

Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 210 987 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:05.06.2002 Patentblatt 2002/23

(51) Int CI.7: **B07B 1/24**

(21) Anmeldenummer: 01128216.7

(22) Anmeldetag: 28.11.2001

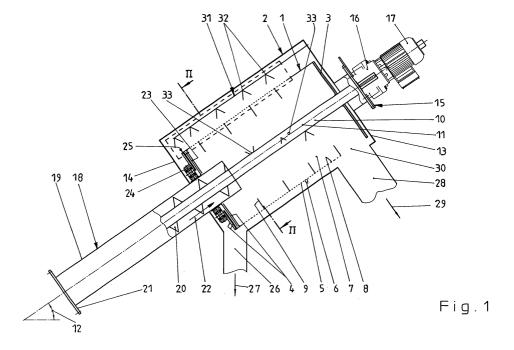
(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(30) Priorität: 04.12.2000 DE 10060173

(71) Anmelder: Hans Huber AG Maschinen- und Anlagenbau
D-92334 Berching (DE)


(72) Erfinder: Branner, Wolfgang 92334 Berching (DE)

(74) Vertreter: Patentanwälte Rehberg + Hüppe Postfach 31 62 37021 Göttingen (DE)

(54) Vorrichtung zum Aufbereiten eines Sandgemisches in eine Fein- und eine Grobfraktion

(57) Eine Vorrichtung zum Aufbereiten eines Sandgemisches in mindestens eine Fein- und eine Grobfraktion ist mit einer über einen Motor (17) angetriebenen Siebtrommel (1) versehen, die eine obere und eine untere Stirnwand (3, 4) sowie eine zylindermantelförmige Siebwandung (5) mit Durchbrechungen (6) zum Durchtritt der Feinfraktion aufweist und mit insbesondere schräg aufwärts gerichteter Achse (11) angeordnet ist. Die Grobfraktion tritt am oberen Ende der Siebtrommel (1) aus. Die Siebtrommel (1) ist von einer Antriebswelle (10) durchsetzt, mit der die Siebwandung (5) der Sieb-

trommel (1) in ihrem oberen Bereich drehfest verbunden ist. Die Antriebswelle (10) steht entgegen der Förderrichtung (22) des Sandgemisches durch die Siebtrommel gegenüber der Siebtrommel vor und ist Bestandteil einer vorgeschalteten Schneckenfördereinrichtung (18) mit stillstehend angeordnetem Gehäuse (19) und auf der Antriebswelle (10) angeordneter Förderwendel (20). Die untere Stirnwand (4) der Siebtrommel ist auf dem Gehäuse (19) der Schneckenfördereinrichtung (18) drehbar gelagert. Auf der Innenseite (8) der Siebwandung (5) ist mindestens ein gewindeartig angeordnetes Leitblech (9) vorgesehen.

Beschreibung

[0001] Die Erfindung betrifft eine Vorrichtung zum Aufbereiten eines Sandgemisches. Das Sandgemisch wird mindestens in zwei Fraktionen, insbesondere in eine Fein- und eine Grobfraktion, aufgeteilt. Über einen Motor wird eine Siebtrommel angetriebenen. Die Siebtrommel weist eine obere und eine untere Stirnwand sowie eine zylindermantelförmige Siebwandung mit Durchbrechungen zum Durchtritt der Feinfraktion auf. Die Vorrichtung und damit auch die Siebtrommel ist mit schräg aufwärts gerichteter Achse angeordnet, so daß das Sandgemisch schräg aufwärts in die Siebtrommel eintritt. Die Feinfraktion tritt durch die Durchbrechungen in der Siebwandung hindurch, während die Grobfraktion am oberen Ende der Siebtrommel austritt. Der Siebtrommel wird als Sandgemisch insbesondere Kanalsand, Straßenkehricht und/oder Kläranlagensand zugeführt.

[0002] Eine Vorrichtung der eingangs beschriebenen Art ist aus der Werbeschrift der Anmelderin "Sandaufbereitung mit System", RoSF, 8.1997, bekannt. Das Sandgemisch, welches in seiner Zusammensetzung auch wechseln kann, wird in eine Fein- und eine Grobfraktion aufgeteilt. In der Grobfraktion werden Grobstoffe mit einem Durchmesser > 10 mm abgetrennt. Die Vorrichtung besteht im wesentlichen aus einer Trommel mit relativ großem Durchmesser, die eine zylindermantelförmige Siebwandung mit Durchbrechungen für den Durchtritt der Feinfraktion aufweist. Die Achse der Siebtrommel ist schräg geneigt angeordnet, wobei sich das Aufgabeende für das Sandgemisch tiefer befindet als das Abgabeende. Die Siebtrommel besitzt eine obere und eine untere Stirnwand. Beide Stirnwände sind zumindest teilweise offen gestaltet. Im Bereich der Mitte der unteren Stirnwand wird das Sandgemisch aufgegegeben, welches in der Siebtrommel vorgewaschen und homogenisiert wird. Die Grobfraktion tritt im oberen Endbereich der Siebtrommel aus. Diese Vorrichtung wird am Beginn einer Anlage eingesetzt, um die Aufteilung des Sandgemisches in eine Grobfraktion und eine Feinfraktion durchzuführen. Die Feinfraktion wird in einer Sandwaschanlage weiter behandelt, in welcher die organischen Stoffe vom mineralischen Anteil abgetrennt werden. Die Siebtrommel der Vorrichtung ist auf Rollen drehbar gelagert. Die Siebtrommel ist auf ihrer Außenseite mit einem Zahnkranz versehen. Über eine dort eingreifende Kette und vermittels eines Motors wird die Siebtrommel in Drehung versetzt.

[0003] Die Aufgabe des Sandgemisches bereitet bei dieser bekannten Vorrichtung Schwierigkeiten. Die Beschickung erfolgt vermehrt in flüssiger Form über eine Rohrleitung und mittels einer Pumpe. Die Rohrleitung endet in der mittigen Öffnung der unteren Stirnwand der Siebtrommel. Es kommt jedoch auch vor, daß Straßenkehricht, Kanalspülsand und andere Sandgemische in Bunker oder tiefgelegene Schächte abgelassen werden, aus denen sie dann der Siebtrommel zugeführt

werden müssen.

