EP 1220 100 A2

(19) g)

Europdisches Patentamt
European Patent Office

Office européen des brevets

(12)

(43) Date of publication:
03.07.2002 Bulletin 2002/27

(21) Application number: 01310596.0

(22) Date of filing: 19.12.2001

(11) EP 1220 100 A2

EUROPEAN PATENT APPLICATION

(51) Intcl”: GO6F 12/08

(84) Designated Contracting States:
ATBECHCYDEDKESFIFRGBGRIEITLILU
MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 29.12.2000 US 751371

(71) Applicant: STMicroelectronics, Inc.
Carrollton Texas 75006-5039 (US)

(72) Inventors:
¢ Faraboshi, Paolo
Brighton, Massachusetts 02135 (US)

e Starr, Alexander J.

Acton, Massachusetts 01720 (US)
¢ Brown, Geoffrey M.

Watertown, Massachusetts 02472 (US)
¢ Ford, Richard L.

Lancaster, Massachusetts 01523 (US)

(74) Representative: Style, Kelda Camilla Karen et al
Page White & Farrer,
54 Doughty Street
London WC1N 2LS (GB)

(54)

(57) A cache flush controller, and an associated
method, selectably flushes a memory cache of a data
processor. The cache flush controller operates at a

Circuit and method for hardware-assisted software flushing of data and instruction caches

memory bus level of the data processor and operates
to flush a selected line, or lines of the memory cache by
writing arbitrary, selected values to the selected line or
lines of the memory cache.

BUNDLE PC = CLUSTER 0 K=
/
INSTRUCTION 220
FETCH
CACHE AND = CLUS/TER K= core
EXPANSION UNIT MEMORY 10/FROM
221 CONTROLLER <3"—">ME<AORY
215) cLusTer 2 ke 230
N /
INSTRUCTION 222
CACHE
< P
) 1/0 INTERRUPT AND
EXCEPTION b
CONTROLLER | 240 FIG. 2

Printed by Jouve, 75001 PARIS (FR)

1 EP 1220 100 A2 2

Description

[0001] The present invention is generally directed to
data processors and, more specifically, to a memory-
mapped cache flushing device for use in a data proces-
sor.

[0002] The demand for high performance computers
requires that state-of-the-art microprocessors execute
instructions in the minimum amount of time. A number
of different approaches have been taken to decrease
instruction execution time, thereby increasing processor
throughput. One way to increase processor throughput
is to use a pipeline architecture in which the processor
is divided into separate processing stages that form the
pipeline. Instructions are broken down into elemental
steps that are executed in different stages in an assem-
bly line fashion.

[0003] A pipelined processor is capable of executing
several different machine instructions concurrently. This
is accomplished by breaking down the processing steps
for each instruction into several discrete processing
phases, each of which is executed by a separate pipe-
line stage. Hence, each instruction must pass sequen-
tially through each pipeline stage in order to complete
its execution. In general, a given instruction is proc-
essed by only one pipeline stage at a time, with one
clock cycle being required for each stage. Since instruc-
tions use the pipeline stages in the same order and typ-
ically only stay in each stage for a single clock cycle, an
N stage pipeline is capable of simultaneously process-
ing N instructions. When filled with instructions, a proc-
essor with N pipeline stages completes one instruction
each clock cycle.

[0004] The executionrate of an N-stage pipeline proc-
essor is theoretically N times faster than an equivalent
non-pipelined processor. A non-pipelined processor is
a processor that completes execution of one instruction
before proceeding to the next instruction. Typically,
pipeline overheads and other factors decrease some-
what the execution rate advantage that a pipelined proc-
essor has over a non-pipelined processor.

[0005] An exemplary seven stage processor pipeline
may consist of an address generation stage, an instruc-
tion fetch stage, a decode stage, a read stage, a pair of
execution (E1 and E2) stages, and a write (or write-
back) stage. In addition, the processor may have an in-
struction cache that stores program instructions for ex-
ecution, a data cache that temporarily stores data oper-
ands that otherwise are stored in processor memory,
and a register file that also temporarily stores data op-
erands.

[0006] The address generation stage generates the
address of the next instruction to be fetched from the
instruction cache. The instruction fetch stage fetches an
instruction for execution from the instruction cache and
stores the fetched instruction in an instruction buffer.
The decode stage takes the instruction from the instruc-
tion buffer and decodes the instruction into a set of sig-

10

15

20

25

30

35

40

45

50

55

nals that can be directly used for executing subsequent
pipeline stages. The read stage fetches required oper-
ands from the data cache or registers in the register file.
The E1 and E2 stages perform the actual program op-
eration (e.g., add, multiply, divide, and the like) on the
operands fetched by the read stage and generates the
result. The write stage then writes the result generated
by the E1 and E2 stages back into the data cache or the
register file.

[0007] Assuming that each pipeline stage completes
its operation in one clock cycle, the exemplary six stage
processor pipeline takes six clock cycles to process one
instruction. As previously described, once the pipeline
is full, an instruction can theoretically be completed eve-
ry clock cycle.

