FIELD OF THE INVENTION
[0001] This invention relates to a method of testing a micro electro-mechanical (MEM) device.
The invention has application in ink ejection nozzles of the type that are fabricated
by integrating the technologies applicable to micro electro-mechanical systems (MEMS)
and complementary metal-oxide semiconductor (CMOS) integrated circuits, and the invention
is hereinafter described in the context of that application. However, it will be understood
that the invention does have broader application, to the testing of various types
of MEM devices for various purposes.
BACKGROUND OF THE INVENTION
[0002] A high speed pagewidth inkjet printer has recently been developed by the present
Applicant. This typically employs in the order of 51200 inkjet nozzles to print on
A4 size paper to provide photographic quality image printing at 1600 dpi. In order
to achieve this nozzle density, the nozzles are fabricated by integrating MEMS-CMOS
technology.
[0004] A difficulty that flows from the fabrication of such a printer is that there is no
convenient way of ensuring that all nozzles that extend across the printhead or, indeed,
that are located on a given chip will perform identically, and this problem is exacerbated
when chips that are obtained from different wafers may need to be assembled into a
given printhead. Also, having fabricated a from different wafers may need to be assembled
into a given printhead. Also, having fabricated a complete printhead from a plurality
of chips, it is difficult to determine the energy level required for actuating individual
nozzles and for evaluating the continuing performance of a given nozzle.
SUMMARY OF THE INVENTION
[0005] The present invention may be defined broadly as providing a method of testing a micro
electro-mechanical device of a type having a support structure, an actuating arm that
is movable relative to the support structure under the influence of heat inducing
current flow through the actuating arm, and a movement sensor associated with the
actuating arm. The method comprises the steps of:
- (a) passing at least one current pulse having a predetermined duration tp through the actuating arm, and
- (b) detecting for a predetermined level of movement of the actuating arm by using
the movement sensor.
[0006] The invention as above defined permits factory or in-use testing of the micro electro-mechanical
(MEM) device, to determine whether the actuating arm is or is not functioning in the
required manner to meet operating conditions. In the event that a predetermined level
of movement of the actuating arm does not occur with passing of a current pulse having
a predetermined duration, the device will be rejected or put aside for modification.
PREFERRED FEATURES OF THE INVENTION
[0007] The testing method may be effected by passing a single current pulse having a predetermined
duration t
p through the actuating arm and detecting for the predetermined movement of the actuating
arm. Alternatively, a series of current pulses of successively increasing duration
t
p may be passed through the actuating arm (so as to induce successively increasing
degrees of movement of the actuating arm) over a time period t. Then detection will
be made for a predetermined level of movement of the actuating arm within a predetermined
time window t
w where t>t
w>t
p.
[0008] The testing method of the invention preferably is employed in relation to an MEM
device in the form of a liquid ejector and most preferably in the form of an ink ejection
nozzle that is operable to eject an ink droplet upon actuation of the actuating arm.
In this latter preferred form of the invention, the second end of the actuating arm
preferably is coupled to an integrally formed paddle which is employed to displace
ink from a chamber into which the actuating arm extends.
[0009] The actuating arm most preferably is formed from two similarly shaped arm portions
which are interconnected in interlapping relationship. In this embodiment of the invention,
a first of the arm portions is connected to a current supply and is arranged in use
to be heated by the current pulse or pulses having duration t
p. However, the second arm portion functions to restrain linear expansion of the actuating
arm as a complete unit and heat induced elongation of the first arm portion causes
bending to occur along the length of the actuating arm. Thus, the actuating arm is
effectively caused to pivot with respect to the support structure with heating and
cooling of the first portion of the actuating arm.
