ligne principale d'échange thermique 8,
  • deux échangeurs thermiques auxiliaires 9 et 10,
  • un compresseur d'air 11,
  • un appareil d'épuration d'air par adsorption 12,
  • une turbine 13, et
  • un réservoir 14 de stockage d'oxygène liquide.
    L'unité 3 à turbine à gaz comprend essentiellement :
  • un compresseur d'air 16,
  • une chambre de combustion 17,
  • une turbine 18,
  • un alternateur 19 entraîné par un arbre 20 commun au compresseur 16 et à la turbine 18, et
  • un compresseur 21.


[0016] Le fonctionnement général de l'unité 2 de distillation d'air est le suivant .

[0017] L'air à distiller, préalablement comprimé par le compresseur 11 et épuré par l'appareil 12, est refroidi par la ligne principale d'échange thermique 8 jusqu'au voisinage de son point de rosée puis introduit en cuve de la colonne moyenne pression 5.

[0018] Le vaporiseur-condenseur 7 vaporise de l'oxygène liquide, de pureté généralement supérieure à 90% et typiquement de 99,5%, de la cuve de la colonne basse pression 6 par condensation d'azote 7 de tête de la colonne moyenne pression 5.

[0019] Du « liquide riche » LR (air enrichi en oxygène), prélevé en cuve de la colonne moyenne pression 5, est sous-refroidi à la traversée de l'échangeur thermique auxiliaire 10, puis détendu dans une vanne de détente 22 et enfin injecté à un niveau intermédiaire de la colonne basse pression 6.

[0020] Du « liquide pauvre » LP (azote à peu près pur), prélevé en tête de la colonne moyenne pression 5, est sous-refroidi à la traversée de l'échangeur thermique auxiliaire 10, puis détendu dans une vanne de détente 23 et enfin injecté au sommet de la colonne basse pression 6.

[0021] De l'azote impur ou « résiduaire » NR, soutiré du sommet de la colonne basse pression 6 par une sortie 25, est réchauffé à la traversée de l'échangeur thermique auxiliaire 10 puis renvoyé vers une série de passages 26 de la ligne principale d'échange thermique 8.

[0022] L'azote résiduaire traverse ces passages 26 en provoquant le refroidissement de l'air à distiller. Cet azote résiduaire est divisé, au sein des passages 26, en deux flux dont un premier traverse les passages 26 sur toute leur longueur puis est envoyé vers l'unité 3 à turbine à gaz par une conduite 27, comme décrit par la suite.

[0023] Le deuxième flux ne traverse qu'une partie amont des passages 26 puis est envoyé via une sortie intermédiaire 28 et une conduite 29 vers la turbine 13. Ce deuxième flux d'azote résiduaire y est détendu, et donc refroidi, puis traverse l'échangeur thermique auxiliaire 9 en se réchauffant avant d'être renvoyé vers la ligne principale d'échange thermique 8 pour participer à nouveau au refroidissement de l'air à distiller dans une série de passages distincts des passages 26.

[0024] De l'oxygène gazeux, prélevé en cuve de la colonne basse pression 6 par une sortie 30, est réchauffé à la traversée de la ligne principale d'échange thermique 8 et distribué par une conduite de production 31.

[0025] De l'oxygène liquide est soutiré de la cuve de la colonne basse pression 6 par une sortie 32 puis envoyé vers l'échangeur thermique auxiliaire 9 où il est sous-refroidi par le deuxième flux d'azote résiduaire. Cet oxygène liquide est ensuite détendu dans une vanne de détente 33, jusqu'à une pression légèrement supérieure à la pression atmosphérique, avant d'alimenter le réservoir 14.

[0026] Le fonctionnement général de l'unité 3 à turbine à gaz est le suivant. De l'air est comprimé par le compresseur 16 puis envoyé vers la chambre de combustion 17 dans laquelle un combustible sous pression tel que du gaz naturel est introduit via une conduite 35.

[0027] Les gaz issus de la combustion dans la chambre 17 sont envoyés vers l'admission de la turbine 18 où ils se détendent en entraînant le compresseur 16 et l'alternateur 19. L'alternateur 19 alimente par exemple un réseau de distribution électrique.

[0028] Le premier flux d'azote résiduaire circulant dans la conduite 27 est comprimé dans le compresseur 21, pour atteindre sensiblement la pression des gaz issus de la chambre 17, puis envoyé vers l'admission de la turbine 18 pour s'y détendre avec les gaz issus de la chambre de combustion 17.

[0029] La sortie 25 d'azote résiduaire de la colonne basse pression 6 est donc raccordée en parallèle à la turbine 18, en aval de la chambre de combustion 17, et à la turbine 13.

[0030] Ainsi, l'azote résiduaire peut permettre d'accroître la puissance électrique fournie par l'unité 3 à turbine à gaz, en augmentant le débit circulant dans la turbine 18, mais également de fournir de l'oxygène liquide, grâce à sa détente dans la turbine 13 qui produit l'énergie frigorifique nécessaire.

