(19) |
 |
|
(11) |
EP 1 218 448 B9 |
(12) |
CORRECTED EUROPEAN PATENT SPECIFICATION |
|
Note: Bibliography reflects the latest situation |
(15) |
Correction information: |
|
Corrected version no 1 (W1 B1) |
|
Corrections, see Description |
(48) |
Corrigendum issued on: |
|
10.10.2007 Bulletin 2007/41 |
(45) |
Mention of the grant of the patent: |
|
02.05.2007 Bulletin 2007/18 |
(22) |
Date of filing: 16.08.2000 |
|
(51) |
International Patent Classification (IPC):
|
(86) |
International application number: |
|
PCT/GB2000/003184 |
(87) |
International publication number: |
|
WO 2001/012719 (22.02.2001 Gazette 2001/08) |
|
(54) |
METHOD OF PRODUCING MELT-PROCESSABLE COMPOSITIONS, COMPOSITIONS AND ARTICLES
VERFAHREN ZUR HERSTELLUNG VON SCHMELZVERARBEITBARE ZUSAMMENSETZUNGEN, ZUSAMMENSETZUNGEN
UND ARTIKELN
PROCEDE DE PRODUCTION DE COMPOSITIONS THERMPOLASTIQUES POUVANT ETRE TRAITEES PAR FUSION,
COMPOSITIONS ET ARTICLES
|
(84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
Designated Extension States: |
|
SI |
(30) |
Priority: |
17.08.1999 GB 9919304
|
(43) |
Date of publication of application: |
|
03.07.2002 Bulletin 2002/27 |
(73) |
Proprietor: Lucite International UK Limited |
|
Southampton, Hampshire SO14 3BP (GB) |
|
(72) |
Inventors: |
|
- EUSTACE, Paul
Stockton-on-Tees TS17 0YN (GB)
- MARSTON, Nicholas John
Saltburn-by-the-Sea
Cleveland TS12 1HU (GB)
- OLIVER, John Robert
Hutton Rudby
Yarm TS15 0HB (GB)
|
(74) |
Representative: Frith, Richard William et al |
|
Appleyard Lees
15 Clare Road Halifax HX1 2HY Halifax HX1 2HY (GB) |
(56) |
References cited: :
EP-A- 0 733 474 EP-A- 0 795 574 GB-A- 1 197 957 US-A- 4 876 311
|
EP-A- 0 786 494 WO-A-98/59006 US-A- 3 345 434 US-A- 5 880 207
|
|
|
|
|
|
|
|
|
|
|
Remarks: |
|
The file contains technical information submitted after the application was filed
and not included in this specification |
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to a method of preparing a melt-processable thermoplastic
composition, especially an acrylic composition. Particularly, although not exclusively,
the invention relates to compositions for making articles having surfaces exhibiting
relatively low gloss.
[0002] Thermoplastic compositions, especially acrylic compositions, are used in a variety
of applications, some of which may demand a particular surface appearance, such as
low gloss. Acrylic compositions containing gloss modifiers, usually to reduce the
surface gloss of the compositions, are already known and used in the industry. Commonly
used gloss modifying compounds are talcs or other inorganic compounds. Talcs can generally
be used to reduce surface gloss to a minimum of about 20 (measured at 75° observation
angle). However, when a very low gloss or matte surface finish is required, e.g. for
building components such as vinyl siding or the like, talcs or other conventional
gloss reducing compounds may be ineffective or may be required to be present at such
high levels that the other properties of the composition are compromised. There is
therefore a need for an acrylic composition which is suitable for producing articles
which have a relatively low gloss surface but which are comparable in physical properties
to higher gloss acrylic compositions.
[0003] WO-A-97/14749 describes acrylic compositions having the appearance of a natural granite comprising
a polymethyl methacrylate matrix having dispersed within it particles comprising 75-90wt%
of PMMA, at least 10% of an ethylenically unsaturated comonomer and at least 0.4 wt%
of a cross-linker. The granite articles are prepared by casting a syrup of polymer
in monomer containing the particles and curing to produce a glossy article.
[0004] US-A-5242968 describes a cast acrylic article having a textured but glossy surface formed by casting
a polymer in monomer syrup containing ground PMMA particles in a cell and curing the
mixture so that it polymerises.
[0005] US-A-5304592 describes acrylic articles which contain particles of a thermoplastic and/or thermoset
plastic which are visually different from the acrylic matrix in which they are suspended
and which have different viscosities or melting points from the plastic of the matrix
yet which have a similar density to the matrix so that the particles do not settle
during processing.
[0006] It is an object of the present invention to provide a melt-processable thermoplastic
composition which address problems associated with prior art compositions.
[0007] According to a first aspect of the present invention, there is provided a method
of preparing a melt-processable thermoplastic composition, the method comprising mixing:
- (a) 50 to 99.5 wt% of a melt-processable thermoplastic polymer; and
- (b) 0.5 to 50 wt% of a particulate acrylic copolymer comprising the residues of a
monomer mixture comprising at least 50 wt% of methyl methacrylate (MMA), at least
5 wt% and less than 20 wt% of a copolymerisable acrylic comonomer comprising at least
one alkyl acrylate or alkyl methacrylate, wherein the acrylic copolymer further includes
at least 0.3 wt% to 1 wt% of a copolymerisable cross-linking monomer, said particles
having a maximum dimension of 5 mm;
wherein the melt-processable thermoplastic polymer and the particulate acrylic copolymer
are mixed under shear so that particles of said particulate copolymer are broken down.
[0008] According to a second aspect of the invention there is provided a melt-processable
thermoplastic composition comprising:
- a) 50-99.5 wt% of a melt-processable thermoplastic polymer; and
- b) 0.5-50 %wt of a particulate acrylic copolymer comprising the residues of a monomer
mixture comprising at least 50 wt% of methyl methacrylate (MMA), at least 5 wt% and
less than 20 wt% of a copolymerisable acrylic comonomer comprising at least one alkyl
acrylate or alkyl methacrylate, wherein the acrylic copolymer further includes at
least 0.3 wt% to 1 wt% of a copolymerisable cross-linking monomer, wherein the weight
averaged diameter of said particles of the particulate acrylic copolymer is greater
than 100 µm and less than 250 µm as measured in accordance with ASTM D1921.
[0009] According to a third aspect of the invention there is provided a method of preparing
a melt-processable thermoplastic composition, the method comprising contacting, preferably
mixing:
- a) 50-99.5 wt% of a melt-processable thermoplastic polymer; and
- b) 0.5-50 %wt of a particulate acrylic copolymer comprising the residues of a monomer
mixture comprising at least 50 wt% of methyl methacrylate (MMA), at least 5 wt% and
less than 20 wt% of a copolymerisable acrylic comonomer comprising at least one alkyl
acrylate or methacrylate,
wherein the acrylic copolymer further includes at least 0.3 wt% to 1 wt% of a copolymerisable
cross-linking monomer, wherein the weight averaged diameter of said particles of the
particulate acrylic copolymer is greater than 100 µm and less than 250 µm as measured
in accordance with ASTM D1921.
[0010] The thermoplastic polymer preferably forms a matrix throughout which the particulate
polymer is dispersed. The particulate polymer may, however, be more or less concentrated
in some parts of the matrix than others as a result of a melt-processing method which
may be used to form the composition. Nevertheless, it has been found that the incorporation
of the particulate polymer into the melt-processable thermoplastic polymer matrix
enables articles to be produced by melt-processing techniques such as injection moulding
or extrusion, which have an excellent low-gloss surface finish.
