Field of the Invention
[0001] The present invention relates to a transom stern structure capable of reducing the
stern wave making resistance of conventional ships having a transom stern (displacement
ships that voyage at a design speed substantially corresponding to a Froude's number
(Fn) of 0. 2 - 0.4). Referring to Fig. 12(b), a transom stern is a stern having a
substantially vertical rearmost end face (stern end) 5. Fig. 12(a) shows a cruiser
stern. Herein, the Fn is expressed as:
Fn = V/√ (L
WL g), where V is ship speed (m/s), L
WL is waterline length on design draught (m), and g is the acceleration of gravity (m/s
2). Here, the "waterline" means horizontal line parallel to the base line.
Description of the Related Art
[0003] Because of its small displacement and high speed, the high speed craft is capable
of greatly lifting the stern end by a lift generated by the trim tab and the wedge
provided at the stern end. In the high speed craft, since the deeper transom immersion
is, the larger the stern wave making resistance is, the stern wave making resistance
could be reduced by lifting the stern end by the lift generated by the trim tab or
the wedge.
[0004] However, in a so-called conventional ship, i.e., the displacement ship that voyages
at a design speed substantially corresponding to a Fn of 0.2-0.4, since the ship speed
is relatively low and the displacement is large as compared to the high speed craft,
it is difficult to greatly lift the stern by means of a trim tab or wedge and, therefore,
its running condition is hardly changed by these means. So, it has been considered
that stern wave making cannot be reduced in this ship.
[0005] In addition, since the stern end of the high speed craft has a substantially rectangular
cross section, a trim tab or wedge of two-dimensional shape can be mounted relatively
easily, whereas since a stern end of the conventional ship has a convexly curved cross
section, the mounting of the two-dimensional parts creates a discontinuity, which
increases resistance. In the conventional displacement ship which has a transom stern
and voyages at a design speed corresponding substantially to Fn of 0.2 - 0.4, the
stern wave generated by the transom stern end is increased, and a wave crest of the
stern wave sometimes causes disturbed surface, thereby producing dead water around
the stern transom part. When these phenomena are seen from the view point of propulsive
performance, the stern wave with disturbed surface produces a large stern wave making
resistance, causing the horse power requirement and fuel oil consumption (FOC) to
be significantly increased. Under the circumstances, reduction of the stern wave has
been a challenge to naval architects.
[0006] DE-A-3808859 discloses a displacement ship having a transom stern and a longitudinal hull centre
line profile defining an inflection point, with a portion of the hull forward of said
inflection point sloping upwardly to said inflection point. The inflection point is
positioned substantially above the ship's propellers to allow clearance for the use
of larger propellers and provide increased clearance above the propellers in order
to enhance propeller efficiency and prevent vibration due to surface forces caused
by rotation of the propellers.
SUMMARY OF THE INVENTION
[0007] The invention provides a method of reducing the wave making resistance of a displacement
ship having a transom stern and a design speed corresponding substantially to a Froude
Number of 0.2 to 0.4, the method comprising providing the hull of said ship with a
longitudinal centre line profile having an inflection point at a longitudinal distance
of 0.1 to 10% Lpp (length between perpendiculars) from the stern end of the ship,
with the portion of the hull profile forward of said inflection point sloping upwardly
to said inflection point and the portion of the hull profile rearward of the inflection
point being horizontal or sloping downwardly, and positioning the lower end of the
stern end relative to the design draught such that the ratio γ of the distance between
the base line at the hull centre line and said lower end and the distance between
said base line and the design draught at the hull centre line is 0.95 to 1.2 such
that, in use, a first flow condition is generated forward of said inflection point
and a second flow condition is generated between said inflection point and said stern
end to provide accelerated flow rearwardly of said inflection point.
[0008] The hull centre line profile between said stern end and said inflection point may
be provided by fitting an extension to the stern end of an existing ship.
