(19)
(11) EP 1 178 278 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
06.02.2002  Patentblatt  2002/06

(21) Anmeldenummer: 01117802.7

(22) Anmeldetag:  21.07.2001
(51) Internationale Patentklassifikation (IPC)7F28F 1/40
(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 03.08.2000 DE 10038624

(71) Anmelder: F.W. Brökelmann Aluminiumwerk GmbH & Co.KG
59469 Ense (DE)

(72) Erfinder:
  • Mitrovic, Jovan, Prof. Dr.-Ing.
    33106 Paderborn (DE)
  • Dittmann, Steffen, Dipl.-Kfm.
    58708 Menden (DE)
  • Schönherr, Michael
    58849 Herscheid (DE)

(74) Vertreter: Eichelbaum, Lambert, Dipl.-Ing. 
Krüppeleichen 6
45659 Recklinghausen
45659 Recklinghausen (DE)

   


(54) Wärmeübertragungsrohr mit gedrallten Innenrippen


(57) Die Erfindung betrifft ein Rohr (1) mit mehreren gedrallten Innenrippen (2, 3, 4), die zur Symmetrielängsachse (5) des Rohres (1) rotationssymmetrisch verlaufen.
Der Erfindung liegt die Aufgabe zugrunde, ein Wärmeübertragungsrohr der eingangs genannten Gattung zu schaffen, welches sich gegenüber den bislang bekannten innenverrippten Rohren durch eine erheblich bessere Wärmeübertragung auszeichnet und zu diesem Zweck nicht nur eine Erhöhung der inneren Wärmeübertragungsfläche, sondern auch eine effektive Querströmung zwischen der Innenwandfläche des Rohres und der Kernströmung in der Nähe der Symmetrielängsachse gewährleistet.
Diese Aufgabe wird erfindungsgemäß durch folgende Merkmale gelöst:

a) Die freien Enden (2c, 3c, 4c) der Innenrippen (2, 3, 4) weisen zur Symmetrielängsachse (5) des Rohres (1) einen Abstand (a) auf, der im Verhältnis zum Rohrinnendurchmesser (d) in einem Bereich von 1:12 bis 1:3 liegt,

b) sämtliche Innenrippen (2, 3, 4) verlaufen zur Symmetrielängsachse (5) drallartig in gleicher Richtung (Pfeil 6) und mit gleicher Drallänge (L) auf.






Beschreibung


[0001] Die Erfindung betrifft ein Rohr mit gedrallten Innenrippen, die zur Symmetrielängsachse des Rohres rotationssymmetrisch verlaufen.

[0002] Ein bekanntes Rohr dieser Art gemäß dem DE-GM 74 22 107 weist an seiner Innenseite mehrere mehrgängige schraubenartige Innenrippen auf, die eine geringe Breite b sowie eine geringe radiale Erstreckung e aufweisen. Dabei soll die Breite b in einem Bereich von 0,02 und 0,15 inch und die Höhe e in einem Bereich zwischen 0,0125 und 0,075 inch liegen; d.h. das Größtmaß in beiden Bereichen beträgt unter der Annahme 1 inch = 25,4 mm bei der Breite b = 3,8 mm, bei der Höhe e = 1,9 mm, bei einem Innendurchmesser von ca. 20,3 mm. Daraus folgt, daß sich in einem solchen von einem Fluid durchströmten Rohr zwar aufgrund des Verhältnisses von Rohrinnendurchmesser zu den relativ kurzen und im Querschnitt noppenartig ausgebildeten Innenrippen in der Nähe der Innenwand den Wärmeübergang fördernde Turbulenzen ausbilden, es jedoch an einer zur Hauptströmrichtung querverlaufenden Sekundärströmung fehlt und somit letztlich der Wärmeübergangseffekt auf die Strömungsverhältnisse der Hauptströmung und auf die durch die Wandunebenheiten ausgelösten Turbulenzen beschränkt bleibt.

