(19)
(11) EP 1 213 346 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
12.06.2002  Patentblatt  2002/24

(21) Anmeldenummer: 01128512.9

(22) Anmeldetag:  29.11.2001
(51) Internationale Patentklassifikation (IPC)7C11D 17/00, C11D 3/37
(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 09.12.2000 DE 10061421

(71) Anmelder: Henkel KGaA
40589 Düsseldorf (DE)

(72) Erfinder:
  • Sunder, Matthias, Dr.
    40597 Düsseldorf (DE)
  • Meier, Frank, Dr.
    40589 Düsseldorf (DE)
  • Mai, Claudia
    40591 Düsseldorf (DE)

   


(54) Verfahren zur Herstellung geklebter Wasch- und Reinigungsmittelformkörper


(57) Die vorliegende Erfindung beschreibt ein Verfahren zur Herstellung mehrphasiger Wasch- und Reinigungsmittelformkörper, bei dem in einem ersten Schritt Basisformkörper hergestellt werden, welche mindestens eine Kavität aufweisen, in die in einem zweiten Schritt Haftvermittler eindosiert wird/werden, bevor in einem dritten Schritt die Kavität(en) mit (einem) Kern(en) befüllt wird, wobei als Haftvermittler in zweiten Schritt Lösungen, Dispersionen, Emulsionen oder Schmelzen eingesetzt werden, welche eine Viskosität unterhalb von 3000 mPas aufweisen.


Beschreibung


[0001] Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung mehrphasiger Formkörper, wobei die einzelnen Phasen eine unterschiedliche Zusammensetzung aufweisen können. Insbesondere eignet sich das vorgestellte Verfahren zur Herstellung von Waschund Reinigungsmittelformkörpern wie beispielsweise Bleichmitteltabletten, Fleckensalztabletten, Reinigungsmitteltabletten für das maschinelle Geschirrspülen, Waschmitteltabletten oder Wasserenthärtetabletten.

[0002] Aus den deutschen Patentanmeldungen DE 199 09 271.0 und DE 199 32 568.5 ist ein Verfahren zur Herstellung mehrphasiger Wasch- und Reinigungsmittelformkörper bekannt, bei dem ein teilchenförmiges Vorgemisch zu Formkörpern verpreßt wird, optional ein oder mehrere Haftvermittler auf eine oder mehrere Flächen der Formkörper aufgetragen werden, wonach weitere Aktivsubstanz in fester, hochviskoser oder plastischer Form auf die Formkörper aufgebracht wird. Als Haftvermittler werden in diesen Schriften beispielsweise Substanzen aus den Gruppen der Polyethylenglycole (PEG) und/oder Polypropylenglycole (PPG), der konzentrierten Salzlösungen und der Lösungen bzw. Suspensionen von wasserlöslichen bzw. -dispergierbaren Polymeren offenbart.

[0003] Bestimmte Ausführungsformen des in den genannten Offenlegungsschriften beschriebenen Verfahrens sehen vor, daß der durch Tablettierung hergestellte Formkörper eine Kavität aufweist, welche beispielsweise ein durch den Formkörper durchgehendes Loch, oder eine Mulde darstellt. In diese Kavität kann Haftvermittler eingefüllt werden, bevor eine separate Dosiereinheit (beispielsweise eine kleinere Tablette) in die Kavität gegeben und dort festgeklebt wird. Alternativ kann der Haftvermittler auch auf die in die Kavität einzufügende einzelne Dosiereinheit gegeben werden.

[0004] Während die genannten Offenlegungsschriften allgemein das Verkleben von Formkörpern miteinander offenbaren, werden bestimmte Probleme bei der Herstellung befüllter "Muldentabletten" (d.h. Tabletten mit Kavitäten bzw. durchgehenden Löchern) nicht erwähnt. So ist es bei der Großserienproduktion erforderlich, daß sich die Haftvermittler schnell und exakt in die Kavität dosieren lassen. Hierzu dürfen die als Haftvermittler eingesetzten Substanzen beispielsweise nicht fadenziehend sein und müssen hinreichend lange ihre Haftfähigkeit behalten, um den später eingesetzten "Kern" fest in die Kavität zu binden.

[0005] Die Aufgabe der vorliegenden Erfindung bestand darin, das aus den deutschen Patentanmeldungen DE 199 09 271.0 und DE 199 32 568.5 bekannte Verfahren für die Herstellung befüllter Muldentabletten zu adaptieren, wobei die bereitzustellende Verfahrensvariante als Hochgeschwindigkeitsverfahren durchführbar sein sollte.

[0006] Es wurde nun gefunden, daß sich bestimmte Klebstoffe zum Hochgeschwindigkeitsverkleben besonders eignen.

[0007] Gegenstand der vorliegenden Erfindung ist in einer ersten Ausführungsform ein Verfahren zur Herstellung mehrphasiger Wasch- und Reinigungsmittelformkörper, bei dem in einem ersten Schritt Basisformkörper hergestellt werden, welche mindestens eine Kavität aufweisen, in die in einem zweiten Schritt Haftvermittler eindosiert wird/werden, bevor in einem dritten Schritt die Kavität(en) mit (einem) Kern(en) befüllt wird, wobei als Haftvermittler in zweiten Schritt Lösungen, Dispersionen, Emulsionen oder Schmelzen eingesetzt werden, welche eine Viskosität unterhalb von 3000 mPas aufweisen.

[0008] Im Rahmen der vorliegenden Erfindung beziehen sich die Viskositätswerte auf Viskositätsmessungen bei einer Probentemperatur, welche der Verarbeitungstemperatur des/der Haftvermittler(s) entspricht (siehe unten), mit einem Carrimed-Platte-Platte-Rheometer, bei einer Scherkraft von 50 N pro Quadratmeter, einem Plattendurchmesser von 5 cm und einem Meßsystemspalt von 250 µm, wobei der Wert nach 10 Sekunden Meßzeit abgelesen wurde.

[0009] Bevorzugte erfindungsgemäße Verfahren sind dabei dadurch gekennzeichnet, daß die Haftvermittler bei der Verarbeitung eine Viskosität unterhalb von 2500 mPas, vorzugsweise unterhalb von 2000 mPas und insbesondere unterhalb von 1000 mPas aufweisen.

[0010] Die Verarbeitungstemperatur des/der Haftvermittler(s) richtet sich nach der stofflichen Natur der eingesetzten Haftvermittler und der gewünschten Zeit, innerhalb der der Haftvermittler seine Hafteigenschaft entfalten soll. Hierbei sind Temperaturen von Raumtemperatur (die in Wintermonaten zum Teil 10 bis 15°C betragen kann) bis hin zu hohen Temperaturen oberhalb des Siedepunktes von Wasser realisierbar. Bei im Rahmen der vorliegenden Erfindung bevorzugten Verfahren werden die Haftvermittler bei einer Temperatur zwischen 10 und 130°C, vorzugsweise zwischen 20 und 110°C und insbesondere zwischen 20 und 90°C in die Kavität eindosiert.

[0011] Der bzw. die Haftvermittler können als Schmelze in die Kavität eindosiert werden, was üblicherweise Temperaturen oberhalb von 30°C, vorzugsweise oberhalb von 40°C und insbesondere oberhalb von 50°C erforderlich machen kann.

[0012] Im Rahmen der vorliegenden Erfindung besonders bevorzugte schmelzbare Haftvermittler sind dabei Substanzen aus der Gruppe der Polyethylen- und Polypropylenglycole. Auch Substanzgemische, die diese Stoffe enthalten, sind bevorzugt. Erfindungsgemäße Verfahren, bei denen als Haftvermittler eine oder mehrere Substanzen aus den Gruppen der Polyethylenglycole (PEG) und/oder Polypropylenglycole (PPG) eingesetzt werden, sind demnach bevorzugte Ausführungsformen der vorliegenden Erfindung.