[0004] Aus der EP 0 163 158 A2 ist eine Vorrichtung zum Entfernen von Rechen- und/oder Siebgut aus in einem Gerinne strömender Flüssigkeit bekannt. Die Vorrichtung weist einen schräg in das Gerinne eingestellten, teilweise in die Flüssigkeit eingetauchten zylindermantelförmigen Siebrost auf. Der Siebrost besitzt in seinem oberen Bereich eine geschlossene Stirnwand. Eine im unteren Bereich anströmseitig vorgesehene Stirnwand ist zumindest teilweise offen gestaltet. Diesem zylindermantelförmigen Siebrost ist eine Schneckenfördereinrichtung mit einer angetriebenen Förderschnecke und einem stillstehend angeordneten Gehäuse nachgeschaltet, mit der das Rechen- und/oder Siebgut schräg aufwärts weiter gefördert wird. Die Schneckenfördereinrichtung besitzt an ihrem unteren Ende einen Einwurftrichter. Die Antriebswelle der Förderschnecke der Schneckenfördereinrichtung reicht bis in den Siebrost hinein und endet in einem Antriebsarm, der seinerseits mit dem Siebrost verbunden ist. Der Siebrost ist mit seiner im oberen Bereich vorgesehenen Stirnwand auf dem Gehäuse der Schneckenfördereinrichtung drehbar gelagert. Auf der Innenseite des Siebrostes sind Leitbleche vorgesehen. Auf der Außenseite des Siebrostes ist eine ortsfeste Ablöseeinrichtung vorgesehen, um das an der Innenseite des Siebrostes haftende Rechenoder Siebgut abzulösen und in den Einwurftrichter der Schneckenfördereinrichtung abzuwerfen. Zum Aufteilen von Sandgemischen in zwei Fraktionen ist diese Vorrichtung nicht geeignet.

[0005] Der Erfindung liegt die Aufgabe zugrunde, ausgehend von der oben geschilderten Problematik eine Vorrichtung zum Aufbereiten eines Sandgemisches in mindestens eine Fein- und eine Grobfraktion derart weiterzubilden, daß mit ihr das Sandgemisch auch aus einem Schacht oder einer sonstigen tiefergelegenen Stelle in einfacher Weise entnommen und in mindestens zwei Fraktionen aufgeteilt werden kann.

[0006] Erfindungsgemäß wird dies bei einer Vorrichtung der eingangs beschriebenen Art dadurch erreicht, daß die Siebtrommel von einer Antriebswelle durchsetzt ist, mit der die Siebwandung der Siebtrommel in ihrem oberen Bereich drehfest verbunden ist, daß die Antriebswelle entgegen der Förderrichtung des Sandgemisches durch die Siebtrommel gegenüber der Siebtrommel vorsteht und Bestandteil einer vorgeschalteten Schneckenfördereinrichtung mit stillstehend angeordnetem Gehäuse und auf der Antriebswelle angeordneter Förderwendel ist, daß die untere Stirnwand der Siebtrommel auf dem Gehäuse der Schneckenfördereinrichtung drehbar gelagert ist, und daß auf der Innenseite der Siebwandung mindestens ein gewindeartig angeordnetes Leitblech vorgesehen ist.

[0007] Die Siebtrommel wird auf ihrer ganzen Länge von einer Antriebswelle durchsetzt. Auf das obere Ende der Antriebswelle ist ein Motor, in der Regel unter Zwischenschaltung eines Untersetzungsgetriebes, aufgesetzt, mit dem die Antriebswelle angetrieben wird. Die

obere Stirnwand der Siebtrommel ist mit der Antriebswelle drehfest verbunden, wobei die obere Stirnwand geschlossen oder teilweise geöffnet ausgebildet sein kann. Auch durch eine Anordnung von Armen kann man erreichen, daß der Drehantrieb von der Antriebswelle auf die Siebtrommel und damit letztendlich auch auf deren Siebwandung übertragen werden kann. Der Siebtrommel ist darüber hinaus eine Schneckenfördereinrichtung vorgeschaltet, wobei die Antriebswelle für die Siebtrommel zugleich auch als Antriebswelle der Schneckenfördereinrichtung dient. Zu diesem Zweck ragt die Antriebswelle über die vordere untere Stirnwand der Siebtrommel überstehend hinaus und ist in diesem Bereich mit der Förderwendel versehen. Die Förderwendel ist ihrerseits von einem stillstehenden Gehäuse der Schneckenfördereinrichtung umgeben. Auf diese Weise ist nur ein Antriebsmotor für die Siebtrommel und die Förderwendel der Schneckenfördereinrichtung erforderlich. Infolge der Durchmesserunterschiede zwischen der Siebtrommel und dem Gehäuse der Schneckenfördereinrichtung besteht in einfacher Weise die Möglichkeit, die untere Stirnwand der Siebtrommel auf dem Gehäuse der Schneckenfördereinrichtung drehbar zu lagern. Damit ist zugleich sichergestellt, daß das obere Ende der Schneckenfördereinrichtung mit ihrem stillstehenden Gehäuse um ein gewisses Maß in den Innenraum der Siebtrommel übersteht, so daß das Sandgemisch einfach und sicher in die Siebtrommel geleitet werden kann. Das Gehäuse der Schneckenfördereinrichtung ist an seinem unteren Ende offen gestaltet. Es kann in einen Flansch übergehen, an den eine Rohrleitung anschließbar ist. Dies ist insbesondere dann der Fall, wenn das Sandgemisch weitgehend flüssig aufgegeben wird.

