FIELD OF THE INVENTION
[0001] This invention relates to prosthetic devices for the treatment of urinary incontinence
and, in particular, to prosthetic devices employing transplanted tissue.
BACKGROUND OF THE INVENTION
[0002] The present invention is concerned with forms of incontinence caused wholly or partly
by inadequate sphincter function. This may include forms of stress incontinence, urge
incontinence and total incontinence. The invention has been developed initially for
use in treating male incontinence and will be described principally with respect to
that application. However, it will be appreciated by those skilled in the art that
the invention is also applicable for use in treating female incontinence.
[0003] Incontinence is a major health problem, particularly with the ageing population,
for which there is no well-accepted medical treatment. For females, surgically constructed
slings are increasingly being used for stress incontinence and with increasing success.
However, here is no low risk and reliably effective treatment for moderate to severe
male stress incontinence particularly after treatment of prostate cancer. As the incidence
of prostate cancer is increasing, this is a growing health issue.
[0004] The internal sphincter of the urethra consists of smooth muscle cells interposed
with elastic tissue and is located in the proximal urethra. Its constant tone is crucial
to maintaining mechanical resistance in the proximal urethra sufficient to hold back
the passive pressure exerted by urine in the bladder. Weakness in this area is a common
cause of urinary incontinence, for example after treatment for prostate cancer.
[0005] Prosthetic sphincter valves have been proposed in numerous forms, including mechanical,
hydraulic and electrical devices which replace or supplement the defective damaged
internal sphincter of the urethra (
e.g. PT 101841, SE 931516, GB 2266844, FR 2638964, WO97/01309 and US 4619245). Electrical stimulation of the muscles of the sphincter has also been proposed (
DE 29614895). Other approaches have proposed the use of external or implanted electrodes to stimulate
existing sphincter function.
[0006] A variety of approaches have been proposed in relation to the electrical stimulation
of the muscles of the sphincter, most of which are directed towards stimulating an
existing sphincter and/or muscles disposed about, for example, a bladder (
DE 29614895).
[0007] Another group of prior art proposals for the treatment of incontinence are directed
towards the stimulation of sacral nerves and the like. Such proposals again seek to
use the existing muscle structures. (
US 4,771,779, US 4,703,775, US 4, 607, 639, US 3,870,051, US 4, 688, 575, US 4,389,719 and US 5,702,428).
[0008] Other stimulation means have been proposed, for example
US 5,562,717, wherein stimulating electrodes are disposed on the skin of a person to externally
stimulate existing muscles to control incontinence. This method is disadvantageous
in that it requires electrodes to be disposed in a predetermined location of the person
and be electrically connected to a power source therefore not allowing complete freedom.
[0009] It has also been proposed to implant part of a small skeletal muscle from the thigh
around the patient's urethra, and then to electrically stimulate the muscle to "retrain"
it to function as a replacement sphincter (
New Scientist, 29 June 1996). However, this approach, even if successful, would require relatively high levels
of electrical stimulation to allow sufficient contracture of the replacement sphincter.
SUMMARY OF THE INVENTION
[0011] The invention is defined in claims 1 and 17.
[0012] Broadly, the present invention utilises innervated smooth muscle to provide an auxiliary
sphincter. This is stimulated by a suitable device in order to provide a functional
sphincter in the patient. As a consequence, the stimulator device can operate with
lower power consumption, and produce a superior sphincter action.
[0013] According to a first aspect of the invention there is provided an implantable sphincter
stimulator configured for operatively providing electrical stimulation to a surgically
implanted innervated smooth muscle sphincter disposed about a urethra so as to control
the flow of urine therethrough, the stimulator including:
a stimulus generating unit in electrical communication with a receiver, the stimulus
generating unit operatively configured to provide a first predetermined electrical
stimulation signal adapted to contract said sphincter, and a second predetermined
signal adapted to allow said sphincter to relax, one of said predetermined signals
being selected in response to a signal received at the receiver from a remote controller.
[0014] In preferred embodiments, the stimulator applies the first stimulation signal, unless
a signal is received indicating that the patient wishes to empty the bladder. The
second stimulation signal may be simply the absence of a stimulation, a lower level
signal or an alternative signal.
[0015] Preferably, the stimulation signal is one which will maintain a continuous tone in
the innervated sphincter. In other preferred embodiments of the invention the stimulation
signal is pulsatile. Preferably, the stimulator provides multiple channel pulse generation.
Preferably also, the stimulation pulse frequency is in the range of 0.25 to 2.5Hz
and having a width in the range of 0.05 to 0.20 milliseconds.
[0016] Preferably the stimuli applied have a current less than or equal to 30mA. More preferably,
the stimulation signal is generally rectangular and symmetrical biphasic, although
alternative biphasic pulses may be used.
[0017] Preferably, the sphincter stimulator includes a replaceable or rechargeable battery
power source, preferably one which is in-situ rechargeable, for example inductively.
[0018] Preferably, the signal to the receiver is communicated by microwave or radio means,
optically or by magnetic energy and the receiver respectively is a microwave, radio,
photon or magnetic energy receiver.
[0019] Preferably, the stimulus generating unit includes a demodulator responsive to the
received signal for providing a modulated signal to a stimulus encoder which in turn
provides a signal to a stimulus driver. The stimulator preferably includes two or
more electrodes for operatively delivering the stimuli to the sphincter. The stimuli
may differ between electrodes, or may be the same at each.
[0020] Preferably, after the sphincter has been relaxed, the stimulator is adapted to supply
the first stimulation signal to contract the sphincter when a predetermined signal
to contract the sphincter is not received by the receiver after a predetermined period.
[0021] Preferably, the sphincter stimulator includes a transmitter for transmitting sphincter
stimulator telemetry information indicative of one or more parameters of the stimulator
for detection remotely. Preferably, the information is transmitted by means of radio
waves, microwaves, optically or by magnetic energy. More preferably, the parameters
include one or more of the stimulation signal frequency, current, width and/or shape,
and/or of the received signal strength and battery status. Preferably, the stimulus
generating unit includes a processing device with non-volatile memory.
[0022] Preferably, the receiver is configured to accept a remotely generated sphincter stimulator
calibration signal and in response, the stimulus generation unit selectively varies
one or more of the stimulation signals. More preferably, the calibration signal is
transmitted in response to received sphincter stimulator telemetry information, for
example the telemetry signals from the stimulator.