[0013] Erfindungsgemäß einsetzbare Polyethylenglycole (Kurzzeichen PEG) sind dabei Polymere des Ethylenglycols, die der allgemeinen Formel lla

        H-(O-CH2-CH2)n-OH     (II a)

genügen, wobei n Werte zwischen 1 (Ethylenglycol) und über 100.000 annehmen kann. Maßgeblich bei der Bewertung, ob ein Polyethylenglycol erfindungsgemäß einsetzbar ist, ist dabei die Viskosität des PEG bei der Verarbeitungstemperatur. Da in bevorzugten Verfahren oberhalb von 20°C und unterhalb von 90°C gearbeitet wird, sind die Polyethylenglycole der vorstehenden Formel besonders geeignet, in denen n Werte zwischen ca. 15 bis ca. 150 annimmt. Die Polyethylenglycole mit höheren Molmassen sind polymolekular, d.h. sie bestehen aus Kollektiven von Makromolekülen mit unterschiedlichen Molmassen. Für Polyethylenglycole existieren verschiedene Nomenklaturen, die zu Verwirrungen führen können. Technisch gebräuchlich ist die Angabe des mittleren relativen Molgewichts im Anschluß an die Angabe "PEG", so daß "PEG 200" ein Polyethylenglycol mit einer relativen Molmasse von ca. 190 bis ca. 210 charakterisiert. Nach dieser Nomenklatur sind im Rahmen der vorliegenden Erfindung die technisch gebräuchlichen Polyethylenglycole PEG 1550, PEG 3000, PEG 4000 und PEG 6000 bevorzugt einsetzbar.

[0014] Für kosmetische Inhaltsstoffe wird eine andere Nomenklatur verwendet, in der das Kurzzeichen PEG mit einem Bindestrich versehen wird und direkt an den Bindestrich eine Zahl folgt, die der Zahl n in der oben genannten Formel entspricht. Nach dieser Nomenklatur (sogenannte INCI-Nomenklatur, CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997) sind erfindungsgemäß beispielsweise PEG-32, PEG-40, PEG-55, PEG-60, PEG-75 und PEG-100 erfindungsgemäß bevorzugt einsetzbar.

[0015] Kommerziell erhältlich sind Polyethylenglycole beispielsweise unter den Handelsnamen Carbowax® PEG 540 (Union Carbide), Emkapol® 2000 (ICI Americas), Lipoxol® 2000 MED (HÜLS America), Polyglycol® E-1550 (Dow Chemical), Lutrol® E2000 (BASF) sowie den entsprechenden Handelsnamen mit höheren Zahlen.

[0016] Erfindungsgemäß einsetzbare Polypropylenglycole (Kurzzeichen PPG) sind Polymere des Propylenglycols, die der allgemeinen Formel IIb

genügen, wobei n Werte zwischen 1 (Propylenglycol) und ca. 1000 annehmen kann. Ähnlich wie bei den vorstehend beschriebenen PEG kommt es bei der Bewertung, ob ein Polypropylenglycol erfindungsgemäß einsetzbar ist, auf die Viskosität des PPG bei der Verarbeitungstemperatur an. Im Rahmen der vorliegenden Erfindung sind die technisch gebräuchlichen Polypropylenglycole PPG 1550, PPG 3000, PPG 4000 und PPG 6000 bevorzugt einsetzbar.

[0017] Da die Temperaturführung bei der Dosierung von Schmelzen kritisch sein kann, ist es bevorzugt, Lösungen oder Dispersionen von bei Raumtemperatur festen Haftvermittlern bzw. Emulsionen von bei Raumtemperatur flüssigen Haftvermittlern erfindungsgemäß einzusetzen. Hierbei haben die Emulsionen wegen gegebenenfalls auftretender späterer Probleme bei der Haftung des Kerns nur eine untergeordnete Bedeutung. Auch die Dispersionen sind wegen der Absetzproblematik bei der Verarbeitung im Vergleich mit den besonders bevorzugten Lösungen weniger geeignet.

[0018] Besonders bevorzugte Haftvermittler sind Lösungen bestimmter nichtionischer Stoffe. Hier sind erfindungsgemäße Verfahren bevorzugt, bei denen als Haftvermittler Lösungen von bei Raumtemperatur festen mehrwertigen Alkoholen und/oder Zuckern eingesetzt werden,
wobei Lösungen bevorzugt sind, welche bezogen auf die Lösung mindestens 30 Gew.-%, vorzugsweise mindestens 40 Gew.-% und insbesondere mindestens 50 Gew.-% Feststoff(e) enthalten.

[0019] Mehrwertige Alkohole im Sinne der vorliegenden Erfindung sind dabei Verbindungen, die mindestens zwei Hydroxylgruppen aufweisen. Der Aggregatzustand dieser Verbindungen bei Raumtemperatur (20°C) ist fest. Besonders geeignete mehrwertige Alkohole sind dabei beispielsweise Trimethylolpropan, Pentaerythrit sowie die "Zuckeralkohole", d.h. die aus Monosacchariden durch Reduktion der Carbonyl-Gruppe entstehenden PolyhydroxyVerbindungen. Man unterscheidet bei diesen nach der Anzahl der im Molekül enthaltenen Hydroxy-Gruppen Tetrite, Pentite, Hexite usw.. Im Rahmen der vorliegenden Erfindung besonders geeignete Zuckeralkohole sind z. B. Threit u. Erythrit, Adonit (Ribit), Arabit (früher: Lyxit) und Xylit, Dulcit (Galactit), Mannit und Sorbit (Glucit), wobei letzteres auch als Sorbitol bezeichnet wird.

[0020] Der Begriff "Zucker" kennzeichnet im Rahmen der vorliegenden Erfindung Einfach- und Mehrfachzucker, also Monosaccharide und Oligosaccharide, in denen 2 bis 6 Monosaccharide acetalartig miteinander verbunden sind. "Zucker" sind im Rahmen der vorliegenden Erfindung also Monosaccharide, Disaccharide, Trisaccharide, Tetra-, Penta- und Hexasaccharide.

[0021] Monosaccharide sind lineare Polyhydroxyaldehyde (Aldosen) bzw. Polyhydroxyketone (Ketosen). Sie verfügen meistens über eine Kettenlänge von fünf (Pentosen) bzw. sechs (Hexosen) Kohlenstoff-Atomen. Monosaccharide mit mehr (Heptosen, Octosen etc.) oder weniger (Tetrosen) C-Atomen sind relativ selten. Monosaccharide verfügen teilweise über eine große Zahl asymmetrischer C-Atome. Für eine Hexose mit vier asymmetrischen C-Atomen ergibt sich daraus eine Zahl von 24 Stereoisomeren. Die Orientierung der OH-Gruppe am höchstnummerierten asymmetr. C-Atom in der Fischer-Projektion teilt die Monosaccharide in D- u. L-konfigurierte Reihen ein. Bei den natürlich vorkommenden Monosaccharidem ist die D-Konfiguration weitaus häufiger. Monosaccharide formen, sofern es möglich ist, intramolekulare Hemiacetale, so daß sich ringförmige Strukturen vom Pyran-(Pyranosen) und Furan-Typ (Furanosen) ergeben. Kleinere Ringe sind instabil, größere Ringe nur in wäßrigen Lösungen beständig. Durch die Cyclisierung entsteht ein weiteres asymmetrisches C-Atom (das sog. anomere C-Atom), das die Zahl der möglichen Stereoisomere nochmals verdoppelt. Dies wird durch die Präfixe α- u. β- ausgedrückt. Die Bildung der Halbacetale ist ein dynamischer Prozess, der von verschiedenen Faktoren wie Temperatur, Lösungsmittel, pH-Wert usw. abhängt. Meistens liegen Gemische beider anomeren Formen vor, teilweise auch als Gemische der Furanose- und Pyranose-Formen.