[0003] Diesen Nachteil einer zu gringen Wärmeübertragungsfläche der Innenrippen hat offenkundig der Erfinder der gattungsfremden DE 196 09 641 C2 erkannt und zu diesem Zweck ein Rohr für die Kühlung von Betondecken mit Luft vorgeschlagen, welches mit erheblich längeren geraden Innenrippen versehen ist, die sich radial von der Innenwandung des Rohres in Richtung auf die Symmetrielängsachse erstrecken. Dieses Rohr ist jedoch mit dem Nachteil behaftet, daß die Kernströmung, d.h. die Strömung durch den freien, zentralen Raum in der Nähe der Symmetrielängsachse mit erheblichen Druckverlusten behaftet ist und eine effektive Wärmeübertragung zwischen dieser Kernströmung und der Rohrinnenwand dem Zufall überlassen bleibt, weil eine die Wärmeübertragung erhöhende Strömung quer zur Hauptströmung nicht vorhanden ist. Die Strömung innerhalb einer jeden von zwei benachbarten Rippenflanken und der Rohrinnenwand gebildeten Teilkammer ist aufgrund der Wandreibung mit einer geringeren Geschwindigkeit als die Kernströmung behaftet. Zudem ist der stoffliche Austausch zwischen der Kernströmung und der Strömung in den einzelnen Kammern dem Zufall überlassen. Da diese Rippen infolge der herabgesetzten Strömungsgeschwindigkeit in den Kammern den Wärmeübertragungskoeffizienten herabsetzen, beruht ihre positive Wirkung ausschließlich auf einer Vergrößerung der Wärmeübertragungsfläche. Das gleiche gilt für das gattungsfremde Rohr gemäß Fig. 2 der DE 27 03 341 C2.

[0004] Weiterhin ist aus der EP 0 582 835 A1 ein Wärmeübertrager bekannt geworden, der sich aus mehreren, in ihrer Außenwandung abgestuften, gattungsfremden Rohren zusammensetzt, in deren Innenraum weitere unterschiedlich konfigurierte Rohre mit unterschiedlichen Abmessungen und Innenrippen konzentrisch angeordnet sind, die als Ölkühler dienen sollen. Diese Wärmeübertragungsrohre sind neben ihrer aufwendigen Herstellung mit dem Nachteil eines erheblichen Druckverlustes behaftet, weil auch dabei - soweit sie überhaupt vorhanden ist - eine die Wärmeübertragung erhöhende Querströmung entweder nicht oder nur zufällig entstehen kann und auf das innenliegende Rohr beschränkt bleibt.

[0005] Außer den vorgenannten Veröffentlichungen gibt es noch einen umfangreichen Stand der Technik mit innenberippten Rohren, wie z.B. aus der DE-OS 24 02 942, der DE-33 34 964 A1 und der DE-OS 26 15 168, die aber allesamt Innenrippen mit den oben dargelegten Nachteilen aufweisen. Da bei diesen eine Verdrallung fehlt, entsprechen sie nicht der Gattung der in der vorliegenden Erfindung beschriebenen Rohre.

[0006] Denn der Erfindung liegt die Aufgabe zugrunde, ein Wärmeübertragungsrohr der eingangs genannten Gattung zu schaffen, welches sich gegenüber den bislang bekannten innenverrippten Rohren durch eine erheblich bessere Wärmeübertragungsleistung auszeichnet und sich zu diesem Zweck nicht nur einer Erhöhung der inneren Wärmeübertragungsfläche bedient, sondern auch eine effektive Querströmung zwischen der Innenwandfläche des Rohres und der Kernströmung in der Nähe der Symmetrielängsachse zur Wärmeübertragungserhöhung gewährleistet.

[0007] Diese Aufgabe wird in Verbindung mit dem eingangs genannten Gattungsbegriff erfindungsgemäß durch folgende Merkmale gelöst:

a) Die freien Enden der Innenrippen weisen zur Symmetrielängsachse des Rohres einen gleichen Abstand a auf, der im Verhältnis zum Rohrinnendurchmesser d in einem Bereich von 1:12 bis 1:3 liegt,

b) sämtliche Innenrippen verlaufen zur Symmetrielängsachse drallartig in gleicher Richtung und mit gleicher Drallänge.



