(11) EP 1 225 309 A1

DEMANDE DE BREVET EUROPEEN

(43) Date de publication:

24.07.2002 Bulletin 2002/30

(51) Int Cl.7: F01D 25/24

(21) Numéro de dépôt: 02290005.4

(22) Date de dépôt: 03.01.2002

(84) Etats contractants désignés:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Etats d'extension désignés:

AL LT LV MK RO SI

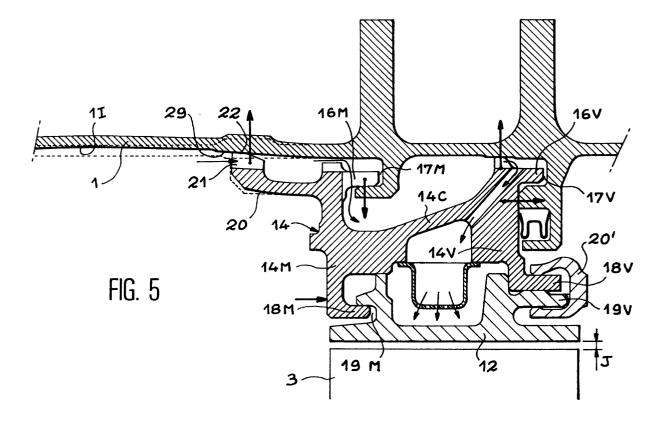
(30) Priorité: 04.01.2001 FR 0100059

(71) Demandeur: SNECMA MOTEURS 75015 Paris (FR)

(72) Inventeurs:

Arilla, Jean-Baptiste
 92450 Issy Les Moulineaux (FR)

 Gendraud, Alain Dominique 77670 Vernou la Celle/Seine (FR)


(54) Secteur d'entretoise de support d'anneau de stator de la turbine haute pression d'une turbomachine avec rattrapage de jeux

(57) Le secteur d'entretoise support (14) permet de minimiser les jeux (J) de fonctionnement entre le sommet des pales (3) et l'anneau (12) de la turbine haute pression et les jeux de montage des secteurs d'entretoise de support (14) sur le carter de turbine haute pression (1).

Chaque secteur d'entretoise de support (14) pos-

sède en amont une languette (20) possédant une extrémité (21) s'appuyant sur la paroi interne (11) du carter de turbine haute pression (1) créant ainsi un contact intime entre les parties de fixation de ce secteur d'entretoise de support (14) avec les parties correspondantes du carter de turbine haute pression (1).

Application aux turbomachines équipant les aéronefs.

20

Description

Domaine de l'invention

[0001] L'invention concerne les turbomachines, telles que celles utilisées pour la propulsion des aéronefs, et en particulier l'entretoise de support de l'anneau de la turbine haute pression et son montage avec des jeux minimisés.

Art antérieur et problème posé

[0002] En référence à la figure 1, comme le décrit le document de brevet EP-0 555 082, dans de nombreux exemples de turbomachines, le carter de turbine 1 du stator comprend des parties annulaires 2 qui font face aux pales 3 du rotor 8, au niveau de l'entrée de la turbine haute pression, en aval de la chambre de combustion 5. Ces parties annulaires 2 du carter de turbine 1 définissent donc un jeu avec le sommet des pales 3 du rotor 4, conditionnant, par conséquent, le rendement de la turbomachine.

[0003] Or, ces parties annulaires 2 sont alimentées en gaz à des températures qui permettent, soit de les dilater, soit de les contracter pour réduire à une valeur minimale le jeu existant entre ces pales 3 et ces parties annulaires 2, dans le but d'accroître ainsi le rendement de la turbomachine. Le gaz est généralement soutiré d'une autre partie de la turbomachine, en fonction de la température des gaz ou de la vitesse du rotor.

