[0001] The present invention relates to a vehicle alternator control device and method for
controlling the electric power generating operation of an alternator for vehicles.
[0002] In an alternating current generator (alternator), a small alternating current (a.c.)
voltage is generated in each armature coil even when a rotor is turned without being
supplied with a field current to the field coil. This is because residual flux remains
in the field poles of the rotor.
[0003] In JP-U-62-44698, a control circuit is provided to detect if a rotor of an alternator
starts to turn, that is, if a vehicle engine is started, by detecting the frequency
of the induced voltage of the armature coil as a result of residual magnetization
in the field poles of the rotor. The control circuit starts supplying a field current
to the field coil when the engine is detected to have started. By thus detecting that
the engine has started based on the voltages induced in the armature coil, the signal
wire from the vehicle used to indicate the on/off state of an ignition switch can
be eliminated, and the wiring can therefore be simplified.
[0004] However, there is a significant difference between when the engine is starting (cranking)
and when the engine is stopping in the residual magnetization of the field poles and
behavior when the engine is turning. Therefore, the engine rotation cannot be detected
with sufficient precision if the same frequency is used to detect when rotation starts
and when rotation stops.
[0005] In general, the voltage signal appearing in the armature coil when the engine starts
is extremely weak because it results only from the residual flux in the field poles.
If the flux linkage to the armature coil is constant, the amplitude and frequency
of the voltage induced in the armature coil are proportional to the speed of the rotor.
This frequency can be detected by digitizing the voltage signal in the armature coil
using a voltage comparator or other means and then applying a specific digital operation.
[0006] To detect the rotor speed using the weak signal resulting from the residual flux,
the reference voltage used for comparison by the voltage comparator must be set to
a low voltage. If this reference voltage is too low, detection errors will arise due
to noise or other external signals. It is therefore necessary to set the reference
voltage of the voltage comparator high enough so that the comparison will not be influenced
with the external noises. However, if the reference voltage of the voltage comparator
is too high, a digital pulse cannot be generated until the induced voltage of the
armature coil becomes high enough, and the detectable rotor speed thus rises.
[0007] After the engine is started with a starter and the engine is firing normally, it
reaches an idling speed after the engine speed rises to a specific level. The engine
starting can be detected even if the frequency used to detect the speed is set relatively
high. Particularly in winter when the ambient temperature is low, the engine is controlled
to start at a higher initial idling speed than in warm weather in order to warm up
the engine quickly.
[0008] However, if the engine start detection speed is set higher than a speed equivalent
to the normal idling speed setting, it may not be possible to sustain power generation
when the engine is idling, such as when waiting at a traffic signal.
[0009] It is proposed to avoid this problem that the number of turns of the armature coil
can be increased in order to lower the speed at which current generation starts. However,
this results in a drop in the output current at high engine speeds and hence is not
a good solution because the balance between charging and discharging a vehicle battery
is impaired.
[0010] JP-A-6-292329 proposes to change coils according to the speed. However, this is not
a practical solution, because the circuit scale then becomes large.
[0011] U.S. Patent 5,429,687 proposes to improve magnetic characteristics by heat treating
the field poles and using magnetic annealing causing a transition to a crystalline
phase that increases the residual flux. However, heat treatment of the field poles
with high heat capacity requires a large scale heat treatment system.
[0012] The present invention addresses these problems, and has an object to provide a vehicle
alternator control device that can improve precision of engine speed detection without
increasing circuit scale or impairing battery charge-discharge balance.
[0013] According to the present invention, a vehicle alternator control device starts an
operating voltage supply operation when the frequency of an a.c. output voltage of
an alternator is greater than a first reference frequency, and stops the operating
voltage supply when the frequency of the a.c. output voltage drops below a second
reference frequency lower than the first reference frequency. Detection errors due
to noise can be prevented and detection precision can be improved because engine start
detection uses a high frequency corresponding to the first reference frequency.
[0014] Object of the invention is a vehicle alternator control device as set forth in claim
1.