[0011] The melt-processable thermoplastic polymer may be selected from a range of materials,
e.g. PVC, polystyrene, polyesters, styrene-acrylonitrile copolymers and terpolymers,
e.g. ABS, styrene-acrylonitrile(SAN), acrylonitrile-styrene-acrylic(SAN), polycarbonate,
nylon, acrylic polymers such as polmethylmethacrylate and its copolymers with other
(meth)acrylates, provided that the polymer(s) selected may be melt processed at a
temperature which is below the temperature at which the particulate acrylic polymer
thermally degrades, e.g. below about 300°C. The melt-processable polymer may also
comprise a blend of thermoplastic polymers. In one preferred form of the invention,
the melt-processable thermoplastic polymer which forms a matrix is a polymethylmethacrylate
(PMMA) homopolymer or copolymer derived from a monomer mixture comprising 60 - 100
wt% methyl methacrylate and 0 - 40 wt% of at least one other copolymerisable alkyl
acrylate or methacrylate. A preferred PMMA matrix is a copolymer of 60 - 98 wt% methyl
methacrylate and 2 - 40 wt% of at least one other copolymerisable alkyl acrylate selected
from a C
1-4alkyl, e.g. methyl, ethyl or butyl, hydroxyethyl, 2-ethylhexyl, cyclohexyl or phenyl
acrylates. Of the aforesaid, a C
1-4 alkylacrylate (especially n-alkyl acrylates where isomers can exist) is preferred;
methyl, ethyl and butyl acrylates are more preferred; ethyl and butyl (especially
n-butyl) acrylates are especially preferred; and ethyl acrylate is most preferred.
A preferred copolymer comprises 80 - 98 wt% methyl methacrylate residues and 2 - 20
wt% of the residues of at least one said alkyl acrylate. Preferably, said preferred
copolymer comprises at least 82 wt%, more preferably at least 84 wt%, especially at
least 85 wt% methyl methacrylate. The amount of methyl methacrylate may be less than
95 wt%, suitably less than 92 wt%, preferably less than 90 wt%, more preferably less
than 88 wt%, especially for use in construction, such as for vinyl sidings as hereinafter
described. Said preferred copolymer may include at least 5 wt%, preferably at least
8 wt%, more preferably at least 10 wt%, especially at least 12 wt% of said at least
one said alkyl acrylate. Preferably said at least one alkyl acrylate comprises a single
alkyl acrylate. The matrix polymer may additionally contain residues of other materials,
e.g. thermal stabilisers (e.g. alkyl mercaptans as are commonly used in moulding polymer
formulations), polymerisation initiators, lubricants, mould release agents, UV and
light stabilisers, pigments, dyes, opacifiers, impact modifying compounds (including
rubbery materials and core-shell type impact modifying particles) and flame retardants.
Preferably, the matrix polymer includes a major amount of melt-processable thermoplastic
polymer, especially a major amount of said polymethylmethacrylate homopolymer or copolymer.
[0012] In the context of this specification, a "major" amount suitably refers to at least
60 wt%, preferably at least 75 wt%, more preferably at least 90 wt%, especially at
least 95 wt%.
[0013] The melt flow index (MFI) of said melt-processable thermoplastic polymer at 230°C
using a 3.8 Kg weight over 10 minutes (according to DIN53735) is suitably at least
5. For some, preferred applications, said MFI may be at least 10, suitably at least
15, preferably at least 20, more preferably at least 25 and in some cases at least
27. The MFI may be less than 35, preferably less than 32.
[0014] Suitable particles are described in
WO-A-97/14749 for incorporation into cast acrylic products to impart the appearance of granite.
[0015] Said particulate polymer is suitably formed from the residues of a monomer mixture
comprising at least 50 wt%, preferably at least 59.9 wt%, more preferably at least
69.9wt%, especially at least 79.9 wt% of methyl methacrylate (MMA) In some cases,
the amount of said MMA may be at least 82 wt% or even 83 wt%. The amount of MMA may
be less than 99 wt%, suitably less than 95 wt%, preferably less than 90 wt%, more
preferably less than 88 wt%, especially less than 86 wt%. Said monomer mixture may
also include at least 5 wt%, preferably at least 10 wt%, more preferably at least
12 wt%, especially at least 14 wt% of a copolymerisable acrylic comonomer. The amount
of said copolymerisable acrylic comonomer may be less than 20 wt%, especially less
than 18 wt%. Said acrylic comonomer may be of a type as described above for said copolymerisable
alkyl acrylate of said PMMA matrix. Said comonomer is preferably an alkyl acrylate,
especially a C
1-4 alkyl acrylate, preferred examples of which include ethyl acrylate and butyl acrylate.
The particulate polymer may be formed from one or more copolymerisable acrylic comonomers.
Where more than one acrylic copolymer is used in conjunction with MMA described, suitably
the sum of the wt% of the copolymerisable acrylic comonomers (excluding multi-functional
acrylic monomers) is as described above. Said monomer mixture may also include at
least 0.3 wt%, more preferably at least 0.4 wt% of a comonomer which is capable of
forming cross-linking with the polymer. The amount of said comonomer may is 1 wt%
or less (preferably less than 1 wt%). Preferred comonomers capable of forming cross-linking
are multi-functional and are preferably multi-functional acrylate monomers, for example
di(alk)acrylate compounds such as dimethacrylate compounds.
[0016] Said thermoplastic composition may include at least 1 wt%, preferably at least 3
wt%, more preferably at least 5 wt%, especially at least 6 wt% of said particulate
polymer. The amount of said particulate polymer may be 40 wt% or less, preferably
30 wt% or less, more preferably 20 wt% or less, especially 15 wt% or less.
[0017] The particulate polymer may have a wide size distribution and particles thereof may
have a maximum size of about 5mm. Preferably, the particles have a maximum dimension
which is less than 1mm, for example particles which pass though a 500 µm sieve may
be used. Preferably, a major amount, more preferably all, of said particles of said
particulate polymer of a type described in (b) above can pass through a 350 µm sieve,
more preferably through a 300 µm sieve, especially through a 250 µm sieve. In one
preferred form particles having a size distribution from <10 to about 600 µm are used.
The weight averaged diameter of said particles of said particulate polymer may be
greater than 100 µm, suitably greater than 150 µm. The weight averaged diameter may
be less than 500 µm, suitably less than 400 µm, preferably less than 300 µm, more
preferably less than 250 µm. The aforementioned weight averaged diameters may be assessed
as described in ASTM D1921.
[0018] Suitably, at least 20%, preferably at least 40%, more preferably at least 60%, especially
at least 80% of particles of said particulate polymer are between 60 (250µm) and 80
(177µm) mesh.
[0019] It has been found that in high shear processes such as extrusion and injection moulding,
the particles of said particulate polymer are broken up into smaller particles so
that, surprisingly, the particles do not produce an unduly rough or lumpy surface,
even when particles as large as 250 µm are used in the thermoplastic composition and
the composition is extruded to form a layer having a thickness below 100 µm. The particle
size to be used in any situation may be selected based upon its availability and the
constraints of handling and processing such particles. However, preferred particle
sizes are as described.
[0020] The particulate polymer is preferably made by grinding a larger piece or pieces of
polymer of the required composition. It has been found that the particles formed in
this way are irregular with many corners and sharp edges. The polymer may be made
by a variety of polymerisation methods, e.g. suspension, solution, emulsion, or bulk
polymerisation methods.
[0021] It has been found that when a sheet of the thermoplastic polymer composition has
been extruded and calendered, there are marked differences between the gloss on the
surface of the sheet which has been in contact with the calender rolls and the opposite
surface which has been in contact with air. For this reason, when the low-gloss thermoplastic
composition of the invention is applied over a layer of a different polymer, e.g.
by coextrusion, it is preferred that the surface of the low-gloss composition is processed
so that it is run through the calender roll stack on the air side of the sample.
[0022] Said particulate polymer may have a hardness of less than 90 when measured on the
Rockwell Hardness M-Scale according to ISO2039-2.
[0023] Said melt-processable polymer and said particulate polymer are preferably not cast.
