

Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 177 866 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 06.02.2002 Patentblatt 2002/06

(51) Int CI.7: **B26D 7/26**

(21) Anmeldenummer: 01118038.7

(22) Anmeldetag: 25.07.2001

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 02.08.2000 DE 10037709

(71) Anmelder: Gämmerler AG 82538 Geretsried-Gelting (DE) (72) Erfinder:

 Gämmerler, Gunter 82538 Gelting (DE)

• Elvert, Ralf 81476 München (DE)

 Schirmacher, Helmut 85635 Höhenkirchen (DE)

(74) Vertreter: Manitz, Finsterwald & Partner GbR Postfach 31 02 20 80102 München (DE)

- (54) Verfahren sowie Einrichtung zur Überwachung des Abstands zwischen den Messern einer Rotationsschneidvorrichtung
- (57) Bei einer Rotationsschneidvorrichtung mit einem Rotationsschneidmesser und einem Gegenmesser, die sich im Schneidbereich teilweise überdecken und einen Schneidspalt bilden, ist eine Überwachungseinrichtung für den Abstand zwischen den Messern vorgesehen.

EP 1 177 866 A2

Beschreibung

[0001] Die vorliegende Erfindung betrifft eine Rotationsschneidvorrichtung nach dem Oberbegriff des Anspruchs 1 mit einem Rotationsschneidmesser und einem Gegenmesser, die sich im Schneidbereich teilweise überdecken und die einen Schneidspalt bilden.

[0002] Derartige Rotationsschneidvorrichtungen sind grundsätzlich bekannt und werden beispielsweise für das Schneiden von Papierprodukten bei der Drucknachbearbeitung eingesetzt. Dabei werden als Rotationsmesser einstückige Rundmesser oder mehrteilige Messer eingesetzt, die am Umfang eines runden, scheibenartigen Grundkörpers angeordnete Einzelklingen aufweisen. Das Gegenmesser kann feststehen oder ebenfalls rotieren. Weiterhin kann es als Zylinder ausgebildet sein, dessen eine Kante im Schneidbereich als Scherkante für das Rotationsmesser dient, wodurch ein scherenartiger Schnitt erzielt werden kann.

[0003] Der Schneidspalt zwischen den Messern ist vorgesehen, um einen Verschleiß der Messer durch gegenseitige Berührung zu vermeiden. Für einen guten Schnitt muß der Schneidspalt sehr klein sein, beispielsweise einige hundertstel Millimeter.

[0004] Während des Betriebs der Vorrichtung erwärmen sich jedoch sowohl die Lager der Messer durch Reibung wie auch die Messer selbst durch Reibung zwischen den Klingen bzw. dem Messergrundkörper und den Papierprodukten. Durch die hieraus resultierende Wärmeausdehnung der Lager und der Schneidmesser kommt es zu einer Verringerung der Schneidspaltbreite. Bei zu großer Erwärmung und damit Wärmeausdehnung kann der Schneidspalt ganz verschwinden, so daß die Schneidmesser in Kontakt kommen, wodurch die Schneiden durch ihre Reibung aneinander zum einen weiter erwärmt werden und zum anderen einer erhöhten Abnutzung unterliegen. Im ungünstigsten Fall kann es auch zu Absplitterungen an den Schneiden kommen. Letzteres führt zu unsauberen Schnitten, so daß Ausschuß und ungewollte Stillstandszeiten entstehen, wenn das Messer repariert oder nachgeschliffen werden muß.

[0005] Es ist Aufgabe der Erfindung, eine Rotationsschneidvorrichtung der oben genannten Art bereitzustellen, die einen geringeren Ausschuß erzeugt und bei der geringere Stillstandszeiten möglich sind.

[0006] Die Aufgabe wird gelöst durch eine Rotationsschneidvorrichtung mit den Merkmalen des Anspruchs

[0007] Eine erfindungsgemäße Rotationsschneidvorrichtung weist ein Rotationsschneidmesser und ein Gegenmesser auf, die sich im Schneidbereich überdecken und dort einen Schneidspalt bilden. Die Schneiden müssen dabei nicht notwendigerweise parallel angeordnet sein, sie können auch gegeneinander abgewinkelt sein und / oder einen Freiwinkel aufweisen.