[0022] Im Rahmen der vorliegenden Erfindung als Zucker einsetzbare Monosaccharide sind beispielsweise die Tetrosen D(-)-Erythrose und D(-)-Threose sowie D(-)-Erythrulose, die Pentosen D(-)-Ribose, D(-)-Ribulose, D(-)-Arabinose, D(+)-Xylose, D(-)-Xylulose sowie D(-)-Lyxose und die Hexosen D(+)-Allose, D(+)-Altrose, D(+)-Glucose, D(+)-Mannose, D(-)-Gulose, D(-)-ldose, D(+)-Galactose, D(+)-Talose, D(+)-Psicose, D(-)-Fructose, D(+)-Sorbose und D(-)-Tagatose. Die wichtigsten und am weitesten verbreiteten Monosaccharide sind: D-Glucose, D-Galactose, D-Mannose, D-Fructose, L-Arabinose, D-Xylose, D-Ribose u. 2-Desoxy-D-ribose.

[0023] Disaccharide sind aus zwei einfachen, durch glykosidische Bindung verknüpften Monosaccharid-Molekülen (D-Glucose, D-Fructose u.a.) aufgebaut. Liegt die glykosidische Bindung zwischen den acetalischen Kohlenstoff-Atomen (1 bei Aldosen bzw. 2 bei Ketosen) beider Monosaccharide, so wird damit bei beiden die Ringform fixiert; die Zucker zeigen keine Mutarotation, reagieren nicht mit Keton-Reagenzien und wirken nicht mehr reduzierend (Fehling-negativ: Trehalose- oder Saccharose-Typ). Verbindet dagegen die glykosidische Bindung das acetalische Kohlenstoff-Atom eines Monosaccharids mit irgendeinem des zweiten, so kann dieses noch die offenkettige Form annehmen, und der Zucker wirkt noch reduzierend (Fehling-positiv: Maltose-Typ).

[0024] Die wichtigsten Disaccharide sind Saccharose (Rohrzucker, Sucrose), Trehalose, Lactose (Milchzucker), Lactulose, Maltose (Malzzucker), Cellobiose (Abbauprodukt der Cellulose), Gentobiose, Melibiose, Turanose und andere.

[0025] Trisaccharide sind Kohlenhydrate, die aus 3 glykosidisch miteinander verknüpften Monosacchariden aufgebaut sind und für die man gelegentlich auch die unrichtige Bezeichnung Triosen antrifft. Trisaccharide kommen in der Natur relativ selten vor, Beispiele sind Gentianose, Kestose, Maltotriose, Melecitose, Raffinose, sowie als Beispiel für Aminozucker enthaltende Trisaccharide Streptomycin und Validamycin.

[0026] Tetrasaccharide sind Oligosaccharide mit 4 Monosaccharid-Einheiten. Beispiele für diese Verbindungsklasse sind Stachyose, Lychnose (Galactose-Glucose-Fructose-Galactose) und Secalose (aus 4-Fructose-Einheiten).

[0027] Im Rahmen der vorliegenden Erfindung werden als Zucker bevorzugt Saccharide aus der Gruppe Glucose, Fructose, Saccharose, Cellubiose, Maltose, Lactose, Lactulose, Ribose und deren Mischungen eingesetzt. Besonders bevorzugt sind Wasch- und Reinigungsmittelformkörper, die Glucose und/oder Saccharose enthalten.

[0028] Ein bevorzugter in Form einer Lösung einsetzbarer Haftvermittler ist das Sorbitol. Hier sind erfindungsgemäße Verfahren bevorzugt, bei denen als Haftvermittler Lösungen von Sorbitol eingesetzt werden, welche bezogen auf die Lösung mindestens 50 Gew.-%, vorzugsweise mindestens 60 Gew.-% und insbesondere mindestens 70 Gew.-% Sorbitol enthalten.

[0029] Eine weitere bevorzugte Stoffklasse, die in Form ihrer Lösung als Haftvermittler eingesetzt werden kann, sind wasserlösliche Polyurethane. Unter diesen sind bestimmte Vertreter besonders bevorzugt. Hier sind erfindungsgemäße Verfahren bevorzugt, bei denen als Haftvermittler Lösungen oder Suspensionen von Polyurethanen aus Diisocyanaten (I) und Diolen (II)

        O=C=N-R1-N=C=O     (I),



        H-O-R2-O-H     (II),

eingesetzt werden, wobei die Diole mindestens anteilsweise ausgewählt sind aus Polyethylenglycolen (II a) und/oder Polypropylenglycolen (II b)

        H-(O-CH2-CH2)n-OH     (II a),



und R1 sowie R2 unabhängig voneinander für einen substituierten oder unsubstituierten, geradkettigen oder verzweigten Alkyl-, Aryl- oder Alkylarylrest mit 1 bis 24 Kohlstenstoffatomen und n jeweils für Zahlen von 5 bis 2000 stehen.

[0030] Diese bevorzugten Polymere werden nachfolgend näher beschrieben.

[0031] Polyurethane sind Polyaddukte aus mindestens zwei verschiedenen Monomertypen,
  • einem Di- oder Polyisocyanat (A) und
  • einer Verbindung (B) mit mindestens 2 aktiven Wasserstoffatomen pro Molekül


[0032] Die als Lösung oder Suspension bzw. Dispersion eingesetzten Polyurethane werden dabei aus Reaktionsgemischen erhalten, in denen mindestens ein Diisocyanat der Formel (I) und mindestens ein Polyethylenglycol der Formel (II a) und/oder mindestens ein Polypropylenglycol der Formel (II b) enthalten sind.

[0033] Zusätzlich können die Reaktionsgemische weitere Polyisocyanate enthalten. Auch ein Gehalt der Reaktionsgemische - und damit der Polyurethane - an anderen Diolen, Triolen, Diaminen, Triaminen, Polyetherolen und Polyesterolen ist möglich. Dabei werden die Verbindungen mit mehr als 2 aktiven Wasserstoffatomen üblicherweise nur in geringen Mengen in Kombination mit einem großen Überschuß an Verbindungen mit 2 aktiven Wasserstoffatomen eingesetzt.

[0034] Bei Zusatz weiterer Diole etc. sind bestimmte Mengenverhältnisse zu den erfindungsgemäß zwingend im Polyurethan vorliegenden Polyethylen- und/oder Polypropylenglycoleinheiten zu beachten. Hier sind Verfahren, bei denen mindestens 10 Gew.-%, vorzugsweise mindestens 25 Gew.-%, besonders bevorzugt mindestens 50 Gew.-% uns insbesondere mindestens 75 Gew.-% der in das Polyurethan einreagierten Diole ausgewählt sind aus Polyethylenglycolen (II a) und/oder Polypropylenglycolen (II b).

[0035] Die Lösung bzw. Dispersion oder Suspension der Haftvermittler kann neben den speziellen Polyurethanen weitere Inhaltsstoffe wie Inhaltsstoffe von Wasch- und Reinigungsmitteln, insbesondere Farb- und/oder Duftstoffe, enthalten.

[0036] Die Polyurethane enthalten als Monomerbaustein Diisocyanate der Formel (I). Als Diisocyanate werden überwiegend Hexamethylendiisocyanat, 2,4- und 2,6-Toluoldiisocyanat, 4,4'-Methylendi(phenylisocyanat) und insbesondere Isophorondiisocyanat eingesetzt. Diese Verbindungen lassen sich durch die vorstehend aufgeführte Formel I beschreiben, in der R1 für eine verbindende Gruppierung von Kohlenstoffatomen, beispielsweise eine Methylen- Ethylen- Propylen-, Butylen, Pentylen-, Hexylen usw. -Gruppe steht. In den vorstehend genannten, technisch am meisten eingesetzten Hexamethylendiisocyanat (HMDI) gilt R1 = (CH2)6, in 2,4- bzw. 2,6-Toluoldiisocyanat (TDI) steht R1 für C6H3-CH3), in 4,4'-Methylendi(phenylisocyanat) (MDI) für C6H4-CH2-C6H4), und in Isophorondiisocyanat steht R1 für den Isophoronrest (3,5,5-Trimethyl-2-cyclohexenon).