[0031] Pour affecter l'azote résiduaire à la production d'électricité ou d'oxygène liquide, l'installation 1 comprend en outre :
  • des moyens 40 de détermination de la puissance électrique instantanée fournie par l'alternateur 19,
  • une vanne 41 de réglage du débit du premier flux d'azote résiduaire, disposée dans la conduite 27,
  • une vanne 42 de réglage de débit du deuxième flux d'azote résiduaire, disposée dans la conduite 29,
  • une unité électronique de pilotage 43, raccordée électriquement aux moyens de détermination 40 et aux vannes de réglage 41 et 42, et
  • des moyens 44 de détermination de la puissance électrique instantanée à fournir.


[0032] L'unité électronique de pilotage 43 comprend typiquement un microprocesseur convenablement programmé pour régler les débits d'azote résiduaire circulant dans les conduites 27 et 29 comme décrit ci-après.

[0033] L'unité 43 compare les valeurs fournies par les moyens de détermination 40 et 44. Lorsque la puissance électrique à fournir est supérieure à celle fournie par l'alternateur 19, c'est-à-dire lorsque les besoins électriques du réseau alimenté par l'alternateur 19 augmentent, l'unité de pilotage 43 commande alors les vannes 41 et 42 pour augmenter le débit du premier flux d'azote résiduaire et diminuer le débit du deuxième flux d'azote résiduaire.

[0034] Ainsi, le débit des gaz détendus dans la turbine 18 augmente et l'alternateur 19 peut fournir le surcroît de puissance électrique demandé. La puissance électrique maximale pouvant être fournie n'est alors pas limitée par les caractéristiques du compresseur 16 mais par celles de la turbine 18.

[0035] Le débit du deuxième flux d'azote résiduaire ayant diminué, l'unité 2 de distillation d'air fournit une quantité d'oxygène liquide moindre. Cela n'est pas gênant, même si la demande d'oxygène liquide des consommateurs augmente, puisqu'il est possible d'utiliser l'ensemble de l'oxygène liquide stocké dans le réservoir 14 pour satisfaire leur demande.

[0036] Dans une variante non représentée de l'installation de la figure 1, la vanne de réglage 42 peut être, si nécessaire, totalement fermée, l'ensemble de l'azote résiduaire étant alors envoyé vers l'unité 3 à turbine à gaz. Dans ce cas, la tenue en froid de la colonne de distillation 4 est assurée par exemple par le renvoi de l'oxygène liquide du réservoir 14 vers la ligne principale d'échange thermique 8 ou par tout autre moyen tel qu'une turbine d'insufflation de l'air à distiller dans la colonne basse pression.

[0037] A l'inverse, lorsque la puissance électrique à fournir est inférieure à la puissance électrique fournie, c'est-à-dire lorsque les besoins du réseau alimenté par l'alternateur diminuent, l'unité de pilotage 43 commande l'augmentation du débit du deuxième flux et la diminution du débit du premier flux.

[0038] Si nécessaire, la vanne de réglage 41 peut être totalement fermée, l'ensemble de l'azote résiduaire étant alors envoyé vers la turbine 13 afin d'alimenter le réservoir 14 en oxygène liquide.

[0039] Il est alors possible d'accroître la quantité d'oxygène liquide stockée dans le réservoir 14 en vue d'une nouvelle période où la puissance électrique à fournir sera élevée.

[0040] Ainsi, l'installation de la figure 1 permet d'adapter simplement la puissance électrique fournie par l'unité 3 à turbine à gaz aux besoins en électricité sans être limité par les caractéristiques du compresseur 16.

[0041] D'une manière plus générale, la structure de l'unité 3 à turbine à gaz peut être différente, la chambre de combustion 17 pouvant être alimentée en comburant sous pression, tel que de l'air, par divers moyens.

[0042] Le premier flux d'azote résiduaire peut également être chauffé avant d'être envoyé vers la turbine 18.

[0043] De même, les principes ci-dessus ne sont pas limités à une unité 2 comprenant une double colonne de distillation. Ainsi, tout type d'appareil de distillation d'air, présentant une entrée d'air et des sortie de fluides riche en azote et riche en oxygène, peut être utilisé. La ou une sortie de fluide riche en azote est alors raccordée en parallèle aux turbines 13 et 18.

[0044] Les vannes 41 et 42 peuvent être intégrés respectivement dans le compresseur 21 et la turbine 23, par exemple sous forme d'aubages directeurs.

[0045] Il est également à noter que le deuxième flux d'azote résiduaire peut être détendu par divers moyens afin de permettre la production d'un produit à l'état liquide, tel que de l'oxygène, de l'azote ou même de l'argon. Il n'est pas nécessaire que ce deuxième flux détendu et le produit à fournir à l'état liquide traversent un même échangeur thermique.

[0046] Ainsi, dans la variante de la figure 2, le deuxième flux d'azote résiduaire après sa détente dans la turbine 13 est envoyé directement vers la ligne d'échange thermique 8, l'échangeur thermique auxiliaire 9 et la vanne de détente 33 ayant été supprimés.