Said melt-processable polymer and said particulate polymer are preferably mixed by
extrusion, suitably using a high shear extruder. Said melt-processable polymer and
said particulate polymer may be subject to a shear rate of at least 100s
-1, preferably at least 115s
-1, more preferably at least 130s
-1, especially at least 140s
-1 during said mixing. The shear rate may be less than 200s
-1, preferably less than 180s
-1, more preferably less than 160s
-1.
[0024] Said mixing by extrusion is preferably undertaken under conditions such that particles
of said particulate polymer are broken down. Thus, preferably, the weight averaged
diameter of said particulate polymer before said extrusion is greater than after said
extrusion.
[0025] Said mixed/extruded melt-processable polymer and said particulate polymer is preferably
formed into discrete units, for example pellets, of said melt-processable thermoplastic
composition, suitable for subsequent use.
[0026] Preferably, said melt-processable polymer and said particulate polymer are not caused
to chemically react during said mixing and/or extrusion and, more preferably, are
not caused to react at any stage in the preparation of said discrete units. Thus,
preferably the melt-processable polymer is not cured during and/or after contact with
said particulate polymer. Especially, said melt-processable polymer and said particulate
polymer do not chemically react at any stage, for example even up to the formation
of an article of a type described herein.
[0027] The preparation of said particulate polymer preferably includes the polymerisation
of a monomer mixture which suitably includes monomers and/or other ingredients described
herein, suitably in the amounts described herein. The polymer formed is preferably
subjected to a size reduction step suitably so as to produce particles having particle
sizes as described herein. The particles are then suitably mixed with said melt-processable
thermoplastic polymer to form said melt-processable thermoplastic composition.
[0028] According to a third aspect of the invention, there is provided a method of forming
an article which comprises shaping a melt-processable thermoplastic composition according
to said first aspect or prepared according to said second aspect in order to form
said article.
[0029] In the method, said melt-processable thermoplastic composition may be subjected to
conditions such that particles of the particulate polymer in said melt-processable
thermoplastic composition are broken down, thereby to reduce their size. Thus, preferably,
the weight averaged diameter of said particulate polymer before said shaping is greater
than after said shaping. Preferably, the melt-processable thermoplastic composition
and/or the conditions to which this is subjected to form the article is/are selected
such that a surface of the article formed of said thermoplastic composition includes
substantially no particles of diameter of greater than 100 µm. This may be assessed
microscopically, for example by incident light optical microscopy and by scanning
electron microscopy of sections taken perpendicularly to the surface.
[0030] In the method, suitably said melt-processable thermoplastic composition is subjected
to a shear rate of at least 100s
-1, preferably at least 115s
-1, more preferably at least 130s
-1, especially at least 140s
-1 during the shaping of said article. However, where said melt-processable thermoplastic
composition is co-extruded, for example with PVC, a low shear extruder may be used
in which case the shear rate will be lower than these discussed above.
[0031] The composition may be shaped in the form of sheets or film. It may be extruded or
moulded into various shapes or co-extruded or laminated onto other materials, for
example rigid or foamed forms of ABS, PVC, polystyrene polymers including HIPS and
other modified styrene polymers, or polyolefins. The composition may also be co-extruded
or laminated onto metals. Sheets prepared as described (e.g. co-extruded or laminated
sheets) may be thermoformed or otherwise formed into a desired shape by a suitable
means.
[0032] Advantageously, where injection moulding is used, low surface gloss can be achieved
even on highly polished moulds. This may provide a route to producing trim parts to
match low gloss extruded or co-extruded panels or to make clear plaques.
[0033] The composition may advantageously be used to provide a low gloss, pigmented, co-extruded
capstock for less weatherable materials such as PVC (e.g. for vinyl siding, window
frames and sheet), HIPS (e.g. for shutters, doors, sheet) and ABS (e.g. for shutters,
doors, sheet and window frames).
[0034] The method may include preparing a layer from said melt-processable thermoplastic
composition which is thinner than the diameters of some particles of particulate polymer
used to prepare said melt-processable thermoplastic composition.
[0035] According to a fourth aspect of the invention, there is provided an article made
in a method according to said third aspect.
[0036] Thus, suitably, there is provided a method of forming an article comprising shaping
a molten thermoplastic composition according to the second aspect of the present invention
or prepared according to the first aspect of the present invention.
[0037] The article need not be entirely formed from the molten thermoplastic composition.
There are many applications in which an article may comprise other materials, e.g.
it may be a laminate of the thermoplastic composition and another material or the
thermoplastic composition of the invention may form only a surface coating on an article.
Such composite articles may be formed by forming a separate thermoplastic layer and
bonding it to the finished article or the thermoplastic layer may be applied by techniques
such as coextrusion with another thermoplastic or by extrusion coating.
[0038] Said article may be a coextruded or laminated component. Said article preferably
includes a substrate and a capstock material wherein said capstock material comprises
said melt-processable thermoplastic composition.
[0039] Said component may be for use in construction.
[0040] Said component may be for use in construction of a building. For example, it could
be a solid or coextruded building component, for example a soffit board, barge board,
fascia board, cladding board, siding, gutter, pipe, shutters, window casement, window
board, window profile, conservatory profile, door panels, door casement, roofing panel,
architectural accessory or the like. A preferred component for use in construction
is a co-extruded component comprising a substrate, for example made of PVC, HIPS or
ABS (especially PVC), and said melt-processable thermoplastic material provided as
a capstock thereon. An especially preferred component is vinyl siding comprising PVC
and a capstock of said thermoplastic material.
[0041] Said component may be for use in constructing a vehicle or in another automotive
application, both as a bulk material or as a co-extruded laminate. Such applications
include, but are not limited to, decorative exterior trim, cab mouldings, bumpers
(fenders), louvers, rear panels, accessories for buses, trucks, vans, campers, farm
vehicles and mass transit vehicles, side and quarter panel trim or the like.
[0042] Preferably, a surface of the article formed of said thermoplastic composition has
a roughness (Ra) of less than 2000 angstroms, preferably less than 1750 angstroms.
The roughness may be at least 350 angstroms.
[0043] Suitably, a surface of the article formed of said thermoplastic composition has a
surface gloss, measured at a 75° observation angle (according to ASTM D3679), of less
than 85, preferably less than 75, more preferably less than 65, especially less than
55. In a preferred embodiment, the surface gloss, measured as described, is in the
range 4.5 to 30, more preferably 9 to 20.
[0044] Suitably, when a surface of the article formed of said thermoplastic composition
is tested for impact resistance in accordance with ASTM D4226, the mean failure height
is not less than 7.5 inches (19.1 cm), more preferably not less than 9.5 inches (24.1
cm), especially not less than 10.5 inches (26.7 cm). The mean failure height may be
less than 15 inches (38.1 cm).
[0045] Suitably, there is provided an article which comprises a thermoplastic composition,
wherein said article and/or said composition(s) are as! described in any statement
herein.
[0046] The invention extends to an article which includes a substrate and a capstock material
prepared from a thermoplastic composition as described herein.
[0047] A capstock layer as described herein may have a thickness of less than 200 µm, preferably
less than 175 µm, more preferably less than 150 µm, especially less than 125 µm. The
thickness may be greater than 50 µm. A thickness of about 100 µm is preferred.
[0048] Any feature of any aspect of any invention or embodiment described herein may be
combined with any feature of any aspect of any other invention or embodiment described
herein.
[0049] Specific embodiments of the invention will now be described, by way of example.
Example 1
[0050] A mixture containing a 92% wt commercial acrylic polymer DIAKON
™ MG102 (Ineos Acrylics, U.K.) which is a copolymer of methyl methacrylate and ethyl
acrylate and has a molecular weight of approximately 90, 000 and 8% of a white pigmented
masterbatch was compounded together and pelleted using a Werner & Pfleiderer ZSK30
30mm twin screw extruder running at 230°C and 275 rpm. The resulting pellets were
extruded into a 1mm thick x 100 mm wide sheet using a 1.5" (30mm) single screw extruder
operating at 230°C and at a line speed of approximately lm/minute. The extruded sheet
was run through a 3-roll calendering stage upon exit from the extruder. The rolls
were heated to about 80°C and were 50mm in radius.
