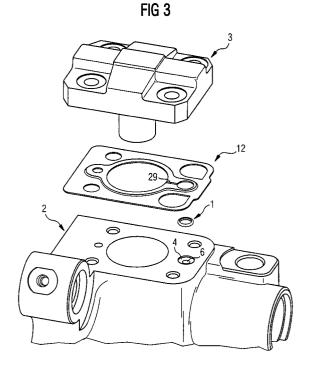
(11) **EP 1 184 572 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

- (43) Veröffentlichungstag: 06.03.2002 Patentblatt 2002/10
- (51) Int CI.⁷: **F04B 53/00**, F04B 53/16, F04B 1/04

- (21) Anmeldenummer: 01117578.3
- (22) Anmeldetag: 20.07.2001
- (84) Benannte Vertragsstaaten:


AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

- (30) Priorität: 29.08.2000 DE 10042305
- (71) Anmelder: SIEMENS AKTIENGESELLSCHAFT 80333 München (DE)
- (72) Erfinder:
 - Arnold, Bernhard
 97849 Roden-Ansbach (DE)

- Beck, Thorsten 97782 Gräfendorf (DE)
- Goebl, Ralf 97816 Lohr (DE)
- Huber, Karl 97855 Lengfurt (DE)
- Leutwein, Hans-Ulrich 97846 Partenstein (DE)
- Nigrin, Uwe 97816 Lohr (DE)
- Weidner, Matthias 97535 Burghausen (DE)
- Wirzberger, Franz 97834 Neuhütten (DE)

(54) Addichtungsvorrichtung für einen Übergangsbereich an Hochdruckbauteilen

(57) Die vorliegende Erfindung betrifft eine Abdichtungsvorrichtung mit einer Hochdruckabdichtung (1) und einer Niederdruckabdichtung (12) zur Abdichtung eines Übergangsbereichs (5) an einer Hochdruckleitung (6). Die Hochdruckabdichtung (1) weist eine im wesentlichen ringförmige Gestalt auf und ist am Leitungsübergang von Hochdruckbauteilen (2, 3) angeordnet. Die Niederdruckabdichtung (12) ist in einer Ebene mit der Hochdruckabdichtung (1) um diese herum angeordnet, um eine eventuell auftretende Leckage durch die Hochdruckabdichtung (1) nach aussen abzudichten.

EP 1 184 572 A2

Beschreibung

[0001] Die vorliegende Erfindung betrifft eine Abdichtungsvorrichtung für einen Übergangsbereich an Hochdruckbauteilen und insbesondere eine Abdichtungsvorrichtung für Übergangsbereiche an Pumpenbauteilen von Pumpen für Common-Rail-Systeme.

[0002] Abdichtungen sind in vielfältigen Ausgestaltungen bekannt. Beispielsweise ist in Figur 11 eine bekannte Hochdruckabdichtung 1 für ein Common-Rail-System dargestellt, welche an einem Übergangsbereich 5 zwischen einem ersten Bauteil 2 und einem zweiten Bauteil 3 verwendet wird, um eine Fortführung eines Fluidkanals 6 zu ermöglichen. Die in Figur 11 gezeigte Hochdruckabdichtung 1 besteht aus zwei Elementen, nämlich einem Dichtring 24 und einem Stützring 25, welche in einer Aussparung 4 angeordnet sind, die in dem ersten Bauteil 2 gebildet ist. Der Dichtring 24 ist aus einem Elastomer hergestellt. Der Stützring 25 ist am äußeren Umfang des Dichtrings 24 angeordnet, um den Dichtring 24 gegen die hohen Drücke im Common-Rail abzustützen. Der Stützring weist dabei keine Dichtfunktion auf. Weiter ist in dem Übergangsbereich 5 vom ersten zum zweiten Bauteil ein Ventil 26 angeordnet, welches im wesentlichen aus einer Ventilkugel 22, einem Federelement 27 und einem korbförmig gebildeten Kugelkäfig 28 besteht.

[0003] Derartige Hochdruckabdichtungen sind jedoch dahingehend nachteilig, dass sie nicht über den gesamten Temperaturbereich vollständig abdichten. Insbesondere bei geringen Temperaturen sind die Abdichteigenschaften der bekannten Hochdruckdichtungen nicht ausreichend, so dass häufig eine Leckage nach aussen auftritt. Daraus resultieren insbesondere Abdichtungsprobleme beim Anlassen eines kalten Motors, insbesondere im Winter, da der Dichtring den hohen Drücken im Common-Rail-System (bis ca. 1800 bar) nicht standhält. Weiter sind die bekannten Hochdruckabdichtungen dahingehend nachteilig, dass abhängig von den Betriesbelastungen (Druck, Kräfte) sich im Übergangsbereich 5 ein Spalt ergibt. Ab einer bestimmten Spaltgröße bzw. Frequenz der Spaltänderung ist der Elastomerring nicht mehr in der Lage, diesen Übergangsbereich abzudichten. Dies führt zu unerwünschten Undichtigkeiten während des Betriebes. Weiter besteht die bekannte Hochdruckabdichtung aus mindestens zwei Bauteilen, nämlich dem Dichtring und dem Stützring, woraus relativ hohe Herstellungs- und Montagekosten resultieren. Überdies sind die bekannten Hochdruckabdichtungen nur begrenzt gegen aggressive Medien, wie z.B. Pflanzenmethylester (PME), beständig.

[0004] Es ist daher Aufgabe der vorliegenden Erfindung, eine zuverlässige Abdichtungsvorrichtung bereitzustellen, welche bei einfachem Aufbau und einfacher, kostengünstiger Herstellbarkeit über den gesamten Temperaturbereich keine Undichtigkeiten aufweist und welche ausreichend dynamischen Belastungen stand-

hält.

[0005] Diese Aufgabe wird durch eine Abdichtungsvorrichtung mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind Gegenstand der Unteransprüche.