[0009] The invention also includes a displacement ship having a transom stern and a longitudinal
hull centre line profile defining an inflection point with a portion of the hull centre
line profile forward of said inflection point sloping upwardly to said inflection
point and the portion of the hull centre line profile rearwardly of the inflection
point ceasing to slope upwardly, characterised in that the ship has a design speed
corresponding substantially to a Froude Number of 0.2 to 0.4, in that the longitudinal
distance between the stern end of the ship and said inflection point is 0.1 to 10%
Lpp (length between perpendiculars) and in that the lower end of the stern end is
positioned relative to the design draught such that the ratio γ of the distance between
the base line at the hull centre line and said lower end of the stern end and the
distance between said base line and the design draught at the hull centre line is
0.95 to 1.2 such that, in use, a first flow condition is generated forward of said
inflection point and a second flow condition is generated between said inflection
point and said stern end to provide an accelerated flow rearwardly of said inflection
point.
[0010] From the inflection point to the stern end, the longitudinal centre line profile
may be flat or gently curved and a line connecting the inflection point to the lower
end of the stern end may be horizontal or downwardly inclined with respect of the
design load waterline such that an angle α made between said line and the design load
waterline is 0 to 20 degrees.
[0011] The angle β at which tangential lines forward and rearward of the inflection point
at the hull bottom may intersect at 140 to 180 degrees.
[0012] The distance of the lower end of the stern end from the base line may be constant,
or increase, in the widthways direction of the hull on either side of the hull centreline.
[0013] The hull centre line profile between the stern end and the inflection point may be
defined by an extension extending from the stern end of an existing ship.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] In order that the invention may be understood, some embodiments, which are given
by way of example only, will be described with reference to the drawings, in which:
Figs. 1(a) - 1(b) are figures for explaining a technical principle of reduction of
wave making resistance according to the present invention, wherein Fig. 1(a) shows
the profile of a ship's stern and Fig. 1(b) shows the distribution of a relative pressure
in flow field in the longitudinal direction between a ship having a conventional stern
form and a ship having a stern form according to the present invention;
Figs. 2(a) - 2(c) show stern profiles;
Fig. 3(a) is a front view showing a stern part having a three-dimensional shape in
which an angle of an arbitrary section of the stern part is equal to an angle α of
the stern form sectioned parallel to a ship centreline, that is, the angle is fixed,
and Fig. 3(b) is an explanatory figure showing change in the angle;
Fig. 4(a) is a front view showing a stern part having a three-dimensional shape in
which an angle of an arbitrary section of the stern part is decreased with respect
to the angle α in the breadth direction and the section of an inflection point conforms
in shape to the stern end at a point, and Fig. 4(b) is an explanatory figure showing
change in the angle;
Figs 5(a) is a front view showing a stern part having a three-dimensional shape in
which an angle of an arbitrary section of the stern part is decreased with respect
to the angle α in the breadth direction and the angle is made on the opposite side
from a point, and Fig. 5(b) is an explanatory figure showing change in the angle;
Fig. 6 is a view showing planar shapes of cross sections respectively taken along
lines P1-P1, P2-P2, and P3-P3 of Fig. 3, Fig. 4, and Fig. 5;
Fig. 7 illustrates a stern profile showing a state in which an angle β at which tangential
lines forward and rearward of the inflection point at the hull bottom intersect is
set to 140 - 180 degrees;
Fig. 8 illustrates a stern profile showing a state in which a ratio γ (Ha/Hb) of a
height Ha of a lower end of the stern end from a base line to a height Hb of a design
draught is set to 0.95 -1.2;
Figs. 9(a), (b) show embodiments of the present invention obtained by extending the
stern end of an existing ship;
Fig. 10 shows the reduction effect of the stern wave making resistance coefficient
according to the present invention based on a comparison with a conventional ship;
Fig. 11 shows a horse power reduction effect obtainable according to the present invention
based on comparison with a conventional ship; and
Fig. 12(a) shows a cruiser stern form; Fig. 12(b) shows a transom stern; and Fig.
12(c) is a side view showing a conventional stern form of the transom stern of Fig.
12(b).
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0015] A ship according to the present invention is a so-called conventional displacement
ship (a ship with Lpp more than 50m is suitable) which has a transom stern as shown
in Fig. 12(b) and voyages at a design speed corresponding substantially to a Froude
number (Fn) of 0.2 - 0.4. As mentioned previously, since such a ship generally has
a relatively low speed and a large displacement as compared to the high speed craft,
it is difficult to greatly lift the stern end thereof by the lift of the trim tab
or the wedge.