[0008] The throughput of a processor also is affected
by the size of the instruction set executed by the proc-
essor and the resulting complexity of the instruction de-
coder. Large instruction sets require large, complex de-
coders in order to maintain a high processor throughput.
However, large complex decoders tend to increase pow-
er dissipation, die size and the cost of the processor.
The throughput of a processor also may be affected by
other factors, such as exception handling, data and in-
struction cache sizes, multiple parallel instruction pipe-
lines, and the like. All of these factors increase or at least
maintain processor throughput by means of complex
and/or redundant circuitry that simultaneously increas-
es power dissipation, die size and cost.

[0009] In many processor applications, the increased
cost, increased power dissipation, and increased die
size are tolerable, such as in personal computers and
network servers that use x86-based processors. These
types of processors include, for example, Intel PentiumJ
processors and AMD AthlondJ processors.

[0010] However, in many applications it is essential to
minimize the size, cost, and power requirements of a
data processor. This has led to the development of proc-
essors that are optimized to meet particular size, cost
and/or power limits. For example, the recently devel-
oped Transmeta CrusoedJ processor greatly reduces the
amount of power consumed by the processor when ex-
ecuting most x86 based programs. This is particularly
useful in laptop computer applications. Other types of
data processors may be optimized for use in consumer
appliances (e.qg., televisions, video players, radios, dig-
ital music players, and the like) and office equipment (e.
g., printers, copiers, fax machines, telephone systems,
and other peripheral devices). The general design ob-
jectives for data processors used in consumer applianc-
es and office equipment are the minimization of cost and
complexity of the data processor.

[0011] One important function that can impact the
size, complexity, cost and throughput of a data proces-
sor is the cache flushing operation. Cache flushes occur
whenever the processor wants to invalidate data in the
cache. Depending on the processor architecture, a
cache flush may occur for the entire cache or for one or

3 EP 1220 100 A2 4

more selected lines in the cache.

[0012] Conventional data processors implement a
number of different schemes for performing cache flush-
es. Some processors implement operations in the in-
struction set architecture (ISA) that execute instruction
cache and data cache flush operations on a line-by-line
basis or on an address basis. The disadvantage to this
technique is that a cache flush is a complex operation
to support and in some areas (e.g., embedded proces-
sors), it is desirable to avoid adding this overhead to the
ISA.

[0013] Some processors implement a simpler cache
flush operation that flushes all of the data or instruction
cache. While this technique may be less complex to im-
plement, it has the disadvantage that the granularity of
the flush is the entire cache and it is not possible to in-
dividually flush single cache lines. Still other processors
rely entirely on software to perform a cache flush. Soft-
ware can achieve the same effect as a cache flush op-
eration by traversing a properly designed area of mem-
ory (code or data) containing no useful values and by
making sure that all the interested locations of the cache
are touched by the traversal. This technique has the dis-
advantage that an amount of physical memory equal to
the cache size has to be permanently allocated to store
the proper values. In some areas where memory is lim-
ited (e.g., embedded processor systems), this type of
solution is unacceptable.

[0014] Therefore, there is a need in the art for data
processors thatimplement simple, adaptable circuitry to
perform cache flushes. In particular, there is a need in
the art for a data processor that is capable of performing
cache flushes on a line-by-line basis without modifying
the instruction set architecture to implement complex
decode circuitry. More particularly, there is a need in the
art for a data processor that is capable of performing
cache flush operations on a line-by line basis without
permanently allocating a portion of physical memory
equal to the cache size to store the proper values.
[0015] To address the above-discussed deficiencies
of the prior art, it is a primary object of the present in-
vention to provide a data processor that includes an in-
struction execution pipeline having N processing stages
and a memory cache including a plurality of storage
lines at which data is storable. A cache flush apparatus
is coupled to permit access thereof to storage lines of
the memory cache of the instruction execution pipeline.
The cache flush apparatus is selectably operable to
purge at least a selected portion of the memory cache
of the instruction execution pipeline. It is a further object
of the present invention to provide a method of flushing
a data cache associated with a data processor. At least
a portion of the data cache is selected at which to flush
existing values cached thereat. Selected, arbitrary val-
ues are generated at a location separate from the data
cache. And, the selected arbitrary values are written to
the at least the portion of the data cache, thereby flush-
ing the existing values cached at the selected portion of

10

15

20

25

30

35

40

45

50

55

the data cache.

[0016] The foregoing has outlined rather broadly the
features and technical advantages of the present inven-
tion so that those skilled in the art may better understand
the detailed description of the invention that follows. Ad-
ditional features and advantages of the invention will be
described hereinafter that form the subject of the claims
of the invention. Those skilled in the art should appreci-
ate that they may readily use the conception and the
specific embodiment disclosed as a basis for modifying
or designing other structures for carrying out the same
purposes of the present invention. Those skilled in the
art should also realize that such equivalent construc-
tions do not depart from the spirit and scope of the in-
vention in its broadest form.