[0008] Die neue Vorrichtung gestattet es in einfacher Weise, Sande auch aus tiefergelegenen Schächten oder Bunkern zu entnehmen und schräg aufwärts bis an eine solche Höhe zu fördern, daß die gebildeten Fraktionen ihrerseits leicht entnommen und einer Weiterverarbeitung zugeführt werden können. Trotzdem ist die Vorrichtung relativ einfach aufgebaut und verfügt nur über einen einzigen Antrieb, der zudem noch geschützt am oberen Ende untergebracht ist, ohne mit dem Sandgemisch oder der Flüssigkeit in Berührung zu kommen. Das auf der Innenseite der Siebtrommel angeordnete Leitblech, welches auch mehrgängig ausgebildet oder aus bereichsweise angeordneten Teilen zusammengesetzt sein kann, übt auf das Sandgemisch eine schräg aufwärts gerichtete Förderwirkung aus, wobei die Bestandteile des Sandgemisches in eine abrollende Bewegung gegenüber der Innenseite der Siebwandung versetzt werden. Durch diese Rollbewegung wird zusammenhaftendes Gut aufgebrochen, wodurch die Aufteilung in die beiden Fraktionen begünstigt wird. Das Sandgemisch wird auch teilweise, je nach der Geschwindigkeit, mit der die Siebtrommel angetrieben wird, von der Siebtrommel und/oder dem Leitblech mitgenommen und begrenzt aufwärts geführt, von wo es

dann wieder im Innenraum der Siebtrommel aufgrund der Schwerkrafteinwirkung abwärts fällt. Damit ist eine entsprechende Aufbrech- und Reinigungswirkung verbunden. Die Feinfraktion und vorhandene Flüssigkeit treten durch die Durchbrechungen in der Siebwandung hindurch und werden gemeinsam abgeführt. Lediglich die Grobfraktion, bestehend aus Grobstoffen, die eine bestimmte Größenordnung überschreiten, werden weiter aufwärts gefördert und getrennt von der Feinfraktion abgezogen. Ein weiterer Vorteil besteht darin, daß sich die Schräglage der Achse der Antriebswelle, mit der die Vorrichtung angeordnet ist, leicht verändern und den Anwendungsbedürfnissen anpassen läßt. Die Vorrichtung läßt sich auch mit horizontal ausgerichteter Achse aufstellen und betreiben. Auch dabei wird das Sandgemisch sicher in den Innenraum der Siebtrommel eingebracht. Die gewindeartig angeordneten Leitbleche üben eine Förderfunktion auf das Sandgemisch und die sich bildenden Fraktionen aus. Unterschiedliche Anstellwinkel verändern die Wirkungsweise der Vorrichtung nicht. [0009] Die Siebtrommel weist vorteilhaft einen wesentlich größeren Durchmesser als die Schneckenfördereinrichtung auf. Damit ist es einerseits möglich, eine relativ große Fläche der Siebwandung zur Verfügung zu stellen und andererseits die vorgeschaltete Schneckenfördereinrichtung in ihrem Durchmesser klein zu halten, also den dafür erforderlichen Aufwand zu reduzieren. Gleichzeitig ergibt sich die Möglichkeit, das Gehäuse der Schneckenfördereinrichtung als Lager für die untere Stirnwand der Siebtrommel auszubilden. Dabei wird gleichsam automatisch das Einbringen des Sandgemisches in den Innenraum der Siebtrommel erreicht.

[0010] Die Siebtrommel ist von einem stillstehend angeordneten Gehäuse umgeben, das im unteren Bereich einen Abfuhrstutzen für die Feinfraktion und im oberen Bereich einen Abfuhrstutzen für die Grobfraktion aufweist. Damit ist nicht nur die Siebtrommel gefahrlos untergebracht, sondern der Zwischenraum zwischen Siebtrommel und Gehäuse kann zur Bildung mindestens der einen Fraktion genutzt werden. Außerdem ermöglicht die Anordnung des Gehäuses die Unterbringung weiterer Elemente, beispielsweise einer oder mehrerer Spritzwasserleisten, die mit Düsen besetzt sein können.

[0011] Das stillstehend angeordnete Gehäuse umgibt die Siebtrommel mit Abstand und in exzentrischer Anordnung. Im oberen Bereich ist zwischen dem Gehäuse und der Siebtrommel eine Spritzwasserleiste zum Ablösen von Sandgemisch von der Innenseite der Siebtrommel vorgesehen. Die Spritzwasserleiste ist an eine Spritzwasserzufuhr angeschlossen, so daß von der Außenseite der Siebtrommel Spritzwasser aufgespritzt wird, welches auf der Innenseite der Siebtrommel anhaftendes Gut ablöst und dabei zumindest teilweise selbst in den Innenraum der Siebtrommel übertritt, so daß das Spritzwasser zugleich als Waschwasser für das Sandgemisch dient. Im unteren Bereich der Siebtrommel tritt dieses Waschwasser durch die Durchbrechun-

20

gen in der Siebwandung hindurch und wird zusammen mit der Feinfraktion abgezogen.

[0012] Die Siebtrommel kann mindestens einen radial angeordneten Auslaß für den Durchtritt der Grobfraktion aufweisen. Der radial angeordnete Auslaß ist also im Bereich der zylindermantelförmigen Siebwand vorgesehen. Da somit ein solcher Auslaß auch umlaufend angetrieben wird, wird die Grobfraktion schubweise abgegeben. Dies hat den Vorteil, daß die obere Stirnwand der Siebtrommel sowie die stillstehende Gehäusestirnwand durchgehend ausgebildet sein können.

[0013] Die Antriebswelle kann zumindest auf einem Teil ihrer Länge hohl ausgebildet sein, im Bereich der Siebtrommel mit radialen Bohrungen versehen und an eine Spritzwasserzufuhr angeschlossen sein. Damit ist eine einfache Möglichkeit aufgezeigt, auch von innen her Spritzwasser auf das Sandgemisch aufzubringen und den Abspül- und Waschprozeß so zu begünstigen bzw. zu intensivieren.

[0014] An der unteren Stirnwand der Siebtrommel können mehrere, über den Umfang verteilt angeordnete Rollen vorgesehen sein, die auf dem Gehäuse der Schneckenfördereinrichtung abrollen. Damit wird die Lagerung der Siebtrommel in ihrem unteren Bereich besonders einfach und kostengünstig realisierbar. Zugleich ergibt sich die Möglichkeit, die Siebtrommel in diesem Bereich weitgehend zu schließen, so daß sich in der Siebtrommel eine gewisse Füllhöhe ausbilden kann, die freilich die Anordnung der Rollen nicht erreicht.

[0015] Die obere Stirnwand der Siebtrommel kann eine erste Öffnung und das stillstehend angeordnete Gehäuse im Bereich einer Gehäusestirnwand eine zweite Öffnung aufweisen, durch die Grobfraktion axial austritt. Damit ist also ein axialer Austritt verwirklicht, und die Siebwandung wird auf ihrer vollen axialen Länge für die Aufteilung des Sandgemisches in die Feinund in die Grobfraktion genutzt.