[0023] Preferably, the stimulator is in electrical communication with the sphincter by at
least one electrical lead having two or more electrodes which are operatively implanted
into the sphincter at a predetermined location. More preferably, the lead includes
three electrodes disposed in an epimysal, cuff or tripolar configuration about the
sphincter.
[0024] Preferably, the smooth muscle is taken from the smooth muscle of the bladder and
transplanted about the urethra and having its circulation intact. Alternatively, the
muscle is venous smooth, anococcygeus smooth muscle, terminal ileum transplanted as
a segment devoid of mucosa and having its circulation intact. A further alternative
is the dartos smooth muscle from the scrotum or labia. In each case, the long axes
of the muscle cells are disposed substantially circumferentially about the sphincter.
Depending upon the muscle selected, the circulation may or may not be transplanted
intact. If the circulation is not transplanted intact, new vessels will need to be
regrown, or otherwise provided.
[0025] According to a second aspect of the invention there is provided a system for use
in treating bladder incontinence in a person, the system including:
a portion of innervated smooth muscle tissue configured to define a sphincter and
implanted substantially circumferentially about the urethra of the person;
an implanted sphincter stimulator arranged so as to allow electrical stimuli to be
applied to the sphincter; and
a non-implanted controller in communication with the sphincter stimulator for selectively
triggering the generation of predetermined electrical stimulation signals to respectively
contract the sphincter or allow the sphincter to relax.
[0026] Preferably, the smooth muscle is in the form of a strip and is generally rectangular.
More preferably, the strip has dimensions in the range from 4.5cm to 7.5cm by 1.25cm
to 2.25cm. Also preferable, the muscle is disposed substantially fully around the
urethra in a generally cylindrical arrangement such that the long axes of the muscle
cells are substantially circumferentially aligned.
[0027] Preferably, the smooth muscle is selected from those described above.
[0028] Preferably, the system includes a sphincter as described above.
[0029] Preferably, the controller includes:
a transmitter;
means for generating a predetermined signal at the transmitter;
a power source; and
actuation means for selectively generating a signal such that on receipt of the signal,
the sphincter stimulator provides the stimulation signal at its output for contracting
the sphincter or allowing it to relax. The signals for selecting relaxation or contracture
may be different, or the same signal may trigger alternation of states.
[0030] One form of the controller, particularly for use by a physician, may include a receiver
for receiving the sphincter stimulator telemetry information signal from the sphincter
stimulator. Preferably, the signal is transmitted by radio waves, microwaves, optically
or by magnetic energy and receiver respectively is a radio, microwave, photon or magnetic
energy receiver.
[0031] Preferably, the system includes a remote sphincter stimulator programming unit for
selectively programming the sphincter stimulator to provide a predetermined output.
Preferably, one or more of the stimulation signal current, shape, frequency and width
is variable in response to the calibration signal provided by the programming unit.
More preferably, the programming unit includes a transceiver for providing the programming
signal to the stimulator. The programming unit may conveniently be the physician controller.
[0032] Implanting in the present context includes transplanting from the same or another
person, or the use of externally prepared smooth muscle tissue. In each aspect, it
is preferred that the implanted sphincter function so as to substantially prevent
leakage of urine when contracted. In general, the main function of the innervated
muscle prosthesis is to augment function in the internal sphincter. It should not
be used to override any natural sphincter function that may be preserved. The sphincteric
pressure exerted by the prosthesis should be sufficient to restore the net sphincteric
resistance to its normal level of operation. Unnecessarily high pressure would not
only be wasteful of internal stimulator energy but could also cause dangerous overfilling
of the bladder. On the other hand, the pressure must be sufficiently high to prevent
the leakage of urine.
[0033] The smooth muscle tissue may be selected from those described above, or any other
suitable smooth muscle tissue. It will be appreciated by those skilled in the art
that other types of smooth muscle may potentially be employed as the implantable sphincter
including alpha-adrenergic excitatory innervation, cholinergenic excitatory or, inter
alia, circular intestinal muscle.
[0034] One advantage of using smooth muscle tissue is that it physiologically performs a
sphincteric-like function and the muscle layer should be able to be transplanted whilst
maintaining its innervation, or allowing for its reinnervation, and blood supply.
Moreover, smooth muscle of the types described is readily re-innervated by sympathetic
nerves should the existing innervation be damaged during surgery. Reinnervation may
take some time, for example, two to three weeks, after surgery.
[0035] Another advantages associated with the use of an innervated smooth muscle sphincter
in accordance with the present invention is that in smooth muscle, a long-lasting
contracture (2-3 seconds) results from a single neural stimulation. Accordingly, only
a low frequency of stimulation is required to produce a tetanic contraction especially
where it is moderated by neurotransmitter release.
[0036] The tension generated per unit cross-sectional area of smooth muscle is greater than
for skeletal muscle. Smooth muscle generates tension over a wide length/tension relationship,
that is, it continues to generate tension even when partially contracted. Smooth muscle
is able to maintain high tension with relatively low energy expenditure. Smooth muscle
tissue generally displays a persistent generation of tone during low frequency repetitive
nerve stimulation.
[0037] A further advantage of the use of smooth muscle according to the present invention
is that low frequency nerve stimulation causes the release of a chemical transmitter.
Stimulating the nerves within smooth muscle invariably triggers a contraction because
the neurotransmitter interacts with a receptor. The activated transmitter/receptor
complex then activates a second messenger pathway and releases calcium ions from internal
stores. It is relevant that calcium is the final trigger in the contraction of both
skeletal, smooth or cardiac muscle. When stores release calcium they do so for extended
periods of time, typically in the order of several seconds. Therefore, if the exciting
pathway is triggered repeatedly at low frequencies a sustained rise in calcium occurs
and the smooth muscle develops a contracture. That is, it does not relax between stimuli.
In some smooth muscles, a few stimuli delivered every two seconds, for example, will
lead to a sustained contraction.
[0038] An alternative way to excite smooth muscle is to stimulate it directly which produces
quite long lasting contractions but only on application of very high stimulating voltages.
Nerves have low thresholds for activation, compared with muscles, and this, together
with the low frequencies of activation required, means that stimulus spread will be
avoided. Importantly, an electrical device can reasonably be expected to survive untouched
for many years with such low usage demands.