[0017] Before undertaking the DETAILED DESCRIP-
TION OF THE INVENTION below, it may be advanta-
geous to set forth definitions of certain words and phras-
es used throughout this patent document: the terms "in-
clude" and "comprise," as well as derivatives thereof,
mean inclusion without limitation; the term "or," is inclu-
sive, meaning and/or; the phrases "associated with" and
"associated therewith," as well as derivatives thereof,
may mean to include, be included within, interconnect
with, contain, be contained within, connect to or with,
couple to or with, be communicable with, cooperate
with, interleave, juxtapose, be proximate to, be bound
to or with, have, have a property of, or the like; and the
term "controller" means any device, system or part
thereof that controls at least one operation, such a de-
vice may be implemented in hardware, firmware or soft-
ware, or some combination of at least two of the same.
It should be noted that the functionality associated with
any particular controller may be centralized or distribut-
ed, whether locally or remotely. Definitions for certain
words and phrases are provided throughout this patent
document, those of ordinary skill in the art should un-
derstand that in many, if not most instances, such defi-
nitions apply to prior, as well as future uses of such de-
fined words and phrases.

[0018] For a more complete understanding of the
present invention, and the advantages thereof, refer-
ence is now made to the following descriptions taken in
conjunction with the accompanying drawings, wherein
like numbers designate like objects, and in which:

FIGURE 1 is a block diagram of a processing sys-
tem that contains a data processor in accordance
with the principles of the present invention;
FIGURE 2 illustrates the exemplary data processor
in greater detail according to one embodiment of the
present invention;

FIGURE 3 illustrates a cluster in the exemplary data
processor according to one embodiment of the
present invention;

FIGURE 4 illustrates the operational stages of the
exemplary data processor according to one embod-
iment of the present invention;

5 EP 1220 100 A2 6

FIGURE 5 illustrates portions of the processing sys-
tem shown in FIGURE 1, including the memory-
mapped cache flush controller of an embodiment of
the present invention.

[0019] FIGURES 1 through 5, discussed below, and
the various embodiments used to describe the princi-
ples of the present invention in this patent document are
by way of illustration only and should not be construed
in any way to limit the scope of the invention. Those
skilled in the art will understand that the principles of the
present invention may be implemented in any suitably
arranged data processor.

[0020] FIGURE 1 is a block diagram of processing
system 10, which contains data processor 100 in ac-
cordance with the principles of the present invention.
Data processor 100 comprises processor core 105 and
N memory-mapped peripherals interconnected by sys-
tem bus 120. The N memory-mapped peripherals in-
clude exemplary memory-mapped peripherals 111-114,
which are arbitrarily labeled Memory-Mapped Peripher-
al 1, Memory-Mapped Peripheral 2, Memory-Mapped
Peripheral 3, and Memory-Mapped Peripheral N.
[0021] The data processor also includes memory-
mapped cache flush controller 115 which is selectably
operable pursuant to an embodiment of the present in-
vention to purge the contents of cache 106 embodied at
processor core 105. Portions of cache 105, such as a
single line of cache 106, a plurality of lines of cache 106,
or the entire contents of cache 106 can be purged
through operation of cache flush controller 115.
Processing system 10 also comprises main memory
130. In an advantageous embodiment of the present in-
vention, main memory 130 may be subdivided into pro-
gram memory 140 and data memory 150.

[0022] The costand complexity of data processor 100
is minimized by excluding from processor core 105 com-
plex functions that may be implemented by one or more
of memory-mapped peripherals 111-114. For example,
memory-mapped peripheral 111 may be a video codec
and memory-mapped peripheral 112 may be an audio
codec. Similarly, memory-mapped cache flush control-
ler 115 used to control cache flushing (or purging) of
cache 106 is also implemented outside of processor
core 105 of data processor 100. The cost and complex-
ity of data processor 100 is further minimized by imple-
menting extremely simple exception behavior in proc-
essor core 105, as explained below in greater detail.
[0023] Processing system 10 is shown in a general
level of detail because it is intended to represent any
one of a wide variety of electronic devices, particularly
consumer appliances. For example, processing system
10 may be a printer rendering system for use in a con-
ventional laser printer. Processing system 10 also may
represent selected portions of the video and audio com-
pression-decompression circuitry of a video playback
system, such as a video cassette recorder or a digital
versatile disk (DVD) player. In another alternative em-

10

15

20

25

30

35

40

45

50

55

bodiment, processing system 10 may comprise select-
ed portions of a cable television set-top box or a stereo
receiver. The memory-mapped peripherals and a sim-
plified processor core reduce the cost of data processor
100 so that it may be used in such price sensitive con-
sumer appliances.