[0008] Durch diese Merkmale wird erstmalig ein Rohr geschaffen, welches aufgrund des geringen Abstandes a zwischen 1/12 und 1/3 des Innendurchmessers des Rohres nicht nur eine große Wärmeübertragungsfläche auf seiner Innenseite aufweist, sondern sich aufgrund der Drallung der Innenrippen in jedem gedrallten Zwischenraum zwischen zwei benachbarten Rippenflanken und der Rohrwandung einerseits und der durch den freien Raum in der Nähe der Symmetrielängsachse strömenden Kernströmung andererseits eine Querströmung mit relativ geringen Druckverlusten ausbildet, die für eine erhebliche Steigerung der Wärmeübertragungsleistung zwischen der Kernströmung und der Rohrwand sorgt. Dieses Wirkungsprinzip ist im gesamten Stand der Technik ohne Vorbild, sei es, daß nach dem nächstkommenden Stand der Technik gemäß dem DE-GM 74 22 107 sich aufgrund der kurzen noppenartigen Rippen keine ausgeprägte Querströmung, sondern nur eine erhöhte Turbulenz im Wandbereich ausbilden kann oder sei es, daß die längeren Rippen gemäß dem Stand der Technik keine Verdrallung aufweisen.

[0009] Bei der Ausbildung der Querschnittsform der Innenrippen gestattet die Erfindung mehrere Ausführungsformen:

[0010] Nach einer ersten Ausführungsform bildet die Querschnittsform einer jeden Rippe ein spitzes, gleichschenkeliges Dreieck mit gerade verlaufenden Schenkelseiten, dessen Dreieckspitze mittels eines Radius abgerundet in die beiden Schenkelseiten übergeht, wobei jeweils zwei benachbarte Innenrippen einen im Querschnitt trapezförmigen Zwischenraum bilden. Diese Querschnittsform ist zwar grundsätzlich aus der DE 33 34 964 A1 bekannt, jedoch verlaufen dort die Rippen ohne jeden Drall, so daß sie in Verbindung mit den Verdrallungsmerkmalen des Anspruchs 1 nicht als bekannt zu bezeichnen sind.

[0011] Nach einer zweiten Ausführungsform weist die Querschnittsform einer jeden Innenrippe des Rohres die Form eines Zahnes bei Zahnrädern mit konvex nach außen gewölbten Flanken mit abgerundeter Zahnspitze auf, wobei zwei benachbarte Rippen einen im Querschnitt U-förmigen Zwischenraum mit konkav eingefallenen Seitenflächen umgreifen. Diese Rippenform ist besonders für Fluide großer Viskosität wie Öle geeignet.

[0012] Nach einer dritten vorteilhaften Ausführungsform weist die Querschnittsform einer jeden Innenrippe ein gleichschenkeliges, spitzes Dreieck mit konkav nach innen einfallenden Schenkeln und eine Halbkreisform an der Spitze auf, wobei jeweils zwei benachbarte Innenrippen einen im Querschnitt trapezförmigen Zwischenraum U-förmig umgreifen, dessen Trapezschenkel konvex nach außen gewölbt sind. Diese Rippenform findet bevorzugt Einsatz bei der Durchströmung von Fluiden geringer Viskosität, wie sie beispielsweise Gase aufweisen.

[0013] Sämtliche dieser unterschiedlichen Ausführungsformen der Innenrippen führen zu unterschiedlichen Strömungen quer zur Kernströmung im Bereich der Symmetrielängsachse. Dabei wird vorteilhaft die Anzahl der Rippen, die Steigung der Verdrallung, die Rippendicke und die Form in Abhängigkeit von der Art des Fluids und dessen Strömungsgeschwindigkeit sowie vom Druckabfall gestaltet, ohne dadurch den Erfindungsgedanken zu verlassen.

[0014] Nach einer besonders vorteilhaften Weiterbildung der Erfindung werden diese Rohre in Massenfertigung mit ihren Innenrippen aus stranggepreßtem Aluminium oder Kupfer bzw. aus extrudiertem Kunststoff hergestellt. Dabei zeichnen sich sowohl Aluminium als auch Kupfer durch eine hohe Wärmeleitfähigkeit aus.

[0015] Zur Sicherstellung einer gleichmäßigen Kern- und Querströmung ist die Querschnittsgestaltung des Rohres mit seinen Innenrippen und den Zwischenräumen über die gesamte Länge der Verdrallung in jeder Querschnittsebene gleich.