[0037] Die Polyurethane enthalten als Monomerbaustein weiterhin Diole der Formel (II), wobei diese Diole mindestens anteilsweise aus der Gruppe der Polyethylenglycole (II a) und/oder der Polypropylenglycole (II b) stammen. Polyethylenglycole sind Polymere des Ethylenglycols, die der allgemeinen Formel (II a)

        H-(O-CH2-CH2)n-OH     (II a)

genügen (siehe oben).

[0038] Polypropylenglycole (Kurzzeichen PPG) sind Polymere des Propylenglycols, die der allgemeinen Formel (II b)

genügen, wobei n Werte zwischen 5 und 2000 annehmen kann.

[0039] Sowohl im Falle von Verbindungen der Formel (II a) als auch bei Verbindungen der Formel (II b) sind solche Vertreter bevorzugte Monomerbausteine, bei denen die Zahl n für eine Zahl zwischen 6 und 1500, vorzugsweise zwischen 7 und 1200, besonders bevorzugt zwischen 8 und 1000, weiter bevorzugt zwischen 9 und 500 und insbesondere zwischen 10 und 200 steht. Für bestimmte Anwendungen können Polyethylen- und Polypropylenglycole der Formeln (II a) und/oder (II b) bevorzugt sein, in denen n für eine Zahl zwischen 15 und 150, vorzugsweise zwischen 20 und 100, besonders bevorzugt zwischen 25 und 75 und insbesondere zwischen 30 und 60 steht.

[0040] Beispiele für optional weiter in den Reaktionsmischungen zur Herstellung der Polyurethane enthaltene Verbindungen sind Ethylenglykol, 1,2- und 1,3-Propylenglykol, Butylenglykole, Ethylendiamin, Propylendiamin, 1,4-Diaminobutan, Hexamethylendiamin und α,ω-Diamine auf Basis von langkettigen Alkanen oder Polyalkylenoxiden. Erfindungsgemäße Wasch- oder Reinigungsmittelformkörper, bei denen die Polyurethane in der Beschichtung zusätzliche Diamine, vorzugsweise Hexamethylendiamin und/oder Hydroxycarbonsäuren, vorzugsweise Dimethylolpropionsäure, enthalten, sind bevorzugt.

[0041] Diese Aussagen zusammenfassend, sind im Rahmen der vorliegenden Erfindung besonders bevorzugte Verfahren dadurch gekennzeichnet, daß Lösungen oder Suspensionen von Polyurethanen aus Diisocyanaten (I) und Diolen (II) eingesetzt werden

        O=C=N-R1-N=C=O     (I),



        H-O-R2-O-H     (II),

wobei R1 für eine Methylen- Ethylen- Propylen-, Butylen-, Pentylen-Gruppe oder für -(CH2)6- oder für 2,4- bzw. 2,6-C6H3-CH3, oder für C6H4-CH2-C6H4 oder für einen Isophoronrest (3,5,5-Trimethyl-2-cyclohexenon) steht und R2 ausgewählt ist aus -CH2-CH2-(O-CH2-CH2)n- oder-CH2-CH2-(O-CH(CH3)-CH2)n- mit n = 4 bis 1999.

[0042] Je nachdem, welche Reaktionspartner man miteinander zu den Polyurethanen umsetzt, gelangt man zu Polymeren mit unterschiedlichen Struktureinheiten. Hier sind erfindungsgemäße Verfahren nach bevorzugt, bei denen Lösungen oder Suspensionen von Polyurethanen eingesetzt werden, welche Struktureinheiten der Formel (III) aufweisen

        -[O-C(O)-NH-R1-NH-C(O)-O-R2]k-     (III),

in der R1 für -(CH2)6- oder für 2,4- bzw. 2,6-C6H3-CH3, oder für C6H4-CH2-C6H4 steht und R2 ausgewählt ist aus -CH2-CH2-(O-CH2-CH2)n- oder -CH(CH3)-CH2-(O-CH(CH3)-CH2)n-, wobei n eine Zahl von 5 bis 199 und k eine Zahl von 1 bis 2000 ist.

[0043] Hierbei sind die als bevorzugt beschriebenen Diisocyanate mit allen als bevorzugt beschriebenen Diolen zu Polyurethanen umsetzbar, so daß in bevorzugten erfindungsgemäßen Verfahren Polyurethane als Haftvermittler eingesetzt werden, die eine oder mehrere der Struktureinheiten (III a) bis (III h) besitzen:

        -[O-C(O)-NH-(CH2)6-NH-C(O)-O-CH2-CH2-(O-CH2-CH2)n]k-     (III a),



        -[O-C(O)-NH-(2,4-C6H3-CH3)-NH-C(O)-O-CH2-CH2-(O-CH2-CH2)n]k-     (III b),



        -[O-C(O)-NH-(2,6-C6H3-CH3)-NH-C(O)-O-CH2-CH2-(O-CH2-CH2)n]k-     (III c),



        -[O-C(O)-NH-(C6H4-CH2-C6H4)-NH-C(O)-O-CH2-CH2-(O-CH2-CH2)n]k-     (III d),



        -[O-C(O)-NH-(CH2)6-NH-C(O)-O- CH(CH3)-CH2-(O-CH(CH3)-CH2)n]k-     (III e),



        -[O-C(O)-NH-(2,4-C6H3-CH3)-NH-C(O)-O-CH(CH3)-CH2-(O-CH(CH3)-CH2)n]k-     (III f),



        -[O-C(O)-NH-(2,6-C6H3-CH3)-NH-C(O)-O-CH(CH3)-CH2-(O-CH(CH3)-CH2)n]k-     (III g),



        -[O-C(O)-NH-(C6H4-CH2-C6H4)-NH-C(O)-O-CH(CH3)-CH2-(O-CH(CH3)-CH2)n]k-     (III h),

wobei n eine Zahl von 5 bis 199 und k eine Zahl von 1 bis 2000 ist.

[0044] Wie bereits vorstehend erwähnt, können die Reaktionsmischungen neben Diisocyanaten (I) und Diolen (II) auch weitere Verbindungen aus der Gruppe der Polyisocyanate (insbesondere Triisocyanate und Tetraisocyanate) sowie aus der Gruppe der Polyole und/oder Di- bzw. Polymaine enthalten. Insbeonsere Triole, Tetrole, Pentole und Hexole sowie Diund Triamine können in den Reaktionsmischungen enthalten sein. Ein Gehalt an Verbindungen mit mehr als zwei "aktiven" H-Atomen (alle vorstehend genannten Stoffklassen mit Ausnahme der Diamine) führt zu einer teilweisen Vernetzung der Polyurethan-Reaktionsprodukte und kann vorteilhafte Eigenschaften wie beispielsweise Steuerung des Auflöseverhaltens, Stabilität oder Flexibilität der Haftverbindung, Verfahrensvorteile beim Eindosieren etc. bewirken. Üblicherweise beträgt der Gehalt solcher Verbindungen mit mehr als zwei "aktiven" H-Atomen an der Reaktionsmischung weniger als 20 Gew.-% der insgesamt eingesetzten Reaktionspartner für die Diisocyanate, vorzugsweise weniger als 15 Gew.-% und insbesondere weniger als 5 Gew.-%.

[0045] In bevorzugten Ausführungsformen der vorliegenden Erfindung besitzen die Polyurethane Molmassen von 5000 bis 150.000 gmol-1, vorzugsweise von 10.000 bis 100.000 gmol-1 und insbesondere von 20.000 bis 50.000 gmol-1. Entsprechende Verfahren sind erfindungsgemäß bevorzugt.

[0046] Im erfindungsgemäßen Verfahren werden im ersten Schritt mit herkömmlicher Preßtechnologie ein- oder mehrphasige Formkörper hergesstellt, weelche eine Kavität aufweisen, die in den nachfolgenden Verfahrensschritten mit Haftvermittler versehen und mit einem Kern befüllt wird.