[0006] Erfindungsgemäß wird somit eine Abdichtungsvorrichtung zur Abdichtung von Hochdruckbauteilen an einem Übergangsbereich an einer Hochdruckleitung bereitgestellt, welche eine Hochdruckabdichtung mit einer im wesentlichen ringförmigen Gestalt und eine Niederdruckabdichtung umfasst. Die Hochdruckabdichtung ist an einem Leitungsübergang der Hochdruckbauteile angeordnet. Die Niederdruckabdichtung ist außerhalb der Hochdruckabdichtung angeordnet, um eine eventuell auftretende Leckage durch die Hochdruckabdichtung nach außen hin sicher abzudichten. Somit ist ein redundantes Dichtungssystem vorhanden, welches ein Austreten von Fluid an Übergangsbereichen von Hochdruckbauteilen verlässlich verhindern kann. Daher kann bei einem Auftreten einer Leckage durch die Hochdruckabdichtung diese durch die Niederdruckabdichtung zurückgehalten werden. Demnach kann die Kombination einer Hochdruckabdichtung und einer Niederdruckabdichtung eine Leckage verlässlich verhindern. Insbesondere kann die vorliegenden Erfindung in einem Common-Rail-System an Übergängen von Pumpenbauteilen eingesetzt werden.

[0007] Gemäß einer bevorzugten Ausgestaltung der vorliegenden Erfindung ist die Hochdruckabdichtung aus Metall hergestellt. Weiter ist die erfindungsgemäße, aus Metall hergestellte Hochdruckabdichtung im montierten Zustand vorgespannt. Dadurch kann erreicht werden, dass die Hochdruckabdichtung nach der Montage aufgrund ihrer Vorspannung mit hohem Druck an ihren Anlageflächen zur Abdichtung anliegt. Somit wird durch die erfindungsgemäße Hochdruckabdichtung eine Abdichtung bereitgestellt, welche über den gesamten Temperaturbereich eine ausreichende Abdichtung sicherstellt, ohne dass Leckagen, insbesondere im unteren Temperaturbereich, auftreten. Weiter wird durch die Kombination des Vorspannens der Dichtung und des aus Metall hergestellten Dichtrings eine dynamisch belastbare Hochdruckabdichtung bereitgestellt, welche insbesondere Druckpulsungen mit einer hohen Frequenz folgen kann und somit keine Undichtigkeiten infolge von durch das Fluid verursachten Belastungspulsen aufweist. Weiter benötigt die erfindungsgemäße Hochdruckabdichtung auch keinen Stützring, da sie aufgrund ihrer Herstellung aus einem Metall eine ausreichende Festigkeit gegen die hohen Drücke aufweist. Überdies ist die aus Metall hergestellte Hochdruckabdichtung gegen aggressive Medien beständig.

[0008] Vorzugsweise ist die Hochdruckabdichtung aus Federblech oder aus Stahl hergestellt. Hierdurch kann eine kostengünstige und einfach herzustellende Hochdruckabdichtung erhalten werden. Bei einer Herstellung der Dichtung aus Federblech kann des weiteren auch eine besonders einfache Vorspannung der

Dichtung verwirklicht werden.

[0009] Gemäß einer anderen bevorzugten Ausgestaltung der vorliegenden Erfindung ist die Hochdruckabdichtung aus temperaturfestem Kunststoff oder aus Kautschuk hergestellt. Besonders bevorzugt wird als Kunststoff dabei ein Elastomer verwendet.

[0010] Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung ist die Niederdruckabdichtung aus Metall oder aus Kunststoff oder Kautschuk oder aus einem mit Kunststoff beschichteten Metall hergestellt.

[0011] Vorzugsweise ist die Niederdruckabdichtung als Flachdichtung oder als Profildichtung ausgebildet. Besonders bevorzugt weist die Niederdruckabdichtung eine Sicke auf.

[0012] Gemäß einer vorteilhaften Ausgestaltung der vorliegenden Erfindung ist die Hochdruckabdichtung als Ring mit einem C-förmigen Querschnitt ausgebildet. Vorzugsweise ist dabei der geöffnete Bereich des C-förmigen Rings nach innen gerichtet. Durch die C-förmige Ausbildung der Hochdruckabdichtung kann insbesondere erreicht werden, dass die Dichtung zusätzlich durch den Fluiddruck mit großer Kraft gegen ihre Anlageflächen gedrückt wird, da der Fluidruck in Richtung der Anlagefläche gerichtet ist. Somit wird der aufgrund der Vorspannung der Dichtung vorhandene Anpressdruck noch durch die geometrische Gestaltung der Dichtung in C-Form verstärkt. Weiter kann die Cringförmige Hochdruckabdichtung auch Bauteilverformungen, welche aufgrund der hohen Drücke entstehen, sehr gut ausgleichen, da er aufgrund seiner C-Form den Verformungen, insbesondere den Weitungen und den Annäherungen, benachbarter Bauteile infolge des hohen Drucks problemlos folgen kann.

[0013] Besonders bevorzugt weist die im Querschnitt C-förmige Hochdruckabdichtung eine symmetrische Form auf, so dass u.a. eine verwechslungssichere Montage gewährleistet ist.

[0014] Vorteilhaft weist die Hochdruckabdichtung zwei Abdichtflächen oder drei Abdichtflächen auf. Bei der C-förmigen Ausgestaltung kann die Dichtung somit derart angeordnet sein, dass sie eine obere und eine untere Anlagefläche zur Abdichtung aufweist. Weiter ist es auch möglich, dass eine dritte Anlagefläche durch den nach aussen gerichteten Kreisabschnitt des C-förmigen Dichtrings gebildet wird.

[0015] Gemäß einer weiteren bevorzugten Ausgestaltung der vorliegenden Erfindung ist die Hochdruckabdichtung als Ring mit einem winkelförmigen Querschnitt ausgebildet. Dabei besitzt dieser sogenannte Keilring im unverbauten Zustand einen Schenkelwinkel, d.h. einem Winkel zwischen seinen beiden Schenkeln, von deutlich größer als 90°. Beispielsweise beträgt dieser Schenkelwinkel im unverbauten Zustand ca. 115°. Im montierten Zustand wird der eine Schenkel an einen Bereich des einen Bauteils gepresst. Der andere Schenkel wird gegen die Dichtfläche des zweiten Bauteils gepreßt. Dadurch ist der Schenkelwinkel des Keil-

rings im verbauten Zustand deutlich kleiner als im unverbauten Zustand und liegt bei ca. 90° bis 95°. Wenn der Winkel 90° beträgt, liegen beide Schenkel des Keilrings unmittelbar an den Dichtflächen der beiden Bauteile an, so dass eine sehr sichere Abdichtung erreicht wird. Besonders bevorzugt ist der Keilring aus Metall z. B. einem Blech (Federblech) hergestellt.