[0016] Die Wanddicke des Rohres wird in Abhängigkeit vom Systemdruck ermittelt und liegt vorteilhaft in einem Bereich zwischen 0,4 mm und 3 mm, wobei jedes Rohr mindestens vier Innenrippen aufweist.

[0017] Um eine möglichst hohe Wärmeübertragungsleistung bei einem relativ geringen Druckverlust zu erhalten, wird der Abstand a der freien Enden der Innenrippen von der Symmetrielängsachse des Rohres bei Fluiden großer Viskosität, wie bei Ölen, größer und bei Fluiden mit geringer Viskosität, wie Wasser und Gasen, geringer bemessen. Dadurch vergrößert sich der Querschnitt der Kernströmung im Bereich des freien Querschnittes in der Nähe der Symmetrielängsachse bei Fluiden großer Viskosität gegenüber Fluiden geringer Viskosität.

[0018] Erfindungsgemäß darf der freie Innenraum in der Nähe der Symmetrielängsachse in jedem Rohr auf keinen Fall geschlossen werden. Dieser Raum muß mit den Kanälen zwischen den Rippen kommunizieren. Aus diesem Grunde weisen in einer vorteilhaften Weiterbildung die freien Enden der Innenrippen von der Symmetrielängsachse auch bei Fluiden geringer Viskosität stets einen solchen Abstand a von dieser auf, daß zwischen dessen freien Enden in jedem Querschnitt des Rohres ein Kernströmkanal erhalten bleibt. Aus diesem Grund soll gemäß dem Merkmal a) des Hauptanspruchs dieser Abstand a nicht unter 1/12 des Rohrinnendurchmessers bemessen werden.

[0019] Mehrere Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt. Dabei zeigen:

Fig. 1 den Querschnitt eines Rohres mit acht Innenrippen, welche die Querschnittsform eines spitzen gleichschenkeligen Dreiecks aufweisen,

Fig. 2 eine weitere Querschnittsausbildung eines Rohres mit Innenrippen, von denen eine jede die Querschnittsform eines Zahnes bei Zahnrädern mit konvex nach außen gewölbten Flanken aufweist,

Fig. 3 eine dritte Querschnittsform eines Rohres, bei dem eine jede Innenrippe die Querschnittsform eines gleichschenkeligen, spitzen Dreiecks mit konkav nach innen einfallenden Schenkelseiten besitzt,

Fig. 4 eine perspektivische Ansicht des Rohres von Fig. 1 mit gestrichelt angedeuteter Verdrallung der Innenrippen,

Fig. 5 das Rohr von Fig. 4 in teilweise aufgeschnittener Perspektivansicht mit durch Pfeile angedeuteten Strömungen und

Fig. 6 eine beispielhafte Prinzipdarstellung eines Wärmeübertragers zum Einsatz der Rohre gemäß den Figuren 1 bis 5.



[0020] In Fig. 1 ist eine erste Ausführungsform des erfindungsgemäßen Rohres 1 dargestellt. Dabei bildet die Querschnittsform einer jeden Rippe 2 ein spitzes, gleichschenkeliges Dreieck mit gerade verlaufenden Schenkelseiten 2a, 2b, dessen Dreieckspitze 2c mittels eines Radius r abgerundet in die beiden Schenkelseiten 2a, 2b übergeht. Jeweils zwei benachbarte Innenrippen 2 bilden einen im Querschnitt trapezförmigen Zwischenraum 2d.

[0021] Im Ausführungsbeispiel der Fig. 2 weist eine jede Innenrippe 3 des Rohres 1 die Form eines Zahnes bei Zahnrädern mit konvex nach außen gewölbten Seitenflanken 3a, 3b mit einer abgerundeten Zahnspitze 3c auf. Dabei umgreifen zwei benachbarte Rippen 3 einen im Querschnitt U-förmigen Zwischenraum 3d mit konvex eingefallenen Seitenflächen, die identisch mit der Form der Seitenflanken 3a, 3b der Rippen 3 sind.