[0051] The gloss of each surface of the sheet was measured using a Rhopoint Novo-Gloss meter
measuring at an angle of 60°C. As will be understood by those experienced in the art
of extruding thermoplastic sheet, one surface is in contact with the heated calendering
rolls for longer than the other surface and so these surfaces were measured separately.
The surface in contact with the rolls for the longest time is referred to as "highly
calendered (hc)" whilst the other surface is referred to as "less calendered (lc)".
The gloss of each surface was measured at 10 positions along the direction of extrusion
of the sheet and the average result is shown in the Table 1.
Preparation of cross-linked acrylic particles
[0052] A cross-linked acrylic polymer was made by bulk polymerisation in a sealed nylon
bag a monomer mixture comprising 83% MMA, 8% n-butyl acrylate, 8% ethyl acrylate and
1% ethylene glycol dimethacrylate together with initiators and stabilisers.
[0053] The mixture was subjected to a pre-programmed thermal cycle as conventionally used
for bulk polymerisation processes and then cooled. After cooling to ambient temperature,
the bag and thermocouple were removed and discarded. The resultant polymer was ground
and sieved with a standard wirecloth sieve. The sieve fractions which passed through
a standard US 60 mesh sieve (aperture size 250 µm) were used for these Examples. Particle
size analysis showed that 82% of the particles were between 60 (250 µm) and 80 (177
µm) mesh. The particles appeared to be of irregular shape approximating to pyramidal.
[0054] The particles of cross-linked acrylic polymer were added to the polymer and colour
masterbatch mixture. The mixture was compounded using a ZSK 30 extruder(at 230°C,
275 rpm) and a shear rate of about ~140s
-1) and pelletised and then sheet samples were extruded and their gloss measured, as
described above.
Table 1
Particle content (wt%) |
Surface |
Gloss units |
0 |
hc |
87 |
lc |
87 |
10 |
hc |
65 |
lc |
46 |
20 |
hc |
48 |
lc |
26 |
[0055] The results show that the presence of the cross-linked acrylic particles reduced
the gloss of both of the surface of the extruded sheet significantly. A difference
in gloss between the surfaces of the same sheet was also noted for those samples which
contained the particles but not for the sample containing no particles. Examination
of the samples showed that the shape of the particles had not been changed significantly
but their size had been reduced to about 50 - 70 µm.
Example 2
[0056] PVC pellets (EVC Compounds RG7-760-1476) were tumble blended with cross-linked acrylic
particles as described in Example 1 and extruded into sheet at 180°C as described
in Example 1.
[0057] A sample without particles was made in the same way. The gloss was measured as described
in Example 1 and the results are as shown in Table 2.
Table 2
Particle content (wt%) |
Surface |
Gloss units |
0 |
hc |
80 |
lc |
37 |
10 |
hc |
54 |
lc |
20 |
20 |
hc |
11 |
lc |
8.5 |
Example 3
[0058] Particles of a green coloured cross-linked acrylic polymer were made from a monomer
mixture comprising 84% MMA, 15.5% butyl acrylate and 0.5% ethylene glycol dimethacrylate
together with stabilisers, initiators and a chain transfer agent as described in Example
1.
[0059] The particles were ground and sieved as before. An impact modified grade of acrylic
moulding polymer (DIAKON
™ ST35G8) was coloured using a green pigmented masterbatch at 8% wt. The green particles
were compounded into the base polymer on the twin screw extruder and the resulting
pellets were injection moulded using a Colourstubbe injection moulding apparatus at
230°C to form a 75 x 50 x 3 mm plaque sample. The gloss was measured as described
earlier and the results are shown in Table 3.
Table 3
Particle content (wt%) |
Gloss units |
0 |
85 |
5 |
15 |
10 |
8 |
20 |
7 |
Example 4
[0060] Cross-linked acrylics polymer was prepared by bulk polymerisation of 83.18 wt% MMA,
14.68 wt% co-monomer (n-butyl acrylate) 0.61 wt% cross-linker, 0.49 wt% of chain transfer
agent and 0.05 wt% initiator.
[0061] The polymer was ground and sieved to produce a particle size distribution wherein
36.7% w/w lay between 60 and 100 mesh (250 and 150 µm) and 35.1% w/w were between
150 and 30 µm and the material had a weight average particle diameter of 187.9 µm.
[0062] 8 wt% of the particulate polymer was compounded into a commercially available impact
modified acrylic copolymer (DIAKON
™ ST35G8 as described above) using a ZSK30 co-rotating twin screw extruder at 230°C
as described in Example 1.
[0063] The material thus obtained was co-extruded using a single screw extruder as an approximately
100 µm layer onto rigid PVC to form panels of approximately 1mm total thickness. The
panels were impact tested following ASTM D4226 and the surface gloss was evaluated
using a 75° meter to ASTM D3679 as described above. The results were as follows:
ASTM D4226 Mean Failure Height (inches) |
= 11.1 |
Gloss (75° obs) |
= 51 |
Appearance of sheet |
= Matte surface |
Example 5
[0064] The particulate polymer of Example 4 was compared to cross-linked bead particles
having weight averaged diameters of 20, 40, 80 and 100 µm (referred to as Examples
5.1, 5.2, 5.3 and 5.4 respectively).
[0065] The particulate polymer and the cross-linked bead particles were compounded into
an acrylic copolymer (as described in example 4) at a loading of 5 wt%, using a ZSK30
co-rotating twin screw extruder at a temperature of 230°C. Co-extruded sheet of nominal
thickness approx. 1mm was produced with the acrylic material forming a cap of thickness
approximately 100µm. The surface gloss of the sheets was measured using a Rhopoint
Novogloss Gloss Meter and the results obtained are shown in the table below.
Sample |
Initial particle diameter/µm |
20° Gloss |
60° Gloss |
85°C |
Eg 4 |
190 |
3.9+/-0.2 |
29.8+/-0.6 |
33.5+/-1.2 |
Eg 5.1 |
20 |
5.7+/-0.6 |
30.4+/-0.8 |
27.4+/-1.6 |
Eg 5.2 |
40 |
6.3+/-0.4 |
34.3+/-1.4 |
33.8+/-2.4 |
Eg 5.3 |
80 |
13.6+/-1 |
44.6+/-3.2 |
43.9+/-1.2 |
Eg 5.4 |
100 |
15.4+/-1.7 |
47.5+/-2.9 |
47.7+/-1 |
[0066] The gloss data for the cross-linked bead materials of Examples 5.1 to 5.4 exhibit
a linear dependence of surface gloss on bead diameter for all gloss measurement angles.
However, the material of Example 5 does not fit with these linear trends. In this
case, individual particles could not be identified in the surface, while the presence
of large discrete particle was observed for materials of Examples 5.3 and 5.4. More
particularly, incident light optical microscopy confirmed that particles of the same
size as added to the extruder were present in the material for Examples 5.
1. A method of preparing a melt-processable thermoplastic composition, the method comprising
mixing:
(a) 50 to 99.5 wt% of a melt-processable thermoplastic polymer; and
(b) 0.5 to 50 wt% of a particulate acrylic copolymer comprising the residues of a
monomer mixture comprising at least 50 wt% of methyl methacrylate (MMA), at least
5 wt% and less than 20 wt% of a copolymerisable acrylic comonomer comprising at least
one alkyl acrylate or alkyl methacrylate, wherein the acrylic copolymer further includes
at least 0.3 wt% to 1 wt% of a copolymerisable cross-linking monomer, said particles
having a maximum dimension of 5 mm;
wherein the melt-processable thermoplastic polymer and the particulate acrylic copolymer
are mixed under shear so that particles of said particulate copolymer are broken down.