[0016] Bevorzugt weist die Hochdruckabdichtung einen sich im Querschnitt verjüngenden Bereich auf. Dadurch kann beispielsweise eine keilringförmige Dichtung bereitgestellt werden. Vorzugsweise ist die keilförmige Fläche der Dichtung dabei zur Dichtungsinnenseite gerichtet. Besonders bevorzugt ist der sich verjüngende Bereich im Schnitt parabelförmig oder geradlinig ausgebildet.

[0017] Vorzugsweise weist die Hochdruckabdichtung zusätzlich zu dem sich verjüngenden Bereich einen Bereich mit konstantem Innen- und Aussendurchmesser auf. Dadurch kann insbesondere eine der Anlageflächen zu Abdichtung relativ groß ausgebildet werden.

[0018] Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung weist die Hochdruckabdichtung einen mittleren Verbindungsbereich auf, welcher mindestens eine Durchgangsöffnung aufweist. Der mittlere Verbindungsbereich verbindet die äußeren Ringbereiche der Dichtung miteinander. Dadurch kann die Stabilität der Hochdruckabdichtung erhöht werden.

[0019] Vorteilhaft ist die Hochdruckabdichtung knopfförmig ausgebildet. Dabei weist die Hochdruckabdichtung einen flachen kreisförmigen mittleren Verbindungsbereich auf, so dass die Hochdruckabdichtung z. B. als Käfig bzw. Anschlag für einen Ventilkörper verwendet werden kann. Durch diese geometrische Gestaltung mit dem knopfförmig gebildeten Verbindungsbereich ist die Hochdruckabdichtung mit einem Käfig für einen Ventilkörper kombiniert, um einen Ventilkörper zurückzuhalten. Somit weist die Hochdruckabdichtung sowohl eine Abdichtfunktion als auch eine Zurückhaltefunktion für einen Ventilkörper eines unmittelbar vor der Dichtung angeordneten Ventils auf.

[0020] Vorzugsweise ist die knopfförmige Hochdruckabdichtung mit vier Durchgangsöffnungen vorgesehen, um eine ausreichende Fluidströmung zu gewährleisten. [0021] Gemäß einer weiteren erfindungsgemäßen Ausgestaltung der Erfindung ist der mittlere Verbindungsbereich an einem im Querschnitt C-förmigen Ring an einem Ende in Vertikalrichtung gebildet. Dadurch lassen sich die Vorteile der C-förmigen Hochdruckabdichtung mit denen des mittleren Verbindungsbereichs kombinieren.

[0022] Vorzugsweise dient der mittlere Verbindungsbereich als Anschlag für den Ventilkörper. Dadurch wird ein besonders einfacher Aufbau der Hochdruckabdichtung und eines unmittelbar an die Dichtung angrenzenden Ventils erhalten.

[0023] Somit stellt die vorliegenden Erfindung eine redundante Abdichtungsvorrichtung durch eine Kombination einer Hochdruckabdichtung mit einer Nieder-

20

druckdichtung bereit. Die Abdichtungsvorrichtung weist einen einfachen Aufbau auf und ermöglicht über den gesamten Temperaturbereich, in welchem die Kombinationsdichtung eingesetzt wird, eine zuverlässige Abdichtung ohne Leckageprobleme insbesondere im niedrigen Temperaturbereich. Dies wird durch die weitere Kombination einer aus Metall hergestellten Hochdruckabdichtung und der Vorspannung der Dichtung weiter verstärkt, so dass hervorragende Abdichtungseigenschaften bereitstellt werden können. Weiter wird durch die erfindungsgemäße Abdichtungsvorrichtung auch eine Unempfindlichkeit gegen im Förderfluid auftretende Belastungspulse erreicht, welche bei den bisher eingesetzten Elastomerdichtungen nicht gegeben war. Des weiteren kann das erfindungsgemäße Abdichtungssystem auch als Käfig bzw. Anschlag für einen Ventilkörper eingesetzt werden und ist beständig gegen aggressive Medien. Vorzugsweise wird die erfindungsgemäße Dichtungsanordnung bei Common-Rail-Systemen eingesetzt, in denen ein relativ hoher Druck vorhanden ist. [0024] Nachfolgend wird die Erfindung anhand von bevorzugten Ausführungsbeispielen in Verbindung mit der Zeichnung beschrieben. In der Zeichnung ist:

- Figur 1 eine schematische Schnittansicht einer Hochdruckabdichtung für eine Abdichtungsvorrichtung gemäß einem ersten Ausführungsbeispiel der vorliegenden Erfindung im eingebauten Zustand;
- Figur 2 eine perspektivische Ansicht der in Figur 1 gezeigten Hochdruckabdichtung;
- Figur 3 eine perspektivische Explosionsdarstellung der Anordnung der Abdichtungsvorrichtung gemäß dem ersten Ausführungsbeispiel;
- Figur 4 eine perspektivische Explosionsdarstellung einer Abdichtungsvorrichtung gemäß einem zweiten Ausführungsbeispiel der vorliegenden Erfindung;
- Figur 5 eine schematische Schnittansicht einer Hochdruckabdichtung für eine Abdichtungsvorrichtung gemäß einem dritten Ausführungsbeispiel der vorliegenden Erfindung im eingebauten Zustand;
- Figur 6 eine perspektivische Ansicht der in Figur 5 gezeigten Hochdruckabdichtung;
- Figur 7 eine schematische Schnittansicht einer Hochdruckabdichtung für eine Abdichtungsvorrichtung gemäß einem vierten Ausführungsbeispiel der vorliegenden Erfindung im eingebauten Zustand;
- Figur 8 eine perspektivische Ansicht der in Figur 7

gezeigten Hochdruckabdichtung;

Figur 9 eine schematische Schnittansicht einer Hochdruckabdichtung für eine Abdichtungsvorrichtung gemäß einem fünften Ausführungsbeispiel im teilmontierten Zustand;

Figur 10 eine schematische Schnittansicht der in Figur 9 gezeigten Hochdruckabdichtung im endmontierten Zustand und

Figur 11 eine schematische Schnittansicht einer Hochdruckabdichtung gemäß dem Stand der Technik.

[0025] In den Figuren 1 und 2 ist eine Hochdruckabdichtung 1 für eine Abdichtungsvorrichtung gemäß einem ersten Ausführungsbeispiel der vorliegenden Erfindung dargestellt.