[0016] Die Siebwandung der Siebtrommel weist vorteilhaft kreisförmige Durchbrechungen mit einem Durchmesser von 10 mm auf. Diese Festlegung der Korngrößen der beiden Fraktionen ist sinnvoll, wenn die Feinfraktion in einer Sandwaschanlage unter Anwendung eines Sandwirbelbettes weiter gereinigt und aufbereitet werden soll. Auf diese Art und Weise wird eine Grobfraktion von der Sandwirbelschicht ferngehalten. Es ist aber leicht vorstellbar, daß die Durchbrechungen in der Siebwandung der Siebtrommel auch mit anderen Dimensionen gewählt werden können, um gegebenenfalls eine andere anwendungsspezifische Aufteilung zu erhalten. Es ist auch möglich, die Siebwandung der Siebtrommel bereichsweise mit unterschiedlich dimensionierten Durchbrechungen zu versehen, um auf diese Art und Weise z. B. eine Aufteilung des Sandgemisches in drei oder auch mehr Fraktionen zu erzielen.

[0017] Die untere Stirnwand der Siebtrommel kann zweckmäßig mit einer Labyrinthdichtung weitgehend geschlossen ausgebildet sein. Eine solche Labyrinth-

dichtung ermöglicht einen höheren Füllungsgrad der Siebtrommel, der für manche Anwendungsfälle sinnvoll ist.

[0018] Die Erfindung wird anhand bevorzugter Ausführungsbeispiele weiter erläutert und beschrieben. Es zeigen:

- Fig. 1 einen schematisierten Vertikalschnitt durch die Vorrichtung in einer ersten Ausführungsform,
- Fig. 2 einen Schnitt gemäß der Linie II-II in Fig. 1,
- Fig. 3 einen schematisierten Vertikalschnitt durch eine zweite Ausführungsform der Vorrichtung,
- Fig. 4 einen Schnitt gemäß der Linie IV-IV in Fig. 3,
- Fig. 5 eine schematische Darstellung einer Seitenansicht einer weiteren Ausführungsform der Vorrichtung, und
- Fig. 6 eine vergrößerte Detaildarstellung eines Ausschnittes der Antriebswelle.

[0019] Die in Fig. 1 dargestellte Vorrichtung zum Aufbereiten eines Sandgemisches weist als wesentliches Element eine angetriebene Siebtrommel 1 auf. Die Siebtrommel 1 ist in einem stillstehend angeordneten Gehäuse 2 untergebracht. Die Siebtrommel 1 weist eine obere Stirnwand 3 und eine untere Stirnwand 4 auf. Die untere Stirnwand 4 ist mehrteilig ausgebildet. Zwischen den beiden Stirnwänden 3 und 4 erstreckt sich eine zylindrische Siebwandung 5, die über ihre axiale Länge sowie über den Umfang verteilt Durchbrechungen 6 aufweist. Die Durchbrechungen 6 sind in der Regel als kreisrunde Bohrungen ausgebildet, können aber auch eine andere Gestaltung aufweisen. Die Durchbrechungen 6 in der Siebwandung 5 weisen untereinander eine gleiche Gestalt und Dimensionierung auf, wenn das Sandgemisch lediglich in eine Feinfraktion und eine Grobfraktion unterteilt werden soll. Die Siebtrommel 1 umschließt mit ihren beiden Stirnwänden 3 und 4 sowie der Siebwandung 5 einen Innenraum 7. Auf der Innenseite 8 der Siebwandung 5 sind ein oder mehrere Leitbleche 9 befestigt. Die Leitbleche 9 sind gewindeartig ausgebildet und erstrecken sich entsprechend über den inneren Umfang der Siebwandung 5. Sie reichen nach innen bis zu einer gewissen Tiefe in den Innenraum 7 ein. Die Leitbleche 9 dienen der Förderung und Bearbeitung des Sandgemisches.

[0020] Die Siebtrommel 1 und das sie umgebende Gehäuse 2 sind von einer Antriebswelle 10 durchsetzt. Die Antriebswelle 10 reicht an beiden Enden über das Gehäuse 2 hinaus. Die Antriebswelle 10 besitzt eine Achse 11, die zugleich die Achse der gesamten Vorrichtung bildet. Die Vorrichtung und damit insbesondere die Siebtrommel 1 ist hier mit ihrer Achse 11 in einem Win-

kel 12 von z. B. 35° schrägstehend angeordnet bzw. eingebaut. Die obere Stirnwand 3 der Siebtrommel 1 ist hier als durchgehende geschlossene Scheibe ausgebildet. Die obere Stirnwand 3 ist mit der Antriebswelle 10 drehfest verbunden, beispielsweise verschweißt, so daß die Siebtrommel 1 auf diese Weise über die Antriebswelle 10 angetrieben wird. Das stillstehend angeordnete Gehäuse 2 weist eine obere Gehäusestirnwand 13 und eine untere Gehäusestirnwand 14 auf. Auf der oberen Gehäusestirnwand 13 baut ein Lager 15 für ein Untersetzungsgetriebe 16 und einen Motor 17 auf. Es besteht eine drehfeste Verbindung zu der Antriebswelle 10, so daß auf diese Weise die Siebtrommel 1 rotierend angetrieben wird.

[0021] Die Antriebswelle 10 erstreckt sich aber auch über die untere Gehäusestirnwand 14 hinaus und steht dort beträchtlich über. Es ist hier eine Schneckenfördereinrichtung 18 gebildet und vorgesehen, die ein rohrartiges stillstehend angeordnetes Gehäuse 19 aufweist, welches die untere Gehäusestirnwand 14 durchsetzt und trägt. Das Gehäuse 19 reicht relativ weit in den Innenraum 7 der Siebtrommel 1 ein. Die Antriebswelle 10 durchsetzt auch das Gehäuse 19 und trägt in dessen Bereich eine Förderwendel 20. Das Gehäuse 19 besitzt an seinem unteren Ende einen Flansch 21, mit dem die Vorrichtung an eine Rohrleitung, einen Behälter o. dgl. anschließbar ist. Im Bereich des Flansches 21 endet auch die Antriebswelle 10 mit ihrer Förderwendel 20. Auf diese Weise wird über die gemeinsame Antriebswelle 10 nicht nur die Siebtrommel 1, sondern auch die Schneckenfördereinrichtung 18 über einen einzigen Motor 17 angetrieben. Die Schneckenfördereinrichtung 18 gibt eine Förderrichtung 22 vor, mit der das Sandgemisch schräg aufwärts gefördert und so der Siebtrommel 1 zugeleitet wird.