2. A method as claimed in claim 1 wherein said particles have a maximum dimension which
is less than 1 mm.
3. A method as claimed in claim 1 or 2 wherein at least 75% of said particles of the
particulate acrylic copolymer are of such a size that they pass through a 300 µm sieve.
4. A method as claimed in any one of the preceding claims wherein the weight averaged
diameter of said particles of the particulate acrylic copolymer is greater than 100
µm as measured in accordance with ASTM D1921.
5. A method as claimed in claim 4 wherein the weight averaged diameter of said particles
of the particulate acrylic copolymer is greater than 150 µm as measured in accordance
with ASTM D1921.
6. A method as claimed in any one of the preceding claims wherein the weight averaged
diameter of said particles of the particulate acrylic copolymer is less than 500 µm,
especially less than 250 µm as measured in accordance with ASTM D1921.
7. A method as claimed in any one of the preceding claims wherein said copolymerisable
acrylic comonomer is an alkyl acrylate.
8. A method as claimed in claim 7 wherein said alkyl acrylate comonomer is selected from
the group consisting of ethyl acrylate or butyl acrylate.
9. A method as claimed in any one of the preceding claims wherein said particulate acrylic
copolymer comprises at least 12 wt% and less than 18 wt% of said acrylic comonomer.
10. A method as claimed in any one of the preceding claims, wherein said particulate acrylic
copolymer is formed from the residues of said monomer mixture comprising at least
69.9 wt% MMA, preferably at least 79.9 wt% of methyl methacrylate.
11. A method as claimed in any one of the preceding claims, wherein said particulate acrylic
copolymer is formed from the residues of said monomer mixture comprising less than
95 wt% MMA.
12. A method as claimed in any one of the preceding claims which includes at least 1 wt%
and less than 40 wt% of said particulate acrylic copolymer.
13. A method as claimed in claim 12 which includes 3 to 15% by wt of said particulate
acrylic copolymer.
14. A method as claimed in any one of the preceding claims, wherein at least 20 wt% of
particles of said particulate acrylic copolymer are between 60 (250 µm) and 80 (177
µm) mesh.
15. A method as claimed in any one of the preceding claims, wherein the melt-processable
thermoplastic polymer forms a matrix and is of polymethylmethacrylate homopolymer
or copolymer derived from a monomer mixture comprising 60-100 wt% methyl methacrylate
and 0-40 wt% of at least one other copolymerisable alkyl acrylate or methacrylate.
16. A method according to any one of the preceding claims, wherein said melt-processable
polymer and said particulate acrylic copolymer are not cast after contact together.
17. A method according to any one of the preceding claims, wherein said melt-processable
polymer and said particulate acrylic copolymer are mixed by extrusion under conditions
such that particles of said particulate polymer are broken down.
18. A method according to any one of the preceding claims, wherein the melt processable
thermoplastic polymer and the particulate acrylic copolymer are mixed under a shear
rate of at least 100 s-1.
19. A method according to any one of the preceding claims, wherein said melt-processable
polymer and said particulate acrylic polymer are not caused to chemically react during
said mixing.
20. A melt-processable thermoplastic composition comprising:
a) 50-99.5 wt% of a melt-processable thermoplastic polymer; and
b) 0.5-50 %wt of a particulate acrylic copolymer comprising the residues of a monomer
mixture comprising at least 50 wt% of methyl methacrylate (MMA), at least 5 wt% and
less than 20 wt% of a copolymerisable acrylic comonomer comprising at least one alkyl
acrylate or alkyl methacrylate, wherein the acrylic copolymer further includes at
least 0.3 wt% to 1 wt% of a copolymerisable cross-linking monomer, wherein the weight
averaged diameter of said particles of the particulate acrylic copolymer is greater
than 100 µm and less than 250 µm as measured in accordance with ASTM D1921.
21. A composition according to claim 20, wherein the melt-processable thermoplastic polymer
forms a matrix and is of polymethylmethacrylate homopolymer or copolymer derived from
a monomer mixture comprising 60 - 100 wt% methyl methacrylate and 0 - 40 wt% of at
least one other copolymerisable alkyl acrylate or methacrylate.
22. A composition according to any one of claims 20 or 21 wherein said copolymerisable
acrylic comonomer is an alkyl acrylate.
23. A composition as claimed in claim 22 wherein said alkyl acrylate comonomer is selected
from the group consisting of ethyl acrylate or butyl acrylate.
24. A composition as claimed in any one of claims 20 to 23 wherein said particulate acrylic
copolymer comprises at least 12 wt% and less than 18 wt% of said acrylic comonomer.
25. A composition according to any one of claims 20 to 24, wherein said particulate acrylic
copolymer is formed from the residues of a monomer mixture comprising at least 69.9
wt% MMA, preferably at least 79.9 wt% MMA.
26. A composition according to any one of claims 20 to 25, wherein at least 20 wt% of
particles of said particulate acrylic copolymer are between 60 (250 µm) and 80 (177
µm) mesh.
27. A composition as claimed in any one of claims 20 to 26 wherein at least 75% of said
particles of the particulate acrylic copolymer are of a size so that they pass through
a 300 µm sieve.
28. A method of preparing a melt-processable thermoplastic composition as defined in any
one of claims 20 to 27, the method comprising contacting:
a) 50-99.5 wt% of a melt-processable thermoplastic polymer; and
b) 0.5-50 %wt of a particulate acrylic copolymer comprising the residues of a monomer
mixture comprising at least 50 wt% of methyl methacrylate (MMA), at least 5 wt% and
less than 20 wt% of a copolymerisable acrylic comonomer comprising at least one alkyl
acrylate or methacrylate, wherein the acrylic copolymer further includes at least
0.3 wt% to 1 wt% of a copolymerisable cross-linking monomer, wherein the weight averaged
diameter of said particles of the particulate acrylic copolymer is greater than 100
µm and less than 250 µm as measured in accordance with ASTM D1921.
29. A method according to claim 28, wherein said melt-processable polymer and said particulate
acrylic copolymer are mixed by extrusion under conditions such that particles of said
particulate acrylic polymer are broken down.
30. A method of forming an article which comprises preparing a melt-processable thermoplastic
composition as prepared according to any of claims 1 to 19 or providing a melt-processable
thermoplastic composition as defined in any one of claims 20 to 27 and shaping the
melt-processable thermoplastic composition in order to form said article.
31. A method according to claim 30, wherein said melt-processable thermoplastic composition
is subjected to conditions such that particles of the particulate acrylic polymer
in said melt-processable thermoplastic composition are broken down.
32. A method according to claims 28 to 31, wherein said melt-processable thermoplastic
composition is subjected to a shear rate of at least 100s-1.
33. A method according to any one of claims 30 to 32, wherein said article includes a
substrate and a capstock material wherein said capstock material comprises said melt-processable
thermoplastic composition.
34. A method according to any one of claims 30 to 33, wherein said article is a building
component.
35. A method according to any one of claims 30 to 34, wherein said article is a component
for use in construction and is a co-extruded component comprising a substrate made
of PVC, HIPS or ABS and said melt-processable thermoplastic material is provided as
a capstock thereon.
36. A method according to any one of claims 30 to 35, wherein when a surface of the article
formed of said thermoplastic composition is tested for impact resistance in accordance
with ASTM D4226, the mean failure height is not less than 7.5 inches (19.05 cm).
37. A method according to any one of claims 30 to 36, wherein where a surface of the article
formed of said thermoplastic composition has a surface gloss measured at a 75° observation
angle (according to ASTM D3679) of less than 65.
38. An article which includes a substrate and a capstock material prepared from a thermoplastic
composition as prepared in a method according to any one of claims 1 to 19 or as defined
in any one of claims 20 to 27.
39. An article as claimed in claim 39 wherein said capstock layer of material has a thickness
of less than 200 µm.