[0010] The invention will be more fully understood from the following description of a preferred
embodiment of a testing method as applied to an inkjet nozzle as illustrated in the
accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] In the drawings:-
Figure 1 shows a highly magnified cross-sectional elevation view of a portion of the
inkjet nozzle,
Figure 2 shows a plan view of the inkjet nozzle of Figure 1,
Figure 3 shows a perspective view of an outer portion of an actuating arm and an ink
ejecting paddle or of the inkjet nozzle, the actuating arm and paddle being illustrated
independently of other elements of the nozzle,
Figure 4 shows an arrangement similar to that of Figure 3 but in respect of an inner
portion of the actuating arm,
Figure 5 shows an arrangement similar to that of Figures 3 and 4 but in respect of
the complete actuating arm incorporating the outer and inner portions shown in Figures
3 and 4,
Figure 6 shows a detailed portion of a movement sensor arrangement that is shown encircled
in Figure 5,
Figure 7 shows a sectional elevation view of the nozzle of Figure 1 but prior to charging
with ink,
Figure 8 shows a sectional elevation view of the nozzle of Figure 7 but with the actuating
arm and paddle actuated to a test position,
Figure 9 shows ink ejection from the nozzle when actuated under a test condition,
Figure 10 shows a blocked condition of the nozzle when the actuating arm and paddle
are actuated to an extent that normally would be sufficient to eject ink from the
nozzle,
Figure 11 shows a schematic representation of a portion of an electrical circuit that
is embodied within the nozzle,
Figure 12 shows an excitation-time diagram applicable to normal (ink ejecting) actuation
of the nozzle actuating arm,
Figure 13 shows an excitation-time diagram applicable to test actuation of the nozzle
actuating arm,
Figure 14 shows comparative displacement-time curves applicable to the excitation-time
diagrams shown in Figures 12 and 13,
Figure 15 shows an excitation-time diagram applicable to a testing procedure,
Figure 16 shows a temperature-time diagram that is applicable to the nozzle actuating
arm and which corresponds with the excitation-time diagram of Figure 15, and
Figure 17 shows a deflection-time diagram that is applicable to the nozzle actuating
arm and which corresponds with the excitation/heating-time diagrams of Figures 15
and 16.
DETAILED DESCRIPTION OF THE INVENTION
[0012] As illustrated with approximately 3000x magnification in Figure 1 and other relevant
drawing figures, a single inkjet nozzle device is shown as a portion of a chip that
is fabricated by integrating MEMS and CMOS technologies. The complete nozzle device
includes a support structure having a silicon substrate 20, a metal oxide semiconductor
layer 21, a passivation layer 22, and a non-corrosive dielectric coating/chamber-defining
layer 23.
[0013] The nozzle device incorporates an ink chamber 24 which is connected to a source (not
shown) of ink and, located above the chamber, a nozzle chamber 25. A nozzle opening
26 is provided in the chamber-defining layer 23 to permit displacement of ink droplets
toward paper or other medium (not shown) onto which ink is to be deposited. A paddle
27 is located between the two chambers 24 and 25 and, when in its quiescent position,
as indicated in Figures 1 and 7, the paddle 27 effectively divides the two chambers
24 and 25.
[0014] The paddle 27 is coupled to an actuating arm 28 by a paddle extension 29 and a bridging
portion 30 of the dielectric coating 23.
[0015] The actuating arm 28 is formed (i.e. deposited during fabrication of the device)
to be pivotable with respect to the support structure or substrate 20. That is, the
actuating arm has a first end that is coupled to the support structure and a second
end 38 that is movable outwardly with respect to the support structure. The actuating
arm 28 comprises outer and inner arm portions 31 and 32. The outer arm portion 31
is illustrated in detail and in isolation from other components of the nozzle device
in the perspective view shown in Figure 3. The inner arm portion 32 is illustrated
in a similar way in Figure 4. The complete actuating arm 28 is illustrated in perspective
in Figure 5, as well as in Figures 1, 7, 8, 9 and 10.
[0016] The inner portion 32 of the actuating arm 28 is formed from a titanium-aluminium-nitride
(TiAl)N deposit during formation of the nozzle device and it is connected electrically
to a current source 33, as illustrated schematically in Figure 11, within the CMOS
structure. The electrical connection is made to end terminals 34 and 35, and application
of a pulsed excitation voltage to the terminals results in pulsed current flow through
the inner portion only of the actuating arm 28. The current flow causes rapid resistance
heating within the inner portion 32 of the actuating arm and consequential momentary
elongation of that portion of the arm.
[0017] The outer arm portion 31 of the actuating arm 28 is mechanically coupled to but electrically
isolated from the inner arm portion 32 by posts 36. No current-induced heating occurs
within the outer arm portion 31 and, as a consequence, voltage induced current flow
through the inner arm portion 32 causes momentary bending of the complete actuating
arm 28 in the manner indicated in Figures 8, 9 and 10 of the drawings. This bending
of the actuating arm 28 is equivalent to pivotal movement of the arm with respect
to the substrate 20 and it results in displacement of the paddle 27 within the chambers
24 and 25.