[0008] Das Rotationsmesser kann hierbei einstückig oder mehrteilig ausgebildet sein. In letzterem Fall kann

es z. B. einen runden, scheibenartigen Grundkörper aufweisen, an dessen Umfang eine Vielzahl von einzelnen Klingen oder Messern befestigt ist, die zudem verstellbar angebracht sein können. Das Rotationsschneidmesser kann weiterhin als Ober- oder Untermesser ausgebildet sein. Das Gegenmesser kann feststehen oder auch selbst rotieren. Hierbei kann es selbst als Rotationsschneidmesser oder auch bevorzugt als Zylinder ausgebildet sein, dessen dem Rotationsschneidmesser gegenüberliegende Kante als Scherkante wirkt.

[0009] Erfindungsgemäß ist bei einem vorhandenen Schneidspalt die elektrisch leitfähige Schneide des Rotationsschneidmessers gegenüber der elektrisch leitenden Schneide des Gegenmessers elektrisch isoliert. Dies kann z.B. durch Halterung in elektrisch isolierenden Materialien wie Kunststoff oder Keramik bzw. durch Vorsehen entsprechender Zwischenschichten zwischen Schneide und Messer oder Messer und zugehöriger Halte- bzw. Lagervorrichtung oder durch isolierende Lager, z.B. Kugellager mit Keramikkugeln, erfolgen. [0010] Die Rotationsschneidvorrichtung weist eine Überwachungseinrichtung mit zwei Eingängen auf, wobei jeweils ein Eingang mit der Schneide eines Messers elektrisch leitend verbunden ist. Die Überwachungseinrichtung überwacht den Gleich- oder Wechselstromwiderstand zwischen ihren Eingängen und gibt ein Signal ab, wenn der Gleichstromwiderstand bzw. Blindanteil des Wechselstromwiderstands einen Schwellwert unterschreitet

[0011] Der Schwellwert ist so vorgegeben, daß er bei Berührung der Schneiden unterschritten wird. Bei Überwachung des Gleichstromwiderstands ist er größer als die Summe der Widerstände der Verbindungen zwischen Eingängen und Schneiden sowie dem Kontaktwiderstand zwischen den Schneiden, wenn diese sich ohne Druck berühren. Bei Überwachung des Wechselstromwiderstands ist der Schwellwert größer als der Blindwiderstand der Verbindung von dem einen Eingang der Überwachungseinrichtung über die sich ohne Druck berührenden Schneiden zu dem anderen Eingang der Überwachungseinrichtung bei einer von der Signaleinrichtung vorgegebenen Frequenz.

[0012] Verringert sich der Schneidspalt zwischen den Schneiden im Schneidbereich so weit, daß die Schneiden sich berühren, sinkt der Gleichstromwiderstand oder der maßgeblich durch die Schneidspaltbreite bestimmte Blindanteil des Wechselstromwiderstands zwischen den Eingängen der Überwachungseinrichtung unter den Schwellwert, wodurch ein Signal ausgelöst wird

[0013] Die Überwachung des Blindwiderstands kann in der Überwachungseinrichtung insbesondere auch durch Überwachung der wesentlich durch den Blindwiderstand bestimmten Phase zwischen Spannung und Strom an den Eingängen, oder der Amplitude des Wechselstroms bei gegebener Spannung, erfolgen.