[0022] Der unteren Stirnwand 4 der Siebtrommel 1 ist eine Trennscheibe 23 zugeordnet, die stillstehend von dem Gehäuse 19 der Schneckenfördereinrichtung 18 getragen wird, während die mehrteilige untere Stirnwand 4 als Bestandteil der Siebtrommel 1 umläuft. Die untere Stirnwand 4 und damit die Siebtrommel 1 ist auf Rollen 24 abgestützt, die entweder direkt auf dem Gehäuse 19 oder auf einem Laufkranz abrollen. Auf diese Weise ist das untere Ende der Siebtrommel 1 auf dem Gehäuse 19 der Schneckenfördereinrichtung 18 gelagert. Die untere Stirnwand 4 bildet zusammen mit der Trennscheibe 23 eine Labyrinthdichtung 25, die den Durchtritt von Sanden an dieser Stelle verhindert.

[0023] Das stillstehend angeordnete Gehäuse 2 umgibt die drehbar gelagerte Siebtrommel 1 über den Umfang vollständig. Es kann eine exzentrische Anordnung zueinander gewählt sein, wie dies aus Fig. 1 hervorgeht. Das Gehäuse 2 weist in seinem unteren Bereich unten und im Anschluß an die untere Gehäusestirnwand 14 einen Abfuhrstutzen 26 auf, die zur Abfuhr der aus dem Sandgemisch gebildeten Feinfraktion gemäß Pfeil 27 dient. Im oberen Bereich weist das Gehäuse 2 im Anschluß oder in der Nähe der oberen Gehäusestirnwand

13 einen zweiten Abfuhrstutzen 28 auf, der der Abfuhr der Grobfraktion dient. Die Feinfraktion umfaßt die Bestandteile des Sandgemisches, die durch die Durchbrechungen 6 in der Siebwandung 5 hindurchtreten können. Die Grobfraktion wird von den Bestandteilen gebildet, die größer als die Durchbrechungen 6 sind. Damit die Grobfraktion von dem Innenraum 7 der Siebtrommel 1 in den zweiten Abfuhrstutzen 28 übertreten kann, besitzt die Siebwandung 5 an ihrem oberen Ende eine oder mehrere Öffnungen 30.

[0024] Zwischen Siebtrommel 1 und Gehäuse 2 ist eine Spritzwasserleiste 31 ortsfest vorgesehen. Die Spritzwasserleiste 31 erstreckt sich im wesentlichen über die axiale Länge der Siebtrommel 1 bzw. der Siebwandung 5. Die Spritzwasserleiste 31 ist oben über der Siebtrommel 1 angeordnet und kann sich auch in einer Ausbildung mit mehreren Spritzwasserleisten 31 über einen gewissen Bereich des Umfangs erstrecken. Jede Spritzwasserleiste 31 besitzt Düsen 32, die auf die Außenseite der Siebwandung 5 gerichtet angeordnet sind. Die Spritzwasserleiste 31 ist an eine Wasserzufuhr angeschlossen, die die stillstehende obere Gehäusestirnwand 13 des Gehäuses 2 durchsetzt. Damit ist es möglich, von außen Spritzwasser auf die sich drehende Siebtrommel 1 zu spritzen und an der Innenseite 8 der Siebwandung 5 haftende und die Durchbrechungen 6 möglicherweise teilweise verstopfenden Sandbestandteile mit den an ihnen haftenden Verunreinigungen von der Siebwandung 5 zu lösen, so daß diese in dem Innenraum 7 herabfallen. Dadurch tritt einerseits eine Zerkleinerungswirkung bzw. eine Trennwirkung zwischen den Sandbestandteilen und anhaftenden Verunreinigungen ein. Andererseits werden so zusammenhaftende Sandklumpen aufgelöst und immer wieder um eine gewisse Strecke rückwärts in die Siebtrommel 1 abgeworfen, wodurch die Verweilzeit der Bestandteile des Sandgemisches vorteilhaft und bewußt erhöht wird. Dies wirkt sich auch auf die Reinigungswirkung für den Sand günstig aus.

[0025] Die Antriebswelle 10 kann sich auch durch den Motor 17 hindurch erstrecken und mit ihrem oberen Ende an eine Spritzwasserzufuhr angeschlossen sein. Zur Einleitung des Spritzwassers in den Innenraum 7 der Siebtrommel 1 ist die Antriebswelle 10 auf einem entsprechenden axialen Bereich hohl ausgebildet (Fig. 6). Es sind hier über die den Innenraum 7 der Siebtrommel 1 durchsetzende axiale Länge der Antriebswelle 10 sowie ggf. über den Umfang verteilt Bohrungen 33 vorgesehen, durch die Spritzwasser von innen auf die Innenseite 8 der Siebwandung 5, auf die Leitbleche 9 und auf die sich in der Siebtrommel 1 befindenden Sandbestandteile gespritzt wird. Auch hierdurch wird die Reinigungswirkung auf den Sand begünstigt.