[0018] An integrated movement sensor is provided within the device in order to determine
the degree or rate of pivotal movement of the actuating arm 28 and in order to permit
testing of the device.
[0019] The movement sensor comprises a moving contact element 37 that is formed integrally
with the inner portion 32 of the actuating arm 28 and which is electrically active
when current is passing through the inner portion of the actuating arm. The moving
contact element 37 is positioned adjacent the second end 38 of the actuating arm and,
thus, with a voltage V applied to the end terminals 34 and 35, the moving contact
element will be at a potential of approximately V/2. The movement sensor also comprises
a fixed contact element 39 which is formed integrally with the CMOS layer 22 and which
is positioned to be contacted by the moving contact element 37 when the actuating
arm 28 pivots upwardly to a predetermined extent. The fixed contact element is connected
electrically to amplifier elements 40 and to a microprocessor arrangement 41, both
of which are shown in Figure 11 and the component elements of which are embodied within
the CMOS layer 22 of the device.
[0020] When the actuator arm 28 and, hence, the paddle 27 are in the quiescent position,
as shown in Figures 1 and 7, no contact is made between the moving and fixed contact
elements 37 and 39. At the other extreme, when excess movement of the actuator arm
and the paddle occurs, as indicated in Figures 8 and 9, contact is made between the
moving and fixed contact elements 37 and 39. When the actuator arm 28 and the paddle
27 are actuated to a normal extent sufficient to expel ink from the nozzle, no contact
is made between the moving and fixed contact elements. That is, with normal ejection
of the ink from the chamber 25, the actuator arm 28 and the paddle 27 are moved to
a position partway between the positions that are illustrated in Figures 7 and 8.
This (intermediate) position is indicated in Figure 10, although as a consequence
of a blocked nozzle rather than during normal ejection of ink from the nozzle.
[0021] Figure 12 shows an excitation-time diagram that is applicable to effecting actuation
of the actuator arm 28 and the paddle 27 from a quiescent to a lower-than-normal ink
ejecting position. The displacement of the paddle 27 resulting from the excitation
of Figure 12 is indicated by the lower graph 42 in Figure 14, and it can be seen that
the maximum extent of displacement is less than the optimum level that is shown by
the displacement line 43.
[0022] Figure 13 shows an expanded excitation-time diagram that is applicable to effecting
actuation of the actuator arm 28 and the paddle 27 to an excessive extent, such as
is indicated in Figures 8 and 9. The displacement of the paddle 27 resulting from
the excitation of Figure 13 is indicated by the upper graph 44 in Figure 14, from
which it can be seen that the maximum displacement level is greater than the optimum
level indicated by the displacement line 43.
[0023] Figures 15, 16 and 17 shows plots of excitation voltage, actuator arm temperature
and paddle deflection against time for successively increasing durations of excitation
applied to the actuating arm 28. These plots have relevance to testing of the nozzle
device.
[0024] When testing the nozzle device, or each nozzle device in an array of such devices,
a series of current pulses of successively increasing duration t
p are induced to flow through the actuating arm 28 over a time period t. The duration
t
p is controlled to increase with time as indicated graphically in Figure 15.
[0025] Each current pulse induces momentary heating in the actuating arm 28 and a consequential
temperature rise in the actuating arm, followed by a temperature fall on expiration
of the pulse duration. As indicated in Figure 16, the temperature rises to successively
higher levels with the increase in pulse durations as shown in Figure 15.
[0026] As a result, as indicated in Figure 17, the actuator arm 28 will move (i.e. pivot)
to successively increasing degrees, some of which will be below that required to cause
contact to be made between the moving and fixed contact elements 37 and 39, and others
of which will be above that required to cause contact to be made between the moving
and fixed contact elements. This is indicated by the "test level" line shown in Figure
17.
[0027] The microprocessor 41 is employed to detect for a predetermined level of movement
of the actuating arm 28 (i.e. the "test level") within a predetermined time window
t
w that falls within the testing time t. This is then correlated with the pulse duration
t
p that induces the required movement within the time window, and this in turn provides
indication as to the appropriate working condition of the nozzle device.