[0014] Das Signal kann durch einen erniedrigten Wi-

20

derstandswert ausgelöst werden. Im diesem Fall erfolgt die Signalabgabe nur, wenn der Gleichstromwiderstand bzw. der Blindwiderstand für eine Mindestdauer erniedrigt ist, die unter anderem von der Ausbildung der Überwachungseinrichtung abhängt. "Unterschreiten des Schwellwertes" bedeutet dann, daß ein Unterschreiten und damit eine Berührung der Schneiden für eine gewisse Mindestdauer erfolgen muß. Um schon möglichst frühzeitig eine Berührung der Schneiden erkennen zu können, ist es vorteilhaft, wenn die Überwachungseinrichtung schon bei sehr kurzzeitigen Unterschreitungen des Schwellwerts reagiert, wozu sie vorteilhaft z. B. eine entsprechend ausgebildete Sample-and-Hold-Schaltung aufweisen kann.

[0015] Bevorzugt erfolgt die Signalabgabe bereits auf die Erkennung eines Abfalls des Widerstands bzw. Blindwiderstands unter den Schwellwert hin, da hierdurch ein Ansprechen auch auf nur sehr kurz andauernde Berührungen möglich ist, wie sie bei hohen Rotationsgeschwindigkeiten des Rotationsschneidmessers auftreten können.

[0016] Das Signal kann solange dauern, wie der Schwellwert unterschritten ist; es kann aber auch über einen vorgegebenen längeren Zeitraum abgegeben werden, beispielsweise um anzuzeigen, daß ein Nachstellen der Schneidspaltbreite erforderlich ist.

[0017] Die erfindungsgemäße Rotationsschneidvorrichtung bzw. das erfindungsgemäße Verfahren erlauben eine sehr einfache, aber wirksame Überwachung der Schneidspaltbreite. Durch die Überwachung ist es möglich, mit sehr kleinen Schneidspaltbreiten zu arbeiten, ohne daß die Gefahr einer übermäßigen Abnutzung der Schneiden der Messer auftritt. Weiterhin werden Absplitterungen an den Messern und damit verbundene Verluste durch schlechten Schnitt und Ausfallzeiten vermieden.

[0018] Bevorzugte Weiterbildungen der Erfindung sind in der Beschreibung, den Zeichnungen und den Unteransprüchen beschrieben.

[0019] Bei einer bevorzugten Ausführungsform der Rotationsschneidvorrichtung bzw. des erfindungsgemäßen Verfahrens kann bei Berührung der Schneiden und dem hierdurch verursachten Abfall des Gleichstromwiderstands bzw. Blindanteils des Wechselstromwiderstands unter den Schwellwert ein optisches Signal, z. B. in Form einer leuchtenden Lampe oder einer entsprechenden Anzeige, abgegeben werden. Dies hat den Vorteil, daß das Signal auch bei erheblichen Umgebungsgeräuschen immer wahrgenommen werden kann.

[0020] Im einfachsten Fall weist die Überwachungseinrichtung hierzu zwischen den Eingängen eine Reihenschaltung einer Spannungsquelle und einer Lichtquelle auf.

[0021] Bei einer weiteren bevorzugten Ausführungsform der Rotationsschneidvorrichtung bzw. des Verfahrens kann bei Berührung der Schneiden und dem hierdurch verursachten Abfall des Gleichstromwiderstands

bzw. Blindanteils des Wechselstromwiderstands unter den Schwellwert ein akustisches Signal abgegeben werden. Dies ist besonders dann vorteilhaft, wenn das Bedienungspersonal eine Anzeige nicht dauernd beobachten kann.

[0022] Im einfachsten Fall weist die Überwachungseinrichtung zwischen den Eingängen eine Reihenschaltung einer Spannungsquelle und einer Hupe auf.

[0023] Bei einer weiteren bevorzugten Weiterbildung der Rotationsschneidvorrichtung bzw. des Verfahrens wird die Schneidspaltbreite bei Berührung der Schneiden automatisch vergrößert.

[0024] Dazu kann die Rotationsschneidvorrichtung eine Stelleinrichtung zur Einstellung der Schneidspaltbreite aufweisen, die durch ein Signal der Überwachungseinrichtung ansteuerbar ist, und die auf ein Signal hin, das ihr von der Überwachungseinrichtung zugeführt wird, die Schneidspaltbreite durch Bewegung des Rotationsschneid- und/oder Gegenmessers vergrößert.