[0024] In the illustrated embodiment, memory-
mapped peripherals 111-114 and cache flush controller
115 are shown disposed within data processor 100 and
program memory 140 and data memory 150 are shown
external to data processor 100. It will be appreciated by
those skilled in the art that this particular configuration
is shown by way of illustration only and should not be
construed so as to limit the scope of the present inven-
tion in any way. In alternative embodiments of the
present invention, one or more of memory-mapped pe-
ripherals 111-114 and cache flush controller 115 may be
externally coupled to data processor 100. Similarly, in
another embodiment of the present invention, one or
both of program memory 140 and data memory 150 may
be disposed on-chip in data processor 100.

[0025] FIGURE 2 is a more detailed block diagram of
exemplary data processor 100 according to one embod-
iment of the present invention.

[0026] Data processor 100 comprises instruction
fetch cache and expansion unit (IFCEXU) 210, which
contains instruction cache 215, and a plurality of clus-
ters, including exemplary clusters 220-222. Exemplary
clusters 220-222 are labeled Cluster 0, Cluster 1 and
Cluster 2, respectively. Data processor 100 also com-
prises core memory controller 230 and interrupt and ex-
ception controller 240. Instruction cache 215 is repre-
sentative of cache 106 shown in FIGURE 1, here to in-
dicate that the memory cache is here utilized to store
program instructions for execution at the processor
core.

[0027] A fundamental object of the design of data
processor 100 is to exclude from the core of data proc-
essor 100 most of the functions that can be implemented
using memory-mapped peripherals external to the core
of data processor 100. By way of example, in an exem-
plary embodiment of the present invention, cache flush-
ing may be efficiently accomplished using software in
conjunction with a small memory-mapped device, here
designated at 115. Another object of the design of data
processor 100 is to implement a statically scheduled in-
struction pipeline with an extremely simple exception
behavior.

[0028] Clusters 220-222 are basic execution units
that comprise one or more arithmetic units, a register
file, an interface to core memory controller 230, includ-
ing a data cache, and an inter-cluster communication
interface. In an exemplary embodiment of the present
invention, the core of data processor 100 may comprise
only a single cluster, such as exemplary cluster 220.
[0029] Because conventional processor cores can
execute multiple simultaneously issued operations, the
traditional word "instruction" is hereby defined with

7 EP 1220 100 A2 8

greater specificity. For the purposes of this disclosure,
the following terminology is adopted. An "instruction" or
"instruction bundle" is a group of simultaneously issued
operations encoded as "instruction syllables". Each in-
struction syllable is encoded as a single machine word.
Each of the operations constituting an instruction bundle
may be encoded as one or more instruction syllables.
Hereafter, the present disclosure may use the shortened
forms "instruction" and "bundle" interchangeably and
may use the shortened form "syllable." In an exemplary
embodiment of the present invention, each instruction
bundle consists of 1 to 4 instruction syllables. Flow con-
trol operations, such as branch or call, are encoded in
single instruction syllables.

[0030] FIGURE 3 is a more detailed block diagram of
cluster 220 in data processor 100 according to one em-
bodiment of the present invention. Cluster 220 compris-
es instruction buffer 305, register file 310, program
counter (PC) and branch unit 315, instruction decoder
320, load store unit 325, data cache 330, integer units
341-344, and multipliers 351-352. Cluster 220 is imple-
mented as an instruction pipeline. The data cache 330
is representative of cache 106 shown in FIGURE 1, here
designated at 330 to indicate that the memory cache is
here utilized to store temporarily data operands, etc.
used, or created, during operation of the processor core.
[0031] Instructions are issued to an operand read
stage associated with register file 310 and then propa-
gated to the execution units (i.e., integer units 341-244,
multipliers 351-352). Cluster 220 accepts one bundle
comprising one to four syllables in each cycle. The bun-
dle may consist of any combination of four integer op-
erations, two multiplication operations, one memory op-
eration (i.e., read or write), and one branch operation.
Operations that require long immediates (i.e., con-
stants) require two syllables.

[0032] In specifying a cluster, it is assumed that no
instruction bits are used to associate operations with
functional units. For example, arithmetic or load/store
operations may be placed in any of the four words en-
coding the operations for a single cycle. This may re-
quire imposing some addressing alignment restrictions
on multiply operations and long immediates (constants).
[0033] This following describes the architectural (pro-
grammer visible) status of the core of data processor
100. One design objective of data processor 100 is to
minimize the architectural status. All non-user visible
status information resides in a memory map, in order to
reduce the number of special instructions required to ac-
cess such information.

Program Counter

[0034] Inanexemplary embodiment of the present in-
vention, the program counter (PC) in program counter
and branch unit 315 is a 32-bit byte address pointing to
the beginning of the current instruction bundle in mem-
ory. The two least significant bits (LSBs) of the program

10

15

20

25

30

35

40

45

50

55

counter are always zero. In operations that assign a val-
ue to the program counter, the two LSBs of the assigned
value are ignored.