[0015] The above and other objects, features and advantages of the present invention will
become more apparent from the following detailed description made with reference to
the accompanying drawings. In the drawings:
Fig. 1 is a circuit diagram showing a vehicle alternator control device according
to a first embodiment of the present invention;
Fig. 2 is a circuit diagram showing a primary power supply circuit and a secondary
power supply circuit in the first embodiment;
Fig. 3 is a timing diagram showing electrical power generation in the first embodiment;
Fig. 4 is a circuit diagram showing a vehicle alternator control device according
to a second embodiment of the present invention; and
Fig. 5 is a circuit diagram showing a vehicle alternator control device according
to a third embodiment of the present invention.
[0016] A vehicle alternator control device according to the present invention will be described
with reference to preferred embodiments.
(First Embodiment)
[0017] Referring first to Fig. 1, a vehicle alternator control device 1 is provided to control
the output voltage of an alternator 2 within a specified range. The alternator 2 comprises
three-phase armature coils 21 in a stator (not shown), a field coil 22 in a rotor
(not shown) and a full-wave rectifier circuit 23 for full-wave rectification of the
three-phase outputs from armature coils 21. The alternator 2, particularly the rotor,
is driven by an engine (not shown). Controlling the output voltage of the alternator
2 is accomplished by adjusting the field current to the field coil 22 by the alternator
control device 1. An output terminal (terminal B) of the alternator 2 is connected
to a vehicle battery 3 and other electrical loads (not shown) to supply electric current
from the alternator 2.
[0018] The vehicle alternator control device 1 includes a power transistor 11 connected
in series with the field coil 22 as a first switching means for supplying and shutting
off the field current; a flywheel diode 12 connected in parallel to the field coil
22 for flywheeling the field current when the power transistor 11 is turned off; a
voltage control circuit 13 for monitoring the output voltage of the alternator 2 and
controlling the on/off state of the power transistor 11 so that this output voltage
is regulated within a specified range; a primary power supply circuit 14 for supplying
electric power to maintain the operating state of the voltage control circuit 13;
and a secondary power supply circuit 15 for detecting when the rotor of the alternator
2 turns, that is, when the engine rotates, based on an a.c. voltage of the y-phase
(the y-phase voltage Py, for example) of the armature coil 21 to drive the primary
power supply circuit 14.
[0019] As shown in Fig. 2, the secondary power supply circuit 15 comprises voltage comparators
30 and 31, a counter circuit 32, an OR gate 33, an analog switch 34, a peak detector
circuit 35, a timer circuit 36, resistors 37 and 38, and a transistor 39. The voltage
comparator 30 generates a pulse signal according to the rotation speed of the alternator
2 by comparing and digitizing the y-phase voltage Py applied to an input terminal
40 with a specific reference voltage V1. The counter circuit 32 counts the pulse signals
output from the voltage comparator 30. When the pulse count reaches a specific count
N1, the output level inverts.
[0020] The transistor 39, which is a MOSFET for example, is a second switching means for
taking the leakage current in the armature coil 21 or full-wave rectifier circuit
23 to ground. The resistor 38 is connected between the input terminal 40 and transistor
39, and has a resistance lower than that of the resistor 37 connected between the
input terminal 40 and ground.
[0021] The peak detector circuit 35 detects the wave peak of the y-phase voltage Py applied
to the input terminal 40, and includes a diode, a capacitor and a resistor. The voltage
comparator 31 compares the peak of the y-phase voltage Py detected by the peak detector
circuit 35 with a specific reference voltage V2 to determine if the peak value is
greater than this specific the reference voltage V2. This reference voltage V2 is
lower than the reference voltage V1 applied to the voltage comparator 30.
[0022] The timer circuit 36 operates for a specific time period only when the y-phase voltage
Py peak exceeds the reference voltage V2. The signal output from timer circuit 36
is input to the gate of the transistor 39, and controls the transistor 39 to turn
on only while the timer circuit 36 is operating so that the leakage current flowing
into the input terminal 40 is drained to ground.