BRIEF DESCRIPTION OF THE DRAWINGS
[0039] A preferred embodiment of the invention will now be described, by way of example
only, with reference to the accompanying drawings in which:
Figure 1 is a schematic illustration of a system for treating incontinence according
to the invention;
Figure 2 schematically illustrates the implanted sphincter stimulator of Fig 1;
Figure 3 schematically illustrates external and implanted parts of the system of Fig
1;
Figure 4 illustrates a sphincter stimulator programming unit and sphincter stimulator
of the system of Fig 1;
Figure 5 is an alternative schematic illustration of the system of Fig 1 showing a
preferred configuration of electrodes; and
Figure 6 is an enlarged view of the electrode configuration of Fig 5.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
[0040] Referring in general to Figs 1 to 6, there is illustrated an implantable sphincter
stimulator 1 for selectively providing electrical stimulation to an innervated smooth
muscle sphincter 2 disposed about a urethra 3 for controlling the flow of urine.
[0041] Stimulator 1 includes a signal processing unit 4 in electrical communication with
a receiver 5. Signal processing unit 4 is configured to provide a predetermined electrical
stimulation signal at a first output 6 of stimulator 1 in response to a signal generated
remotely by controller 7 and applied at receiver 5 such that processing unit 4 selectively
provides the stimulation signal to either contract sphincter 2 to substantially block
the flow of urine along the urethra 3 or to allow sphincter 2 to relax and allow urine
to flow.
[0042] Referring to Fig 2 particularly, signal processing unit 4 includes a demodulator
8 responsive to the signal received at receiver 5 for providing a modulated signal
to a stimulus encoder 9 which in turn provides a signal to a stimulus driver 10 which
provides the stimulated signal at sphincter stimulator output 6.
[0043] Once sphincter 2 is allowed to relax, processing unit 4 includes means to supply
a stimulation signal at output 6 to contract sphincter 2 when a predetermined signal
to contract the sphincter is not received by signal processing unit 4 via receiver
5 for a predetermined time period. In the preferred implementation, the processing
unit 4 provides stimuli adapted to contract the sphincter unless a signal is received,
in response to which the stimuli is turned off, and the sphincter relaxes.
[0044] The signal is communicated to sphincter stimulator 1 by means of radio frequency
waves and receiver 5 is an RF receiver. If the casing of the stimulator is made of
titanium, and the receiver is inside, then a frequency of 8-10 kHz is preferred. If
the casing is made of silicone rubber or the like, then 8-10 MHz is preferred.
[0045] In other embodiments of the invention, the signal may be communicated optically in
the range 630nm to 1400nm to sphincter stimulator 1 and receiver 5 is a photon detector
in the form of a PMT, photo-diode or other suitable detector.
[0046] In yet other embodiments of the invention, the signal is communicated to sphincter
stimulator 1 by microwave means and receiver 5 is a microwave receiver. In such embodiments,
the microwave signal has a frequency in the range of 0.9 to 2.5 GHz. Alternatively,
the signal is communicated to sphincter stimulator 1 by magnetic means and receiver
5 is a magnetic energy receiver. Any other suitable communication arrangement may
be used.
[0047] As is best illustrated in Fig 3, controller 7 includes the RF transmitter which is
driven by a means for generating the control signal. Controller 7 further includes
actuation means for selectively generating the control signal at transmitter 11.
[0048] Part of transmitter 11 is also a receiver for receiving an information signal indicative
of at least one parameter of the sphincter stimulator and provided by the sphincter
stimulator. The telemetry information signal is transmitted to the controller by means
of a transmitter disposed within receiver 5. In embodiments of the invention where
microwaves are employed to communicate either the control signal or telemetry information
signal, transceiver 11 of controller 7 is configured to transmit and receive microwave
radiation. In embodiments where the control signal is transmitted optically, transceiver
11 includes a photon detector in the form of a PMT or solid state device and a light
source having a predetermined output. In embodiments of the invention where the control
signal and the sphincter stimulator information signal are transmitted by magnetic
energy, the transmitter receiver 5 functions as a passive proximity card and controller
7 functions as the active proximity card reader.
[0049] Fig 2 illustrates a stimulation signal in the form of a pulse. The pulse is generally
rectangular and symmetrically biphasic. In other embodiments of the invention, not
illustrated, sphincter stimulator 1 provides multiple channel pulse generation at
output 6. The stimulation signal is selected so as to provide a substantially continuous
tone in the sphincter.
[0050] The stimulation signal provided at output 6 has a substantially constant current
less that or equal to 30mA, and preferably of the order of 15mA.
[0051] The stimulation pulse frequency provided to sphincter 1 by output 6 is in the range
of 0.25Hz to 2.5Hz and is preferably 2Hz. The stimulation pulse width is in the range
of 0.05 ms to 0.2 ms and is preferably 0.15 ms. It should be noted that the device
is current regulated, and accordingly the stimulation voltage will vary with the resistance
of the muscle tissue between the electrodes. Typical values for the voltage are between
0.2 and 7 volts.
[0052] It should be noted, however, that these parameters are variable and are configured
for each person.
[0053] Preferably, the smooth muscle is taken from the smooth muscle of the bladder and
transplanted about the urethra and having its circulation intact. Alternatively, the
muscle may be venous smooth, anococcygeus smooth muscle, terminal ileum transplanted
as a segment devoid of mucosa and having its circulation intact. A further alternative
is the dartos smooth muscle from the scrotum or labia. Any other suitable muscle may
be employed. In each case, the long axes of the muscle cells are disposed substantially
circumferentially about the sphincter.
[0054] The muscle is generally in the form of a rectangular strip such that the long axes
of the muscle cells are disposed substantially lengthwise along the strip. The muscle
is then disposed substantially fully around the urethra in a generally cylindrical
arrangement such that the long axes of the muscle cells are substantially circumferencially
disposed about the urethra. Preferably, the strip is completely disposed around the
urethra.
[0055] The muscle strip has dimensions 6cm by 2cm and is preferably provided in the range
from 4.5cm to 7.5cm by 1.25cm to 2.25cm.
[0056] The stimulation signal is provided at output 6 of sphincter stimulator 1 is supplied
to sphincter 2 by an electrode implanted into the sphincter at a predetermined location
and an electrical lead 16 being disposed intermediate. As is best illustrated in Fig
6, lead 16 includes three electrodes disposed in a tripolar configuration about sphincter
2 and having means to electrically connect to lead 16. In other embodiments of the
invention, the three electrodes are disposed in a cuff or epimysal configuration about
the sphincter.
[0057] Electrode leads may extend between the pulse generator and the electrodes, allowing
some "slackness" in their length to account for normal body movements.