Register File

[0035] In an exemplary embodiment, register file unit
310 contains 64 words of 32 bits each. Reading Register
0 (i.e., RO) always returns the value zero.

Link Register

[0036] Register 63 (i.e., R63) is used to address the
link register by the call and return instructions. The link
register (LR) is a slaved copy of the architecturally most
recent update to R63. R63 can be used as a normal reg-
ister, between call and return instructions. The link reg-
ister is updated only by writes to R63 and the call in-
struction. At times the fact that the link register is a copy
of R63 and not R63 itself may be visible to the program-
mer. This is because the link register and R63 get up-
dated at different times in the pipeline. Typically, this oc-
curs in the following cases:

1) ICALL and IGOTO instructions - Since these in-
structions are executed in the decode stage, these
operations require that R63 be stable. Thus, R63
must not be modified in the instruction bundle pre-
ceding one of these operations. Otherwise unpre-
dictable results may occur in the event of an inter-
rupt; and

2) Aninterrupt or exception may update the link reg-
ister incorrectly. Thus, all interrupt and exception
handlers must explicitly write R63 prior to using the
link register through the execution of an RFI, ICALL
or IGOTO instruction. This requirement can be met
with a simple MOV instruction from R63 to R63.

Branch Bit File

[0037] The branch architecture of data processor 100
uses a set of eight (8) branch bit registers (i.e., BO
through B7) that may be read or written independently.
In an exemplary embodiment of the present invention,
data processor 100 requires at least one instruction to
be executed between writing a branch bit and using the
result in a conditional branch operation.

Control Registers

[0038] A small number of memory mapped control
registers are part of the architectural state of data proc-
essor 100. These registers include support for interrupts
and exceptions, and memory protection.

[0039] The core of data processor 100 is implemented
as a pipeline that requires minimal instruction decoding
in the early pipeline stages. One design objective of the
pipeline of data processor 100 is that it support precise

9 EP 1220 100 A2 10

interrupts and exceptions. Data processor 100 meets
this objective by updating architecturally visible state in-
formation only during a single write stage. To accom-
plish this, data processor 100 makes extensive use of
register bypassing circuitry to minimize the performance
impact of meeting this requirement

[0040] FIGURE 4 is a block diagram illustrating the
operational stages of pipeline 400 in exemplary data
processor 100 according to one embodiment of the
presentinvention. In the illustrated embodiment, the op-
erational stages of data processor 100 are address gen-
eration stage 401, fetch stage 402, decode stage 403,
read stage 404, first execution (E1) stage 405, second
execution (E2) stage 406 and write stage 407.

Address Generation Stage 401 and Fetch Stage 402

[0041] Address generation stage 401 comprises a
fetch address generator 410 that generates the address
of the next instruction to be fetched from instruction
cache 215. Fetch address generator 410 receives in-
puts from exception generator 430 and program counter
and branch unit 315. Fetch address generator 410 gen-
erates an instruction fetch address (FADDR) that is ap-
plied to instruction cache 215 in fetch stage 402 and to
an instruction protection unit (not shown) that generates
an exception if a protection violation is found. Any ex-
ception generated in fetch stage 402 is postponed to
write stage 407. Instruction buffer 305 in fetch stage 402
receives instructions as 128-bit wide words from instruc-
tion cache 215 and the instructions are dispatched to
the cluster.

Decode Stage 403

[0042] Decode stage 403 comprises instruction de-
code block 415 and program counter (PC) and branch
unit 315. Instruction decode block 415 receives instruc-
tions from instruction buffer 305 and decodes the in-
structions into a group of control signals that are applied
to the execution units in E1 stage 405 and E2 stage 406.
Program counter and branch unit 315 evaluates branch-
es detected within the 128-bit wide words. A taken
branch incurs a one cycle delay and the instruction be-
ing incorrectly fetched while the branch instruction is
evaluated is discarded.

Read Stage 404

[0043] Inread stage 404, operands are generated by
register file access, bypass and immediate (constant)
generation block 420. The sources for operands are the
register files, the constants (immediates) assembled
from the instruction bundle, and any results bypassed
from operations in later stages in the instruction pipeline.

10

15

20

25

30

35

40

45

50

55

E1 Stage 405 and E2 Stage 406

[0044] The instruction execution phase of data proc-
essor 100 is implemented as two stages, E1 stage 405
and E2 stage 406 to allow two cycle cache access op-
erations and two cycle multiplication operations. Exem-
plary multiplier 351 is illustrated straddling the boundary
between E1 stage 405 and E2 stage 406 to indicate a
two cycle multiplication operation. Similarly, load store
unit 325 and data cache 330 are illustrated straddling
the boundary between E1 stage 405 and E2 stage 406
to indicate a two cycle cache access operation. Integer
operations are performed by integer units, such as |U
341 in E1 stage 405. Exceptions are generated by ex-
ception generator 430 in E2 stage 406 and write stage
407.