[0025] Hierdurch ist in besonders vorteilhafter Weise eine Verstellung der Schneidspaltbreite auch während des laufenden Betriebs möglich. Eine unnötige Abnutzung der Schneiden wird besonders wirkungsvoll vermieden, da die Vergrößerung des Schneidspalts ohne Verzögerung erfolgt, während sonst ein Eingriff des Personals notwendig ist. Bedingt durch die kurze Reaktionszeit kann weiterhin die Schneidspaltbreite ohne Risiko klein gehalten werden, was zu einem sehr guten Schnitt führt.

[0026] Bei einer Ausführungsform erfolgt die Vergrößerung nur während der Dauer des Signals. Es kann jedoch, besonders bei mehrteiligen Messern, passieren, daß nur ein kleiner Bereich des Messers ein Signal auslöst, das dann bei hoher Rotationsgeschwindigkeit nur sehr kurz andauert. Bevorzugt wird daher bei einer anderen Ausführungsform die Schneidspaltbreite auf ein Signal hin um einen vorgegebenen Betrag vergrößert, wobei während der Vergrößerung keine weiteren Signale berücksichtigt werden.

[0027] Die Stelleinrichtung kann so ausgebildet sein, daß zu gegebenen Zeitpunkten die Schneidspaltbreite sehr langsam um einen bestimmten Abstand reduziert wird, höchstens jedoch soweit bis ihr ein Signal der Überwachungseinrichtung zugeführt wird. Generell wird die Abstandsreduktion sofort beendet und der Schneidspalt wieder vergrößert, wenn durch Berührung der Schneiden ein Signal in der Überwachungseinrichtung ausgelöst wird. Auch kann die Überwachungseinrichtung so ausgebildet sein, daß eine gewünschte Schneidspaltbreite während oder nach einem Abkühlen der Vorrichtung aufgrund einer Betriebsunterbrechung automatisch eingestellt wird.

[0028] Durch diese Ausbildung der Stelleinrichtung ist es möglich, die Schneidspaltbreite zu regeln, d.h. insbesondere auch bei Abkühlung der Messer und Lager die dann durch Abkühlung vergrößerte Schneidspaltbreite wieder zu verringern. Schließlich ermöglicht diese

Weiterbildung die automatische Einstellung der Schneidspaltbreite bei Betriebsbeginn und/oder nach Unterbrechungen des Betriebs.

[0029] Nach einer weiteren vorteilhaften Ausführungsform der Erfindung ist ein Schleifkontakt vorgesehen, um einen elektrischen Kontakt mit der Welle des Rotationsschneidmessers oder des Gegenmessers herzustellen. Bei dieser Ausführungsform ist stets eine einwandfreie Kontaktierung sichergestellt, die unabhängig von einer Erwärmung oder Abkühlung der Maschine ist. Demgegenüber kann es problematisch sein, die Kontaktierung über die Lager der Welle vorzunehmen, da sich der Innenwiderstand der Lager in Abhängigkeit von deren Temperatur ändert.

[0030] Bevorzugte Ausführungsformen der Erfindung werden nun beispielhaft anhand der Zeichnungen beschrieben. Es zeigen:

- Fig. 1 eine schematische, teilweise geschnittene Seitenansicht einer Rotationsschneidvorrichtung nach einer ersten Ausführungsform; und
- Fig. 2 eine schematische, teilweise geschnittene Seitenansicht einer Rotationsschneidvorrichtung nach einer zweiten Ausführungsform.

[0031] In Fig. 1 weist eine erfindungsgemäße Rotationsschneidvorrichtung für Papierprodukte ein Rotationsmesser 2 als Obermesser und ein Gegenmesser 4 als Untermesser auf, die sich im Schneidbereich überdecken und einen Schneidspalt 6 bilden.