[0028] As an alternative, simplified test procedure, a single pulse, such as that shown
in Figure 12 may be employed to induce heating of the actuating arm 28 and to effect
a consequential temperature rise, which will be followed by a temperature drop on
expiration of the (single) pulse duration. Then, the microprocessor 41 will be employed
to detect for a predetermined level of movement of the actuating arm resulting from
the single current pulse so that, in effect, a Go/No-go test is performed.
[0029] Variations and modifications may be made in respect of the device as described above
as a preferred embodiment of the invention without departing from the scope of the
appended claims.
1. A method of testing a micro electro-mechanical device of a type having a support structure
(20,21,22,23) an actuating arm (28) that is movable relative to the support structure
under the influence of heat inducing current flow through the actuating arm, and a
movement sensor (37,39) associated with the actuating arm; the method comprising the
steps of:
(a) passing at least one current pulse having a predetermined duration tp through the actuating arm, and
(b) detecting for a predetermined level of movement of the actuating arm by using
the movement sensor.
2. The method as claimed in claim 1 when employed in relation to a liquid ejection nozzle
having a liquid receiving chamber from which the liquid is ejected with movement of
the actuating arm.
3. The method as claimed in claim 1 when employed in relation to an ink ejection nozzle
having an ink receiving chamber from which the ink is ejected with movement of the
actuating arm.
4. The method as claimed in claim 3 wherein the movement sensor comprises a moving contact
element formed integrally with the actuating arm, a fixed contact element formed integrally
with the support structure and electrical circuit elements embodied within the support
structure, and wherein the predetermined level of movement of the actuating arm is
detected by contact made between the fixed and moving contact elements.
5. The method as claimed in claim 4 wherein the movement sensor includes a microprocessor
that detects for the predetermined level of movement of the actuating arm and correlates
the predetermined level of movement of the actuating arm with the predetermined duration
of the current pulse.
6. The method as claimed in claim 1 wherein a series of the current pulses having successively
increasing durations tp are passed through the actuating arm so as to induce successively increasing degrees
of movement of the actuating arm over a time period t, and wherein detection is made
for a predetermined level of movement of the actuating arm within a predetermined
time window tw where t>tw>tp.
7. The method as claimed in claim 6 wherein the movement sensor includes a microprocessor
that detects for the predetermined level of movement of the actuating arm within the
predetermined time window tw and correlates the predetermined level of movement with a pulse duration tp that induces the predetermined movement within the time window tw.
1. Verfahren zum Testen einer mikroelektromechanischen Vorrichtung einer Bauart mit einer
Trägerstruktur (20, 21, 22, 23), einem Betätigungsarm (28), der unter dem Einfluss
eines Wärme induzierenden Stromflusses durch den Betätigungsarm relativ zur Trägerstruktur
bewegbar ist, und einem Bewegungssensor (37, 39), der dem Betätigungsarm zugeordnet
ist; wobei das Verfahren die Schritte umfasst:
(a) Durchleiten von zumindest einem Stromimpuls mit einem vorbestimmten Zeitintervall
tp durch den Betätigungsarm, und
(b) Erfassen eines vorbestimmten Ausmaßes der Bewegung des Betätigungsarms unter Verwendung
des Bewegungssensors.
2. Verfahren nach Anspruch 1, wenn in Bezug auf eine Flüssigkeitsausstoßdüse mit einer
Flüssigkeitsaufnahmekammer verwendet, aus der bei Bewegung des Betätigungsarms die
Flüssigkeit ausgestoßen wird.
3. Verfahren nach Anspruch 1, wenn in Bezug auf eine Tintenausstoßdüse mit einer Tintenaufnahmekammer
verwendet, aus der bei Bewegung des Betätigungsarms die Tinte ausgestoßen wird.
4. Verfahren nach Anspruch 3, wobei der Bewegungssensor ein bewegliches Kontaktelement
aufweist, das einstückig mit dem Betätigungsarm ausgebildet ist, ein feststehendes
Kontaktelement, das einstückig mit der Trägerstruktur ausgebildet ist, und elektrische
Schaltkreiselemente, die in der Trägerstruktur enthalten sind, und wobei das vorbestimmte
Ausmaß der Bewegung des Betätigungsarms durch einen Kontakt erfasst wird, der zwischen
dem feststehenden und beweglichen Kontaktelement erfolgt.