[0045] Results from fast operations are made availa-
ble after E1 stage 405 through register bypassing oper-
ations. An important architectural requirement of data
processor 100 is that if the results of an operation may
be ready after E1 stage 405, then the results are always
ready after E1 stage 405. In this manner, the visible la-
tency of operations in data processor 100 is fixed.

Write Stage 407

[0046] Atthe start of write stage 407, any pending ex-
ceptions are raised and, if no exceptions are raised, re-
sults are written by register write back and bypass block
440 into the appropriate register file and/or data cache
location. In data processor 100, write stage 407 is the %
commit point # and operations reaching write stage 407
in the instruction pipeline and not "excepted" are con-
sidered completed. Previous stages (i.e., address gen-
eration, fetch, decode, read, E1, E2) are temporally prior
to the commit point. Therefore, operations in address
generation stage 401, fetch stage 402, decode stage
403, read stage 404, E1 stage 405 and E2 stage 406
are flushed when an exception occurs and are acted up-
on in write stage 407.

[0047] Load operations that transfer data from data
cache 330 to the register files are performed in E1 stage
405, E2 stage 406, and write stage 407. Data shifting is
performed early in write stage 407 prior to loading the
data into the appropriate register file in register write
back and bypass block 440. In order to maximize proc-
essor throughput, the present invention implements by-
passing circuitry in the pipeline that permits data from
load word operations to bypass the shifting circuitry in
write stage 407.

[0048] FIGURE 5 illustrates a functional block dia-
gram of portions of processing system 10, here illustrat-
ed to represent operation of memory-mapped cache
flush controller 115. Cache flush controller 115 is repre-
sented functionally in FIGURE 5 and the functional op-
eration of cache flush controller 115 can be physically
implemented in any desired manner, such as, in part, by
a state machine implementation.

11 EP 1220 100 A2 12

[0049] Cache 106 and the CPU function, here desig-
nated at 501, of processor core 105 are also shown,
here in which the elements are represented separately.
During operation of the CPU function of processor core
105, the contents of cache 106 are read from, and writ-
ten to, as appropriate. Main memory 130 and an exem-
plary memory-mapped peripheral, namely memory-
mapped peripheral 114, are further shown in FIGURE
5. The processor core 105, memory-mapped peripheral
N, cache flush controller 115, and main memory 130 are
all again shown to be interconnected by way of system
bus 120.

[0050] Through operation of cache flush controller
115, cache flushes of cache 106 are effectuated. Cache
106 flushes are performed without necessitating ISA (In-
struction Set Architecture) support and without dedicat-
ing a large physical memory conventionally required in
conventional manners by which to perform cache flush-
es.

[0051] Cache flush controller 115 here includes a bit-
value generator 502 which generates binary values on
line 504. The generator comprises, for instance, a logi-
cal gate device which generates Logic 1 or Logic 0 val-
ues.

[0052] The values generated on line 504 are selec-
tively applied to selected address locations (i.e., storage
lines) of cache 106 by way of the system bus 120. When
applied thereto, existing values stored at the address
are written over, thereby purging the existing values with
the arbitrary, selected values generated by the bit gen-
erator. Control over when, and to where, the bit values
are written is exerted by operation of the processor core,
such as by operation of selector 506, functionally repre-
sented in the Figure.

[0053] Selection is made during operation of the
cache flush controller to which of the one or more stor-
age lines, or addresses, of cache 106 that values gen-
erated on the line 504 are to be applied. Lines extending
from main memory 130 and the exemplary memory-
mapped peripheral 114, also connected to system bus
120, also indicate the selectable manner by which the
memory and peripheral are connectable to cache 106
and, in turn, the CPU function of core processor 105.
Control over which element, if any, is permitted to ac-
cess cache 106 is exerted by cache flush controller 115.
When address locations of cache 106 are to be flushed,
system bus 120 passes the values generated on line
504 to cause the selected address locations to be writ-
ten over with the generated bit values.

[0054] Cache flush controller 115 advantageously
avoids the conventional need for ISA (Instruction Set Ar-
chitecture) support. Also, cache flush controller 115 can
be retro-fitted into existing processing system designs
as the controller operates at the memory bus level, out-
side of the processor core. Physical memory space also
is not wasted as the controller provides merely virtual
memory values to write over existing values cached at
cache 106.

10

15

20

25

30

35

40

45

50

55

[0055] Generally, flushing of a cache line involves two
steps. First, the line is marked to be invalid. And, then,
the contents of the line are written back if cache 106 is
in a copy-back mode and the line is dirty.

[0056] When cache 106 forms a data cache, a possi-
ble way of invalidating a storage (i.e., cache) line is to
load data from an address that is known not to be used
in a particular application, thus making the data invalid.
Consequently, a block of memory can be reserved for
this purpose, and the address corresponding to the line
that is to be flushed is accessed. If cache 106 forms a
set-associative cache, the locations whose address is
a multiple of the cache lines can be looped-over with as
many iterations as the associativity degree. As an ex-
ample, exemplary line one hundred of a two-way asso-
ciative cache having two hundred fifty-six lines is flushed
by accessing two locations at flush_area [100] and
flush_area [100 + 256]. Flush_area [0] is assumed to be
aligned to the size of the cache.