[0032] Das Obermesser 2 ist an einer Welle 10 angebracht, die in Lagern 12 gelagert ist und von einer Antriebseinheit 14 angetrieben wird. Das Gegenmesser 4 weist eine Schneide 16 mit einer Scherkante auf, die in einem Halter 20 aus elektrisch isolierendem Material, z. B. Kunststoff oder Keramik, befestigt ist. Der Halter 20 und die Antriebseinheit 14 sind über einen Rahmen 18 fest miteinander verbunden. Zusammen mit der rotierenden Schneide des Rotationsmessers 2 kann mit Hilfe des Gegenmessers 4 ein ziehender, scherenartiger Schnitt erzielt werden.

[0033] Die Breite des Schneidspalts 6 kann mittels einer Stelleinrichtung 8, beispielsweise mit Hilfe von Handkurbeln, durch Verschiebung des Halters 20 eingestellt werden. Die Mechanik hierzu ist dem Fachmann bekannt.

[0034] Für einen guten Schnitt von Papierprodukten kann die Breite des Schneidspalts im Bereich von etwa 3/100 mm liegen.

[0035] Das Rotationsmesser 2 und die Welle 10 sind aus Metall gefertigt, so daß die Schneide des Rotationsmesser 2 über einen an der Welle 10 anliegenden, an dem metallischen Rahmen 18 elektrisch leitend befestigten Federschleifkontakt 22 elektrisch leitend mit dem Rahmen 18 verbunden, jedoch durch den elektrisch isolierenden Halter 20 gegenüber der elektrisch leitenden Schneide 16 des Gegenmessers 4 isoliert ist.

[0036] Der Rahmen 18, und damit die Schneide des Rotationsschneidmessers 2, und die Schneide 16 des Gegenmessers 4 sind mit den zwei Eingängen 26, 27 einer Überwachungseinrichtung 24 verbunden, die zwischen den beiden Eingängen 26 eine Reihenschaltung einer Lampe 28 und einer Gleichspannungsquelle 30 aufweist. Es kann auch eine Wechselspannungsquelle verwendet werden.

[0037] Verringert sich die Breite des Schneidspalts 6 durch Wärmeausdehnung so weit, daß sich die Schneiden des Rotationsmessers 2 und des Gegenmessers 4 berühren, wird der Widerstand zwischen den beabstandeten Schneiden sehr klein und die Eingänge der Überwachungseinrichtung werden überbrückt bzw. kurzgeschlossen. Damit ist der Stromkreis aus Lampe 28 und Spannungsquelle 30 geschlossen, so daß die Lampe aufleuchtet und ein optisches Signal abgibt. Alternativ oder zusätzlich kann ein akustisches Signal abgegeben werden

[0038] Eine zweite bevorzugte Ausführungsform der Erfindung ist in Fig. 2 dargestellt. Beide Ausführungsformen unterscheiden sich nur in der Ausbildung der Überwachungseinrichtung und der Stelleinrichtung.

[0039] Die Überwachungseinrichtung 32 weist bei dieser Ausführungsform eine Gleichspannungsquelle 34, zwei Eingänge 36, 37 und zwei Ausgänge 38 auf, von denen einer mit dem Eingang 36 direkt und der andere über die Spannungsquelle 34 mit dem Eingang 37 verbunden ist. Bei Berührung der Schneiden liegt damit an den Ausgängen 38 als Signal die Spannung der Spannungsquelle 34 an.

[0040] Die mit der Überwachungseinrichtung 32 verbundene Stelleinrichtung 40 zur Einstellung des Schneidspalts ist so ausgebildet, daß sie bei einem Signal, d.h. einem Anstieg der Spannung an ihren Eingängen den Halter 20 um eine vorgegebene Distanz, z. B. um 3/100 mm, von dem Rotationsmesser 2 wegbewegt. Dazu kann sie eine dem Fachmann bekannte Stelleinheit, beispielsweise einen elektronisch gesteuerten elektrischen Antrieb mit einer Spindel aufweisen. Vorzugsweise wird hier ein (nicht gezeigter) Motor eingesetzt, der eine schnelle Bewegung des Halters 20 erlaubt, damit die Zeitspanne, während der die Schneiden in Kontakt sind, möglichst kurz ist.