[0023] The analog switch 34 applies an operating voltage IG to the primary power supply
circuit 14, and is on/off-controlled by the output of the OR gate 33. The output signal
from the counter circuit 32 and a specific signal (described below) output from the
primary power supply circuit 14 are input to the OR gate 33, which outputs the logical
sum of these two input signals to the control terminal of the analog switch 34.
[0024] The primary power supply circuit 14 has a voltage comparator 50, a counter circuit
51, and a direct current (d.c.) power supply circuit 52. The voltage comparator 50
outputs a pulse signal according to the rotation speed of the alternator 2 by comparing
and digitizing the y-phase voltage Py with a specific reference voltage V3. This reference
voltage V3 is set, for example, to the same voltage as the reference voltage V1 applied
to the voltage comparator 30 in the secondary power supply circuit 15. The counter
circuit 51 counts the pulses output from the voltage comparator 50, and the output
logic inverts when the count reaches a specific count N2. This specific count N2 is
set to a value less than the specific count N1 used by the counter circuit 32 in the
secondary power supply circuit 15.
[0025] The d.c. power supply circuit 52 generates the operating voltage of the voltage control
circuit 13 and smoothes the terminal B voltage passed through the analog switch 34
in the secondary power supply circuit 15. The d.c. power supply circuit 52 also functions
to remove a.c. ripple component and noise from the output voltage of the alternator
2 applied to the battery 3 from the terminal B when the alternator 2 is in power generating
operation.
[0026] The voltage control circuit 13 corresponds to the voltage control means, the primary
power supply circuit 14 to the power supply means, and the secondary power supply
circuit 15 to the power supply control means, respectively.
[0027] The vehicle alternator control device 1 according to this embodiment operates as
shown in Fig. 3.
[0028] When an engine starter (not shown) is driven to start the engine and the alternator
2 begins turning, the amplitude of the y-phase voltage Py applied to the input terminal
40 the of secondary power supply circuit 15 gradually increases. When the amplitude
of the y-phase voltage Py exceeds the reference voltage V1 applied to the negative
terminal of voltage comparator 30, the voltage comparator 30 generates and outputs
to the counter circuit 32 a specific pulse signal with the frequency proportional
to the rotation speed of the alternator 2.
[0029] As a result of this operation, the output level of the counter circuit 32 changes
from low to high when the pulse count input to the counter 32 within a the specific
period exceeds specific count N1, that is, when the speed of the alternator 2 reaches
a frequency fs equivalent to this specific count N1, the analog switch 34 therefore
turns on. The voltage applied from battery 3 through the terminal B of the alternator
2 is supplied to the d.c. power supply circuit 52 in the primary power supply circuit
14, and the voltage control circuit 13 starts controlling the output voltage of the
alternator 2.
[0030] It is noted that even when the alternator 2 has not started turning, leakage current
to the armature coil 21 or full-wave rectifier circuit 23 produces a d.c. drift voltage.
The voltage appearing at the input terminal 40 of the secondary power supply circuit
15 rises. The peak detector circuit 35 detects the voltage at the input terminal 40.
If this detected voltage exceeds a specific reference voltage V2, the voltage comparator
31 output changes from low to high, thereby starting the timer circuit 36 and causing
the transistor 39 to turn on for the specific period. Therefore, because the input
terminal 40 of the secondary power supply circuit 15 changes to ground through the
resistor 38 and the d.c. drift voltage appearing at the input terminal 40 as a result
of the leakage current is suppressed, the voltage at the input terminal 40 drops again
and stabilizes at a potential substantially equal to ground.
[0031] As a result, the voltage appearing at the input terminal 40 will not exceed the reference
voltage V1 applied to the voltage comparator 30, and the analog switch 34 remains
in the off position. It should be noted that if the speed of the alternator 2 actually
rises, the voltage at the input terminal 40 rises, and the transistor 39 turns on
for the specific period. Thus, the voltage at the input terminal 40 will continue
to rise and the analog switch 34 will turn on when the speed of the alternator 2 reaches
the specific frequency fs.
[0032] When the alternator 2 actually starts turning and the analog switch 34 turns on,
the d.c. power supply circuit 52 in the primary power supply circuit 14 starts operating.