[0057] When cache 106 forms an instruction cache,
a similar procedure is utilized but with a somewhat dif-
ferent traversing procedure. A location of the instruction
cache flush area contains a jump instruction that uncon-
ditionally branches to a subsequent location of the flush
area. The last location of the flush area contains a return
instruction. In this manner, it is possible to call the be-
ginning of the flush area and to produce the effect of
loading the instruction cache with invalid operations (i.
e., operations that do not belong to the application
space).

[0058] Conventional, pure software-implemented
manners by which to implement flush operations require
a reserved memory area corresponding in size to that
of the instruction and data cache while utilization of
cache flush controller 115 of an embodiment of the
present invention obviates that need for a correspond-
ingly large memory area.

[0059] When a memory cache, or a portion thereof, is
to be flushed, up to three sets of address ranges are
mapped. A dataflush area, an instruction flush area, and
a line flush area all are address ranges which are
mapped.

[0060] When accessed in the data flush area and the
entire data cache or individual lines thereof are to be
flushed, a predefined value, (e.g., a Logic 0 value is re-
turned by cache flush controller 115). When accessed
in the instruction flush area and the entire instruction
cache is to be flushed, a binary representation of the
instruction "jump PC+line size" is returned by the con-
troller when the instruction flush area is accessed at a
location such that 0 is less than or equal to the location
of cache 106 which is less than the instruction cache
size less one. And, a binary representation of the RE-
TURN instruction is returned by the controller when the
flush area is accessed at a location of the instruction
cache size less one. When accessed in a line flush area
to flush a line of the instruction cache, the controller re-
turns a target binary representation of a RETURN in-

13 EP 1220 100 A2 14

struction for all locations.

[0061] In the exemplary implementation, memory-
mapped registers, of which register 514 is shown in FIG-
URE 5, are used to program cache flush controller 115.
Values stored at the registers are used to define the in-
itial address and size of the data and instruction flush
areas, the initial address and size of a line flush area,
and to define the binary representations of "JUMP
PC+line size" and RETURN instructions for the proces-
sor.

[0062] Because neither specific ISA support nor large
memory areas need to be reserved to provide for cache
flushing operations, utilization of cache flush controller
115 of an embodiment of the present invention obviates
problems associated with conventional manners by
which to purge a memory cache. And, because the con-
troller is operable at the memory bus level of a data proc-
essor, the controller can easily be added to an existing
processor design.

[0063] Although the present invention has been de-
scribed in detail, those skilled in the art should under-
stand that they can make various changes, substitutions
and alterations herein without departing from the spirit
and scope of the invention in its broadest form.

Claims
1. A data processor comprising:

an instruction execution pipeline comprising N
processing stages and a memory cache having
a plurality of storage lines at which data is stor-
able; and

a cache flush apparatus coupled to permit ac-
cess thereof to storage lines of the memory
cache of said instruction execution pipeline,
said cache flush apparatus selectably operable
to purge at least a selected portion of the mem-
ory cache of said instruction execution pipeline.

2. A processing system comprising:

a data processor; a memory coupled to said da-
ta processor;

a plurality of memory-mapped peripheral cir-
cuits coupled to said data processor for per-
forming selected functions in association with
said data processor, wherein said data proces-
sor comprises:

an instruction execution pipeline compris-
ing N processing stages and a memory
cache having a plurality of storage lines at
which data is storable; and

a cache flush apparatus coupled to permit
access thereof to storage lines of the mem-

10

15

20

25

30

35

40

45

50

55

10.

ory cache of said instruction execution
pipeline, said cache flush apparatus se-
lectably operable to purge at least a select-
ed portion of the memory cache of said in-
struction execution pipeline.

The processing system as set forth in Claim 2 or
processor of Claim 1 wherein the memory cache
comprises a data cache at which data is stored and
wherein said cache flush apparatus is selectably
operable to purge at least a selected storage line of
the data cache.

The processing system as set forth in Claim 2 or
processor of Claim 1 wherein the memory cache
comprises an instruction cache at which instruc-
tions are stored at the storage lines thereof and
wherein said cache flush apparatus is selectably
operable to purge at least an instruction stored on
at least a selected one of the storage lines of the
instruction cache.

The data processor or system as set forth in Claim
4 wherein said cache flush apparatus purges the
instruction cache prior to loading of executable
code formed of instructions at the storage lines of
the instruction cache which forms the memory
cache.

The processing system as set forth in Claim 2 or
processor of Claim 1 wherein said cache flush ap-
paratus purges the at least the selected portion of
the memory cache by writing data of arbitrary, se-
lected values to at least a selected storage line of
the memory cache.