[0026] Die Hochdruckabdichtung 1 ist an einem Übergangsbereich 5 zwischen einem ersten Bauteil 2 (z.B. einem Zylinder) und einem zweiten Bauteil 3 (z.B. einem Zylinderkopf) angeordnet. Dabei ist am ersten Bauteil 2 eine Aussparung 4 zur Aufnahme der Hochdruckabdichtung 1 vorgesehen (vgl. Figur 1). Am Übergangsbereich 5 mündet ein Fluidkanal 6 des ersten Bauteils 2, welcher im zweiten Bauteil 3 fortgeführt ist. Die Aussparung 4 ist dabei um die Mündung des Fluidkanals 6 herum gebildet. Somit muss die Hochdruckabdichtung 1 den Übergangsbereich 5 rund um den Fluidkanal 6 abdichten, um eine Leckage von Fluid zu verhindern.

[0027] Wie in Figur 2 dargestellt, weist die Hochdruckabdichtung 1 eine ringförmige Gestalt auf. Weiter, wie aus Figur 1 ersichtlich ist, weist die Hochdruckabdichtung 1 einen C-förmigen Querschnitt auf. Dabei weist die Hochdruckabdichtung 1 einen ersten geraden Abschnitt 7, einen gekrümmten Abschnitt 8 und einen zweiten geraden Abschnitt 9 auf. Die beiden geraden Abschnitte 7 und 9 liegen mit ihren planen Flächen am ersten bzw. zweiten Bauteil an und bilden so ringförmige Abdichtungsbereiche 10 und 11 in Form von Linienabdichtungen. Der gekrümmte Abschnitt 8 ist derart ausgebildet, dass er mit der seitlichen Wand der Aussparung 4 in Kontakt kommt und somit einen zusätzlichen dritten Abdichtungsbereich 30 bildet. Weiterhin ist es auch möglich, dass die C-förmige Hochdruckabdichtung vollständig gekrümmt ausgebildet ist, d.h. ohne gerade Abschnitte oder derart ausgebildet ist, dass er nur zwei Abdichtungsbereiche, z. B. die beiden Abdichtungsbereiche 10 und 11, aufweist.

[0028] Die C-förmige Hochdruckabdichtung 1 weist über ihren gesamten Querschnitt eine gleichbleibende Dicke auf. Es ist jedoch auch möglich, dass die Hochdruckabdichtung, insbesondere wenn sie aus Blech o. ä. hergestellt ist, im Querschnitt unterschiedliche Dikken aufweist.

[0029] Weiter weist die Hochdruckabdichtung 1 in

Vertikalrichtung, d.h. in Richtung der Mittelachse 0-0, an ihrem einen Ende einen Innendurchmesser D1 und an ihrem anderen Ende einen Innenduchmesser D2 auf. Hierbei ist der Innenduchmesser D1 gleich dem Innendurchmesser D2, so dass die Hochdruckabdichtung 1 symmetrisch ausgebildet ist.

[0030] Die Hochdruckabdichtung 1 des ersten Ausführungsbeispiels ist aus Federblech hergestellt und die beiden geraden Abschnitte 7 und 9 sind nach aussen vorgespannt, so dass sie im eingebauten Zustand gegen die Wandflächen des ersten und des zweiten Bauteils 2 und 3 gepresst werden. Durch die konkave Anordnung des gekrümmten Bereiches 8 zum Fluidkanal 6 unterstützt der Fluiddruck das Anpressen der geraden Bereiche 7 und 9 gegen die jeweiligen Anlageflächen des ersten und zweiten Bauteils.

[0031] Da die C-ringförmige Hochdruckabdichtung 1 symmetrisch aufgebaut ist und an ihren beiden Enden in Vertikalrichtung gleiche Innendurchmesser D1 und D2 aufweist, sind die Andrückkräfte an allen Stellen der Hochdruckabdichtung 1 gleich. Somit kann eine sichere Abdichtung des Übergangsbereichs 5 erreicht werden. Da die Vorspannung der Hochdruckabdichtung 1 über den gesamten Temperaturbereich vorhanden ist, ist eine ausreichende Abdichtung auch insbesondere bei niedrigen Temperaturen gewährleistet. Weiterhin können auch problemlos hochfrequente Druckpulsungen im Fluid aufgenommen werden und Bauteilverformungen infolge des hohen Druckes ausgeglichen werden. Weiterhin ist durch den symmetrischen Aufbau der Hochdruckabdichtung 1 eine verwechslungssichere Montage gewährleistet und die Hochdruckabdichtung ist gegen aggressive Medien beständig.

[0032] In Figur 3 ist die erfindungsgemäße Abdichtungsvorrichtung mit der C-ringförmigen Hochdruckabdichtung 1 gemäß dem ersten Ausführungsbeispiel gezeigt. Die Abdichtungsvorrichtung umfasst die Hochdruckabdichtung und eine Niederdruckabdichtung 12. Die Hochdruckabdichtung 1 dichtet einen Übergangsbereich zwischen einem Zylinderblock 2 und einem Zylinderkopf 3 an einem Fluidkanal 6 ab. Die Hochdruckabdichtung 1 wird in eine am Zylinderblock 2 gebildete ringförmige Aussparung 4 eingelegt. Zwischen Zylinderkopf 3 und Zylinderblock 2 ist weiter die als Flachdichtung ausgebildete Niederdruckabdichtung 12 angeordnet. Die Niederdruckabdichtung 12 ist ein mit einem Elastomer beschichtetes Blech und kann zusätzlich noch eine Sicke aufweisen. Somit wird der Übergangsbereich am Fluidkanal 6 durch die Abdichtungsvorrichtung zweifach abgedichtet, nämlich durch die Hochdruckabdichtung 1 und die Niederdruckabdichtung 12. Im montierten Zustand liegen die beiden Dichtungen 1 und 12 der Abdichtungsvorrichtung im wesentlichen in einer Ebene am Übergangsbereich 5.

[0033] Wie in Figur 3 gezeigt, ist in der Niederdruckabdichtung 12 ein Spalt bzw. Schlitz 29 ausgebildet. Somit wird eine mögliche Leckage durch die Hochdruckabdichtung 1 über den Spalt 29 in der Niederdruckab-

dichtung 12 dem Niederdruckbereich des Systems zugeführt. Da der Spalt 29 an einem mittleren Zwischenbereich der Niederdruckabdichtung 12 gebildet ist, ist weiterhin sichergestellt, dass die Niederdruckabdichtung 12 die Hochdruckabdichtung 1 vollständig umgibt und somit eine redundante Dichtung vorhanden ist.