[0026] Die Vorrichtung arbeitet wie folgt. Mit der Schneckenfördereinrichtung 18 wird das in der Regel verunreinigte Sandgemisch auch aus tiefer gelegenen Stellen, z. B. aus einem Schacht, einem Behälter o. dgl., aufgenommen und in Förderrichtung 22 schräg auf-

wärts gefördert. Am oberen Ende des Gehäuses 19 wird das Sandgemisch in den Innenraum 7 der rotierend angetriebenen Siebtrommel 1 abgeworfen. Das Sandgemisch fällt in den jeweils sich unten befindlichen Bereich der Siebtrommel 1 und wird durch die Drehung der Siebtrommel 1 von der Siebwandung 5 über den Umfang mitgenommen und eine gewisse Strecke aufwärts transportiert. Von dort fällt es entweder wieder herab oder haftet an der Innenseite 8 der Siebwandung 5. Auch die Leitbleche 9 erfüllen eine Umwälz- und Förderfunktion auf das Sandgemisch. Wenn die Durchbrechungen 6 in der Siebwandung 5 beispielsweise als Bohrungen mit einem Durchmesser von 10 mm ausgebildet sind, fallen Sandbestandteile, die diese Grenze unterschreiten, durch die Durchbrechungen 6 hindurch. Sie rutschen an der Wandung des Gehäuses 2 nach unten und gelangen über den ersten Abfuhrstutzen 26 als gereinigte Feinfraktion aus der Vorrichtung heraus. Die Grobfraktion kann nicht durch die Durchbrechungen 6 hindurchtreten, sondern wird aufwärts gefördert. Sie tritt letztendlich durch die Öffnung 30 in den zweiten Abfuhrstutzen 28 über und wird gemäß Pfeil 29 abgeführt. Das Aufbrechen von Sandklumpen und das Reinigen der Sandkörner wird nicht nur durch das mechanische Reiben, Umwälzen und Herabfallen von der Innenseite 8 der Siebwandung 5 bewirkt, sondern wesentlich von der Spritzwasserleiste 31 unterstützt. Zusätzlich kann die Reinigungswirkung noch durch Einleitung von Spritzwasser von innen über die hohle Antriebswelle 10 weiter unterstützt werden. In vielen Fällen ist dies jedoch nicht erforderlich. Das von dem verunreinigten Sandgemisch mit eingeschleppte Wasser und das Spritzwasser gelangt über die Durchbrechungen 6 ebenfalls in den Abfuhrstutzen 26 und wird mit der Feinfraktion zusammen ausgetragen. Die Feinfraktion kann einer Sandwaschanlage zugeführt werden, in der eine weitere Abreinigung der Feinfraktion erfolgt. Die Sandwaschanlage kann ihre Wirkung verbessert erbringen, weil die Grobfraktion nicht in diese nachgeschaltete Sandwaschanlage mit eingeschleppt wird.

[0027] Fig. 2 zeigt einen Querschnitt gemäß der Linie II-II in Fig. 1. Hieraus ist die exzentrische Anordnung zwischen Siebwandung 5 und Gehäuse 2 erkennbar. Auch die Anordnung der Spritzwasserleiste 31 ist ersichtlich. Das Gehäuse 2 kann mit einem Inspektionsdeckel 34 versehen sein.

[0028] Fig. 3 zeigt eine weitere Ausführungsform der Vorrichtung. Im Vergleich zu Fig. 1 ist erkennbar, daß die Vorrichtung mit ihrer Achse 11 hier in einem anderen Winkel angestellt ist. Der Winkel 12 kann hier 25° betragen. Es ist aber auch leicht vorstellbar, daß die Schräglage der Achse 11 verändert werden kann. Auch eine horizontal ausgerichtete Anordnung ist möglich.

[0029] Bei dem Ausführungsbeispiel der Fig. 3 besitzt die Siebwandung 5 einen ersten Bereich 35 und einen zweiten Bereich 36, die sich beide jeweils etwa über die Hälfte der axialen Erstreckung der Siebwandung 5 erstrecken, der erste Bereich 35 weist Durchbrechungen

6 auf, die im Vergleich zu den Durchbrechungen 6 des Bereiches 36 kleiner dimensioniert sind. Die Vorrichtung dient dazu, aus dem Sandgemisch zwei Feinfraktionen und eine Grobfraktion zu bilden. Für die Abfuhr der zweiten Feinfraktion, die auch als Mittelfraktion bezeichnet werden kann, ist ein gesonderter Abfuhrstutzen 37 vorgesehen, durch den die Mittelfraktion gemäß Pfeil 38 abgeführt wird. Ansonsten wird auf den Aufbau und die Wirkungsweise gemäß der Vorrichtung nach den Fig. 1 und 2 verwiesen.

[0030] Der Abfuhrstutzen 28 für die Grobfraktion ist hier nicht radial zu der Siebwandung 5, sondern axial angeordnet. Er schließt an die obere Gehäusestirnwand 13 an. Damit die Grobfraktion in den Abfuhrstutzen 28 übertreten kann, ist die obere Stirnwand 3 der Siebtrommel 1 mit einer ersten Öffnung 39 versehen. In entsprechender Zuordnung besitzt die obere Gehäusestirnwand 13 eine zweite Öffnung 40. Beim umlaufenden Antrieb der Siebtrommel 1 mit der Stirnwand 3 gelangen die beiden Öffnungen 39 und 40 immer wieder zur Dekkung, so daß in diesem Bereich ein Übertritt und Austritt der Grobfraktion stattfinden kann. Es ist natürlich auch möglich, den Abfuhrstutzen 28 radial anzuordnen, wie dies in Fig. 1 verdeutlicht worden ist.

[0031] In Fig. 5 ist eine weitere Ausführungsform der Vorrichtung dargestellt. Das zu trennende Sandgemisch, z. B. Straßenkehricht, wird in einen Behälter 41 abgeworfen, an den die Schneckenfördereinrichtung 18 unten angeschlossen ist. Das Sandgemisch wird in Förderrichtung 22 schräg aufwärts gefördert, bis es in den Innenraum 7 der Siebtrommel 1 abgeworfen wird. Die Siebtrommel 1 mit dem Gehäuse 2 ist so ausgebildet, wie dies an dem Ausführungsbeispiel der Fig. 1 und 2 bereits beschrieben wurde. Die Feinfraktion wird über den Abfuhrstutzen 26, die Grobfraktion über den Abfuhrstutzen 28 abgeführt. Mit der Vorrichtung ist es möglich, auch aus tiefer gelegenen Stellen das Sandgemisch aufzunehmen, zugleich aufwärts zu führen und wieder so abzuwerfen, daß es leicht aufgenommen oder weiter transportiert werden kann.

[0032] Fig. 6 zeigt eine Detaildarstellung durch einen Bereich der Antriebswelle 10 innerhalb des Innenraums 7. Die Bohrungen 33 sind über die axiale Länge sowie über den Umfang der Antriebswelle 10 verteilt angeordnet. Die Antriebswelle 10 selbst ist hohl ausgestaltet, so daß die Zufuhr von Spritzwasser über eine entsprechende Drehverbindung am oberen Ende des Motors 17 möglich ist.