[0047] L'oxygène liquide est alors stocké, aux pertes de charges près, à la pression de fonctionnement de la colonne basse pression qui peut être nettement supérieure à la pression atmosphérique.

[0048] Il n'est alors pas nécessaire de sous-refroidir l'oxygène liquide soutiré par la sortie 25.

[0049] Dans une variante non représentée, la turbine 18 peut être une turbine dont un étage amont est relié mécaniquement par un premier arbre au compresseur 16 pour l'entraîner, et dont un étage aval est relié mécaniquement par un deuxième arbre distinct à l'alternateur 19 pour l'entraîner.

[0050] Selon encore une autre variante non représentée, l'azote résiduaire provenant de la sortie 25 peut être divisé en deux flux en amont de l'échangeur thermique auxiliaire 10 et donc en amont de ligne principale d'échange thermique 8.

[0051] Le premier flux est alors comprimé puis réchauffé à la traversée de la ligne principale d'échange thermique 8 et alimente enfin la turbine 18. Le deuxième flux traverse l'échangeur thermique auxiliaire 10, puis la partie amont des passages 26 de la ligne principale d'échange thermique 8. Ensuite, le deuxième flux suit le trajet du mode de réalisation de la figure 1.

[0052] Selon d'autres variantes non représentées, les turbines 13 et 18 peuvent être raccordées à deux sorties distinctes de fluide riche en azote. Ainsi, la turbine 13 peut être raccordée à la sortie 25 comme représenté sur la figure 1, tandis qu'une partie du liquide pauvre LP est envoyé vers une pompe, puis dans la ligne principale d'échange thermique 8 avant d'alimenter la turbine 18.


Revendications

1. Installation (1) de distillation d'air et de production d'électricité, du type comprenant d'une part un appareil de distillation d'air (4), présentant au moins une sortie (25) d'un fluide riche en azote et une sortie (32) d'un produit à fournir à l'état liquide, et d'autre part une unité (3) à turbine à gaz comprenant une chambre de combustion (17) et une turbine de production d'électricité (18) dont l'admission est raccordée à une sortie de la chambre de combustion, l'installation comprenant en outre des moyens (13) de détente d'un fluide riche en azote pour produire une énergie frigorifique permettant de fournir ledit produit liquide, l'appareil de distillation d'air étant raccordé en parallèle à ces moyens (13) de détente et à l'admission de la turbine de fourniture d'électricité pour les alimenter en au moins un fluide riche en azote, caractérisée en ce qu'elle comprend des moyens (41, 42) de réglage des débits des flux de fluide riche en azote envoyés respectivement vers les moyens (13) de détente et vers la turbine (18) de production d'électricité, et des moyens (40) de détermination de la puissance électrique à produire avec la turbine (18) de production d'électricité.
 
2. Installation selon la revendication 1, caractérisée en ce que les moyens de détente comprennent une turbine (13).
 
3. Installation selon la revendication 1 ou 2, caractérisée en ce qu'elle comprend un échangeur thermique (9) de refroidissement du produit liquide à fournir raccordé à une sortie des moyens (13) de détente.
 
4. Installation selon l'une des revendications 1 à 3, caractérisée en ce qu'elle comprend un échangeur thermique (8) de refroidissement de l'air à distiller raccordé à une sortie des moyens (13) de détente.
 
5. Installation selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend des moyens (21) de compression d'un fluide riche en azote disposés entre l'appareil de distillation d'air (4) et l'admission de la turbine (18) de production d'électricité.
 
6. Installation selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend des moyens de chauffage d'un fluide riche en azote disposés entre l'appareil de distillation d'air (4) et l'admission de la turbine (18) de production d'électricité.
 
7. Installation selon l'une quelconque des revendications précédentes, caractérisée en ce que l'appareil de distillation d'air est raccordé en parallèle aux moyens (13) de détente et à la turbine (18) de production d'électricité par une même sortie (25) de fluide riche en azote.
 
8. Installation selon la revendication 7, caractérisée en ce qu'elle comprend une unité (43) de pilotage des moyens (41, 42) de réglage des débits adaptée pour augmenter le débit du flux de fluide riche en azote alimentant la turbine (18) de production d'électricité lorsque la puissance électrique à produire augmente.
 
9. Installation selon la revendication 7, caractérisée en ce que l'unité de pilotage est adaptée pour diminuer le débit du flux de fluide riche en azote alimentant la turbine (18) de production d'électricité lorsque la puissance électrique à produire diminue.
 
10. Procédé de production d'électricité et de distillation d'air à l'aide d'une installation selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'on augmente le débit du flux de fluide riche en azote alimentant la turbine (18) de production d'électricité lorsque la puissance électrique à produire augmente.
 
11. Procédé selon la revendication 10, caractérisé en ce que l'on diminue le débit du flux de fluide riche en azote alimentant la turbine (18) de production d'électricité lorsque la puissance électrique à produire diminue.
 




Dessins










Rapport de recherche