[0034] In Figur 4 ist eine Abdichtungsvorrichtung gemäß einem zweiten Ausführungsbeispiel dargestellt. Das zweite Ausführungsbeispiel entspricht im wesentlichen dem in Figur 3 gezeigten ersten Ausführungsbeispiel. Im Unterschied zum ersten Ausführungsbeispiel ist jedoch anstelle der Flachdichtung eine Formdichtung bzw. Profildichtung 12 vorgesehen, welche in eine entsprechende Aussparung 13 am Zylinderblock 2 eingelegt wird. Die Formdichtung 12 ist außerhalb der Hochdruckabdichtung 1 angeordnet, so dass eine direkte Verbindung von der Hochdruckabdichtung 1 zum Niederdruckbereich gewährleistet ist.

[0035] In den Figuren 5 und 6 ist eine Hochdruckabdichtung 1 zur Verwendung in einer erfindungsgemäßen Abdichtungsvorrichtung gemäß einem dritten Ausführungsbeispiel der vorliegenden Erfindung dargestellt. Gleiche bzw. funktionell gleiche Teile sind mit den gleichen Bezugszeichen wie im ersten Ausführungsbeispiel bezeichnet. Da das dritte Ausführungsbeispiel im wesentlichen dem ersten Ausführungsbeispiel entspricht, werden nachfolgend nur die Unterschiede zwischen den beiden Ausführungsbeispielen im Detail beschrieben.

[0036] Wie in Figur 5 gezeigt ist die Hochdruckabdichtung 1 für eine Abdichtungsvorrichtung an einem Übergangsbereich 5 eines Fluidkanals 6 zwischen einem ersten Bauteil 2 und einem zweiten Bauteil 3 angeordnet. [0037] Die Hochdruckabdichtung 1 gemäß dem dritten Ausführungsbeispiel ist, wie in Figur 5 und 6 dargestellt, knopfförmig ausgebildet. Dabei weist ein C-ringförmiger Randbereich 16 an einer seiner Seiten in vertikaler Richtung (d.h. in Richtung der Mittellinie 0-0) einen mittleren Verbindungsbereich 17 auf. Genauer ist der durch einen ersten geraden Abschnitt 7, einen gekrümmten Abschnitt 8 und einen zweiten geraden Abschnitt 9 gebildete C-förmige Randbereich 16 an seinem zweiten geraden Abschnitt 9 mit dem mittleren Verbindungsbereich 17 verbunden. Hierbei geht der zweite gerade Abschnitt 9 in den mittleren Verbindungsbereich über. Es sei angemerkt, dass der Abschnitt 7 auch gekrümmt ausgebildet sein kann.

[0038] Weiter sind im mittleren Verbindungsbereich 17 vier Durchgangsöffnungen 18, 19, 20 und 21 gebildet. Die Durchgangsöffnungen stellen den Fluiddurchtritt durch die knopfförmige Hochdruckabdichtung 1 sicher. Es ist selbstverständlich möglich, auch eine andere Anzahl von Durchgangsöffnungen auszubilden.

[0039] Wie in Figur 5 gezeigt ist am Übergangsbereich des Fluidkanals 6 weiter eine Ventilkugel 22 vorgesehen, welche an einem Ventilsitz 23 anliegt. Mit anderen Worten ist durch die knopfförmige Hochdruckabdichtung 1 und die Ventilkugel 22 am Übergangsbereich

des Fluidkanals 6 ein Ventil gebildet. Dabei bildet die knopfförmige Hochdruckabdichtung 1 den Kugelkäfig für die Ventilkugel 22. Wie in Figur 5 gezeigt, weist der im Bereich der Mittellinie 0-0 liegende Abschnitt des mittleren Verbindungsbereichs 17 eine größere Dicke als der Randbereich 16 auf, um eine ausreichende Festigkeit für das Zurückhalten der Ventilkugel 22 bereitzustellen

[0040] Somit weist die Hochdruckabdichtung 1 für eine Abdichtungsvorrichtung gemäß dem dritten Ausführungsbeispiel neben der Abdichtfunktion auch noch eine Zurückhaltefunktion für die Ventilkugel 22 auf. Dies ist insbesondere daher möglich, da die Hochdruckabdichtung 1 aus Metall, z.B. aus Federstahl, hergestellt sein kann. Es ist auch möglich, zwischen der als Käfig dienenden Hochdruckabdichtung und der Ventilkugel noch ein Federelement anzuordnen, so dass ein Rückschlagventil im Fluidkanal 6 zwischen dem ersten und dem zweiten Bauteil angeordnet ist.

[0041] In den Figuren 7 und 8 ist eine Hochdruckabdichtung 1 für eine Abdichtungsvorrichtung gemäß einem vierten Ausführungsbeispiel der vorliegenden Erfindung dargestellt. Gleiche bzw. funktionell gleiche Teile sind mit den gleichen Bezugszeichen wie in den vorher beschriebenen Ausführungsbeispielen bezeichnet. Da das vierte Ausführungsbeispiel im wesentlichen den vorher beschriebenen Ausführungsbeispielen entspricht, werden nachfolgend nur die Unterschiede zu den Ausführungsbeispielen im Detail beschrieben.

[0042] Wie in Figur 7 gezeigt, ist die Hochdruckabdichtung 1 an einem Übergangsbereich 5 zwischen einem ersten Bauteil 2 und einem zweiten Bauteil 3 angeordnet. Dabei ist sie in einer Aussparung 4 positioniert, welche im ersten Bauteil 2 gebildet ist und dichtet einen Übergang eines Fluidkanals 6 ab.

[0043] Wie in Figur 7 dargestellt, weist die Hochdruckabdichtung 1 einen ersten Bereich 14 und einen zweiten Bereich 15 auf. Der erste Bereich 14 weist einen konstanten Innen- und Aussendurchmesser auf und weist demnach eine im Schnitt rechteckige Gestalt auf. Der erste Bereich 14 kann jedoch auch unterschiedliche Innen- und Aussendurchmesser aufweisen. Der zweite Bereich 15 verjüngt sich ausgehend vom ersten Bereich 14 zu seiner Aussenseite. Wie in Figur 7 gezeigt, ist der sich verjüngende Bereich 15 im Schnitt parabelförmig gebildet.