[0058] As is best illustrated in Figs 5 and 6, the configuration of the electrodes are disposed
in a tripolar configuration. Simple tripolar electrodes are the least expensive alternative,
are relatively easy to implant and can be used to stimulate the transplanted smooth
muscle. Their exposed metallic surfaces usually consist of a cathode aligned between
two anodes.
[0059] In the epimysial configuration, the electrodes are sutured directly onto the surface
of a muscle. These electrodes are implemented when stimulation of a motor nerve trunk
is impractical, however, this is not necessarily always the case.
[0060] In the cuff electrode configurations are employed in alternative embodiments and
are contained within an insulating sheath substantially circumferentially around the
circumference of the transplanted sphincter. They are capable of stimulating the embedded
nerve fibres maximally while keeping the stimulus field local to the transplant.
[0061] In other embodiments of the invention, not illustrated, the sphincter stimulator
includes a second output such that one of the sphincter stimulator outputs provides
a signal to contract the sphincter and the other output provides a stimulation signal
to allow the sphincter to relax or contract to a lesser extent. In this embodiment,
each of the first and second outputs of the sphincter stimulator each include a lead
having three outputs in a tripolar configuration about the sphincter. In yet other
embodiments, the first and second outputs each include a lead having three electrodes
disposed in a cuff or epimysal configuration about the sphincter.
[0062] It will be appreciated that in normal use, only two of the three electrodes will
be used to deliver stimuli. The third electrode is provided as a spare, in the event
that one of the electrodes ceases to function. However, it is contemplated that the
present invention could use a more complicated set of stimuli, or more electrodes.
[0063] Sphincter stimulator 1 includes a replaceable battery power source 17, not illustrated
in Fig 2. In one implementation, battery 17 is in electrical communication with signal
processing unit 4 such that the control signal provided by controller 7 to sphincter
stimulator 1 inductively provides energy to recharge the battery. In another implementation,
in the case of radio frequency transceiving between the and sphincter stimulators,
the signal is provided by modulating the RF signal such that the signal processing
unit extracts the control signal and provides the battery with remaining power from
the RF signal.
[0064] As is best illustrated in Fig 4, RF transceiver 5 of stimulator 1 is communicable
with a third output of processing unit 4 for transmitting sphincter stimulator telemetry
information indicative of one or more the parameters of the sphincter stimulator for
remote detection. The information is transmitted by radio frequency signals, however,
in other embodiments of the invention the sphincter stimulator information is transmitted
by microwave means, optical means or by magnetic energy. The sphincter stimulator
information signal includes information regarding parameters such as stimulation signal-frequency,
current, width and/or shape, and received signal strength and battery status. This
is useful for use in a controller intended for use by physicians.
[0065] A remote sphincter stimulator programming unit 13 is adapted to receive the sphincter
stimulator information provided by receiver 5. The sphincter stimulator programming
unit includes a transceiver 14 for providing a calibration signal to stimulator 1
which, in response, selectively varies one or more of the output properties of stimulator
1. The calibration signal is preferably transmitted in response to receiving the sphincter
stimulator telemetry information. The calibration signal includes coding to selectively
vary the output current, shape, frequency and/or width. Conveniently, the remote sphincter
stimulator programming unit is integrated into the physician controller.
[0066] The preferred embodiments of the invention also provide a method of treating urinary
incontinence in a person including the steps of disposing the implanted smooth muscle
sphincter substantially around a urethra, locating a plurality of electrodes in predetermined
locations in the sphincter and electrically connecting them with an implanted sphincter
stimulator as hereinbefore described.
[0067] The sphincter stimulator is then selectively actuated on receipt of the control signal
to provide the predetermined stimulation signal to either contract the sphincter or
allow it to relax. The method includes providing the stimulation signal to contract
the urethra or allow it to relax from output 6 of sphincter stimulator 1. In other
embodiments of the invention, however, the stimulation signal to contract the sphincter
about the urethra is provided by a separate output of sphincter stimulator 1 to that
which provides a stimulation signal to allow the urethra to relax.
[0068] There is also provided a method of surgically implanting a sphincter stimulator system
as hereinbefore described in a person for treating incontinence, the method including
the steps of implanting the smooth muscle sphincter substantially about the urethra
in a person, implanting the sphincter stimulator in the person proximal to the implanted
sphincter and implanting electrodes into the sphincter at predetermined locations
and electrically connecting the sphincter stimulator with the smooth muscle sphincter.
[0069] Other preferred embodiments provide a stimulus system including circuit means defining
a single channel electrical pulse generator, power supply means, a control circuit
to allow a transplanted sphincter to relax, a separate control circuit to adjust pulse
parameters, two or more stimulus electrodes, and leads connecting the stimulator to
the electrodes.
[0070] The prosthetic sphincter includes a sheath of innervated or reinnervatable muscle
tissue taken from the selected muscle and transplanted around the urethra. In one
embodiment, a segment of distal small intestine, 2-3 cm long, on a vascular pedicle
is isolated and the remaining intestine is rejoined by end to end anastomosis. The
isolated segment is opened along its antimesenteric border and the mucosa is dissected
away.
[0071] The isolated segment is drawn down to the neck of the bladder. It is then taken around
the bladder neck, so that the circular muscle is disposed substantially circumferentially
with respect to the neck, and the cut antimesenteric borders are sewn together to
create a close fit around the neck of the bladder. If necessary, the circumferential
length is reduced to create a close fit. The newly created and vascularised sphincter
is secured in place by sewing it to the superficial connective tissue of the bladder
neck. A stimulating electrode assembly is sewn to the transplanted intestine, with
the axis of the electrode assembly at right angles to the circular muscle, adjacent
to the entry of the vessels from the vascular pedicle. The anchoring ligatures penetrate
the sphincter and are secured to the underlying bladder neck.
[0072] In an alternative embodiment, the sphincter augmentation is made by dissecting the
anococcygeus muscles from their spinal insertions, and drawing the freed muscle around
the bladder neck. The sphincter may also be created from a section of muscular vein,
venous smooth muscle, the terminal ilium and transplanted as a segment devoid of mucosa
and having its circulation intact, or the dartos smooth muscle from the scrotum or
labia.
[0073] The stimulus pulse generator transfers electrical pulses to the electrodes and these
pulses are converted into action potentials in the nerves transplanted with the muscle
sphincter or in the nerves which re-innervate the sphincter after surgery.