As a result, the d.c. power supply circuit 52 supplies the operating voltage to the
voltage comparator 50 and counter circuit 51, to cause them to then start operating.
Because the specific count N2 that is the reference for inverting the output of the
counter circuit 51 is set to a value less than the specific count N1 set for the counter
circuit 32 in the secondary power supply circuit 15, which operates to switch the
analog switch 34 from off to on when the alternator starts turning, the counter circuit
51 output remains high and the analog switch 34 stays turned on as long as the rotation
speed of the alternator 2 is above the low frequency fe equivalent to the specific
count N2.
[0033] That is, because the d.c. power supply circuit 52 in the primary power supply circuit
14 does not operate during the engine is being started, the counter 51 does not operate
either yet. The primary power supply circuit 14 starts operating when the speed reaches
the frequency fs equivalent to the specific count N1 set for the counter circuit 32
in the secondary power supply circuit 15.
[0034] When the engine stops and the rotation speed drops below the frequency fs equivalent
to this specific count N1, the output level of counter circuit 51 still stays high
and the primary power supply circuit 14 continues operating. The primary power supply
circuit 14 therefore continues operating even when the speed of the alternator 2 drops
below the frequency fs equivalent to the specific count N1, and power supply to the
battery 3 and other electrical loads is not interrupted. The power transistor 11 is
controlled at this time by the voltage control circuit 13 to supply the field current
to the field coil 22, induction voltage due to the magnetization is produced in the
y-phase of the armature coil 22 and is easily digitized by the voltage comparator
30 to produce the pulse signal.
[0035] When the alternator 2 slows further and the speed drops below the frequency fe equivalent
to the specific count N2 of counter circuit 51, the counter circuit 51 output changes
from high to low, the signal input to the control terminal of the analog switch 34
changes to low, and the analog switch 34 turns off. The primary power supply circuit
14 therefore stops operating, field current supply to the field coil 22 stops, and
power supply to the battery 3 and other electrical loads stops.
[0036] The vehicle alternator control device 1 according to this embodiment can thus prevent
detection errors due to noise and improve detection accuracy because the high frequency
fs is used for detection when the engine starts. More particularly, an increase in
the circuit scale is not incurred because switching coils is not necessary, and the
charge-discharge balance is not degraded because it is not necessary to increase the
number of armature coil coils.
[0037] Furthermore, because the time constant of the field coil 22 of the alternator 2 is
several hundred milliseconds, the time period from when slowing of the alternator
2 is detected to when the field current flow stops is generally longer than the time
period from when the ignition switch is turned off to when the engine completely stops.
It is therefore possible to control the power generating state of the alternator 2
without stopping the power supply from the alternator 2 during engine operation, and
the signal wire needed to pass the ignition switch position to the vehicle alternator
control device can be eliminated.
[0038] More particularly, the frequency fs for detecting engine starting is preferably set
to less than approximately twice the threshold speed of the full excitation state
of the alternator 2, and the frequency fe for detecting engine stopping is set to
less than the threshold speed of the alternator 2. Here, the threshold speed is set
to correspond to a rotation speed where the alternator 2 starts its power generation.
Using these settings makes it possible to prevent detection errors due to noise when
the engine starts, prevent erroneously detecting that the engine stopped when the
engine is idling, and reliably continue supplying power to the battery and other electrical
loads while the engine is running.
(Second Embodiment)
[0039] A vehicle alternator control device 1 according to the second embodiment shown in
Fig. 4 differs from the vehicle alternator control device 1 shown in Fig. 1 in that
an OR gate 16 is added between the power transistor 11 and the voltage control circuit
13. Further, the secondary power supply circuit 15 additionally has a pulse generator
41 on the output side of the timer circuit 36.
[0040] The pulse generator 41 generates a pulse signal with a specific period when the timer
circuit 36 operates and controls the transistor 39 to the on state. This pulse signal
is input through the OR gate 16 to the gate of the power transistor 11. This pulse
generator 41 corresponds to the field current supply means. Therefore, when the voltage
of the input terminal 40 in the secondary power supply circuit 15 rises to the reference
voltage V2, the pulse signal generated by the pulse generator 41 controls the power
transistor 11 intermittently on, and the field current flows temporarily to the field
coil 22. The voltage induced in the y-phase of the armature coil 21 can thus be amplified,
and engine starting can be easily and reliably detected.