[0044] Durch diese Ausgestaltung der erfindungsgemäßen Hochdruckabdichtung 1 ergeben sich an den Kontaktflächen der Dichtung 1 zum ersten und zweiten Bauteil unterschiedlich große Flächen von Abdichtungsbereichen 10 und 11. Um an beiden Abdichtungsbereichen eine Flächenpressung zu erhalten, wird die keilringförmige Hochdruckabdichtung 1 zu einer Seite entsprechend vorgespannt. Im dargestellten Ausführungsbeispiel erfolgt die Vorspannung des aus Federstahl hergestellten keilförmigen Dichtrings 1 in Richtung des zweiten Bereichs 15. Wie in Figur 7 gezeigt, erfolgt eine Anpressung der Hochdruckabdichtung 1 an die Be-

reiche 10 und 11 und den in Richtung der Mittellinie 0-0 verlaufenden Bereich 30 der Aussparung 4. Um eine zusätzliche Vorspannung der Hochdruckabdichtung 1 zu erhalten, sind die Abdichtungsbereiche 10 und 30 der Dichtung 1 im unmontierten Zustand zueinander in einem Winkel von größer als 90° - 95° angeordnet. Im montierten Zustand sind die Abdichtbereiche 10 und 30 dann in einem Winkel von 90° - 95° zueinander angeordnet.

[0045] Weiterhin wird aufgrund der parabelförmigen Innenfläche 15 zusätzlich ein Druck durch das Fluid auf die Hochdruckabdichtung 1, insbesondere in Richtung der Abdichtungsbereiche 10 und 30 ausgeübt. Wie insbesondere in Figur 8 gezeigt, ist an der Aussenseite des zweiten sich verjüngenden Bereichs 15 weiter eine relativ große Fase 16 ausgebildet, um eine einfachere Montage zu ermöglichen.

[0046] Somit stellt auch die Hochdruckabdichtung 1 gemäß dem vierten Ausführungsbeispiel eine ausreichende Abdichtungsfunktion bei sehr hohen Drücken bereit und ist unempfindlich gegen im Fluid auftretende hochfrequente Druckpulsungen und beständig gegen PME-Fluide.

[0047] In den Figuren 9 und 10 ist eine Hochdruckabdichtung 1 für eine Abdichtungsvorrichtung gemäß einem fünften Ausführungsbeispiel der vorliegenden Erfindung dargestellt. Gleiche bzw. funktionell gleiche Teile sind mit den gleichen Bezugszeichen wie in den vorher beschriebenen Ausführungsbeispielen bezeichnet. Da das fünfte Ausführungsbeispiel im wesentlichen den vorher beschriebenen Ausführungsbeispielen entspricht, werden nachfolgend nur die Unterschiede zu den Ausführungsbeispielen im Detail beschrieben.

[0048] Wie in den Figuren 9 und 10 gezeigt, ist die Hochdruckabdichtung 1 für die Abdichtungsvorrichtung als sogenannte Keildichtung ausgebildet. Die Keildichtung 1 ist ringförmig ausgebildet und umfasst einen ersten Schenkel 31 und einen zweiten Schenkel 32. Im dargestellten Ausführungsbeispiel weisen die beiden Schenkel 31 und 32 eine gleich Länge auf. Sie können jedoch auch unterschiedliche Längen aufweisen.

[0049] Die Hochdruckabdichtung 1 ist in einer im Bauteil 2 vorgesehenen Aussparung 4 angeordnet. Dabei entspricht die Tiefe der Aussparung 4 im wesentlichen der Schenkellänge des Schenkels 32. In Figur 9 ist die Hochdruckabdichtung 1 in einem Zwischenmontageschritt dargestellt. Hierbei ist die Hochdruckabdichtung 1 in die Aussparung 4 eingelegt. Dabei liegen zwei Seitenflächen der Dichtung 1 an den Wänden der Aussparung 4 an und bilden Abdichtbereiche 11 und 30 (vgl. Figur 9 und 10). Im vollständig montierten Zustand bildet der erste Schenkel 31 mit dem Bauteil 3 einen weiteren Abdichtbereich 10.

[0050] Wie aus den Figuren 9 und 10 ersichtlich ist, ist im unmontieten bzw. teilmontierten Zustand (Figur 9) der Winkel α zwischen dem ersten Schenkel 31 und dem zweiten Schenkel 32 deutlich größer als 90°. Im vorliegenden Ausführungsbeispiel beträgt der Winkel α

ca. 115°. Im endmontierten Zustand (Figur 10) wird der zweite Schenkel 32 in einem mit 11 bezeichneten Bereich an die Fläche der Aussparung 4 gepresst und der erste Schenkel im Bereich 10 gegen das Bauteil 3 gepresst. Somit verringert sich der Winkel zwischen den beiden Schenkeln auf α' von ca. 90° - 95° (vgl. Figur 10). Wenn α' genau 90° beträgt, liegt die eine Seite des Schenkels 31 vollständig an dem Bauteil 3 an. Somit übt der Keilring 1 im montierten Zustand eine Vorspannung auf die Bauteile 2 und 3 aus, wodurch die Dichtigkeit der Dichtung 1 erhöht wird. Dabei erfolgt auch eine Druckunterstützung auf der Innenseite der Dichtung.

[0051] Es sei angemerkt, dass die erfindungsgemäße Abdichtungsvorrichtung aus einer beliebigen Kombination der vorher beschriebenen Hochdruckabdichtungen bzw. Niederdruckabdichtungen gebildet sein kann.

[0052] Zusammenfassend betrifft die vorliegende Erfindung eine Abdichtungsvorrichtung mit einer Hochdruckabdichtung 1 und einer Niederdruckabdichtung 12 zur Abdichtung eines Übergangsbereichs 5 an einer Hochdruckleitung 6, welche insbesondere bei Common-Rail-Systemen Anwendung findet. Die Hochdruckabdichtung 1 weist eine im wesentlichen ringförmige Gestalt auf und ist am Leitungsübergang der Hochdruckbauteile 2, 3 angeordnet. Die Niederdruckabdichtung 12 ist in einer Ebene mit der Hochdruckabdichtung 1 um diese herum angeordnet, um eine eventuell auftretende Leckage durch die Hochdruckabdichtung 1 nach aussen abzudichten. Dadurch kann erfindungsgemäß ein zuverlässige, redundante Dichtung bereitgestellt werden, welche einen über den gesamten Einsatztemperaturbereich dynamisch belastbaren Hochdruckdichtring 1 aufweist und auch für einen Einsatz bei aggressiven Medien geeignet ist.