[0074] All implanted circuitry is preferably sealed and encased in a biologically inert
material such as a biocompatible silicone material. The metallic electrodes and leads
are preferably of Platinum-Iridium alloy. The connecting wires are preferably insulated
with a silicone coating and lead to an implanted control unit placed between the abdominal
muscle and skin.
[0075] The stimulator is required to maintain continuous tone in the transplanted sphincter
sufficient to hold urine in the bladder without leakage by continuous stimulation.
To release urine, an external control unit using, for example, a radio frequency signal
will turn off the internal unit to halt the stimulation of the sphincter, and is shown
schematically in Fig 3.
[0076] Alternative embodiments of the invention employ microwave or optical means, for example,
in the form of infra-red radiation, to communicate the control signal to the sphincter
stimulator, and the sphincter stimulator includes a corresponding receiver at or near
the skin of the person.
[0077] The person would hold the external device adjacent the skin over the implant (and
push an actuation button) to allow the transplanted sphincter to relax and urine to
flow. After bladder emptying, the patient would then push the button again to resume
sphincteric pressure. As described, if the user forgets to push the button to close
the sphincter, the stimulator could be programmed to resume operation automatically
after a given time.
[0078] The advantages of this system are twofold. Firstly, the patient does not need to
hold the external control unit against their skin for the whole period of bladder
emptying. They simply initiate the process and can then put the unit aside if desired.
The second advantage is that such a system allows the stimulator circuitry to be adjusted
externally.
[0079] In embodiments where the signal is communicated magnetically, a permanent magnet
is placed on the surface of the skin directly over the location of the implanted control
circuit. The circuit is designed to detect the presence of the magnetic field and
shut off the stimulation accordingly. To empty the bladder, therefore, the person
simply places a magnet over the implant for the time period required to empty the
bladder. A small permanent magnet is a convenient item to carry around and requires
no batteries. One disadvantage of such a system is that a magnetic detector needs
to be added to the implanted device and this, in turn, requires more power from the
internal batteries.
[0080] It is envisaged that the requirements of the stimulator may change, both post-operatively
and with alteration of the preserved sphincteric resistance as the person ages. Access
to the implanted device via surgery for the purpose of hardware adjustment is, of
course, undesirable. Therefore, adjustment of the stimulus parameters via an external
radio link to the sphincter stimulator programming unit 13 is a preferred feature
of the system.
[0081] It will be appreciated that various modifications and alterations may be made to
the system described above without departing from the scope of the invention.
1. An implantable sphincter stimulator (1) configured for operatively providing electrical
stimulation to a surgically implanted innervated smooth muscle sphincter so as to
control the flow of a bodily substance therethrough, the stimulator including:
a stimulus generating unit (4) in electrical communication with a receiver (5), the
stimulus generating unit operatively configured to provide a first predetermined electrical
stimulation signal adapted to contract said sphincter, and a second predetermined
signal adapted to allow said sphincter to relax, one of said predetermined signals
being selected in response to a control signal received at the receiver from a remote
controller.
2. A sphincter stimulator according to claim 1 wherein the surgically implanted innervated
smooth muscle sphincter is disposed about the urethra so as to control the flow of
urine therethrough.
3. A sphincter stimulator according to claim 1 or 2 wherein the stimulation signal is
such as to provide a continuous tone in said sphincter.
4. A sphincter stimulator according to any one of the preceding claims wherein the stimulation
signal is pulsatile.
5. A sphincter stimulator according to claim 4 wherein the stimulation signal is generally
rectangular and symmetrical biphasic.
6. A sphincter stimulator according to any one of the preceding claims wherein the control
signal is communicated optically, magnetically, by RF or by microwave.
7. A sphincter stimulator according to any one of the preceding claims wherein the stimulus
generating unit includes a demodulator responsive to the received signal for providing
a modulated signal to a stimulus encoder which in turn provides a signal to a stimulus
driver which provides the stimulation signal at selected ones of the stimulator outputs.
8. A sphincter stimulator according to any one of the preceding claims wherein, after
the sphincter has relaxed, the stimulator includes means to supply the first stimulation
signal at a selected one of its outputs to contract the sphincter when a predetermined
signal to contract the sphincter is not received by the receiver for a predetermined
period.
9. A sphincter stimulator according to any one of the preceding claims including a transmitter
for transmitting sphincter stimulator telemetry information indicative of one or more
parameters of the stimulator for detection remotely.
10. A sphincter stimulator according to claim 9 wherein the telemetry information is transmitted
by the same communications means as the control signal.
11. A sphincter stimulator according to claim 9 or 10 wherein the parameters include one
or more of the stimulation signal frequency, current, width and/or shape, or received
signal strength or battery status.
12. A sphincter stimulator according to any one of claims 9 to 11 wherein the receiver
is configured to accept a remotely generated sphincter stimulator calibration signal
and in response, a signal processing unit selectively varies one or more of the output
properties of the sphincter stimulator.
13. A sphincter stimulator according to claim 12 wherein the calibration signal is transmitted
in response to received sphincter stimulator telemetry information.
14. A sphincter stimulator according to any one of the preceding claims wherein the stimulation
generating unit is operatively connected to the sphincter by one or more electrical
leads, each having one or more electrodes.
15. A sphincter stimulator according to claim 14 wherein the lead includes three electrodes
disposed about the sphincter in a configuration selected from one of the following:
epimysal configuration, cuff configuration, or tripolar configuration.
16. A sphincter stimulator according to anyone of the preceding claims wherein the second
predetermined signal is the absence of a stimulation.
17. A system for use in treating inadequate sphincter function in a person, the system
including:
a portion of innervated smooth muscle tissue configured to define a sphincter and
implanted so as to control the flow of a bodily substance therethrough;
an implanted sphincter stimulator (1) arranged so as to allow electrical stimuli to
be applied to the sphincter; and
a non-implanted controller (7) in communication with the sphincter stimulator for
selectively triggering the generation of predetermined electrical stimulation signals
to respectively contract the sphincter or allow the sphincter to relax.
18. A system according to claim 17 wherein the implanted innervated smooth muscle sphincter
is disposed about the urethra of the person.
19. A system according to claim 17 or 18 wherein the muscle is in the form of a strip.
20. A system according to claim 19 wherein the strip is generally rectangular.
21. A system according to any one of claims 17 to 20 wherein the muscle is disposed substantially
fully around the sphincter in a generally cylindrical arrangement.