[0016] Referring to Fig. 1(a), the shape of a hull bottom sectioned along the ship centre
line has an inflection point 2 between 0.1 - 10% Lpp forward of the stern end 5 of
the stern 1 ("Lpp" refers to length between perpendiculars). The bottom of the stern
1 has a forward hull portion 3 and a rearward hull portion 4. The forward hull portion
3 slopes gently up to the inflection point 2 and is gently curved or flat. The rearward
hull portion 4 has a length sufficient to accelerate flow from the inflection point
2 to the stern end 5, i.e., a length of 0. 1 - 10% Lpp forward of the stern end 5
and is horizontal or downwardly inclined from the inflection point 2 so as to generate
a horizontal or downward flow. The lower end 5a of the stern end 5 is positioned in
the vicinity of (on or above) the design draught. As should be understood from the
later description, the "inflection point" refers to a shape changing point at which
the shape of the hull bottom of the stern part that is sectioned along the ship centre
line is knuckle-shaped or knuckle-filleted to change the flow field at that point.
[0017] As can be seen from the graph of Fig. 1(b), with the above-described shape of hull
bottom, the relative pressure in a region forward of the inflection point 2 is higher
than that of a ship having the conventional stern form, and therefore, based on Bernoulli's
theorem in which a sum of a static pressure and a dynamic pressure is constant, the
region forward of the inflection point 2 has a flow velocity lower than that of the
ship having the conventional stern form, while the pressure in a region from the inflection
point 2 to the stern end 5 is lower than that of the ship having the conventional
stern form and therefore, the region rearward of the inflection point 2 accelerates
the flow.
[0018] In other words, the flow fields forward and rearward of the inflection point 2 differ
from each other. In addition, since the lower end 5a of the stern end 5 is located
in the vicinity of (on or above) the design draught, the accelerated flow prevents
the stern wave. Besides, since the disturbed surface hardly occurs, the stern wave
making resistance can be significantly reduced as a whole.
An angle β made between the forward hull portion 3 and the rearward hull portion 4
which are respectively located forwardly and rearwardly of the inflection point 2
is determined as mentioned later so that some increase in drag due to the downwardly
inclined rear hull bottom does not negate the reduction effect of the stern wave making
resistance.
[0019] Figs. 2(a) - 2(c) show stern profiles (hull side cross sections) sectioned along
the ship centre line. The inflection point 2 is provided at a position L (= 0.1 -
10%Lpp) forward of the stern end 5. The inflection point 2 shown in Fig. 2(a) is knuckle-shaped
and the inflection point 2 shown in Fig. 2(b) is knuckle-filleted. The shape from
the inflection point 2 to the stern end 5 is straight line as shown in Fig. 2(a),
and the shape from the inflection point 2 to the stern end 5 is gently curved as shown
in Fig. 2(c). When the shape is gently curved, it is a convex curve (as indicated
by a solid line of Fig. 2(c)) or a concave curve (as indicated by an imaginary line
of Fig. 2(c)).
[0020] Assuming that an angle made between a line (hull bottom line) connecting the inflection
point 2 and the lower end 5a of the stern end 5 and the design load waterline DLWL
is α, it is preferable that the hull bottom line is parallel to the design load waterline
DLWL (α = 0 degree), or downwardly inclined with respect to the design load waterline
DLWL at an angle of 20 or less (α ≧ 20 degrees). By horizontally or downwardly flowing
the accelerated water flowing from the stern end 5, the disturbed surface or the stern
wave is reduced.
[0021] The reason why the inflection point 2 is provided at the position L (0.1 - 10% Lpp)
forward of the stern end 5 is, as described above, that some distance is needed for
sufficiently accelerating the slow flow forward of the inflection point 2 from the
inflection point 2 to the stern end 5, so that the flow fields forward and rearward
of the inflection point 2 differ from each other.
[0022] Figs. 3(a), 3(b) show a hull shape in which the angle α of longitudinal sections
taken on either side of the hull centreline is equal to the angle α of the section
along the ship centre line. That is, the angle α is fixed in the widthways direction
of the hull. A dotted line shows the shape of the section at the inflection point
2 (cross section of the inflection point).