[0053] Die vorhergehende Beschreibung der Ausführungsbeispiele gemäß der vorliegenden Erfindung dient nur zu illustrativen Zwecken und nicht zum Zwecke der Beschränkung der Erfindung. Im Rahmen der Erfindung sind verschiedene Änderungen und Modifikationen möglich, ohne den Umfang der Erfindung sowie ihrer Äquivalente zu verlassen.

Patentansprüche

- 1. Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3), insbesondere Pumpenbauteilen einer Pumpe für ein Common-Rail-System, umfassend eine Hochdruckabdichtung (1), die eine im wesentlichen ringförmige Gestalt aufweist und an einem Leitungsübergang der Hochdruckbauteile angeordnet ist, und eine Niederdruckabdichtung (12), welche um die Hochdruckabdichtung (1) herum angeordnet ist, um eine eventuell auftretende Leckage durch die Hoch- 55 druckabdichtung (1) nach außen abzudichten.
- 2. Abdichtungsvorrichtung für einen Übergangsbe-

reich (5) an Hochdruckbauteilen (2, 3) nach Anspruch 1, dadurch gekennzeichnet, dass die Hochdruckabdichtung (1) aus Metall hergestellt ist und im montierten Zustand eine Vorspannung aufweist.

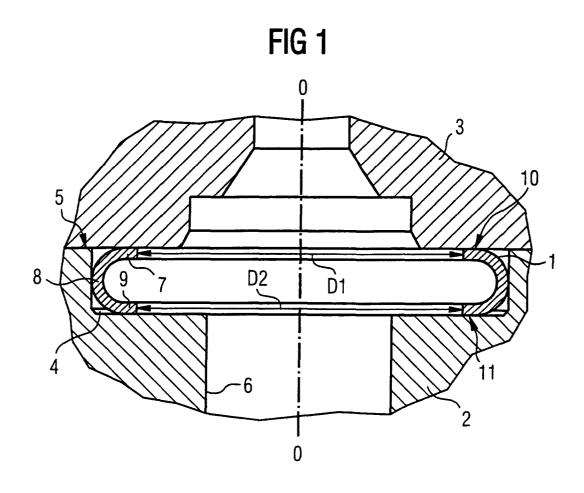
- 3. Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach Anspruch 2, dadurch gekennzeichnet, dass die Hochdruckabdichtung (1) aus Federblech oder aus Stahl hergestellt ist.
- Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach Anspruch 1, dadurch gekennzeichnet, dass die Hochdruckabdichtung (1) aus Kunststoff, insbesondere einem Elastomer, oder aus Kautschuk hergestellt ist.
- Abdichtungsvorrichtung für einen Übergangsbe-20 **5**. reich (5) an Hochdruckbauteilen (2, 3) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Niederdruckabdichtung (12) aus Metall oder aus Kunststoff oder aus Kautschuk oder aus einem mit Kunststoff beschichteten Metall hergestellt ist.
 - Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Niederdruckabdichtung (12) als Flachdichtung oder als Profildichtung ausgebildet ist.
 - 7. Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in der Niederdruckabdichtung (12) ein Spalt (29) ausgebildet ist, um eine Leckage von der Hochdruckabdichtung (1) abzuführen.
 - 8. Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Hochdruckabdichtung (1) als Ring (7, 8, 9) mit einem C-förmigen Querschnitt ausgebildet ist.
 - Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach Anspruch 8, dadurch gekennzeichnet, dass die im Querschnitt C-förmige Hochdruckabdichtung (1) symmetrisch ausgebildet ist.
 - 10. Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Hochdruckabdichtung (1) zwei Abdichtflächen (10, 11) oder drei Abdichtflächen mit Linienberüh-