[0022] In Fig. 3 ist eine weitere Querschnittsform offenbart. Dabei bildet der Querschnitt einer jeden Innenrippe 4 ein gleichschenkeliges, spitzes Dreieck mit konkav nach innen einfallenden Schenkelseiten 4a, 4b mit einer halbkreisförmigen Spitze 4c. Jeweils zwei benachbarte Innenrippen 4 umgreifen U-förmig einen im Querschnitt trapezförmigen Zwischenraum 4d, dessen Trapezschenkel konvex nach außen gewölbt sind und identisch mit den Schenkelseiten 4a, 4b sind.

[0023] Jedes Rohr 1 ist mit mindestens vier Innenrippen 2, 3, 4, im vorliegenden Fall mit jeweils acht Innenrippen 2, 3, 4 versehen. Die freien Enden 2c, 3c, 4c sind mit den Spitzen der Querschnittsformen der einzelnen Innenrippen 2, 3, 4 identisch. Dabei muß allerdings beachtet werden, daß die Spitzen sich auf den flächigen Querschnittskörper eines Dreiecks, hingegen die freien Enden sich auf einen verdrallt zur Symmetrielängsachse 5 erstreckenden räumlichen Körper beziehen. Diese freien Enden 2c, 3c, 4c weisen zur Symmetrielängsachse 5 des Rohres 1 einen Abstand a auf, der im Verhältnis zum Rohrinnendurchmesser d in einem Bereich von 1 : 12 bis 1 : 3 liegt.

[0024] Und schließlich verlaufen sämtliche Innenrippen 2, 3, 4 gemäß der perspektivischen Darstellung der Fig. 4 zur Symmetrielängsachse 5 drallartig in gleicher Drallrichtung, hier z.B. nach links in Richtung des Pfeiles 6, und weisen die gleiche Drallänge L auf. Unter dieser Drallänge versteht man die Länge, die zwischen einer vollständigen 360°-Drallung einer Rippe liegt, d.h. die Länge L zwischen zwei Schnittebenen, zwischen denen nach einer 360°-Drallung eine jede Rippe wieder an der gleichen Stelle der ersten Schnittebene liegt.

[0025] Die Rohre sind vorteilhaft entweder aus einem stranggepreßten Aluminium oder Kupfer hergestellt oder in Kunststoff extrudiert.

[0026] Die Wanddicke d1 des Rohres 1 ist abhängig vom Systemdruck und liegt in einem Bereich zwischen 0,4 mm und 3 mm.

[0027] Zur Vermeidung einer jedweden Strömungsunregelmäßigkeit ist die Querschnittskonfiguration des Rohres 1 mit seinen Innenrippen 2, 3, 4 und den Zwischenräumen 2d, 3d, 4d über die Länge L der Verdrallung in jedem Querschnitt gleich. Dadurch werden Drucksprünge und unerwünschte Störeffekte unterbunden, so daß die Kernströmung 7 und jede Querströmung 8 in den Zwischenräumen 2d, 3d und 4d miteinander kommunizieren und sich gegenseitig austauschen.

[0028] Es versteht sich, daß die Rohre 1 auch aus anderen als die in den Figuren 1 bis 3 dargestellten Rohre bestehen können, daß also statt der dort dargestellten acht Rippen 2, 3, 4 beispielsweise nur vier Rippen 2, 3, 4 oder mehr als acht Rippen im Innenraum des Rohres 1 angeordnet sind. Denn die Anzahl der Rippen 2, 3, 4, die Länge L der Verdrallung sowie die Dicke und Rippenform werden in Abhängigkeit von der Art des Fluids und dessen Strömungsgeschwindigkeit sowie vom Druckabfall gestaltet. Dabei gilt die allgemeine Strömungsregel, daß der Druckabfall um so größer ist, je enger der freie Strömquerschnitt im Kernbereich sowie zwischen den Einzelrippen 2, 3, 4 ist, daß aber andererseits mit größerer Rippenanzahl und damit einhergehender größerer Wärmeübertragungsfläche auch die Wärmeübertragungsleistung passiv steigt.