[0023] Figs. 4(a), 4(b) show a hull shape in which the angle α of longitudinal sections
taken on either side of the hull centreline gradually decreases with respect to the
angle α of the section along the centreline such that at respective points on either
side of the centreline, the angle α is 0° and at those points, the respective longitudinally
extending lines connecting the inflection point 2 to the stern end 5 are horizontal.
[0024] Figs. 5(a), 5(b) show a hull shape in which angle α of longitudinal sections taken
on either side of the hull centreline decreases with respect to the angle α of the
section along the hull centreline to respective knuckle points at which the angle
α is 0° and outwardly of the knuckle points, the waterline contour is smoothly curved.
[0025] Fig. 6 shows waterline sections respectively taken along lines P1-P1, P2-P2, and
P3-P3 of Figs. 3 to 5. The waterline shape P1 in case of Fig. 3 has a width increased
from the inflection point 2 to the stern end 5. The waterline shape P2 in case of
Fig. 4 extends in parallel with the ship centre line from the inflection point 2 to
the stern end 5. The waterline shape P3 in case of Fig. 5 is gently curved from the
inflection point 2 to the stern end 5, thereby preventing the flow from going away
from the hull.
[0026] As should be understood from the foregoing, it is preferable that in the stern profile
form, the height of the lower end 5a of the stern end 5 from a base line of the hull
sectioned along the ship centre line is constant or gradually increased, and the two-dimensional
shape is gradually changed toward a gunwale according to a function and thereby made
into a three-dimensional shape.
[0027] As shown in Fig. 7, it is preferable that an angle β made between a tangential line
in the range of 0. 1 - 10% Lpp from the stern end 5 and a tangential line of a stern
profile, i.e., an angle β at which tangential lines forward and rearward of the inflection
point 2 at the hull bottom intersect is set to 140 - 180 degrees. In this range, the
reduction effect of the stern wave resistance is much greater than the drag.
[0028] As shown in Fig. 8, the ratio γ (Ha/Hb) of the height Ha of the lower end 5a of the
stern end 5 from the base line to the height Hb of the design draught is set to 0.95
- 1.2. The positioning of the lower end 5a of the stern end 5 at the vicinity of the
design draught and the accelerated flow from the lower end 5a of the stern end 5 are
capable of cooperatively smoothing the disturbed surface breaking and the stern wave.
[0029] As indicated by oblique lines shown in Fig. 9(a), the stern end of an initially designed
ship or running ship can be extended. Specifically, a transom stern hull extension
7 extends from an original stern end 5' of an existing ship for accelerating the flow
from the original stern end 5' as the inflection point 2. Alternatively, as shown
in Fig. 9(b), an extension part 8 having a triangular cross section indicated by oblique
lines, may be added to the transom stern end 5' of an existing design. In either case,
α, β and the distance L required for accelerating the flow are the same and the beneficial
effects described above are obtained.
[0030] As should be understood from the foregoing description, according to the present
invention, by changing the flow field around the stern to reduce the disturbed surface
and the stern wave, instead of lifting the stern end by the lift generated by the
trim tab or the wedge like the conventional high speed craft, the stern wave making
resistance can be significantly reduced.
[0031] The result will be described with reference to Figs. 10, 11. Fig. 10 shows wave making
resistance coefficient on the vertical axis and Froude number (Fn) on the horizontal
axis. As shown in Fig. 10, the coefficient of the stern of the present invention is
lower than that of the conventional stern and the degree at which the wave making
resistance is lowered increases with an increase in the Fn.
[0032] Fig. 11 shows horse power on the vertical axis and ship speed on the horizontal axis.
The reduction effect is 4 - 10% in terms of a horse power ratio.
[0033] It will be appreciated that this invention may be embodied in several forms without
departing from the essential characteristics thereof and so the described embodiments
are illustrative and not restrictive, the scope of the invention being defined by
the appended claims rather than by the description of the embodiments.
1. A method of reducing the wave making resistance of a displacement ship having a transom
stern and a design speed corresponding substantially to a Froude Number of 0.2 to
0.4, the method comprising providing the hull of said ship with a longitudinal centre
line profile (3, 4) having an inflection point (2) at a longitudinal distance of 0.1
to 10% Lpp (length between perpendiculars) from the stern end (5) of the ship, with
the portion (3) of the hull profile forward of said inflection point sloping upwardly
to said inflection point and the portion (4) of the hull profile rearward of the inflection
point being horizontal or sloping downwardly, and positioning the lower end (5a) of
the stern end relative to the design draught such that the ratio γ (Ha/Hb) of the
distance (Ha) between the base line at the hull centre line and said lower end (5a)
and the distance (Hb) between said base line and the design draught at the hull centre
line is 0.95 to 1.2 such that, in use, a first flow condition is generated forward
of said inflection point and a second flow condition is generated between said inflection
point and said stern end to provide accelerated flow rearwardly of said inflection
point.