Bezugszeichenliste

[0041]

40

- 2 Rotationsschneidmesser
- 4 Gegenmesser
- 6 Schneidspalt
- 8 Stelleinrichtung
- 10 Welle
- 12 Lager
- 14 Antriebseinheit
- 16 Schneide des Gegenmessers
- 18 Rahmen

5

10

- 20 Halter für Gegenmesserschneide
- 22 Federschleifkontakt
- 24 Überwachungseinrichtung
- 26 Eingang
- 27 Eingang
- 28 Lampe
- 30 Spannungsquelle
- 32 Überwachungseinrichtung
- 34 Spannungsquelle
- 36 Eingang
- 37 Eingang
- 38 Ausgänge
- 40 Stelleinrichtung

Patentansprüche

1. Rotationsschneidvorrichtung mit einem Rotationsschneidmesser (2) und einem Gegenmesser (4), die jeweils eine elektrisch leitende Schneide aufweisen, sich im Schneidbereich teilweise überdekken und einen Schneidspalt (6) bilden,

dadurch gekennzeichnet,

daß die Schneide des Rotationsschneidmessers (2) und die Schneide (16) des Gegenmessers (4) elektrisch gegeneinander isoliert sind,

daß die Schneide des Rotationsschneidmessers (2) und die Schneide (16) des Gegenmessers (4) jeweils mit einem Eingang (26, 27; 36, 37) einer Überwachungseinrichtung (24; 32) elektrisch verbunden sind, die den elektrischen Widerstand zwischen den beiden Eingängen (26, 27; 36, 37) überwacht und ein Signal abgibt, wenn der Widerstand einen vorgegebenen Schwellwert unterschreitet.

2. Rotationsschneidvorrichtung nach Anspruch 1, dadurch gekennzeichnet,

daß die Überwachungseinrichtung (24) eine Signalquelle (28) aufweist, die bei Unterschreiten des Schwellwertes ein optisches und/oder akustisches Signal abgibt.

3. Rotationsschneidvorrichtung nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

daß die Überwachungseinrichtung (24) eine zwischen die beiden Eingänge (26, 27) geschaltete Reihenschaltung einer Spannungsquelle (30) und einer Licht- (26) und/oder Schallquelle aufweist.

4. Rotationsschneidvorrichtung nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

daß die Überwachungseinrichtung (24; 32) den Gleichstromwiderstand oder den Blindanteil des Wechselstromwiderstandes überwacht.

5. Rotationsschneidvorrichtung nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

daß eine mit der Überwachungseinrichtung (32) verbundene Stelleinrichtung (40) vorgesehen ist, die zur Einstellung des Schneidspalts (6) dient, wobei die Stelleinrichtung (40) so ausgebildet ist, daß sie in Ansprechen auf ein ihr von der Überwachungseinrichtung (32) zugeführtes Signal die Breite des Schneidspalts (6) durch Bewegung des Rotationsschneidmessers und/oder des Gegenmessers (2, 4) vergrößert.

6. Rotationsschneidvorrichtung nach Anspruch 5, dadurch gekennzeichnet,

daß die Stelleinrichtung (40) auf das Signal hin den Schneidspalt (6) um einen vorgegebenen Betrag vergrößert.

7. Rotationsschneidvorrichtung nach Anspruch 5, dadurch gekennzeichnet,

daß die Stelleinrichtung (40) die Breite des Schneidspalts (6) auf der Basis von Signalen der Überwachungseinrichtung (32) auf einen Sollwert regelt.

- Verfahren zur Überwachung der Schneidspaltbreite einer Rotationsschneidvorrichtung mit einem Rotationsschneidmesser (2) und einem Gegenmesser (4), die sich im Schneidbereich teilweise überdekken und einen Schneidspalt (6) bilden, und die jeweils elektrisch leitende Schneiden aufweisen, die elektrisch gegeneinander isoliert sind, bei welchem Verfahren der Gleich- oder Wechselstromwiderstand zwischen den Schneiden überwacht und ein Signal abgegeben wird, wenn der Gleichstromwiderstand bzw. Blindanteil des Wechselstromwiderstands einen vorgegebenen Schwellwert unterschreitet.
- 9. Verfahren nach Anspruch 8,

dadurch gekennzeichnet,

daß ein optisches und/oder akustisches Signal abgegeben wird.