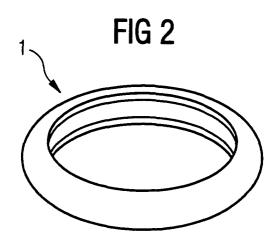
35

40

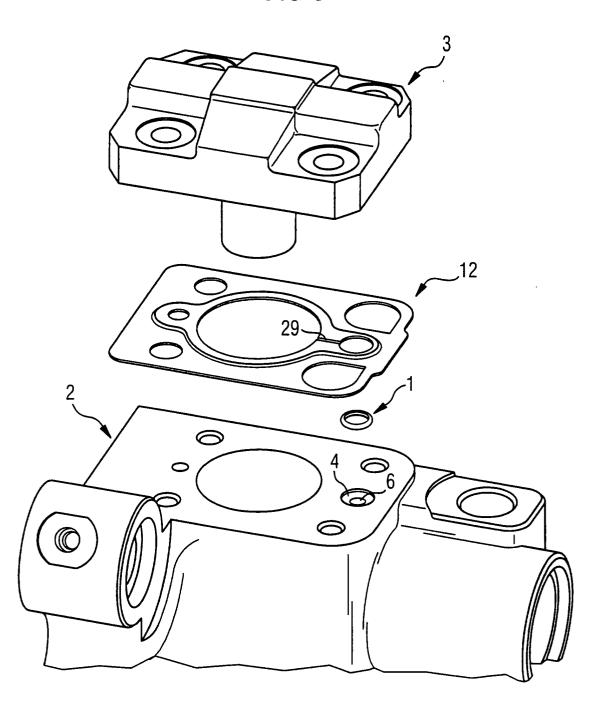
45

15

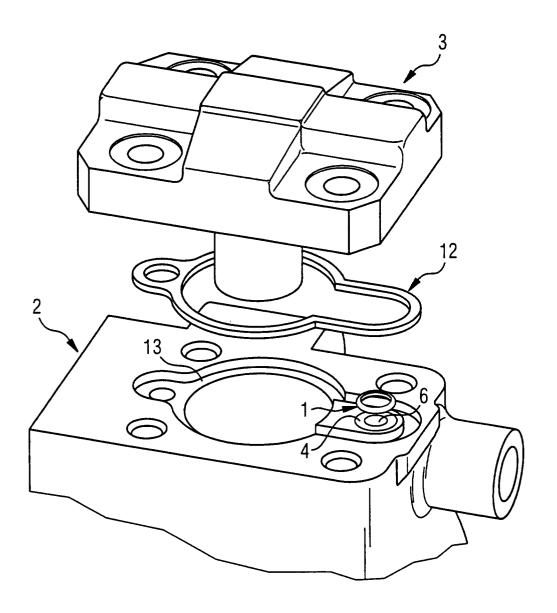

35

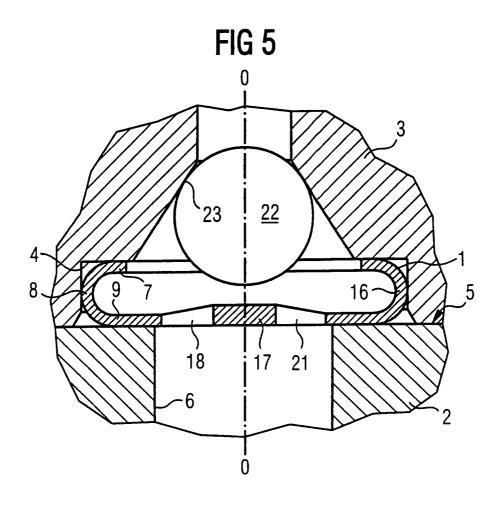

rung aufweist.

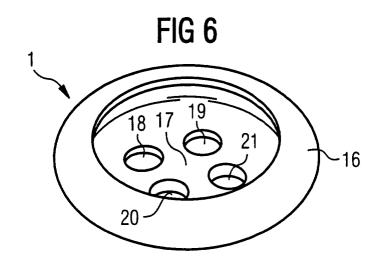
- 11. Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Hochdruckabdichtung (1) als Ring mit einem winkelförmigen Querschnitt ausgebildet ist.
- 12. Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach Anspruch 11, dadurch gekennzeichnet, dass der Winkel (α) zwischen zwei Schenkeln (31, 32) des Rings im unverbauten Zustand größer als 95° ist und im verbauten Zustand zwischen 90° und 95° liegt.
- 13. Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Hochdruckabdichtung (1) einen sich im Querschnitt verjüngenden Bereich (15) aufweist.
- **14.** Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach Anspruch 13, **dadurch gekennzeichnet**, **dass** der sich verjüngende Bereich (15) im Schnitt parabelförmig oder geradlinig ausgebildet ist.
- 15. Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Hochdruckabdichtung (1) einen Bereich (14) mit konstantem Innen- und Aussendurchmesser aufweist.
- 16. Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Hochdruckabdichtung (1) einen mittleren Verbindungsbereich (17) aufweist, welcher mindestens eine Durchgangsöffnung (18, 19, 20, 21) aufweist.
- 17. Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach Anspruch 16, dadurch gekennzeichnet, dass vier Durchgangsöffnungen (18, 19, 20, 21) vorgesehen sind.
- 18. Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass die Hochdruckabdichtung (1) knopfförmig ausgebildet ist.
- **19.** Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach einem der Ansprüche 16 bis 18, **dadurch gekennzeich**

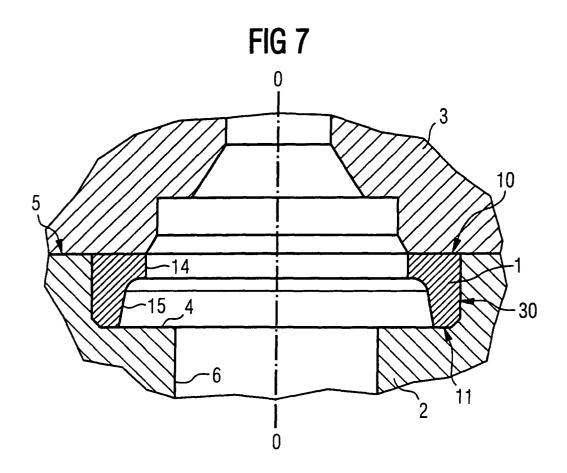

- **net, dass** der mittlere Verbindungsbereich (17) an einem Ende in Vertikalrichtung eines im Querschnitt C-förmigen Rings (7, 8, 9) gebildet ist.
- 20. Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, dass der mittlere Verbindungsbereich (17) als Anschlag für einen Ventilkörper (22) ausgebildet ist.
- 21. Abdichtungsvorrichtung für einen Übergangsbereich (5) an Hochdruckbauteilen (2, 3) nach einem der Ansprüche 16 bis 20, dadurch gekennzeichnet, dass der mittlere Verbindungsbereich (17) einen dickeren Querschnitt als andere Bereiche der Hochdruckabdichtung (1) aufweist.

8









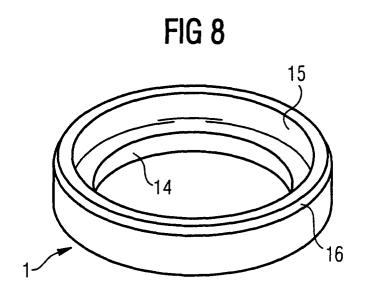


FIG 9

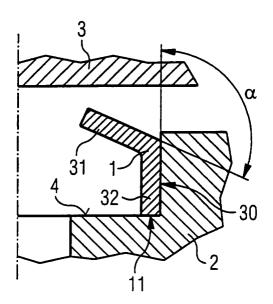


FIG 10

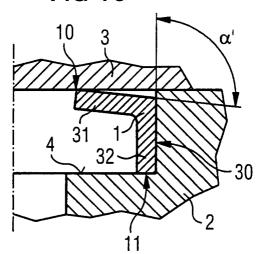
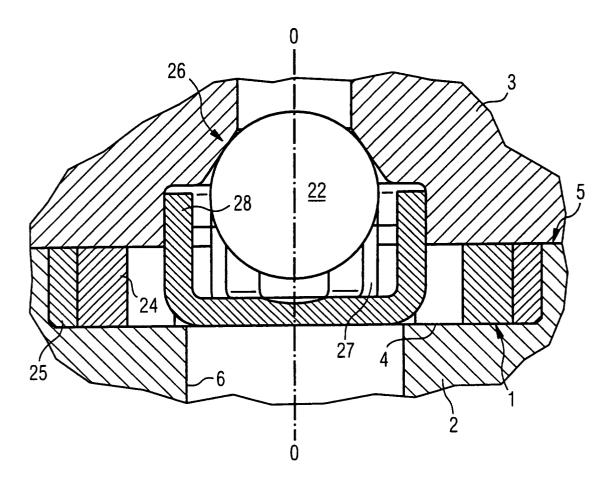



FIG 11 Stand der Technik