[0047] Dieser erste Schritt des erfindungsgemäßen Verfahrens wird nachfolgend kurz näher erläutert.

[0048] Im ersten wird mittels herkömmlicher Preßtechnologie ein teilchenförmiges Vorgemisch, welches Inhaltsstoffe von Wasch- und Reinigungsmitteln enthält, in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen.

[0049] Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formkörpers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosierung auch bei hohen Formkörperdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempels ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt,
wobei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimmten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formkörpers kommt. Je nach den physikalischen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zerdrückt und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elastischen Verformung immer weiter verkürzt, so daß die entstehenden Formkörper mehr oder minder große Hohlräume aufweisen können. Im letzten Schritt der Tablettierung wird der fertige Formkörper durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formkörpers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Größe noch ändern können.

[0050] Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfachoder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Verpressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenterpressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde,

[0051] Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Befüllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Nierderzugschienen und Aushebebahnen unterstützt. Die Befüllung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht.

[0052] Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei- und mehrschichtiger Formkörper werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kernschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Verpressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formkörper pro Stunde.

[0053] Im Rahmen der vorliegenden Erfindung für den ersten Verfahrensschritt geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen GmbH, Berlin, Mapag Maschinenbau AG, Bern (CH) sowie Courtoy N.V., Halle (BE/LU). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D.

[0054] Die Formkörper können dabei in vorbestimmter Raumform und vorbestimmter Größe gefertigt werden. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.

[0055] Die Raumform einer anderen Ausführungsform der Formkörper ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen angepaßt, so daß die Formkörper ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflöst. Sollen erfindungsgemäße Reinigungsmitteltabletten für das maschinelle Geschirrspülen hergestellt werden, empfiehlt sich eine rechteckige Grundfläche, bei der die Höhe der Formkörper kleiner ist als die kleinere Rechteckseite. Abgerundete Ecken sind bei dieser Angebotsform bevorzugt.

[0056] Möglich ist es aber auch, daß die verschiedenen Komponenten nicht zu einer einheitlichen Tablette verpreßt werden, sondern daß Formkörper erhalten werden, die mehrere Schichten, also mindestens zwei Schichten, aufweisen. Dabei ist es auch möglich, daß diese verschiedenen Schichten unterschiedliche Lösegeschwindigkeiten aufweisen. Hieraus können vorteilhafte anwendungstechnische Eigenschaften der Formkörper resultieren. Falls beispielsweise Komponenten in den Formkörpern enthalten sind, die sich wechselseitig negativ beeinflussen, so ist es möglich, die eine Komponente in der schneller löslichen Schicht zu integrieren und die andere Komponente in eine langsamer lösliche Schicht einzuarbeiten, so daß die erste Komponente bereits abreagiert hat, wenn die zweite in Lösung geht. Der Schichtaufbau der Formkörper kann dabei sowohl stapelartig erfolgen, wobei ein Lösungsvorgang der inneren Schicht(en) an den Kanten des Formkörpers bereits dann erfolgt, wenn die äußeren Schichten noch nicht vollständig gelöst sind, es kann aber auch eine vollständige Umhüllung der inneren Schicht(en) durch die jeweils weiter außen liegende(n) Schicht(en) erreicht werden, was zu einer Verhinderung der frühzeitigen Lösung von Bestandteilen der inneren Schicht(en) führt.

[0057] Nach dem Verpressen weisen die Basisformkörper eine hohe Stabilität auf. Die Bruchfestigkeit zylinderförmiger Formkörper kann über die Meßgröße der diametralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach



[0058] Das zu verpressende Vorgemisch kann alle üblicherweise in Wasch- und Reinigungsmitteln enthaltenen Inhaltsstoffe enthalten, wobei die Zusammensetzung in Abhängigkeit vom Verwendungszweck des späteren Formkörpers variiert. So enthalten Waschmitteltabletten höhere Mengen an Tensiden als Reinigungsmitteltabletten für das maschinelle Geschirrspülen, während Bleichmitteltabletten und Wasserenthärtungstabletten üblicherweise tensidfrei formuliert werden. Auch die Menge und Art der eingesetzten Gerüststoffe, Bleichmittel usw. kann je nach gewünschtem Verwendungszweck variieren. Unabhängig vom Verwendungszweck enthalten die meisten Wasch- und Reinigungsmittelformkörper einen oder mehrere Stoffe aus der Gruppe der Builder. In den in Basisformkörpern können als Gerüststoff alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und auch die Phosphate.

[0059] Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1 ·H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5·yH2O bevorzugt.

[0060] Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.

[0061] Der einsetzbare feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel

        nNa2O · (1-n)K2O · Al2O3 · (2 - 2,5)SiO2 · (3,5 - 5,5) H2O

beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granularen Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.

[0062] Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate.

[0063] Als organische Cobuilder können in den Basisformkörpern insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.

[0064] Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.

[0065] Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Waschoder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.

[0066] Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.

[0067] Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.

[0068] Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.

[0069] Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.

[0070] Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.

[0071] Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.

[0072] Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.

[0073] Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.

[0074] Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, die neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.

[0075] Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.

[0076] Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.

[0077] Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.

[0078] Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.

[0079] Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.

[0080] Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.

[0081] Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.

[0082] In erfindungsgemäß hergestellten Basisformkörpern für das maschinelle Geschirrspülen sind wasserlösliche Builder bevorzugt, da sie auf Geschirr und harten Oberflächen in der Regel weniger dazu tendieren, unlösliche Rückstände zu bilden. Übliche Builder, die in erfindungsgemäßen maschinellen Geschirrspülmitteltabletten zwischen 10 und 90 Gew.-% bezogen auf das zu verpressende Vorgemisch zugegen sein können, sind die niedermolekularen Polycarbonsäuren und ihre Salze, die homopolymeren und copolymeren Polycarbonsäuren und ihre Salze, die Carbonate, Phosphate und Silikate. Bevorzugt werden zur Herstellung von Formkörpern für das maschinelle Geschirrspülen Trinatriumcitrat und/oder Pentanatriumtripolyphosphat und/oder Natriumcarbonat und/oder Natriumbicarbonat und/oder Gluconate und/oder silikatische Builder aus der Klasse der Disilikate und/oder Metasilikate eingesetzt. Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat. Ebenfalls besonders bevorzugt ist ein Buildersystem, das eine Mischung aus Tripolyphosphat und Natriumcarbonat und Natriumdisilikat enthält.

[0083] Im Rahmen der vorliegenden Erfindung sind Verfahrensvarianten bevorzugt, bei denen das im ersten Schritt zu Muldentabletten verpreßte teilchenförmige Vorgemisch Builder in Mengen von 20 bis 80 Gew.-%, vorzugsweise von 25 bis 75 Gew.-% und insbesondere von 30 bis 70 Gew.-%, jeweils bezogen auf das Vorgemisch, enthält.

[0084] Das Vorgemisch kann außer den oben beschriebenen Gerüststoffen auch die bereits erwähnten waschaktiven Substanzen enthalten, die insbesondere für Waschmitteltabletten wichtige Inhaltsstoffe sind. Je nach herzustellendem Formkörper sind bei der Beantwortung der Fragen, ob und wenn ja welche Tenside man einsetzt, unterschiedliche Antworten möglich. Üblicherweise können Formkörper für das Waschen von Textilien die unterschiedlichsten Tenside aus den Gruppen der anionischen, nichtionischen, kationischen und amphoteren Tenside enthalten, während Formkörper für das maschinelle Geschirrspülen vorzugsweise nur schwachschäumende nichtionische Tenside enthalten und Wasserenthärtungstabletten oder Bleichmitteltabletten frei von Tensiden sind. Dem Fachmann sind bei der Inkorporation der Tenside in das zu verpressende Vorgemisch hinsichtlich der Formulierungsfreiheit keine Grenzen gesetzt.

[0085] Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit endoder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.

[0086] Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.

[0087] Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.