[0029] Bei dem erfindungsgemäßen Rohr 1 kommt aber der Verdrallung und der dadurch induzierten Querströmung zwischen dem Kernbereich in der Nähe der Symmetrielängsachse 5 und der Rohrinnenwandung 9 eine tragende Bedeutung zu. Diese ist in Fig. 5 veranschaulicht. Um die Symmetrielängsachse 5 des Rohres 1 bildet sich im freien Strömquerschnitt zwischen den Enden 2c, 3c, 4c der Rippen 2, 3, 4 eine Kernströmung 7, der aufgrund auch der Verdrallung der Endbereiche, die mit den Enden der Spitzen 2c, 3c, 4c übereinstimmen, ein Drall erteilt wird, der im dargestellten Fall ein Linksdrall ist, d.h. mit einer Drehung in der Zeichenebene im Gegenuhrzeigersinn verbunden ist, wie es der Pfeil 6 der Figuren 4 und 5 ausweist. Aufgrund der Verdrallung der Rippen 2 bzw. 3, 4 bildet sich in den Zwischenräumen 2d bzw. 3d, 4d eine Querströmung 8 aus, welche durch die darin eingezeichneten Pfeile angedeutet ist. Infolge dieser Querströmung 8, d.h. durch eine Strömung quer zur Symmetrielängsachse 5, findet ein äußerst intensiver Wärmetransport zwischen der Kernströmung 7 und der Innenwandung 9 des Rohres 1 statt. Aufgrund der hohen Wärmeleitfähigkeit λ des beispielsweise aus stranggepreßtem Aluminium oder Kupfer hergestellten Rohres 1 von
      209,3 W/(mK) Aluminium und
      407,1 W/(mK) bei Kupfer erfolgt eine erhebliche Wärmeübertragungsleistung von der Kernströmung 7 über die Querströmung 8 an die Innenseite 9 des Rohres 1 und von dort weiter durch dessen Wand 10 mit der Dicke d1 auf die Außenseite 11 statt.

[0030] Ein derartiges Rohr 1 findet beispielsweise Anwendung auf einem Rohrbündelwärmeübertrager 12, wie er in Fig. 6 dargestellt ist. Dabei tritt beispielsweise das Kühlmedium über den Stutzen 13 in die Rohre 1 ein und verläßt diese durch den Austritt 14. Im Gegenstrom tritt das beispielsweise zu kühlende Medium durch den Eintrittstutzen 15 an die Außenseite 11 der Rohre 1 ein und verläßt den Wärmeübertrager 12 in herabgekühltem Zustand durch den Auslaßstutzen 16. Es versteht sich, daß das erfindungsgemäße Rohr 1 sowohl zur Kühlung als auch zur Aufheizung von Fluiden Verwendung finden kann, je nachdem in welcher Richtung der Wärmeübertragungsvorgang stattfinden soll. Dabei gilt die allgemeine Regel, daß bei Fluiden mit großer Viskosität wie beispielsweise bei Ölen der Abstand a der freien Enden 2c, 3c, 4c der Innenrippen 2, 3, 4 von der Symmetrielängsachse 5 des Rohres 1 größer als bei Fluiden mit geringer Viskosität, wie Wasser und Gasen, zu bemessen ist.

Bezugszeichenliste:



[0031] 
Rohr
1
Innenrippen
2, 3, 4
Schenkelseiten der Innenrippe 2
2a, 2b
Dreieckspitze
2c
trapezförmiger Zwischenraum
2d
Seitenflanken der Innenrippe 3
3a, 3b
Zahnspitze
3c
U-förmiger Zwischenraum
3d
Schenkelseiten der Innenrippe 4
4a, 4b
halbkreisförmige Spitze
4c
Zwischenraum
4d
Pfeil
6
Kernströmkanal
7
Querströmung
8
Innenseite des Rohres 1
9
Wand des Rohres 1
10
Außenseite des Rohres 1
11
Rohrbündelwärmeübertrager
12
Eintritt in die Rohre 1
13
Austritt
14
Eintrittstutzen
15
Auslaßstutzen
16
Abstand der freien Enden 2c, 3c, 4c zur Symmetrielängsachse 5
a
Rohrinnendurchmesser
d
Wanddicke der Rohre 1
d1
Drallänge
L
Wärmeleitfähigkeit
λ
Radius
r