1. Verfahren für das Herstellen einer schmelzverarbeitbaren thermoplastischen Zusammensetzung,
wobei das Verfahren das Mischen umfasst von:
(a) 50 bis 99,5 Gew.-% eines schmelzverarbeitbaren thermoplastischen Polymers; und
(b) 0,5 bis 50 Gew.-% eines teilchenförmigen Acrylcopolymers umfassend die Reste einer
Monomermischung umfassend mindestens 50 Gew.-% Methylmethacrylat (MMA), mindestens
5 Gew.-% und weniger als 20 Gew.-% eines copolymerisierbaren Acrylcomonomers umfassend
mindestens ein Alkylacrylat oder Alkylmethacrylat, wobei das Acrylcopolymer des Weiteren
mindestens 0,3 Gew.-% bis 1 Gew.-% eines copolymerisierbaren Vernetzungsmonomers umfasst,
wobei die Teilchen eine Maximalgröße von 5 mm aufweisen;
wobei das schmelzverarbeitbare thermoplastische Polymer und das teilchenförmige Acrylcopolymer
unter Scherbeanspruchung so gemischt werden, dass Teilchen des teilchenförmigen Copolymers
zersetzt werden.
2. Verfahren nach Anspruch 1, wobei die Teilchen eine Maximaldimension aufweisen, die
geringer als 1 mm ist.
3. Verfahren nach Anspruch 1 oder 2, wobei mindestens 75 % der Teilchen des teilchenförmigen
Acrylcopolymers eine derartige Größe aufweisen, dass sie durch ein Sieb von 300 µm
hindurchgehen.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei der gewichtsgemittelte Durchmesser
der Teilchen des teilchenförmigen Acrylcopolymers größer als 100 µm, ASTM D1921 entsprechend
gemessen, ist.
5. Verfahren nach Anspruch 4, wobei der gewichtsgemittelte Durchmesser der Teilchen des
teilchenförmigen Acrylcopolymers größer als 150 µm, ASTM D1921 entsprechend gemessen,
ist.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei der gewichtsgemittelte Durchmesser
der Teilchen des teilchenförmigen Acrylcopolymers weniger als 500 µm, insbesondere
weniger als 250 µm, ASTM D1921 entsprechend gemessen, ist.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei das copolymerisierbare Acrylcomonomer
ein Alkylacrylat ist.
8. Verfahren nach Anspruch 7, wobei das Alkylacrylatcomonomer aus der Gruppe ausgewählt
ist bestehend aus Ethylacrylat oder Butylacrylat.
9. Verfahren nach einem der vorhergehenden Ansprüche, wobei das teilchenförmige Acrylcopolymer
mindestens 12 Gew.-% und weniger als 18 Gew.-% des Acrylcomonomers umfasst.
10. Verfahren nach einem der vorhergehenden Ansprüche, wobei das teilchenförmige Acrylcopolymer
aus den Resten der Monomermischung gebildet ist, die mindestens 69,9 Gew.-% MMA, bevorzugt
mindestens 79,9 Gew.-% Methylmethacrylat, umfasst.
11. Verfahren nach einem der vorhergehenden Ansprüche, wobei das teilchenförmige Acrylcopolymer
aus den Resten der Monomermischung gebildet ist, die weniger als 95 Gew.-% MMA umfasst.
12. Verfahren nach einem der vorhergehenden Ansprüche, das mindestens 1 Gew.-% und weniger
als 40 Gew.-% des teilchenförmigen Acrylcopolymers umfasst.
13. Verfahren nach Anspruch 12, welches 3 bis 15 Gew.-% des teilchenförmigen Acrylcopolymers
umfasst.
14. Verfahren nach einem der vorhergehenden Ansprüche, wobei mindestens 20 Gew.-% der
Teilchen des teilchenförmigen Acrylcopolymers zwischen 60 (250 µm) und 80 (177 µm)
Maschen liegen.
15. Verfahren nach einem der vorhergehenden Ansprüche, wobei das schmelzverarbeitbare
thermoplastische Polymer eine Matrix bildet und aus Polymethylmethacrylathomopolymer
oder -copolymer besteht, das aus einer Monomermischung deriviert ist umfassend 60
- 100 Gew.-% Methylmethacrylat und 0 - 40 Gew.-% mindestens eines anderen copolymerisierbaren
Alkylacrylats oder -methacrylats.
16. Verfahren nach einem der vorhergehenden Ansprüche, wobei das schmelzverarbeitbare
Polymer und das teilchenförmige Acrylcopolymer nach dem Kontakt miteinander nicht
gegossen werden.
17. Verfahren nach einem der vorhergehenden Ansprüche, wobei das schmelzverarbeitbare
Polymer und das teilchenförmige Acrylcopolymer durch Extrusion unter Bedingungen gemischt
werden, derart, dass Teilchen des teilchenförmigen Polymers zersetzt werden.
18. Verfahren nach einem der vorhergehenden Ansprüche, wobei das schmelzverarbeitbare
thermoplastische Polymer und das teilchenförmige Acrylcopolymer durch Extrusion mit
einer Scherrate von mindestens 100 s-1 gemischt werden.
19. Verfahren nach einem der vorhergehenden Ansprüche, wobei das schmelzverarbeitbare
Polymer und das teilchenförmige Acrylpolymer nicht dazu gebracht werden, während des
Mischens chemisch zu reagieren.
20. Schmelzverarbeitbare Zusammensetzung umfassend:
a) 50 bis 99,5 Gew.-% eines schmelzverarbeitbaren thermoplastischen Polymers; und
(b) 0,5 bis 50 Gew.-% eines teilchenförmigen Acrylcopolymers umfassend die Reste einer
Monomermischung umfassend mindestens 50 Gew.-% Methylmethacrylat (MMA), mindestens
5 Gew.-% und weniger als 20 Gew.-% eines copolymerisierbaren Acrylcomonomers umfassend
mindestens ein Alkylacrylat oder Alkylmethacrylat, wobei das Acrylcopolymer des Weiteren
mindestens 0,3 Gew.-% bis 1 Gew.-% eines copolymerisierbaren Vernetzungsmonomers umfasst,
wobei der gewichtsgemittelte Durchmesser der Teilchen des teilchenförmigen Acrylcopolymers
größer als 100 µm und geringer als 250 µm, ASTM D1921 entsprechend gemessen, ist.
21. Zusammensetzung nach Anspruch 20, wobei das schmelzverarbeitbare thermoplastische
Polymer eine Matrix bildet und aus Polymethylmethacrylathomopolymer oder -copolymer
besteht, das aus einer Monomermischung deriviert ist umfassend 60 - 100 Gew.-% Methylmethacrylat
und 0 - 40 Gew.-% mindestens eines anderen copolymerisierbaren Alkylacrylats oder
-methacrylats.
22. Zusammensetzung nach einem der Ansprüche 20 oder 21, wobei das copolymerisierbare
Acrylcomonomer ein Alkylacrylat ist.
23. Zusammensetzung nach Anspruch 22, wobei das Alkylacrylatcomonomer aus der Gruppe ausgewählt
ist bestehend aus Ethylacrylat oder Butylacrylat.
24. Zusammensetzung nach einem der Ansprüche 20 bis 23, wobei das teilchenförmige Acrylcopolymer
mindestens 12 Gew.-% und weniger als 18 Gew.-% des Acrylcomonomers umfasst.
25. Zusammensetzung nach einem der Ansprüche 20 bis 24, wobei das teilchenförmige Acrylcopolymer
aus den Resten einer Monomermischung gebildet ist, die mindestens 69,9 Gew.-% MMA,
bevorzugt mindestens 79,9 Gew.-% MMA, umfasst.