2. A method as claimed in claim 1, wherein said hull centre line profile (4) between
said stern end (5) and said inflection point (2) is provided by fitting an extension
(7; 8) to the stern end (5') of an existing ship.
3. A displacement ship having a transom stern (5) and a longitudinal hull centre line
profile (3, 4) defining an inflection point (2), with a portion (3) of the hull centre
line profile forward of said inflection point sloping upwardly to said inflection
point and the portion (4) of the hull centre line profile rearwardly of the inflection
point ceasing to slope upwardly, characterised in that the ship has a design speed corresponding substantially to a Froude Number of 0.2
to 0.4, in that the longitudinal distance between the stern end (5) of the ship and said inflection
point (2) is 0.1 to 10% Lpp (length between perpendiculars) and in that the lower end (5a) of the stern end (5) is positioned relative to the design draught
such that the ratio γ (Ha/Hb) of the distance (Ha) between the base line at the hull
centre line and said lower end (5a) of the stern end and the distance (Hb) between
said base line and the design draught at the hull centre line is 0.95 to 1.2 such
that, in use, a first flow condition is generated forward of said inflection point
and a second flow condition is generated between said inflection point and said stern
end to provide an accelerated flow rearwardly of said inflection point.
4. A ship as claimed in claim 3, wherein from the inflection point (2) to the stern end
(5), the longitudinal centre line profile is flat or gently curved and a line connecting
the inflection point (2) to the lower end (5a) of the stern end (5) is horizontal
or downwardly inclined with respect to the design load waterline (DLWL) such that
an angle α made between said line and the design load waterline is 0 to 20 degrees.
5. A ship as claimed in claim 3 or 4, wherein an angle β at which tangential lines forward
and rearward of the inflection point (2) at the hull bottom intersect is 140 to 180
degrees.
6. A ship as claimed in claim 3, 4 or 5, wherein the distance of the lower end of the
stern end (5) from the base line is constant or increases in the widthways direction
of the hull on either side of the hull centreline.
7. A ship as claimed in any one of claims 3 to 6, wherein said hull centre line profile
(4) between said stern end (5) and said inflection point is defined by an extension
(7; 8) extending from the stern end (5') of an existing ship.
1. Verfahren zum Verringern des Wellenwiderstandes eines Verdrängungsschiffes mit einem
Transom-Heck und einer Sollgeschwindigkeit, die im Wesentlichen einer Froude-Zahl
von 0,2 bis 0,4 entspricht, wobei das Verfahren umfasst: Versehen des Schiffsrumpfes
mit einem longitudinalen Mittschiffsprofil (3, 4), das in einem longitudinalen Abstand
von 0,1 bis 10 % Lpp (Baulänge) vom Heck (5) des Schiffes einen Wendepunkt (2) besitzt,
wobei der Abschnitt (3) des Schiffsrumpfprofils vor dem Wendepunkt nach oben zu dem
Wendepunkt geneigt ist und der Abschnitt (4) des Schiffsrumpfprofils hinter dem Wendepunkt
horizontal ist oder nach unten geneigt ist, und Positionieren des unteren Endes (5a)
des Hecks in Bezug auf den Solltiefgang in der Weise, dass das Verhältnis γ (Ha/Hb)
des Abstandes (Ha) zwischen der Basislinie der Rumpf-Mittschiffslinie und dem unteren
Ende (5a) zu dem Abstand (Hb) zwischen der Basislinie und dem Solltiefgang bei der
Rumpf-Mittschiffslinie im Bereich von 0,95 bis 1,2 liegt, so dass im Betrieb vor dem
Wendepunkt ein erster Strömungszustand erzeugt wird und zwischen dem Wendepunkt und
dem Heck ein zweiter Strömungszustand erzeugt wird, um hinter dem Wendepunkt eine
beschleunigte Strömung zu schaffen.