[0088] Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.

[0089] Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.

[0090] Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.

[0091] Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kaliumoder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Tri-ethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Werden im Rahmen der vorliegenden Erfindung Waschmitteltabletten hergestellt, so ist es bevorzugt, daß diese 5 bis 50 Gew.-%, vorzugsweise 7,5 bis 40 Gew.-% uns insbesondere 10 bis 20 Gew.-% anionische Tensid(e), jeweils bezogen auf das Formkörpergewicht, enthalten.

[0092] Bei der Auswahl der anionischen Tenside, die in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern zum Einsatz kommen, stehen der Formulierungsfreiheit keine einzuhaltenden Rahmenbedingungen im Weg. Bevorzugte Waschmittelformkörper weisen jedoch einen Gehalt an Seife auf, der 0,2 Gew.-%, bezogen auf das Gesamtgewicht des Formkörpers, übersteigt. Bevorzugt einzusetzende anionische Tenside sind dabei die Alkylbenzolsulfonate und Fettalkoholsulfate, wobei bevorzugte Waschmittelformkörper 2 bis 20 Gew.-%, vorzugsweise 2,5 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.-% Fettalkoholsulfat(e), jeweils bezogen auf das Formkörpergewicht, enthalten

[0093] Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfettoder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12- 14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.

[0094] Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester.

[0095] Eine weitere Klasse von nichtionischen Tensiden, die vorteilhaft eingesetzt werden kann, sind die Alkylpolyglycoside (APG). Einsetzbare Alkypolyglycoside genügen der allgemeinen Formel RO(G)z, in der R für einen linearen oder verzweigten, insbesondere in 2-Stellung methylverzweigten, gesättigten oder ungesättigten, aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Glycosidierungsgrad z liegt dabei zwischen 1,0 und 4,0, vorzugsweise zwischen 1,0 und 2,0 und insbesondere zwischen 1,1 und 1,4.

[0096] Bevorzugt eingesetzt werden lineare Alkylpolyglucoside, also Alkylpolyglycoside, in denen der Polyglycosylrest ein Glucoserest und der Alkylrest ein n-Alkylrest ist.

[0097] Die erfindungsgemäß hergestellten Basisformkörper können bevorzugt Alkylpolyglycoside enthalten, wobei Gehalte der Formkörper an APG über 0,2 Gew.-%, bezogen auf den gesamten Formkörper, bevorzugt sind. Besonders bevorzugte Wasch- und Reinigungsmittelformkörper enthalten APG in Mengen von 0,2 bis 10 Gew.-%, vorzugsweise 0,2 bis 5 Gew.-% und insbesondere von 0,5 bis 3 Gew.-%.

[0098] Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.

[0099] Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (IV),

in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.

[0100] Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (V),

in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.

[0101] [Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.

[0102] Bei der Herstellung von Formkörpern für das maschinelle Geschirrspülen kommen als Tenside prinzipiell ebenfalls alle Tenside in Frage. Bevorzugt sind für diesen Anwendungszweck aber die vorstehend beschriebenen nichtionischen Tenside und hier vor allem die schwachschäumenden nichtionischen Tenside. Besonders bevorzugt sind die alkoxylierten Alkohole, besonders die ethoxylierten und/oder propoxylierten Alkohole. Dabei versteht der Fachmann allgemein unter alkoxylierten Alkoholen die Reaktionsprodukte von Alkylenoxid, bevorzugt Ethylenoxid, mit Alkoholen, bevorzugt im Sinne der vorliegenden Erfindung die längerkettigen Alkohole (C10 bis C18, bevorzugt zwischen C12 und C16, wie z. B. C11-, C12-, C13-, C14-, C15-, C16-, C17- und C18-Alkohole). In der Regel entstehen aus n Molen Ethylenoxid und einem Mol Alkohol, abhängig von den Reaktionsbedingungen ein komplexes Gemisch von Additionsprodukten unterschiedlichen Ethoxylierungsgrades. Eine weitere Ausführungsform besteht im Einsatz von Gemischen der Alkylenoxide bevorzugt des Gemisches von Ethylenoxid und Propylenoxid. Auch kann man gewünschtenfalls durch eine abschließende Veretherung mit kurzkettigen Alkylgruppen, wie bevorzugt der Butylgruppe, zur Substanzklasse der "verschlossenen" Alkoholethoxylaten gelangen, die ebenfalls im Sinne der Erfindung eingesetzt werden kann. Ganz besonders bevorzugt im Sinne der vorliegenden Erfindung sind dabei hochethoxylierte Fettalkohole oder deren Gemische mit endgruppenverschlossenen Fettalkoholethoxylaten.

[0103] Wird das erfindungsgemäße Verfahren zur Herstellung von Reinigungsmitteltabletten für das maschinelle Geschirrspülen eingesetzt, so ist es bevorzugt, daß das im ersten Schritt verpreßte teilchenförmige Vorgemisch Tensid(e), vorzugsweise nichtionische(s) Tensid(e), in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 0,75 bis 7,5 Gew.-% und insbesondere von 1,0 bis 5 Gew.-%, jeweils bezogen auf das Vorgemisch, enthält.

[0104] Unabhängig vom Einsatzzweck der herzustellenden Formkörper kann es vorteilhaft sein, wenn das im ersten Schritt des erfindungsgemäßen Verfahrens zu verpressende Vorgemisch bestimmte physikalische Eigenschaften aufweist. Insbesondere sind hierbei erfindungsgemäße Verfahren bevorzugt, die dadurch gekennzeichnet sind, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch ein Schüttgewicht oberhalb von 600 g/l, vorzugsweise oberhalb von 700 g/l und insbesondere oberhalb von 800 g/l aufweist.

[0105] Auch die Partikelgrößenverteilung des Vorgemischs kann Einfluß auf die Eigenschaften der Basisformkörper haben. Bevorzugte Verfahren sind dadurch gekennzeichnet, daß das im ersten Schritt verpreßte teilchenförmige Vorgemisch eine Teilchengrößenverteilung aufweist, bei der weniger als 10 Gew.-%, vorzugsweise weniger als 7,5 Gew.-% und insbesondere weniger als 5 Gew.-% der Teilchen größer als 1600 µm oder kleiner als 200 µm sind. Vorzugsweise liegt die Teilchengrößenverteilung des in Schritt a) verpreßten Vorgemischs noch enger, so daß besonders bevorzugte Verfahren dadurch gekennzeichnet sind, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch eine Teilchengrößenverteilung aufweist, bei der mehr als 30 Gew.-%, vorzugsweise mehr als 40 Gew.-% und insbesondere mehr als 50 Gew.-% der Teilchen eine Teilchengröße zwischen 600 und 1000 µm aufweisen.

[0106] Wie bereits eingangs beschrieben, können im ersten Schritt selbstverständlich nicht nur einphasige Formkörper hergestellt werden, sondern auch mehrphasige bzw. -schichtige Formkörper, die in an sich bekannter Weise hergestellt werden, indem mehrere unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden. Besonders ist hierbei die Herstellung zweischichtiger Formkörper in Schritt a), indem zwei unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden, von denen eines ein oder mehrere Bleichmittel und das andere ein oder mehrere Enzyme enthält. Selbstverständlich kann nicht nur die Trennung von Bleichmittel und oxidationsempfindlichen Substanzen (Enzymen, Farb- und Duftstoffen) auf diese Weise realisiert werden, sondern auch die Trennung von Bleichmittel und Bleichaktivator, indem zwei unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden, von denen eines ein oder mehrere Bleichmittel und das andere ein oder mehrere Bleichaktivatoren enthält.

[0107] Die genannten Inhaltsstoffe sowie weitere Inhaltsstoffe von Wasch- und Reinigungsmitteln wie beispielsweise Desintegrationshilfsmittel, Silberschutzmittel, optische Aufheller, Farbübertragungsinhibitoren, Korrosionsinhibitoren, pH-Stellmittel Tenside, Enzyme, Polymere, Fluoreszenzmittel, Schauminhibitoren, Antiredepositionsmittel, Vergrauungsinhibitoren und Mischungen hieraus können in den Vorgemischen enthalten sein, die im ersten Schritt in an sich bekannter Weise verpreßt werden. Diese Stoffe werden nachstehend beschrieben.