26. Zusammensetzung nach einem der Ansprüche 20 bis 25, wobei mindestens 20 Gew.-% der
Teilchen des teilchenförmigen Acrylcopolymers zwischen 60 (250 µm ) und 80 (177 µm)
Maschen liegen.
27. Zusammensetzung nach einem der Ansprüche 20 bis 26, wobei mindestens 75 % der Teilchen
des teilchenförmigen Acrylcopolymers eine derartige Größe aufweisen, dass sie durch
ein Sieb von 300 µm hindurchgehen.
28. Verfahren für das Herstellen einer schmelzverarbeitbaren thermoplastischen Zusammensetzung,
wie in einem der Ansprüche 20 bis 27 definiert, wobei das Verfahren das Kontaktieren
umfasst von:
a) 50 bis 99,5 Gew.-% eines schmelzverarbeitbaren thermoplastischen Polymers; und
(b) 0,5 bis 50 Gew.-% eines teilchenförmigen Acrylcopolymers umfassend die Reste einer
Monomermischung umfassend mindestens 50 Gew.-% Methylmethacrylat (MMA), mindestens
5 Gew.-% und weniger als 20 Gew.-% eines copolymerisierbaren Acrylcomonomers umfassend
mindestens ein Alkylacrylat oder -methacrylat, wobei das Acrylcopolymer des Weiteren
mindestens 0,3 Gew.-% bis 1 Gew.-% eines copolymerisierbaren Vernetzungsmonomers umfasst,
wobei der gewichtsgemittelte Durchmesser der Teilchen des teilchenförmigen Acrylcopolymers
größer als 100 µm und geringer als 250 µm, ASTM D1921 entsprechend gemessen, ist.
29. Verfahren nach Anspruch 28, wobei das schmelzverarbeitbare Polymer und das teilchenförmige
Acrylcopolymer durch Extrusion unter Bedingungen gemischt werden, derart, dass Teilchen
des teilchenförmigen Acrylpolymers zersetzt werden.
30. Verfahren zum Bilden eines Artikels, das das Herstellen einer schmelzverarbeitbaren
thermoplastischen Zusammensetzung, wie einem der Ansprüche 1 bis 19 gemäß hergestellt,
oder Bereitstellen einer schmelzverarbeitbaren thermoplastischen Zusammensetzung,
wie in einem der Ansprüche 20 bis 27 definiert, und Gestalten der schmelzverformbaren
thermoplastischen Zusammensetzung, um den Artikel zu bilden, umfasst.
31. Verfahren nach Anspruch 30, wobei die schmelzverarbeitbare thermoplastische Zusammensetzung
Bedingungen ausgesetzt wird, derart, dass Teilchen des teilchenförmigen Acrylpolymers
in der schmelzverarbeitbaren thermoplastischen Zusammensetzung zersetzt werden.
32. Verfahren nach Ansprüchen 28 bis 31, wobei die schmelzverarbeitbare thermoplastische
Zusammensetzung einer Scherrate von mindestens 100 s-1 unterworfen wird.
33. Verfahren nach einem der Ansprüche 30 bis 32, wobei der Artikel ein Substrat und ein
Abdeckungsmaterial umfasst, wobei das Abdeckungsmaterial die schmelzverarbeitbare
thermoplastische Zusammensetzung umfasst.
34. Verfahren nach einem der Ansprüche 30 bis 33, wobei der Artikel ein Bauteil ist.
35. Verfahren nach einem der Ansprüche 30 bis 34, wobei der Artikel ein Teil für die Verwendung
beim Bauen und ein coextrudierter Teil ist umfassend ein Substrat, das aus PVC, HIPS
oder ABS hergestellt ist und das schmelzverarbeitbare thermoplastische Material als
Abdeckung darauf bereitgestellt wird.
36. Verfahren nach einem der Ansprüche 30 bis 35, wobei, wenn eine Oberfläche des aus
der thermoplastischen Zusammensetzung gebildeten Artikels auf seine Schlagfestigkeit
hin ASTM D4226 gemäß geprüft wird, die durchschnittliche Versagungshöhe nicht weniger
als 7,5 Inch (19,05 cm) beträgt.
37. Verfahren nach einem der Ansprüche 30 bis 36, wobei eine Oberfläche des aus der thermoplastischen
Zusammensetzung gebildeten Artikels einen Oberflächenglanz, in einem Beobachtungswinkel
von 75° (ASTM D3679 gemäß) gemessen, von weniger als 65 aufweist.
38. Artikel, der ein Substrat und ein Abdeckungsmaterial umfasst, das aus einer thermoplastischen
Zusammensetzung, wie bei einem Verfahren nach einem der Ansprüche 1 bis 19 hergestellt
oder wie in einem der Ansprüche 20 bis 27 definiert, hergestellt ist.
39. Artikel nach Anspruch 39, wobei die Abdeckungsschicht von Material eine Dicke von
weniger als 200 µm aufweist.
1. Procédé de préparation d'une composition thermoplastique pouvant être traitée en fusion,
le procédé comprenant le mélange :
(a) de 50 à 99,5% en poids d'un polymère thermoplastique pouvant être traité en fusion
; et
(b) de 0,5 à 50% en poids d'un copolymère acrylique particulaire comprenant les résidus
d'un mélange de monomères comprenant au moins 50% en poids de méthacrylate de méthyle
(MMA), au moins 5% en poids et moins de 20% en poids d'un comonomère acrylique copolymérisable
comprenant au moins un acrylate d'alkyle ou un méthacrylate d'alkyle, le copolymère
acrylique comprenant en outre au moins 0,3% en poids à 1% en poids d'un monomère de
réticulation copolymérisable, lesdites particules ayant une dimension maximale de
5 mm ;
dans lequel le polymère thermoplastique pouvant être traité en fusion et le copolymère
acrylique particulaire sont mélangés sous un cisaillement de manière que les particules
dudit copolymère particulaire se désagrègent.
2. Procédé selon la revendication 1 dans lequel lesdites particules ont une dimension
maximale qui est inférieure à 1 mm.
3. Procédé selon la revendication 1 ou 2 dans lequel au moins 75% desdites particules
du copolymère acrylique particulaire ont une taille telle qu'elles traversent un tamis
de 300 µm.
4. Procédé selon l'une quelconque des revendications précédentes dans lequel le diamètre
moyen en poids desdites particules du copolymère acrylique particulaire est supérieur
à 100 µm lorsqu'il est mesuré conformément à ASTM D1921.
5. Procédé selon la revendication 4 dans lequel le diamètre moyen en poids desdites particules
du copolymère acrylique particulaire est supérieur à 150 µm lorsqu'il est mesuré conformément
à ASTM D1921.
6. Procédé selon l'une quelconque des revendications précédentes dans lequel le diamètre
moyen en poids desdites particules du copolymère acrylique particulaire est inférieur
à 500 µm, en particulier inférieur à 250 µm, lorsqu'il est mesuré conformément à ASTM
D1921.
7. Procédé selon l'une quelconque des revendications précédentes dans lequel ledit comonomère
acrylique copolymérisable est un acrylate d'alkyle.
8. Procédé selon la revendication 7 dans lequel ledit comonomère acrylate d'alkyle est
choisi dans le groupe constitué par l'acrylate d'éthyle ou l'acrylate de butyle.
9. Procédé selon l'une quelconque des revendications précédentes dans lequel ledit copolymère
acrylique particulaire comprend au moins 12% en poids et moins de 18% en poids dudit
comonomère acrylique.
10. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit copolymère
acrylique particulaire est formé des résidus dudit mélange de monomères comprenant
au moins 69,9% en poids de MMA, de préférence au moins 79,9% en poids de méthacrylate
de méthyle.
11. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit copolymère
acrylique particulaire est formé des résidus dudit mélange de monomères comprenant
moins de 95% en poids de MMA.
12. Procédé selon l'une quelconque des revendications précédentes qui comprend au moins
1% en poids et moins de 40% en poids dudit copolymère acrylique particulaire.