(Third Embodiment)
[0041] A vehicle alternator control device 1 according to the third embodiment shown in
Fig. 5 differs from the vehicle alternator control device 1 shown in Fig. 1 in that
the secondary power supply circuit 15 has a frequency-to-voltage (F-V) converter 42
and a voltage comparator 43.
[0042] The converter 42 converts the frequency of the input pulse signal to a voltage. Therefore,
the output voltage of converter 42 rises as the speed of the alternator 2 increases,
and conversely the output voltage of the converter 42 decreases as the speed of the
alternator 2 decreases. The voltage comparator 43 has hysteresis and the output changes
from low to high when the output voltage of converter 42 rises to a first reference
voltage Vf1 or above. In addition, when the output voltage of converter 42 drops and
reaches a second reference voltage Vf2 that is lower than the first reference voltage
Vf1, the output of voltage comparator 43 changes from high to low. The reference voltages
Vf1 and Vf2 may correspond to the frequencies fs and fe in Fig. 3. As a result, a
relatively high speed is set for detecting engine starting. When the speed of the
alternator 2 exceeds this high speed setting, field current supply by the vehicle
alternator control device 1 starts. On the other hand, a lower speed is set for detecting
engine stopping. When the speed of the alternator 2 drops below this low speed setting,
the vehicle alternator control device 1 stops supplying the field current.
[0043] By thus providing the voltage comparison operation of the voltage comparator 43 in
the secondary power supply circuit 15 with hysteresis, it is not necessary to provide
the voltage comparator 50 and counter circuit 51 in the primary power supply circuit
14, and the circuit design can be simplified.
1. A vehicle alternator control device (1) comprising:
voltage control means (13) for controlling an output voltage of an engine driven vehicle
alternator (2) by turning on and off a first switching means (11) connected in series
with a field coil (22) of the alternator (2);
power supply means (14) for supplying the operating voltage of the voltage control
means (13); and
power supply control means (15) for starting an operating voltage generating operation
of the power supply means (13) when a frequency of a phase voltage (Py) of an armature
coil (21) of the alternator (2) exceeds a first reference frequency (fs) corresponding
to the condition that the engine is started;
characterized in that the power supply control means are adapted for stopping the operating voltage generating
operation of the power supply means (14) when the phase voltage frequency drops below
a second reference frequency (fe) that is lower than the first reference frequency
(fs) and lower than a predetermined frequency which corresponds to and idle speed
of the engine.
2. A vehicle alternator control device (1) as set forth in claim 1,
characterized in that:
the first reference frequency (fs) is less than twice a threshold speed under a full
excitation state of the alternator (2); and
the second reference frequency (fe) is less than the threshold speed.
3. A vehicle alternator control device (1) as set forth in claim 1 or 2, further
characterized by:
second switching means (39) provided between a reference potential side of a vehicle
battery (3) and a terminal (40) for detecting the phase voltage (Py); and
switching control means (31, 35, 36) for controlling the second switching means (39)
to an on state for only a specific time when the phase voltage (Py) exceeds a reference
voltage (V2).
4. A vehicle alternator control device (1) as set forth in claim 3, further
characterized by:
field current supply means (41) for supplying field current to the field coil (22)
when the switching control means (31, 35, 36) controls the second switching means
(39) to the on state.
5. A vehicle alternator control method for an engine driven alternator (2) having an
armature coil (21) and a field coil (22), and a switching means (11) for controlling
a field current supply to the field coil (22) thereby to regulate an output voltage
(Py) of the armature coil (21), the method comprising the steps of:
detecting a frequency of the output voltage (Py) of the armature coil (21);
starting the field current supply to the field coil (22) after the detected frequency
rises to a first reference frequency (fs) corresponding to the condition that the
engine is started
characterized by the step of:
stopping the field current supply to the field coil (22) after the detected frequency
drops below a second reference frequency (fe) which is lower than the first reference
frequency (fs) and lower than a predetermined frequency which corresponds to an idle
speed of the engine.