22. A system according to claim 21 wherein the long axes of the muscle cells are substantially
circumferentially aligned.
23. A system according to any one of claims 17 to 22 wherein the smooth muscle is taken
from the terminal ileum and transplanted as a segment devoid of mucosa and having
its circulation intact.
24. A system according to any one of claims 17 to 22 wherein the muscle is selected from
the group consisting of venous smooth muscle, anococcygeus smooth muscle, smooth muscle
from the bladder, and dartos muscle taken from the scrotum or labia.
25. A system according to any one of claims 17 to 24 wherein the sphincter stimulator
is in accordance with any one of claims 1 to 16.
26. A system according to any one of claims 17 to 25 wherein the controller includes:
a transmitter;
means for generating a predetermined control signal at the transmitter;
a power source; and
actuation means for selectively generating the control signal such that on receipt
of the signal, the sphincter stimulator provides the stimulation signal at its output
in order to contract the sphincter or allow it to relax.
27. A system according to any one of claims 17 to 26 wherein the controller includes a
receiver for receiving a stimulator information telemetry signal from the sphincter
stimulator.
28. A system according to any one of claims 24 to 27 wherein the control signal is transmitted,
optically, magnetically, by radio waves, or by microwaves.
29. A system according to any one of claims 24 to 28 including a remote sphincter stimulator
programming unit for selectively programming the sphincter stimulator to provide a
predetermined output in response to the control signal.
30. A system according to claim 29 wherein one or more of the stimulation signal current,
shape, frequency and width is variable in response to a calibration signal provided
by the programming unit.
31. A system according to claim 29 or 30 wherein the programming unit includes a transceiver
for providing the programming signal to the stimulator.
32. A system according to any one of claims 29 to 31 wherein the programming unit is the
controller.
33. A system according to any one of claims 17 to 32 wherein the signal to allow the sphincter
to relax is the absence of a stimulation.
1. Implantierbarer Ringmuskelstimulator (1), ausgebildet, um im Betrieb einen chirurgisch
implantierten innervierten Ringmuskel aus glatten Muskelfasern elektrisch zu stimulieren,
um so den Fluss einer Körpersubstanz durch diesen hindurch zu steuern, wobei der Stimulator
einschließt:
eine Stimuluserzeugungseinheit (4) in elektrischer Verbindung mit einem Empfänger
(5), wobei die Stimuluserzeugungseinheit konfiguriert ist, um im Betrieb ein erstes
vorgegebenes elektrisches Stimulationssignal zu liefern, das ausgebildet ist, den
Ringmuskel zu kontrahieren, und ein zweites vorbestimmtes Signal, das ausgebildet
ist, den Ringmuskel sich entspannen zu lassen, wobei jeweils eines der vorbestimmten
Signale in Reaktion auf ein Steuersignal von einem entfernten Steuergerät ausgewählt
wird, welches an dem Empfänger empfangen wird.
2. Ringmuskelstimulator gemäß Anspruch 1, wobei der chirurgisch implantierte innervierte
Ringmuskel aus glatten Muskelfasern um die Urethra herum angeordnet ist, um so den
Fluss von Urin dadurch zu steuern.
3. Ringmuskelstimulator gemäß Anspruch 1 oder 2, bei dem das Stimulationssignal derart
ist, dass es zu einem kontinuierlichen Tonus in dem Ringmuskel führt.
4. Ringmuskelstimulator gemäß einem der vorangehenden Ansprüche, bei dem das Stimulationssignal
gepulst ist.
5. Ringmuskelstimulator gemäß Anspruch 4, bei dem das Stimulationssignal im Wesentlichen
rechtwinklig und symmetrisch biphasisch ist.
6. Ringmuskelstimulator gemäß einem der vorangehenden Ansprüche, wobei das Steuersignal
optisch, magnetisch mit Radiofrequenz oder mit Mikrowellen übertragen wird.
7. Ringmuskelstimulator gemäß einem der vorangehenden Ansprüche, bei dem die Stimuluserzeugungseinheit
einen Demodulator einschließt, der auf ein empfangenes Signal anspricht, um ein moduliertes
Signal an einen Stimulusencoder zu liefern, welcher seinerseits ein Signal an einen
Stimulustreiber liefert, welcher das Stimulationssignal an einen der ausgewählten
der Stimulatorausgänge liefert.
8. Ringmuskelstimulator gemäß einem der vorangehenden Ansprüche, bei dem, nachdem sich
der Ringmuskel entspannt hat, der Stimulator Mittel einschließt, ein erstes Stimulationssignal
an einem ausgewählten seiner Ausgänge zu liefern, um den Ringmuskel zu kontrahieren,
wenn ein vorbestimmtes Signal zum Kontrahieren des Ringmuskels von dem Empfänger nicht
innerhalb einer vorgegebenen Zeitspanne empfangen wird.
9. Ringmuskelstimulator gemäß einem der vorangehenden Ansprüche, wobei der Ringmuskelstimulator
einen Sender zum Senden von Telemetrieinformation des Ringmuskelstimulators einschließt,
die einen oder mehrere Parameter des Stimulators für die Ferndetektion anzeigt.
10. Ringmuskelstimulator gemäß Anspruch 9, bei dem die Telemetrieinformation durch die
selben Kommunikationsmittel übertragen wird wie das Steuersignal.
11. Ringmuskelstimulator gemäß Anspruch 9 oder 10, bei dem die Parameter einen oder mehrere
der folgenden Parameter einschließen: Stimulationssignalfrequenz, Strom, Breite und/oder
Form und/oder Empfangssignalstärke oder Batteriestatus.
12. Ringmuskelstimulator gemäß einem der Ansprüche 9 bis 11, bei dem der Empfänger konfiguriert
ist, ein in der Ferne generiertes Ringmuskelstimulator-Kalibrationssignal entgegenzunehmen
und eine Signalverarbeitungseinheit aufweist, die in Reaktion darauf einen oder mehrere
der Ausgangseigenschaften des Ringmuskelstimulators ausgewählt variiert.
13. Ringmuskelstimulator gemäß Anspruch 12, bei dem das Kalibrationssignal in Antwort
auf empfangene Ringmuskelstimulator-Telemetrieinformation hin ausgesendet wird.
14. Ringmuskelstimulator gemäß einem der vorangehenden Ansprüche, bei dem die Stimulationserzeugungseinheit
mit dem Ringmuskel über eine oder mehrere elektrische Leitungen rückverbunden ist,
von denen jede eine oder mehrere Elektroden aufweist.