10. Verfahren nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet,

daß der Schneidspalt (6) durch eine Stelleinrichtung (40) in Ansprechen auf das Signal der Überwachungseinrichtung durch Bewegen des Rotationsschneidmessers (2) und/oder des Gegenmessers (4) verändert, insbesondere vergrößert wird.

11. Verfahren nach Anspruch 10,

dadurch gekennzeichnet,

daß auf das Signal hin der Schneidspalt (6) um ei-

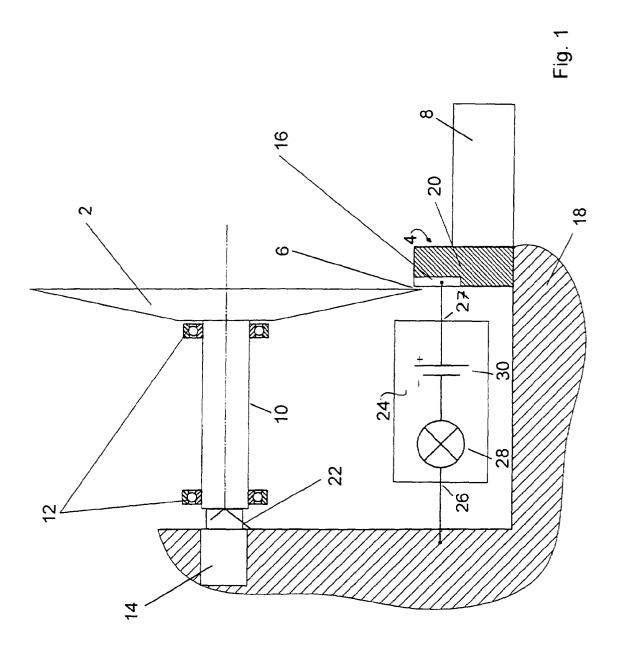
15

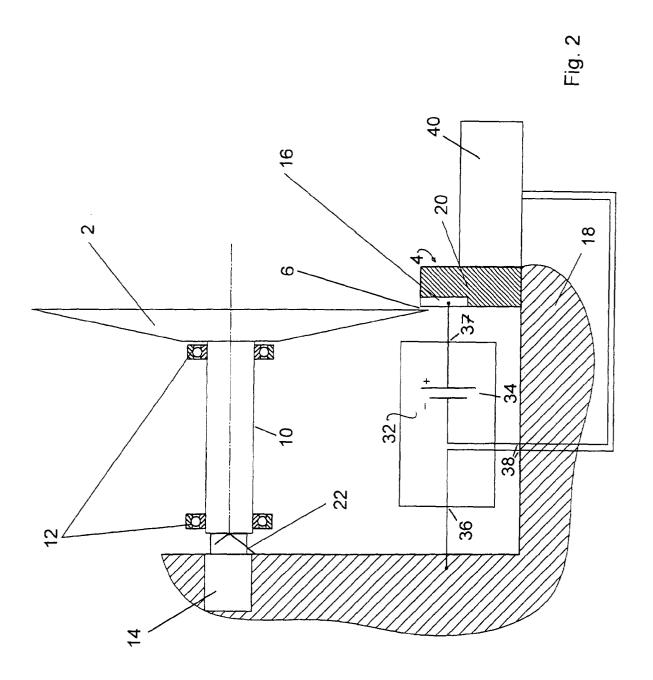
20

55

50

40


45


nen vorgegebenen Betrag vergrößert wird.

12. Verfahren nach Anspruch 10,

dadurch gekennzeichnet,

daß die Breite des Schneidspaltes (6) auf der Basis von durch Schwellwertunterschreitung ausgelösten Signalen geregelt wird.