BEZUGSZEICHENLISTE

[0033]

- 1 Siebtrommel
- 2 Gehäuse
- 3 obere Stirnwand
- 4 untere Stirnwand
- 5 Siebwandung

5

10

15

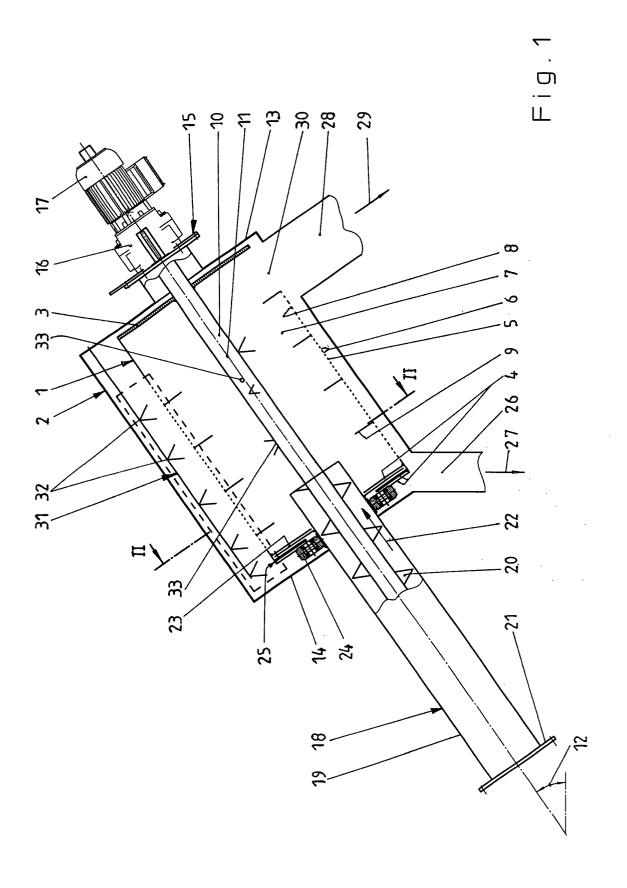
25

- 6 Durchbrechung
- 7 Innenraum
- 8 Innenseite
- 9 Leitblech
- 10 Antriebswelle
- 11 Achse
- 12 Winkel
- 13 Gehäusestirnwand
- 14 Gehäusestirnwand
- 15 Lager
- 16 Untersetzungsgetriebe
- 17 Motor
- 18 Schneckenfördereinrichtung
- 19 Gehäuse
- 20 Förderwendel
- 21 Flansch
- 22 Förderrichtung
- 23 Trennscheibe
- 24 Rolle
- 25 Labyrinthdichtung
- 26 Abfuhrstutzen
- 27 Pfeil
- 28 Abfuhrstutzen
- 29 Pfeil
- 30 Öffnung
- 31 Spritzwasserleiste
- 32 Düse
- 33 Bohrung
- 34 Inspektionsdeckel
- 35 Bereich
- 36 Bereich
- 37 Abfuhrstutzen
- 38 Pfeil
- 39 Öffnung
- 40 Öffnung
- 41 Behälter

Patentansprüche

1. Vorrichtung zum Aufbereiten eines Sandgemisches in mindestens eine Fein- und eine Grobfraktion, mit einer über einen Motor (17) angetriebenen Siebtrommel (1), die eine obere und eine untere Stirnwand (3, 4) sowie eine zylindermantelförmige Siebwandung (5) mit Durchbrechungen (6) zum Durchtritt der Feinfraktion aufweist und mit insbesondere schräg aufwärts gerichteter Achse (11) angeordnet ist, während die Grobfraktion am oberen Ende der Siebtrommel (1) austritt, dadurch gekennzeichnet, daß die Siebtrommel (1) von einer Antriebswelle (10) durchsetzt ist, mit der die Siebwandung (5) der Siebtrommel (1) in ihrem oberen Bereich drehfest verbunden ist, daß die Antriebswelle (10) ent-

gegen der Förderrichtung (22) des Sandgemisches durch die Siebtrommel gegenüber der Siebtrommel vorsteht und Bestandteil einer vorgeschalteten Schneckenfördereinrichtung (18) mit stillstehend angeordnetem Gehäuse (19) und auf der Antriebswelle (10) angeordneter Förderwendel (20) ist, daß die untere Stirnwand (4) der Siebtrommel auf dem Gehäuse (19) der Schneckenfördereinrichtung (18) drehbar gelagert ist, und daß auf der Innenseite (8) der Siebwandung (5) mindestens ein gewindeartig angeordnetes Leitblech (9) vorgesehen ist.


- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Siebtrommel (1) einen wesentlich größeren Durchmesser als die Schneckenfördereinrichtung (18) aufweist.
- Vorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Siebtrommel (1) von einem stillstehend angeordneten Gehäuse (2) umgeben ist, das im unteren Bereich einen Abfuhrstutzen (26) für die Feinfraktion und im oberen Bereich einen Abfuhrstutzen (28) für die Grobfraktion aufweist.
- Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß das stillstehend angeordnete Gehäuse (2) die Siebtrommel (1) mit Abstand und in exzentrischer Anordnung umgibt und im oberen Bereich zwischen dem Gehäuse (2) und der Siebtrommel (1) eine Spritzwasserleiste (31) zum Ablösen von Sandgemisch von der Innenseite (8) der Siebtrommel vorgesehen ist.
- 5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Siebtrommel (1) mindestens einen radial angeordneten Auslaß für den Durchtritt der Grobfraktion aufweist.
- 40 6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Antriebswelle (10) zumindest auf einem Teil ihrer Länge hohl ausgebildet ist, im Bereich der Siebtrommel (1) mit radialen Bohrungen (33) versehen ist und an eine Spritzwasserzufuhr angeschlossen ist.
 - 7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß an der unteren Stirnwand (4) der Siebtrommel (1) mehrere, über den Umfang verteilt angeordnete Rollen (24) vorgesehen sind, die auf dem Gehäuse (2) der Schneckenfördereinrichtung (18) abrollen.
 - 8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die obere Stirnwand (3) der Siebtrommel (1) eine erste Öffnung (39) und das stillstehend angeordnete Gehäuse (2) im Bereich einer Gehäusestirnwand (13) eine zweite Öff-

50

55

nung (40) aufweisen, durch die die Grobfraktion axial austritt.

- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Siebwandung (5) der Siebtrommel (1) kreisförmige Durchbrechungen (6) mit einem Durchmesser von 10 mm aufweist.
- Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die untere Stirnwand
 (4) der Siebtrommel (1) mit einer Labyrinthdichtung
 (25) weitgehend geschlossen ausgebildet ist.

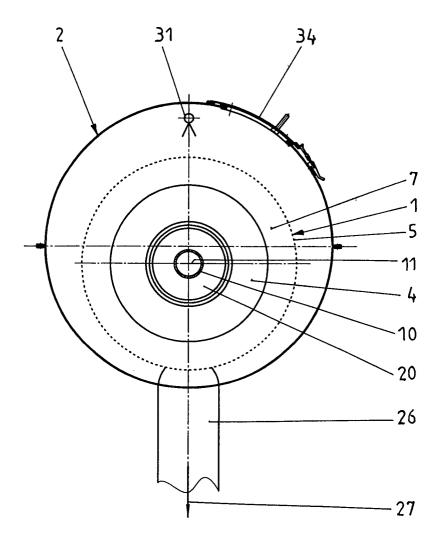
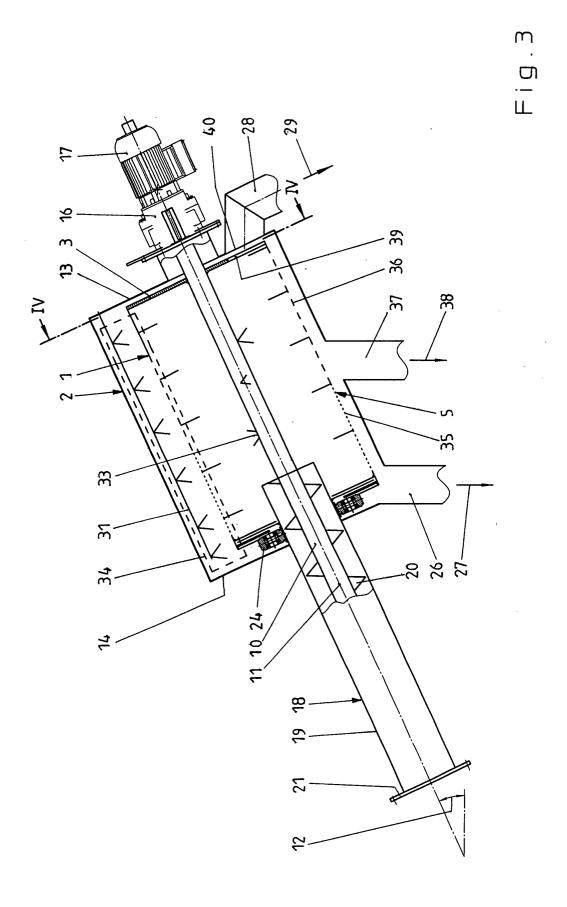



Fig.2

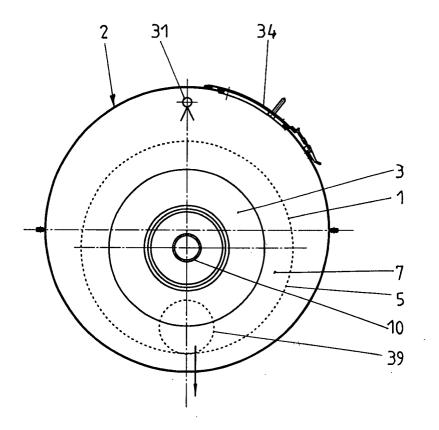
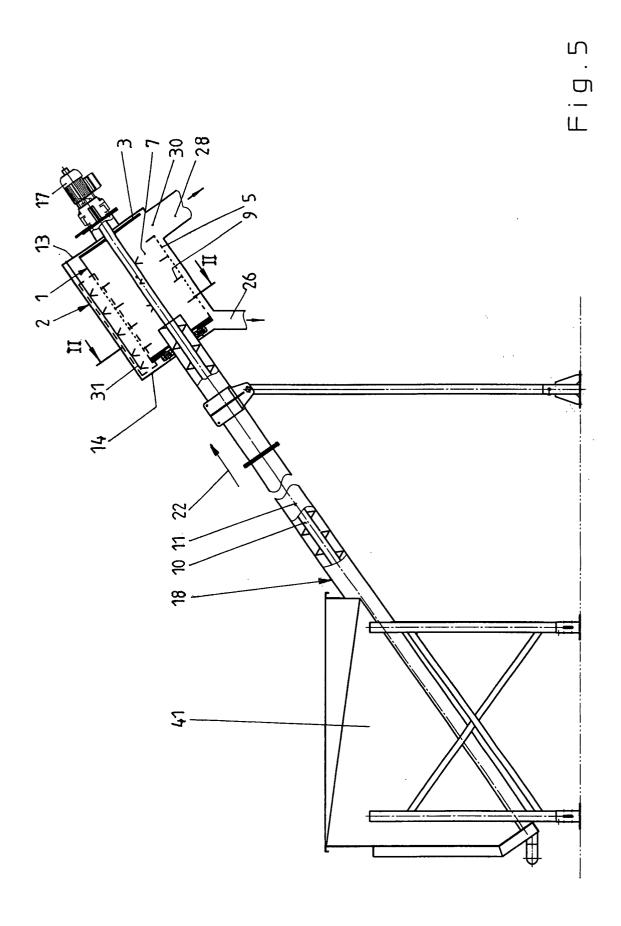



Fig.4

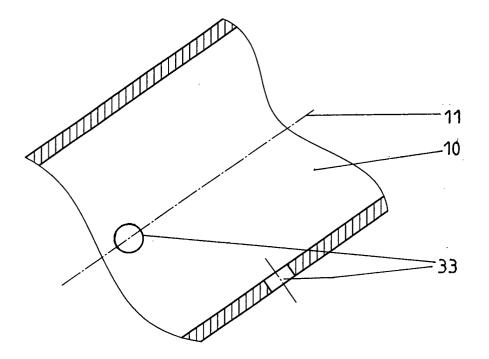


Fig.6