15. Ringmuskelstimulator gemäß Anspruch 14, bei dem die Leitung drei Elektroden einschließt,
die an dem Ringmuskel in einer Konfiguration angeordnet sind, die einer der folgenden
entspricht: epimysale Konfiguration, Manschettenkonfiguration oder tripolare Konfiguration.
16. Ringmuskelstimulator gemäß einem der vorangehenden Ansprüche, bei dem das zweite vorbestimmte
Signal die Abwesenheit einer Stimulation ist.
17. System für die Verwendung im Rahmen der Behandlung einer inadäquaten Ringmuskelfunktion
in einer Person, wobei das System einschließt:
einen Abschnitt eines innervierten glatten Muskelgewebes, der so angeordnet ist, dass
er einen Ringmuskel definiert und so implantiert ist, dass er den Fluss einer Körpersubstanz
durch diesen hindurch steuert;
einen implantierten Ringmuskelstimulator (1), der so angeordnet ist, dass er es erlaubt,
elektrische Stimuli an den Ringmuskel abzugeben; und
ein nicht-implantiertes Steuergerät (7), welches mit dem Ringmuskelstimulator zum
selektiven Auslösen der Erzeugung von vorbestimmten elektrischen Stimulationssignalen
verbunden ist, um den Ringmuskel zu kontrahieren bzw. den Ringmuskel entspannen zu
lassen.
18. System gemäß Anspruch 17, bei dem der implantierte innervierte Ringmuskel aus glatten
Muskelzellen um die Urethra einer Person herum angeordnet ist.
19. System gemäß Anspruch 17 oder 18, bei dem der Muskel die Form eines Streifens hat.
20. System gemäß Anspruch 19, bei dem der Streifen im Wesentlichen rechtwinklig ist.
21. System gemäß einem der Ansprüche 17 bis 20, bei dem der Muskel im Wesentlichen vollständig
um den Ringmuskel in einer im Wesentlichen zylindrischen Anordnung angeordnet ist.
22. System gemäß Anspruch 21, bei dem die Längsachsen der Muskelzellen im Wesentlichen
in Umfangsrichtung ausgerichtet sind.
23. System gemäß einem der Ansprüche 17 bis 22, bei dem der glatte Muskel vom Ende des
Ileums genommen ist und als Segment ohne Schleimhaut und mit intaktem Blutkreislauf
transplantiert ist.
24. System nach einem der Ansprüche 17 bis 22, bei dem der Muskel aus einer Gruppe ausgewählt
ist, die aus venösem Glattmuskel, Musculus anococcygeus, Glattmuskel von der Blase
und Dartos-Muskel vom Hodensack oder den Schamlippen besteht.
25. System nach einem der Ansprüche. 17 bis 24, bei dem der Ringmuskelstimulator einem
der Ansprüche 1 bis 16 entspricht.
26. System gemäß einem der Ansprüche 17 bis 25, bei dem das Steuergerät einschließt:
einen Sender;
Mittel zum Generieren eines vorbestimmten Steuersignals bei dem Sender;
eine Energiequelle, und
Betätigungsmittel zum wahlweisen Generieren des Steuersignals, so dass der Ringmuskelstimulator
bei Empfang des Signals an seinem Ausgang das Stimulationssignal liefert, um den Ringmuskel
zu kontrahieren oder ihn entspannen zu lassen.
27. System gemäß einem der Ansprüche 17 bis 26, bei dem das Steuergerät einen Empfänger
zum Empfangen von Stimulatorinformationstelemetriesignalen von dem Ringmuskelstimulator
einschließt.
28. System gemäß einem der Ansprüche 24 bis 27, bei dem das Steuersignal optisch, magnetisch,
mit Radiowellen oder mit Mikrowellen übertragen wird.
29. System gemäß einem der Ansprüche 24 bis 28, das eine entfernte Ringmuskelstimulator-Programmiereinheit
einschließt, um den Ringmuskelstimulator wahlweise so zu programmieren, dass er ein
vorgegebenes Ausgangssignal in Reaktion auf ein Steuersignal liefert.
30. System gemäß Anspruch 29, bei dem der Strom und/oder die Form und/oder die Frequenz
und/oder die Breite des Stimulationssignals in Antwort auf ein von der Programmiereinheit
geliefertes Kalibrationssignal variierbar ist.
31. System gemäß den Ansprüchen 29 oder 30, bei dem die Programmiereinheit einen Sender/Empfänger
zum Liefern eines Programmiersignals an den Stimulator einschließt.
32. System gemäß einem der Ansprüche 29 bis 31, bei dem die Programmiereinheit das Steuergerät
ist.
33. System gemäß einem der Ansprüche 17 bis 32, bei dem das Signal, das den Ringmuskel
sich entspannen lässt, die Abwesenheit einer Stimulation ist.
1. Stimulateur de sphincter implantable (1) configuré pour fournir fonctionnellement
une stimulation électrique à un sphincter en muscle lisse innervé implanté chirurgicalement
de manière à commander l'écoulement d'une substance corporelle à travers ce dernier,
le stimulateur comprenant :
une unité génératrice de stimulus (4) en communication électrique avec un récepteur
(5), l'unité génératrice de stimulus étant configurée fonctionnellement pour fournir
un premier signal de stimulation électrique prédéterminé adapté pour contracter ledit
sphincter et un second signal prédéterminé adapté pour laisser ledit sphincter se
détendre, l'un desdits signaux prédéterminés étant sélectionné en réponse à un signal
de commande reçu au niveau du récepteur en provenance d'un organe de commande distant.
2. Stimulateur de sphincter selon la revendication 1, dans lequel le sphincter en muscle
lisse innervé implanté chirurgicalement est disposé autour de l'urètre de manière
à commander l'écoulement d'urine à travers ce sphincter.
3. Stimulateur de sphincter selon la revendication 1 ou 2, dans lequel le signal de stimulation
est propre à fournir une tonalité continue audit sphincter.
4. Stimulateur de sphincter selon l'une quelconque des revendications précédentes, dans
lequel le signal de stimulation est pulsatoire.
5. Stimulateur de sphincter selon la revendication 4, dans lequel le signal de stimulation
est sensiblement rectangulaire et biphasique symétrique.
6. Stimulateur de sphincter selon l'une quelconque des revendications précédentes, dans
lequel le signal de commande est transmis optiquement, magnétiquement, par RF ou par
micro-onde.