13. Procédé selon la revendication 12 qui comprend 3 à 15% en poids dudit copolymère acrylique
particulaire.
14. Procédé selon l'une quelconque des revendications précédentes, dans lequel au moins
20% en poids des particules dudit copolymère acrylique particulaire ont une granulométrie
comprise entre les numéros de tamis 60 (250 µm) et 80 (177 µm).
15. Procédé selon l'une quelconque des revendications précédentes, dans lequel le polymère
thermoplastique pouvant être traité en fusion forme une matrice et est un homopolymère
de poly(méthacrylate de méthyle) ou un copolymère obtenu à partir d'un mélange de
monomères comprenant 60-100% en poids de méthacrylate de méthyle et 0-40% en poids
d'au moins un autre acrylate ou méthacrylate d'alkyle copolymérisable.
16. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit polymère
pouvant être traité en fusion et ledit copolymère acrylique particulaire ne sont pas
coulés après avoir été mis en contact l'un avec l'autre.
17. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit polymère
pouvant être traité en fusion et ledit copolymère acrylique particulaire sont mélangés
par extrusion dans des conditions telles que les particules dudit polymère particulaire
se désagrègent.
18. Procédé selon l'une quelconque des revendications précédentes, dans lequel le polymère
thermoplastique pouvant être traité en fusion et le copolymère acrylique particulaire
sont mélangés sous un taux de cisaillement d'au moins 100 s-1.
19. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit polymère
pouvant être traité en fusion et ledit polymère acrylique particulaire ne sont pas
mis à réagir chimiquement pendant ledit mélange.
20. Composition thermoplastique pouvant être traitée en fusion comprenant :
(a) 50-99,5% en poids d'un polymère thermoplastique pouvant être traité en fusion
; et
(b) 0,5-50% en poids d'un copolymère acrylique particulaire comprenant les résidus
d'un mélange de monomères comprenant au moins 50% en poids de méthacrylate de méthyle
(MMA), au moins 5% en poids et moins de 20% en poids d'un comonomère acrylique copolymérisable
comprenant au moins un acrylate d'alkyle ou un méthacrylate d'alkyle, dans lequel
le copolymère acrylique comprend en outre au moins 0,3% en poids à 1% en poids d'un
monomère de réticulation copolymérisable, dans lequel le diamètre moyen en poids desdites
particules du copolymère acrylique particulaire est supérieur à 100 µm et inférieur
à 250 µm lorsqu'il est mesuré conformément à ASTM D1921.
21. Composition selon la revendication 20, dans laquelle le polymère thermoplastique pouvant
être traité en fusion forme une matrice et est un homopolymère de poly(méthacrylate
de méthyle) ou un copolymère obtenu à partir d'un mélange de monomères comprenant
60 - 100% en poids de méthacrylate de méthyle et 0 - 40% en poids d'au moins un autre
acrylate ou méthacrylate d'alkyle copolymérisable.
22. Composition selon l'une quelconque des revendications 20 ou 21 dans laquelle ledit
comonomère acrylique copolymérisable est un acrylate d'alkyle.
23. Composition selon la revendication 22 dans laquelle ledit comonomère acrylate d'alkyle
est choisi dans le groupe constitué par l'acrylate d'éthyle ou l'acrylate de butyle.
24. Composition selon l'une quelconque des revendications 20 à 23 dans laquelle ledit
copolymère acrylique particulaire comprend au moins 12% en poids et moins de 18% en
poids dudit comonomère acrylique.
25. Composition selon l'une quelconque des revendications 20 à 24, dans laquelle ledit
copolymère acrylique particulaire est formé des résidus d'un mélange de monomères
comprenant au moins 69,9% en poids de MMA, de préférence au moins 79,9% en poids de
MMA.
26. Composition selon l'une quelconque des revendications 20 à 25, dans laquelle au moins
20% en poids de particules dudit copolymère acrylique particulaire ont une granulométrie
comprise entre les numéros de tamis 60 (250 µm) et 80 (177 µm).
27. Composition selon l'une quelconque des revendications 20 à 26 dans laquelle au moins
75% desdites particules du copolymère acrylique particulaire ont une taille telle
qu'elles traversent un tamis de 300 µm.
28. Procédé de préparation d'une composition thermoplastique pouvant être traitée en fusion
telle que définie dans l'une quelconque des revendications 20 à 27, le procédé comprenant
la mise en contact :
(a) de 50-99,5% en poids d'un polymère thermoplastique pouvant être traité en fusion
; et
(b) de 0,5-50% en poids d'un copolymère acrylique particulaire comprenant les résidus
d'un mélange de monomères comprenant au moins 50% en poids de méthacrylate de méthyle
(MMA), au moins 5% en poids et moins de 20% en poids d'un comonomère acrylique copolymérisable
comprenant au moins un acrylate ou méthacrylate d'alkyle, le copolymère acrylique
comprenant en outre au moins 0,3% en poids à 1% en poids d'un monomère de réticulation
copolymérisable, le diamètre moyen en poids desdites particules du copolymère acrylique
particulaire étant supérieur à 100 µm et inférieur à 250 µm lorsqu'il est mesuré conformément
à ASTM D1921.
29. Procédé selon la revendication 28, dans lequel ledit polymère pouvant être traité
en fusion et ledit copolymère acrylique particulaire sont mélangés par extrusion dans
des conditions telles que les particules dudit polymère acrylique particulaire se
désagrègent.
30. Procédé de formation d'un article qui comprend le fait de préparer une composition
thermoplastique pouvant être traitée en fusion préparée selon l'une quelconque des
revendications 1 à 19 ou de se procurer une composition thermoplastique pouvant être
traitée en fusion telle que définie dans l'une quelconque des revendications 20 à
27 et de façonner ladite composition thermoplastique pouvant être traitée en fusion
afin de former ledit article.
31. Procédé selon la revendication 30, dans lequel ladite composition thermoplastique
pouvant être traitée en fusion est soumise à des conditions telles que les particules
du polymère acrylique particulaire dans ladite composition thermoplastique pouvant
être traitée en fusion se désagrègent.
32. Procédé selon les revendications 28 à 31, dans lequel ladite composition thermoplastique
pouvant être traitée en fusion est soumise à un taux de cisaillement d'au moins 100
s-1.
33. Procédé selon l'une quelconque des revendications 30 à 32, dans lequel ledit article
comprend un substrat et un matériau de bouchage, ledit matériau de bouchage comprenant
ladite composition thermoplastique pouvant être traitée en fusion.
34. Procédé selon l'une quelconque des revendications 30 à 33, dans lequel ledit article
est un élément de bâtiment.
35. Procédé selon l'une quelconque des revendications 30 à 34, dans lequel ledit article
est un élément à utiliser en construction et est un élément co-extrudé comprenant
un substrat fait de PVC, de HIPS ou d'ABS et ledit matériau thermoplastique pouvant
être traité en fusion formé par-dessus un matériau de surface.
36. Procédé selon l'une quelconque des revendications 30 à 35, dans lequel, lorsqu'une
surface de l'article formé de ladite composition thermoplastique est soumis à un essai
de résistance au choc selon ASTM D4226, la hauteur de rupture moyenne n'est pas inférieure
à 7,5 pouces (19,05 cm).
37. Procédé selon l'une quelconque des revendications 30 à 36 dans lequel une surface
de l'article formé de ladite composition thermoplastique a un brillant superficiel
mesuré à un angle d'observation de 75° (selon ASTM D3679) inférieur à 65.
38. Article qui comprend un substrat et un matériau de surface préparé à partir d'une
composition thermoplastique préparée dans un procédé selon l'une quelconque des revendications
1 à 19 ou telle que définie dans l'une quelconque des revendications 20 à 27.
39. Article selon la revendication 39 dans lequel ladite couche de surface du matériau
a une épaisseur inférieure à 200 µm.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description