The processing system or processor as set forth in
Claim 6 wherein the arbitrary values, selected val-
ues written by said cache flush apparatus to the at
least the selected storage line of the memory cache
comprise binary values generated at said cache
flush apparatus.

The processing system or processor as set forth in
Claim 7 wherein said cache flush apparatus further
comprises a bit-value generator for generating the
bits written to the at least the selected storage line
of the memory cache.

The processing system or processor as set forth in
Claim 8 wherein said cache flush apparatus further
comprises a selector, said selector for selecting to
which of the at least the selected storage line that
the bits of the arbitrary, selected values are to be
written.

The processing system or processor as set forth in
Claim 9 wherein the storage lines are identified by

1.

12

15 EP 1220 100 A2

addresses and wherein said selector selects to
which addresses of the memory cache that the bit-
value generator writes the binary values generated
thereat.

The processing system as set forth in Claim 2 or
processor of Claim 1 wherein the memory cache
comprises an instruction cache and wherein the bi-
nary values generated at said cache flush appara-
tus are of values representative of a jump command
when executed by said instruction execution pipe-
line.

For use in a data processor comprising an instruc-
tion execution pipeline comprising N processing
stages, a method of flushing a data cache associ-
ated with said data processor, said method com-
prising:

selecting at least a portion of the data cache at
which to flush existing values cached thereat;

generating selected, arbitrary values at a loca-
tion separate from the data cache; and

writing the selected arbitrary values generated
during said operation of generating to the at
least the portion of the data cache, thereby
flushing the existing values cached at the por-
tion of the data cache selected during said op-
eration of selecting.

10

15

20

25

30

35

40

45

50

55

16

EP 1220 100 A2

10
/
10\0 1)30
10\5 H\ 1 ! Z12 1/50
PROCESSOR
CORE MEMORY=MAPPED | | MEMORY-MAPPED DATA
— PERIPHERAL 1 PERIPHERAL 2 MEMORY
7
106
< v —> K- >
g & 1 i I
MEMORY-
MEMORY-MAPPED | _ _ _ | MEMORY-MAPPED MAPPED PROGRAM
PERIPHERAL 3 PERIPHERAL N | | CACHE FLUSH MEMORY
CONTROLLER
/ \ \ N
13 114 115 140
FIG. 1
£ I /100
BUNDLE PC =3 CLUSTER 0 K=
/
INSTRUCTION 220
FETCH
CACHE AND CLUS/TER K= Ccore
EXPANSION UNIT MEMORY 10/FROM
221 CONTROLLER /L\::>ME{WORY
215 Sl cwuster 2 ke 20
N /
INSTRUCTION 222
CACHE
@ >
) 1/0 INTERRUPT AND
EXCEPTION |
CONTROLLER | 240 FIG. 2

10

EP 1220 100 A2

& OId

1IN HONVZE
e Cpe AL LS AS ONV d
§ § § / / e
30000 | Glg
il ni i nl NOLLONYLSNI [
A A A A A A A
- 0l¢ GO
<] 1N -
3¥0IS [s K ¥34ang
ool [¥31S193Y NOLLONYISNI
Yy YV
0ss A | pee A I | e A 43NN

0c¢

1

EP 1220 100 A2

v Old

00l
T | T T T \
e " | |
| Lpe _ Sl !
] i) e | |
HOLVIINID _ _
z\o:ﬁoﬁ | ! [owdg ["
I |
ory 1 | ! | Sty 1 "
“ I I I / ! "
P01 | 300030 | |
_ N i ™| NOLLONISNI “ _
! 3HOVD " | _ “
I VIvQ _ I I I
| A I I 1 i Y Y
oww R4S _ ! _ !
! / | 1 1
_ | wowvanao | || ¥33ane HOVD | HOLV3ND
SSvdAG ONv | 1T | LINN 3OIS| 1| 3LVIG3NAI _ U | NotonuIsnt < NoTnsisNt (S SS3uaav
Hova3Lium | ! V01 L] NV SSvdAg K : N LEE!
WUSION | 1 oo (] USS3oov s | " _
_ _ (| ¥3LSion _ 5 N AN
_ / _ I I
! " ! 7 “ " G0¢ Gle I Oly
Lojandow | L 0zy ! ! “
|
s “ “ s
_ ! _ _ NOILY¥3N39
30VIS IR | 30VIS €3, 30VIS 13 30VIS OV | 3OVIS 300030 “ VIS HOL34 | SS3MOY
7 7 7 7 T \ _ :
y
LO¥ 90v SO% Y0y oy wr o w 0%

00y

12

EP 1220 100 A2

501
N

1

06
A

CPU
FUNCTION

CACHE

514~

REGISTER

A
Y

506" SELE

CTOR

A
4

902

BIT

D

GENERATOR

Q

Y

504

114
4

'y

MEMORY -
MAPPED
PERIPHERAL N

FIG. 5

13

MEMORY

N
130

	bibliography
	description
	claims
	drawings