7. Stimulateur de sphincter selon l'une quelconque des revendications précédentes, dans
lequel l'unité génératrice de stimulus comprend un démodulateur qui répond au signal
reçu en fournissant un signal modulé à un encodeur de stimulus qui, à son tour, fournit
un signal à un circuit d'attaque de stimulus qui fournit le signal de stimulation
à certaines sorties sélectionnées du stimulateur.
8. Stimulateur de sphincter selon l'une quelconque des revendications précédentes dans
lequel, après que le sphincter s'est détendu, le stimulateur comprend des moyens pour
fournir le premier signal de stimulation à une sortie sélectionnée parmi ses sorties
pour contracter le sphincter lorsqu'un signal prédéterminé destiné à contracter le
sphincter n'est pas reçu par le récepteur pendant une période prédéterminée.
9. Stimulateur de sphincter selon l'une quelconque des revendications précédentes, comprenant
un émetteur émettant une information de télémétrie du stimulateur de sphincter indicative
d'un ou de plusieurs paramètres du stimulateur pour la détection à distance.
10. Stimulateur de sphincter selon la revendication 9, dans lequel l'information de télémétrie
est transmise par les mêmes moyens de communication que le signal de commande.
11. Stimulateur de sphincter selon la revendication 9 ou 10, dans lequel les paramètres
comprennent un ou plusieurs des suivants : la fréquence, l'intensité, la largeur et/ou
la forme du signal de stimulation, ou la force du signal reçu, ou l'état de la batterie.
12. Stimulateur de sphincter selon l'une quelconque des revendications 9 à 11, dans lequel
le récepteur est configuré pour accepter un signal d'étalonnage du stimulateur de
sphincter généré à distance, cependant qu'en réponse une unité de traitement du signal
modifie sélectivement une ou plusieurs des propriétés de sortie du stimulateur de
sphincter.
13. Stimulateur de sphincter selon la revendication 12, dans lequel le signal d'étalonnage
est émis en réponse à l'information de télémétrie du stimulateur de sphincter reçue.
14. Stimulateur de sphincter selon l'une des revendications précédentes, dans lequel l'unité
génératrice de stimulation est connectée fonctionnellement au sphincter par un ou
plusieurs conducteurs électriques ayant chacun une ou plusieurs électrode(s).
15. Stimulateur de sphincter selon la revendication 14, dans lequel le conducteur comprend
trois électrodes disposées autour du sphincter dans une configuration choisie parmi
l'une des suivantes : configuration épimysale, configuration à manchette ou configuration
tripolaire.
16. Stimulateur de sphincter selon l'une quelconque des revendications précédentes, dans
lequel le second signal prédéterminé est l'absence d'une stimulation.
17. Système destiné à être utilisé dans le traitement d'une fonction sphinctérienne insuffisante
chez une personne, le système comprenant:
une portion d'un tissu musculaire lisse innervé configuré pour définir un sphincter
et implanté de manière à commander l'écoulement d'une substance corporelle à travers
ce dernier ;
un stimulateur de sphincter implanté (1) agencé de manière à permettre d'appliquer
des stimuli électriques au sphincter; et
un organe de commande non implanté (7) en communication avec le simulateur de sphincter
déclenchant sélectivement la génération de signaux de stimulation électrique prédéterminés
pour, respectivement, contracter le sphincter ou laisser le sphincter se détendre.
18. Système selon la revendication 17, dans lequel le sphincter en muscle lisse innervé
implanté est disposé autour de l'urètre de la personne.
19. Système selon la revendication 17 ou 18, dans lequel le muscle a la forme d'une bande.
20. Système selon la revendication 18, dans lequel la bande est de forme générale rectangulaire.
21. Système selon l'une quelconque des revendications 17 à 20, dans lequel le muscle est
disposé sensiblement sur tout le tour du sphincter dans un arrangement de forme générale
cylindrique.
22. Système selon la revendication 21, dans lequel les grands axes des cellules musculaires
sont rangés sensiblement en cercle.
23. Système selon l'une quelconque des revendications 17 à 22, dans lequel le muscle lisse
est pris sur l'iléon terminal et transplanté sous la forme d'un segment dépourvu de
tissus muqueux et dont la circulation est intacte.
24. Système selon l'une quelconque des revendications 17 à 22, dans lequel le muscle est
choisi dans le groupe composé des suivants : muscle lisse veineux, muscle lisse anococcygien,
muscle lisse pris sur la vessie et le dartos pris sur le scrotum ou les lèvres.
25. Système selon l'une quelconque des revendications 17 à 24, dans lequel le stimulateur
de sphincter est conforme à l'une quelconque des revendications 1 à 16 ;
26. Système selon l'une quelconque des revendications 17 à 25, dans lequel l'organe de
commande comprend :
un émetteur,
des moyens de génération d'un signal de commande prédéterminé au niveau de l'émetteur
;
une source d'énergie ; et
des moyens d'actionnement générant sélectivement le signal de commande de telle manière
qu'à la réception du signal, le stimulateur de sphincter fournisse le signal de stimulation
à sa sortie afin de contracter le sphincter ou de le laisser se détendre.
27. Système selon l'une quelconque des revendications 17 à 26, dans lequel l'organe de
commande comprend un récepteur recevant un signal de télémétrie d'information du stimulateur
provenant du simulateur de sphincter.
28. Système selon l'une quelconque des revendications 24 à 27, dans lequel le signal de
commande est transmis optiquement, magnétiquement, par ondes radio ou par micro-ondes.
29. Système selon l'une quelconque des revendications 24 à 28, comprenant une unité de
programmation de stimulateur de sphincter distante programmant sélectivement le simulateur
de sphincter pour fournir une sortie prédéterminée en réponse au signal de commande.
30. Système selon la revendication 29, dans lequel l'intensité, et/ou la forme, et/ou
la fréquence et/ou la largeur du signal de stimulation est ou sont variables isolément
ou simultanément en réponse à un signal d'étalonnage fourni par l'unité de programmation.
31. Système selon la revendication 29 ou 30, dans lequel l'unité de programmation comprend
un émetteur récepteur fournissant le signal de programmation au stimulateur.
32. Système selon l'une quelconque des revendications 29 à 31, dans lequel l'unité de
programmation est l'organe de commande.
33. Système selon l'une quelconque des revendications 17 à 32, dans lequel le signal pour
laisser le sphincter se détendre est l'absence de stimulation.