6. A vehicle alternator control method as set forth in claim 5, further
characterized further by the step of:
lowering the output voltage (Py) of the armature coil (21) for a predetermined time
period after a start of rotation of the rotor.
7. A vehicle alternator control method as set forth in claim 6, further
characterized in that:
the frequency detecting step compares the output voltage (Py) of the armature coil
(21) with a first reference voltage (V1) to detect the frequency; and
the lowering step compares a peak of the output voltage (Py) of the armature coil
(21) with a second reference voltage (V2) which is lower than the first reference
voltage (V1) to control a voltage lowering operation.
8. A vehicle alternator control method as set forth in claim 6 or 7, further
characterized by the step of:
effecting the field current supply to the field coil (22) during the predetermined
time period before the field current supply to the field coil (22) is started by the
starting step.
9. A vehicle alternator control method as set forth in any of claims 5 to 8, further
characterized in that the first reference frequency (fs) is higher than a predetermined frequency which
corresponds to an idle speed of the engine.
1. Fahrzeugwechselstromgenerator-Steuervorrichtung (1), welche umfasst:
ein Spannungssteuermittel (13) zum Steuern der Ausgangsspannung eines von der Brennkraftmaschine
angetriebenen Fahrzeugwechselstromgenerators (2) durch Ein- und Ausschalten einer
ersten Schaltmittels (11), das mit einer Feldspule (22) des Wechselstromgenerators
(2) in Reihe geschaltet ist; und
ein Energieversorgungsmittel (14) zum Zuführen der Betriebsspannung des Spannungssteuermittels
(13); und
ein Energieversorgungs-Steuermittel (15) zum Starten eines Betriebsspannungs-Erzeugungsbetriebs
des Energieversorgungsmittels (13), wenn die Frequenz einer Phasenspannung (Py) einer
Ankerwicklung (21) des Wechselstromgenerators (2)
eine erste Bezugsfrequenz (fs) übersteigt, die der Bedingung entspricht, dass die
Maschine gestartet wird;
dadurch gekennzeichnet, dass das Energieversorgungs-Steuermittel dafür ausgelegt ist, den Betriebsspannungs-Erzeugungsbetrieb
des Energieversorgungsmittels (14) zu unterbrechen, wenn die Phasenspannungsfrequenz
unter eine zweite Bezugsfrequenz (fe) fällt, der unter der ersten Bezugsfrequenz (fs)
liegt und unter einer vorgegebenen Frequenz, die der Leerlaufdrehzahl der Maschine
entspricht.
2. Fahrzeugwechselstromgenerator-Steuervorrichtung (1) nach Anspruch 1,
dadurch gekennzeichnet, dass:
die erste Bezugsfrequenz (fs) weniger als das Doppelte der Schwellendrehzahl im Zustand
vollständiger Erregung des Wechselstromgenerators beträgt; und
die zweite Bezugsfrequenz (fe) unter der Schwellendrehzahl liegt.
3. Fahrzeugwechselstromgenerator-Steuervorrichtung (1) nach Anspruch 1 oder 2, ferner
gekennzeichnet durch:
ein zweites Schaltmittel (39), das zwischen einer Bezugspotentialseite einer Fahrzeugbatterie
(3) und einem Pol (40) zum Erfassen der Phasenspannung (Py) vorgesehen ist; und
ein Schaltsteuermittel (31, 35, 36), um das zweite Schaltmittel (39) nur für einen
bestimmten Zeitraum auf den EIN-Zustand zu steuern, wenn die Phasenspannung (Py) eine
Bezugsspannung (V2) übersteigt.
4. Fahrzeugwechselstromgenerator-Steuervorrichtung (1) nach Anspruch 3,
gekennzeichnet durch:
ein Feldstrom-Versorgungsmittel (41) zum Zuführen von Feldstrom zu der Feldspule (22),
wenn das Schaltsteuermittel (31, 35, 36) das zweite Schaltmittel (39) auf den EIN-Zustand
steuert.