[0108] Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Auch beim Einsatz der Bleichmittel ist es möglich, auf den Einsatz von Tensiden und/oder Gerüststoffen zu verzichten, so daß reine Bleichmitteltabletten herstellbar sind. Sollen solche Bleichmitteltabletten zur Textilwäsche eingesetzt werden, ist der Einsatz von Natriumpercarbonat bevorzugt, unabhängig davon, welche weiteren Inhaltsstoffe in den Formkörpern enthalten sind. Werden Reinigungs- oder Bleichmitteltabletten für das maschinelle Geschirrspülen hergestellt, so können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesium-monoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimido-peroxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamido-peroxycapronsäure, N-nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxy-phthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.

[0109] Als Bleichmittel in Formkörpern für das maschinelle Geschirrspülen können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet.

[0110] Um beim Waschen oder Reinigen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in das zu verpressende Vorgemisch eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.

[0111] Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Formkörper eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder - carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.

[0112] Als Enzyme kommen in Vorgemischen für Reinigungsmitteltabletten insbesondere solche aus der Klassen der Hydrolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen zur Entfernung von Anschmutzungen wie protein-, fett- oder stärkehaltigen Verfleckungen bei. Zur Bleiche können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus und Humicola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere alpha-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen.

[0113] Die Enzyme können an Trägerstoffe adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,5 bis etwa 4,5 Gew.-% betragen.

[0114] In Vorgemischen für Waschmitteltabletten kommen neben den vorstehend genannten Enzymen zusätzlich noch Cellulasen in Betracht. Cellulasen und andere Glykosylhydrolasen können durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und -Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich verschiedene Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden.

[0115] Sollen erfindungsgemäße Formkörper für das maschinelle Reinigen von Geschirr hergestellt werden, so können diese zum Schutze des Spülgutes oder der Maschine Korrosionsinhibitoren enthalten, wobei Silberschutzmittel im Bereich des maschinellen Geschirrspülens eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.

[0116] Zusätzlich können Vorgemische für erfindungsgemäß hergestellte Waschmittelformkörper auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäureund der Terephthalsäure-Polymere.

[0117] Das zu verpressende Vorgemisch kann, wenn man Textilwaschmittelformkörper herstellen will, als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.

[0118] Duftstoffe können den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern zugesetzt werden, um den ästhetischen Eindruck der entstehenden Produkte zu verbessern und dem Verbraucher neben der Reinigungsleistung und dem Farbeindruck ein sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, ∝-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.

[0119] Die Duftstoffe können direkt in das Vorgemisch eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.

[0120] Um den Zerfall hochverdichteter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.

[0121] Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.

[0122] Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% eines oder mehrerer Desintegrationshilfsmittel, jeweils bezogen auf das Formkörpergewicht.

[0123] Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reinigungsmittelformkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.

[0124] Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Waschund Reinigungsmittelformkörper, die Sprengmittel in granularer oder gegebenenfalls cogranulierter Form enthalten, werden in den deutschen Patentanmeldungen DE 197 09 991 (Stefan Herzog) und DE 197 10 254 (Henkel) beschrieben. Diesen Schriften sind auch nähere Angaben zur Herstellung granulierter, kompaktierter oder cogranulierter Cellulosesprengmittel zu entnehmen. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 µm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 µm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 µm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulosebasis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.

[0125] Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kompaktierbar sind.

[0126] Die im ersten Schritt hergestellten Basisformkörper können jedwede geometrische Form annehmen, wobei insbesondere konkave, konvexe, bikonkave, bikonvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhombohedrische Formen bevorzugt sind. Auch völlig irreguläre Grundflächen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Weisen die erfindungsgemäßen Formkörper Ecken und Kanten auf, so sind diese vorzugsweise abgerundet. Als zusätzliche optische Differenzierung ist eine Ausführungsform mit abgerundeten Ecken und abgeschrägten ("angefasten") Kanten bevorzugt.

[0127] Die Kavität in den Basisformkörpern kann ebenfalls jedwede Form aufweisen. Sie kann den Formkörper durchteilen, d.h. eine Öffnung an verschiedenen Seiten, beispielsweise an Ober- und Unterseite des Formkörpers aufweisen, sie kann aber auch eine nicht durch den gesamten Formkörper gehende Kavität sein, deren Öffnung nur an einer Formkörperseite sichtbar ist, was erfindungsgemäß bevorzugt ist. Auch die Form der Kavität kann in weiten Grenzen frei gewählt werden. Aus Gründen der Verfahrensökonomie haben sich Mulden mit einer Öffnung an einer Formkörperseite bewährt. Auch die Form der Mulde kann frei gewählt werden, wobei Formkörper bevorzugt sind, in denen mindestens eine Mulde eine konkave, konvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhombohedrische Form annehmen kann. Auch völlig irreguläre Muldenformen wie Pfeiloder Tierformen, Bäume, Wolken usw. können realisiert werden. Wie auch bei den Formkörpern sind Mulden mit abgerundeten Ecken und Kanten oder mit abgerundeten Ecken und angefasten Kanten bevorzugt.

[0128] Die vorstehend genannten geometrischen Realisierungsformen lassen sich beliebig miteinander kombinieren. So können Formkörper mit rechteckiger oder quadratischer Grundfläche und kreisrunden Kavitäten ebenso hergestellt werden wie runde Formkörper mit achteckigen Mulden, wobei der Vielfalt der Kombinationsmöglichkeiten keine Grenzen gesetzt sind. Aus Gründen der Verfahrensökonomie und des ästhetischen Verbraucherempfindens sind Muldenformkörper besonders bevorzugt, bei denen die Formkörpergrundfläche und der Lochquerschnitt die gleiche geometrische Form haben, beispielsweise Formkörper mit quadratischer Grundfläche und zentral eingearbeiteter quadratischer Kavität.

[0129] Besonders vorteilhaft ist es im Rahmen der vorliegenden Erfindung, wenn sich der Kern formschlüssig in die Kavität einpassen läßt und keine optisch störenden breiten Kluften gebildet werden. Verfahren, bei denen der/die Kern(e) formschlüssig in die Kavität(en) des Basisformkörpers eingepaßt werden kann/können, sind dabei bevorzugt.

[0130] Die Größe der Mulde im Vergleich zum gesamten Formkörper richtet sich nach dem gewünschten Verwendungszweck der Formkörper. Je nachdem, wie groß der später einzuklebende Kern ist und ob eine geringere oder größere Menge an Wasch- oder Reinigungsmittel dosiert werden soll, kann die Größe der Kavität variieren. Unabhängig vom Verwendungszweck sind erfindungsgemäße Verfahren bevorzugt, bei denen das Volumen des Kerns (bzw. der Kerne) das 0,05- bis 1-fache, vorzugsweise das 0,1- bis 0,75-fache und insbesondere das 0,15- bis 0,5-fache des Volumens des Basisformkörpers ausmacht.

[0131] Neben dem genannten Volumenverhältnis kann auch ein Massenverhältnis der beiden Teile angegeben werden, wobei die beiden Werte über die Dichten des Basisformkörpers bzw. des Kerns miteinander korrelieren. Unabhängig von der Dichte der einzelnen Teile sind hierbei Verfahren bevorzugt, bei denen das Gewichtsverhältnis von Basisformkörper zu Kern 1:1 bis 100:1, vorzugsweise 2:1 bis 80:1, besonders bevorzugt 3:1 bis 50:1 und insbesondere 4:1 bis 30:1 beträgt.