2. Verfahren nach Anspruch 1, bei dem das Mittschiffsprofil (4) des Schiffsrumpfes zwischen
dem Heck (5) und dem Wendepunkt (2) durch Anbringen einer Verlängerung (7-8) an das
Heck (5') eines vorhandenen Schiffes geschaffen wird.
3. Verdrängungsschiff mit einem Transom-Heck (5) und einem longitudinalen Schiffsrumpf-Mittschiffsprofil
(3, 4), das einen Wendepunkt (2) definiert, wobei ein Abschnitt (3) des Schiffsrumpf-Mittschiffsprofils
vor dem Wendepunkt nach oben zu dem Wendepunkt geneigt ist und der Abschnitt (4) des
Schiffsrumpfs-Mittschiffsprofils hinter dem Wendepunkt nicht mehr nach oben geneigt
ist, dadurch gekennzeichnet, dass das Schiff eine Sollgeschwindigkeit besitzt, die im Wesentlichen einer Froude-Zahl
im Bereich von 0,2 bis 0,4 entspricht, dass der longitudinale Abstand zwischen dem
Heck (5) des Schiffes und dem Wendepunkt (2) im Bereich von 0,1 bis 10 % Lpp (Baulänge)
liegt und dass das untere Ende (5a) des Hecks (5) in Bezug auf den Solltiefgang in
der Weise positioniert ist, dass das Verhältnis γ (Ha/Hb) des Abstandes (Ha) zwischen
der Basislinie bei der Schiffsrumpf-Mittschiffslinie und dem unteren Ende (5a) des
Hecks zu dem Abstand (Hb) zwischen der Basislinie und dem Solltiefgang bei der Schiffsrumpf-Mittschiffslinie
im Bereich von 0,95 bis 1,2 liegt, derart, dass im Betrieb vor dem Wendepunkt ein
erster Strömungszustand erzeugt wird und zwischen dem Wendepunkt und dem Heck ein
zweiter Strömungszustand erzeugt wird, um hinter dem Wendepunkt eine beschleunigte
Strömung zu schaffen.
4. Schiff nach Anspruch 3, bei dem das longitudinale Mittschiffsprofil zwischen Wendepunkt
(2) und Heck (5) eben oder leicht gekrümmt ist und eine den Wendepunkt (2) mit dem
unteren Ende (5a) des Hecks (5) verbindende Linie in Bezug auf die Solllast-Wasserlinie
(DLWL) horizontal oder nach unten geneigt ist, derart, dass ein Winkel α, der zwischen
dieser Linie und der Solllast-Wasserlinie gebildet wird, im Bereich von 0 bis 20 Grad
liegt.
5. Schiff nach Anspruch 3 oder 4, bei dem ein Winkel β, unter dem sich Tangentiallinien
vor und hinter dem Wendepunkt (2) an dem Schiffsrumpfboden schneiden, im Bereich von
140 bis 180 Grad liegt.
6. Schiff nach Anspruch 3, 4 oder 5, bei dem der Abstand des unteren Endes des Hecks
(5) von der Basislinie in Breitenrichtung des Schiffsrumpfes konstant ist oder auf
jeder Seite der Schiffsrumpf-Mittschiffslinie zunimmt.
7. Schiff nach einem der Ansprüche 3 bis 6, bei dem das Schiffsrumpf-Mittschiffsprofil
(4) zwischen dem Heck (5) und dem Wendepunkt durch eine Verlängerung (7; 8) definiert
ist, die sich von dem Heck (5') eines vorhandenen Schiffes erstreckt.