5. Fahrzeugwechselstromgenerator-Steuerverfahren für einen vom Verbrennungsmotor angetriebenen
Wechselstromgenerator (2), der eine Ankerwicklung (21) und eine Feldspule (22) und
ein Schaltmittel (11) zum Steuern der Feldstromzufuhr für die Feldspule (22) aufweist,
um die Ausgangsspannung (Py) der Ankerwicklung (21) zu steuern, wobei das Verfahren
die folgenden Schritte umfasst:
Erfassen der Frequenz der Ausgangsspannung (Py) der Ankerwicklung (21);
Starten der Feldstromzufuhr zur Feldspule (22), nachdem die erfasste Frequenz auf
eine erste Bezugsfrequenz (fs) gestiegen ist, die der Bedingung entspricht, dass die
Brennkraftmaschine gestartet wird; gekennzeichnet durch folgenden Schritt:
Unterbrechen der Feldstromzufuhr zur Feldspule (22), nachdem die erfasste Frequenz
unter eine zweite Bezugsfrequenz (fe) gefallen ist, die unter der ersten Bezugsfrequenz
(fs) und unter einer vorgegebenen Frequenz liegt, die einer Leerlaufdrehzahl der Maschine
entspricht.
6. Fahrzeugwechselstromgenerator-Steuerverfahren nach Anspruch 5, ferner
gekennzeichnet durch folgenden Schritt:
Senken der Ausgangsspannung (Pv) der Ankerwicklung (21) für einen vorgegebenen Zeitraum
nach Beginn der Drehung des Rotors.
7. Fahrzeugwechselstromgenerator-Steuerverfahren nach Anspruch 6, ferner
dadurch gekennzeichnet dass:
im Frequenzerfassungsschritt die Ausgangsspannung (Py) der Ankerwicklung (21) mit
einer ersten Bezugsspannung (V1) verglichen wird, um die Frequenz zu erfassen; und
im Senkungsschritt der Spitzenwert der Ausgangsspannung (Py) der Ankerwicklung (21)
mit einer zweiten Bezugsspannung (V2) verglichen wird, die niedriger ist als die erste
Bezugsspannung (V1), um eine Spannungssenkungsoperation zu steuern.
8. Fahrzeugwechselstromgenerator-Steuerverfahren nach Anspruch 6 oder 7, ferner
gekennzeichnet durch den folgenden Schritt:
Bewirken einer Feldstromzufuhr zur Feldspule (22) während eines vorgegebenen Zeitraums
vor Beginn der Feldstromzufuhr zur Feldspule (22) im Startschritt.
9. Fahrzeugwechselstromgenerator-Steuerverfahren nach einem der Ansprüche 5 bis 8, ferner
dadurch gekennzeichnet, dass die erste Bezugsfrequenz (fs) höher ist als eine vorgegebene Frequenz, die einer
Leerlaufdrehzahl der Brennkraftmaschine entspricht.
1. Dispositif de commande d'alternateur de véhicule (1) comprenant :
un moyen de contrôle de tension (13) pour contrôler une tension de sortie d'un alternateur
de véhicule (2) entraîné par un moteur en tournant pour l'allumer et pour l'éteindre
un premier moyen de commutation (11) relié en série à une bobine d'excitation (22)
de l'alternateur (2) ;
un moyen d'alimentation en énergie (14) pour fournir la tension de fonctionnement
du moyen de contrôle de tension (13) ; et
un moyen de contrôle d'alimentation en énergie (15) pour démarrer une opération de
génération de tension de fonctionnement du moyen d'alimentation en énergie (14) lorsqu'une
fréquence d'une tension de phase (Py) d'une bobine d'armature (21) de l'alternateur
(2) excède une première fréquence de référence (fs) correspondant à la condition dans
laquelle le moteur est démarré ; caractérisé en ce que le moyen de contrôle d'alimentation en énergie est adapté pour arrêter l'opération
de génération de tension de fonctionnement du moyen d'alimentation en énergie (14)
quand la fréquence de tension de phase chute en-dessous d'une deuxième fréquence de
référence (fe) qui est inférieure à la première fréquence de référence (fs) et inférieure
à une fréquence prédéterminée qui correspond à un ralenti du moteur.