[0132] Analoge Angaben lassen sich auch für die Oberflächen machen, die jeweils vom Basisformkörper bzw. vom Kern sichtbar sind. Hier sind Verfahren bevorzugt, bei denen die nach außen sichtbare Oberfläche des Kerns 1 bis 25 %, vorzugsweise 2 bis 20 %, besonders bevorzugt 3 bis 15 % und insbesondere 4 bis 10 % der Gesamtoberfläche des Formkörpers ausmacht

[0133] Der Kern und der Basisformkörper sind vorzugsweise optisch unterscheidbar eingefärbt. Neben der optischen Differenzierung können anwendungstechnische Vorteile durch unterschiedliche Löslichkeiten der verschiedenen Formkörperbereiche erzielt werden. Wasch- und Reinigungsmittelformkörper, bei denen sich der Kern schneller löst als der Basisformkörper, sind erfindungsgemäß bevorzugt. Durch Inkorporation bestimmter Bestandteile kann einerseits die Löslichkeit des Kerns gezielt beschleunigt werden, andererseits kann die Freisetzung bestimmter Inhaltsstoffe aus der Reinigungsmittelkomponente zu Vorteilen im Wasch- bzw. Reinigungsprozeß führen.

[0134] Selbstverständlich sind auch Wasch- oder Reinigungsmittelformkörper bevorzugt, bei denen sich der Kern später im Spülprogramm löst als der Basisformkörper. Leistungsvorteile aus dieser verzögerten Freisetzung lassen sich beispielsweise dadurch erreichen, daß mit Hilfe eines langsamer löslichen Kerns Aktivsubstanz(en) erst in späteren Spülgängen freigesetzt werden. So kann beispielsweise beim maschinellen Geschirrspülen durch langsamer lösliche Kerne erreicht werden, daß im Klarspülgang weitere Aktivsubstanz(en) zur Verfügung steht/stehen. Durch zusätzliche Stoffe wie nichtionische Tenside, Acidifizierungsmittel, soil-release-Polymere usw. lassen sich so die Klarspülergebnisse verbessern. Auch eine Inkorporation von Parfüm ist problemlos möglich; durch dessen verzögerte Freisetzung kann bei Geschirrspülmaschinen der oft auftretende "Laugengeruch" beim Öffnen der Maschine beseitigt werden.

[0135] Der Basisformkörper besitzt in bevorzugten Ausführungsformen der vorliegenden Erfindung ein hohes spezifisches Gewicht. Verfahren, die dadurch gekennzeichnet sind, daß der im ersten Schritt hergestellte Basisformkörper eine Dichte oberhalb von 1000 kgdm-3 , vorzugsweise oberhalb von 1025 kgdm-3, besonders bevorzugt oberhalb von 1050 kgdm-3 und insbesondere oberhalb von 1100 kgdm-3 aufweist, sind erfindungsgemäß bevorzugt.

[0136] Die in die mit Haftverrmittler versehen Kavität einzusetzenden Kerne können - wie bereits erwähnt- jede der vorstehend genannten Aktivsubstanzen enthalten. Die Herstellung der Kerne kann dabei auf unterschiedliche Weise erfolgen, wobei Verfahren wie Tablettieren, Gießen, Spritzgießen, Sintern, Extrudieren und Pelletieren bevorzugt sind. Selbstverständlich können auch geeignete Substanzgemische erst verprillt oder pastilliert und nachfolgend verpreßt werden.

[0137] Die Kerne können vor ihrem Einsetzen in die Kavität mit geeigneten Materialien beschichtet werden, wobei auf dem Fachmann bekannte Verfahren und Materialien zurückgegriffen werden kann.


Ansprüche

1. Verfahren zur Herstellung mehrphasiger Wasch- und Reinigungsmittelformkörper, bei dem in einem ersten Schritt Basisformkörper hergestellt werden, welche mindestens eine Kavität aufweisen, in die in einem zweiten Schritt Haftvermittler eindosiert wird/werden, bevor in einem dritten Schritt die Kavität(en) mit (einem) Kern(en) befüllt wird, dadurch gekennzeichnet, daß als Haftvermittler in zweiten Schritt Lösungen, Dispersionen, Emulsionen oder Schmelzen eingesetzt werden, welche eine Viskosität unterhalb von 3000 mPas aufweisen.
 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Haftvermittler bei der Verarbeitung eine Viskosität unterhalb von 2500 mPas, vorzugsweise unterhalb von 2000 mPas und insbesondere unterhalb von 1000 mPas aufweisen.
 
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Haftvermittler bei einer Temperatur zwischen 10 und 130°C, vorzugsweise zwischen 20 und 110°C und insbesondere zwischen 20 und 90°C in die Kavität eindosiert werden.
 
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Haftvermittler eine oder mehrere Substanzen aus den Gruppen der Polyethylenglycole (PEG) und/oder Polypropylenglycole (PPG) eingesetzt werden.
 
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Haftvermittler Lösungen von bei Raumtemperatur festen mehrwertigen Alkoholen und/oder Zuckern eingesetzt werden, wobei Lösungen bevorzugt sind, welche bezogen auf die Lösung mindestens 30 Gew.-%, vorzugsweise mindestens 40 Gew.-% und insbesondere mindestens 50 Gew.-% Feststoff(e) enthalten.
 
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß Lösungen von Sorbitol eingesetzt werden, welche bezogen auf die Lösung mindestens 50 Gew.-%, vorzugsweise mindestens 60 Gew.-% und insbesondere mindestens 70 Gew.-% Sorbitol enthalten.
 
7. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Haftvermittler Lösungen oder Suspensionen von Polyurethanen aus Diisocyanaten (I) und Diolen (II)

        O=C=N-R1-N=C=O     (I)



        H-O-R2-O-H     (II),

eingesetzt werden, wobei die Diole mindestens anteilsweise ausgewählt sind aus Polyethylenglycolen (II a) und/oder Polypropylenglycolen (II b)

        H-(O-CH2-CH2)n-OH     (II a),



und R1 sowie R2 unabhängig voneinander für einen substituierten oder unsubstituierten, geradkettigen oder verzweigten Alkyl-, Aryl- oder Alkylarylrest mit 1 bis 24 Kohlstenstoffatomen und n jeweils für Zahlen von 5 bis 2000 stehen.
 
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß Lösungen oder Suspensionen von Polyurethanen aus Diisocyanaten (I) und Diolen (II) eingesetzt werden

        O=C=N-R1-N=C=O     (I),



        H-O-R2-O-H     (II),

wobei R1 für eine Methylen- Ethylen- Propylen-, Butylen-, Pentylen-Gruppe oder für -(CH2)6- oder für 2,4- bzw. 2,6-C6H3-CH3, oder für C6H4-CH2-C6H4 oder für einen Isophoronrest (3,5,5-Trimethyl-2-cyclohexenon) steht und R2 ausgewählt ist aus -CH2-CH2-(O-CH2-CH2)n- oder -CH2-CH2-(O-CH(CH3)-CH2)n- mit n = 4 bis 1999.
 
9. Verfahren nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß Lösungen oder Suspensionen von Polyurethanen eingesetzt werden, welche Struktureinheiten der Formel (III) aufweisen

        -[O-C(O)-NH-R1-NH-C(O)-O-R2]k-     (III),

in der R1 für -(CH2)6- oder für 2,4- bzw. 2,6-C6H3-CH3, oder für C6H4-CH2-C6H4 steht und R2 ausgewählt ist aus -CH2-CH2-(O-CH2-CH2)n- oder -CH(CH3)-CH2-(O-CH(CH3)-CH2)n-, wobei n eine Zahl von 5 bis 199 und k eine Zahl von 1 bis 2000 ist.
 
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Volumen des Kerns (bzw. der Kerne) das 0,05- bis 1-fache, vorzugsweise das 0,1- bis 0,75-fache und insbesondere das 0,15- bis 0,5-fache des Volumens des Basisformkörpers ausmacht.
 
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der/die Kern(e) formschlüssig in die Kavität(en) des Basisformkörpers eingepaßt werden kann/können.