1. Procédé de réduction de la résistance à la formation de vagues d'un navire à tirant
d'eau muni d'un tableau arrière et ayant une vitesse nominale correspondant pratiquement
à un nombre de Froude compris entre 0,2 et 0,4, le procédé comprenant la mise en oeuvre
de la coque dudit navire avec un profil selon la ligne centrale longitudinale (3,
4) ayant un point d'inflexion (2) situé à une distance longitudinale comprise entre
0,1 et 10 % de la longueur entre perpendiculaires (lpp) à partir de l'extrémité de
poupe (5) du navire, la partie (3) du profil de coque située en avant dudit point
d'inflexion étant inclinée vers le haut en direction dudit point d'inflexion et la
partie (4) du profil de coque située vers l'arrière du point d'inflexion étant horizontale
ou inclinée vers le bas, et le positionnement de l'extrémité inférieure (5a) de l'extrémité
de poupe relative au tirant d'eau nominal de telle sorte que le rapport γ (Ha/Hb)
de la distance (Ha) entre la ligne de base au niveau de la ligne centrale de la coque
et ladite extrémité inférieure (5a) à la distance (Hb) entre ladite ligne de base
et le tirant d'eau nominal au niveau de la ligne centrale de la coque soit compris
entre 0,95 et 1,2 de telle sorte que, en cours d'utilisation, une première condition
d'écoulement soit générée en avant dudit point d'inflexion et une seconde condition
d'écoulement soit générée entre ledit point d'inflexion et ladite extrémité de poupe
pour assurer un écoulement accéléré vers l'arrière dudit point d'inflexion.
2. Procédé selon la revendication 1, dans lequel ledit profil de ligne centrale de la
coque (4) entre ladite extrémité de poupe (5) et ledit point d'inflexion (2) est obtenu
en implantant une extension (7 ; 8) à l'extrémité de poupe (5') d'un navire existant.
3. Navire à tirant d'eau muni d'un tableau arrière (5) et ayant un profil longitudinal
de ligne centrale de coque (3, 4) définissant un point d'inflexion (2), une partie
(3) de la ligne centrale de la coque située en avant dudit point d'inflexion étant
inclinée vers le haut vers ledit point d'inflexion et la partie (4) du profil de la
ligne centrale de la coque située vers l'arrière du point d'inflexion cessant d'être
inclinée vers le haut, caractérisé en ce que le navire a une vitesse nominale correspondant pratiquement à un nombre de Froude
compris entre 0,2 et 0,4, en ce que la distance longitudinale entre l'extrémité de poupe (5) du navire et ledit point
d'inflexion (2) est comprise entre 0,1 et 10 % de la longueur entre perpendiculaires
(lpp) et en ce que l'extrémité inférieure (5a) de l'extrémité de poupe (5) est positionnée relativement
au tirant d'eau nominal de telle sorte que le rapport γ (Ha/Hb) de la distance (Ha)
entre la ligne de base au niveau de la ligne centrale de la coque et ladite extrémité
inférieure (5a) à la distance (Hb) entre ladite ligne de base et le tirant d'eau au
niveau de la ligne centrale de la coque soit compris entre 0,95 et 1,2 de telle sorte
que, en cours d'utilisation, une première condition d'écoulement soit générée en avant
dudit point d'inflexion et une seconde condition d'écoulement soit générée entre ledit
point d'inflexion et ladite extrémité de poupe pour assurer un écoulement accéléré
vers l'arrière dudit point d'inflexion.
4. Navire selon la revendication 3, dans lequel, entre le point d'inflexion (2) et l'extrémité
de poupe (5), le profil de la ligne centrale longitudinale est plat ou légèrement
courbé et une ligne reliant le point d'inflexion (2) et l'extrémité inférieure (5a)
de l'extrémité de poupe (5) est horizontale ou inclinée vers le bas par rapport à
la ligne de flottaison de charge théorique (DLWL) de telle sorte qu'un angle α existant
entre ladite ligne et la ligne de flottaison de charge théorique soit compris entre
0 et 20 degrés.
5. Navire selon la revendication 3 ou 4, dans lequel un angle β selon lequel se coupent
les lignes tangentielles situées en avant et en arrière du point d'inflexion (2) dans
la partie inférieure de la coque est compris entre 140 et 180 degrés.
6. Navire selon la revendication 3, 4 ou 5, dans lequel la distance entre l'extrémité
inférieure de l'extrémité de poupe (5) et la ligne de base est constante ou augmente
dans la direction de la largeur de la coque de part et d'autre de la ligne centrale
de la coque.
7. Navire selon l'une quelconque des revendications 3 à 6, dans lequel ledit profil de
la ligne centrale de la coque (4) situé entre ladite extrémité de poupe (5) et ledit
point d'inflexion est défini par une extension (7 ; 8) se prolongeant depuis l'extrémité
de poupe (5') d'un navire existant.