Ansprüche

1. Rohr mit mehreren gedrallten Innenrippen, die zur Symmetrielängsachse des Rohres rotationssymmetrisch verlaufen, gekennzeichnet durch folgende Merkmale:

a) Die freien Enden (2c, 3c, 4c) der Innenrippen (2, 3, 4) weisen zur Symmetrielängsachse (5) des Rohres (1) einen Abstand (a) auf, der im Verhältnis zum Rohrinnendurchmesser (d) in einem Bereich von 1:12 bis 1:3 liegt,

b) sämtliche Innenrippen (2, 3, 4) verlaufen zur Symmetrielängsachse (5) drallartig in gleicher Richtung (Pfeil 6) und mit gleicher Drallänge (L).


 
2. Rohr nach Anspruch 1, dadurch gekennzeichnet, daß die Querschnittsform einer jeden Innenrippe (2) ein spitzes, gleichschenkeliges Dreieck mit gerade verlaufenden Schenkelseiten (2a, 2b) bildet, dessen Dreieckspitze (2c) mittels eines Radius (r) abgerundet in die beiden Schenkelseiten (2a, 2b) übergeht, wobei jeweils zwei benachbarte Innenrippen (2) einen im Querschnitt trapezförmigen Zwischenraum (2d) bilden.
 
3. Rohr nach Anspruch 1, dadurch gekennzeichnet, daß die Querschnittsform einer jeden Innenrippe (3) des Rohres (1) die Form eines Zahnes bei Zahnrädern mit konvex nach außen gewölbten Seitenflanken (3a, 3b) mit abgerundeter Zahnspitze (3c) aufweist und zwei benachbarte Rippen (3) einen im Querschnitt U-förmigen Zwischenraum (3d) mit konkav eingefallenen Seitenflächen umgreifen.
 
4. Rohr nach Anspruch 1, dadurch gekennzeichnet, daß die Querschnittsform einer jeden Innenrippe (4) ein gleichschenkeliges, spitzes Dreieck mit konkav nach innen einfallenden Schenkelseiten (4a, 4b) und eine Halbkreisform an der Spitze (4c) aufweist, wobei jeweils zwei benachbarte Innenrippen (4) einen im Querschnitt trapezförmigen Zwischenraum (4d) U-förmig umgreifen, dessen Trapezschenkel konvex nach außen gewölbt sind.
 
5. Rohr nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Rohr (1) mit seinen Innenrippen (2, 3, 4) einteilig aus stranggepreßtem Aluminium oder Kupfer, bzw. aus extrudiertem Kunststoff besteht.
 
6. Rohr nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Querschnittskonfiguration des Rohres (1) mit seinen Innenrippen (2, 3, 4) und den Zwischenräumen (2d, 3d, 4d) über die Länge (L) der Verdrallung in jeder Querschnittsebene gleich ist.
 
7. Rohr nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Wanddicke (d1) des Rohres (1) in Abhängigkeit vom Systemdruck in einem Bereich zwischen 0,4 mm und 3 mm liegt.
 
8. Rohr nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es (1) mindestens vier Innenrippen (2, 3, 4) aufweist.
 
9. Rohr nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Anzahl der Rippen (2, 3, 4), die Länge (L) der Verdrallung, die Dicke und Form der Rippen (2, 3, 4) in Abhängigkeit von der Art des Fluids und dessen Strömungsgeschwindigkeit sowie vom Druckabfall gestaltet ist.
 
10. Rohr nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Abstand (a) der freien Enden (2c, 3c, 4c) der Innenrippen (2, 3, 4) von der Symmetrielängsachse (5) des Rohres (1) bei Fluiden großer Viskosität, wie bei Ölen, größer als bei Fluiden geringer Viskosität, wie Wasser und Gasen, bemessen ist.
 
11. Rohr nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die freien Enden (2c, 3c, 4c) der Innenrippen (2, 3, 4) von der Symmetrielängsachse (5) auch bei Fluiden geringer Viskosität stets einen solchen Abstand (a) von dieser aufweisen, daß zwischen dessen freien Enden (2c, 3c, 4c) in jeder Querschnittsebene des Rohres (1) ein Kernströmkanal (7) gebildet ist.
 




Zeichnung