2. Dispositif de commande d'alternateur de véhicule (1) selon la revendication 1,
caractérisé en ce que :
la première fréquence de référence (fs) correspond à moins de deux fois une vitesse
au seuil dans un plein état d'excitation de l'alternateur (2) ; et
la deuxième fréquence de référence (fe) est inférieure à la vitesse au seuil.
3. Dispositif de commande d'alternateur de véhicule (1) selon la revendication 1 ou 2,
caractérisé en outre par :
un deuxième moyen de commutation (39) prévu entre un côté de potentiel de référence
d'une batterie de véhicule (3) et une borne (40) pour détecter la tension de phase
(Py) ; et
un moyen de contrôle de commutation (31, 35, 36) pour contrôler le deuxième moyen
de commutation (39) de manière à le maintenir dans un état d'activation pendant seulement
un temps spécifique lorsque la tension de phase (Py) excède une tension de référence
(V2).
4. Dispositif de commande d'alternateur de véhicule (1) selon la revendication 3,
caractérisé en outre par :
un moyen de fourniture de courant d'excitation (41) pour fournir un courant d'excitation
à la bobine d'excitation (22) quand le moyen de contrôle de commutation (31, 35, 36)
contrôle le deuxième moyen de commutation (39) de manière à le maintenir à l'état
d'activation.
5. Procédé de commande d'alternateur de véhicule pour un alternateur (2) entraîné par
un moteur comportant une bobine d'armature (21) et une bobine d'excitation (22), et
un moyen de commutation (11) pour contrôler une fourniture de courant d'excitation
à la bobine d'excitation (22) pour ainsi réguler une tension de sortie (Py) de la
bobine d'armature (21), le procédé comprenant les étapes consistant à :
détecter une fréquence de la tension de sortie (Py) de la bobine d'armature (21) ;
démarrer la fourniture de courant d'excitation à la bobine d'excitation (22) après
que la fréquence détectée a crû jusqu'à atteindre une première fréquence de référence
(fs) correspondant à la condition dans laquelle le moteur est démarré, caractérisé par l'étape consistant à :
arrêter la fourniture de courant d'excitation à la bobine d'excitation (22) après
que la fréquence détectée a chuté en-dessous d'une deuxième fréquence de référence
(fe) qui est inférieure à la première fréquence de référence (fs) et inférieure à
une fréquence prédéterminée qui correspond à un ralenti du moteur.
6. Procédé de commande d'alternateur de véhicule selon la revendication 5,
caractérisé en outre par l'étape consistant à :
abaisser la tension de sortie (Py) de la bobine d'armature (21) pendant une période
de temps prédéterminée après un début de rotation du rotor.
7. Procédé de commande d'alternateur de véhicule selon la revendication 6, en outre
caractérisé en ce que :
l'étape de détection de fréquence compare la tension de sortie (Py) de la bobine d'armature
(21) avec une première tension de référence (V1) pour détecter la fréquence ; et
l'étape d'abaissement compare une crête de la tension de sortie (Py) de la bobine
d'armature (21) avec une deuxième tension de référence (V2) qui est inférieure à la
première tension de référence (V1) afin de contrôler une opération d'abaissement de
tension.
8. Procédé de commande d'alternateur de véhicule selon la revendication 6 ou 7, en outre
caractérisé par l'étape consistant à :
effectuer la fourniture de courant d'excitation à la bobine d'excitation (22) durant
la période de temps prédéterminée avant que la fourniture de courant d'excitation
à la bobine d'excitation (22) ne soit lancée par l'étape de démarrage.
9. Procédé de commande d'alternateur de véhicule selon l'une quelconque des revendications
5 à 8, en outre caractérisé en ce que la première fréquence de référence (fs) est supérieure à une fréquence prédéterminée
qui correspond à un ralenti du moteur.