5. Verfahren nach Anspruch 4, wobei der Bewegungssensor einen Mikroprozessor umfasst,
der das vorbestimmte Ausmaß der Bewegung des Betätigungsarms erfasst und das vorbestimmte
Ausmaß der Bewegung des Betätigungsarms mit dem vorbestimmten Zeitintervall des Stromimpulses
korreliert.
6. Verfahren nach Anspruch 1, wobei durch den Betätigungsarm eine Serie der Stromimpulse
mit schrittweise ansteigenden Zeitintervallen tp geleitet wird, um schrittweise zunehmende Ausmaße der Bewegung des Betätigungsarms
über eine Zeitdauer t zu induzieren, und wobei innerhalb eines vorbestimmten Zeitfensters
tw eine Erfassung in Bezug auf ein vorbestimmtes Ausmaß der Bewegung des Betätigungsarms
erfolgt, wobei t > tw > tp.
7. Verfahren nach Anspruch 6, wobei der Bewegungssensor einen Mikroprozessor umfasst,
der das vorbestimmte Ausmaß der Bewegung des Betätigungsarms innerhalb des vorbestimmten
Zeitfensters tw erfasst und das vorbestimmte Ausmaß der Bewegung mit einer Impulsdauer tp korreliert, die die vorbestimmte Bewegung innerhalb des Zeitfensters tw induziert.
1. Procédé de mise à l'essai d'un microdispositif électromécanique du type ayant une
structure de support (20, 21, 22, 23), un bras d'actionnement (28) qui est mobile
par rapport à la structure de support sous l'influence d'une chaleur induisant un
flux de courant à travers le bras d'actionnement, et un capteur de mouvements (37,
39) associé au bras d'actionnement ; le procédé comprenant les étapes suivantes:
(a) faire passer au moins une impulsion de courant d'une durée prédéterminée tp à travers le bras d'actionnement, et
(b) détecter un niveau prédéterminé de mouvement du bras d'actionnement en utilisant
le capteur de mouvements.
2. Procédé tel que revendiqué dans la revendication 1 lorsqu'il est utilisé en relation
avec une buse d'éjection de liquide ayant une chambre de réception de liquide à partir
de laquelle le liquide est éjecté avec un mouvement du bras d'actionnement.
3. Procédé tel que revendiqué dans la revendication 1 lorsqu'il est utilisé en relation
avec une buse d'éjection d'encre ayant une chambre de réception d'encre à partir de
laquelle l'encre est éjectée avec un mouvement du bras d'actionnement.
4. Procédé tel que revendiqué dans la revendication 3, dans lequel le capteur de mouvements
comprend un élément de contact mobile formé d'une seule pièce avec le bras d'actionnement,
un élément de contact fixe formé d'une seule pièce avec la structure de support et
des éléments de circuit électrique incorporés à l'intérieur de la structure de support,
et dans lequel le niveau prédéterminé de mouvement du bras d'actionnement est détecté
grâce à un contact formé entre les éléments de contact fixe et mobile.
5. Procédé tel que revendiqué dans la revendication 4, dans lequel le capteur de mouvements
comprend un microprocesseur qui détecte le niveau de mouvement prédéterminé du bras
d'actionnement et effectue la corrélation entre le niveau de mouvement prédéterminé
du bras d'actionnement et la durée prédéterminée de l'impulsion du courant.
6. Procédé tel que revendiqué dans la revendication 1, dans lequel l'on fait passer une
série d'impulsions de courant à travers le bras d'actionnement ayant des durées tp augmentant successivement de manière à induire des niveaux de mouvement du bras d'actionnement
augmentant successivement sur une période de temps t, et dans lequel la détection
est réalisée pour un niveau de mouvement prédéterminé du bras d'actionnement au cours
d'un intervalle de temps prédéterminé tw où t>tw>tp.
7. Procédé tel que revendiqué dans la revendication 6, dans lequel le capteur de mouvements
inclut un microprocesseur qui détecte le niveau de mouvement prédéterminé du bras
d'actionnement dans l'intervalle de temps prédéterminé tw et effectue la corrélation entre le niveau de mouvement prédéterminé et une durée
d'impulsion tP qui induit le mouvement prédéterminé au cours de l'intervalle de temps tw.