[0004] La figure 2 montre en détail une réalisation de l'art antérieur de la fixation d'un anneau de stator 2 autour des extrémités des pales 3 du rotor 4. En fait, un anneau est composé d'une multitude de secteurs d'anneau 2 positionnés chacun dans des secteurs d'entretoise de support 4 qui sont fixés eux-mêmes à l'intérieur du carter de turbine haute pression 1. A cet effet, chaque secteur d'entretoise de support 4 possède un pied extérieur amont 6M et un pied extérieur aval 6V destinés à être insérés chacun respectivement dans un crochet amont 7M ou un crochet aval 7V du carter de turbine haute pression 1. On constate qu'il est nécessaire de prévoir un jeu J entre l'extrémité des pales 3 et la paroi de chaque secteur d'anneau 2. En effet, les différences de température pour une telle turbomachine, au niveau de ces éléments, entre le repos et le fonctionnement, sont considérables. Il s'ensuit des dilatations diverses en trois dimensions et à des échelles différentes concernant les pièces constituant un tel montage. Bien entendu, si le jeu J subsiste de manière conséquente, notamment dans les phases de fonctionnement de la turbomachine, le rendement de celle-ci en sera très amoin-

[0005] Or, dans le document EP-0 555 082, sont également décrits un procédé pour effectuer un assemblage par serrage de l'entretoise où l'élément de suspension de chaque secteur d'anneau de turbine haute pression.

[0006] La figure 3 illustre la mise en place d'une entretoise de support 4 ayant deux extrémités 4A et 4B et une partie médiane 4C, représentée de façon superposée sur une partie du carter de turbine haute pression 1 et de ses crochets amont 7M et aval 7V. Le carter de turbine haute pression 1 comporte un premier rayon R1 et une première largeur X1. Le secteur d'entretoise de support 4 comporte un second rayon R2 et une seconde largeur X2. Le second rayon R2 est décentré par rapport au premier rayon R1, de telle sorte que le second rayon R2 est plus grand que le premier rayon R1. De plus, la première largeur X1 est, de préférence, plus grande que la deuxième largeur X2. Le secteur d'entretoise de support 4 est introduit en force dans la fente formée par les crochets 7M et 7V et le carter de turbine haute pression 1. Ce montage en force crée un effet de ressort dans le secteur d'entretoise de support 4, du fait de la déformation ou du fléchissement des extrémités 4A et 4B de ce secteur d'entretoise de support 4, comme le montre la figure 4.

[0007] Or, du fait des gradients thermiques radiaux régnant à ce niveau, ces secteurs d'entretoises de supports 4 subissent des déformations, notamment concernant leur cambrure. En effet, compte tenu du fait que les fibres chaudes se trouvent vers l'intérieur du compresseur et les fibres froides vers l'extérieur de celui-ci, les secteurs d'entretoises de supports ont tendance à voir leur angle de cambrure R2 augmenter, ce qui accentue la flexion. De plus, le grand nombre de cycles de vols successifs subis par une telle turbomachine fait que ces éléments atteignent de très nombreuses fois des hautes températures et ces pièces ne gardent donc pas leur géométrie initiale. Ceci nuit au rattrapage des jeux. En effet, le jeu J entre les sommets des pales et l'anneau de turbine s'élargit et diminue donc le rendement de la turbomachine.

[0008] Le but de l'invention est donc de proposer une autre solution pour rattraper les jeux entre le sommet des pales du rotor et les secteurs d'anneaux au niveau de la turbine haute pression, en essayant d'éviter des déformations dues à des gradients thermiques radiaux.

Résumé de l'invention

[0009] A cet effet, l'objet principal de l'invention est un secteur d'entretoise de support d'anneau de la turbine haute pression d'une turbomachine avec rattrapage des jeux de montage des secteurs d'entretoises et de fonctionnement entre l'anneau et le sommet des pales, ce secteur comprenant :

- une paroi radiale amont avec un crochet externe amont, destiné à être engagé axialement dans une encoche amont correspondante du carter haute pression de la turbomachine et un crochet interne amont destiné à être engagé dans une encoche amont correspondante de l'anneau;
- une paroi radiale aval avec un crochet extrême

aval, destiné à être engagé axialement avec un crochet aval correspondant du carter haute pression de la turbomachine, et un crochet interne aval destiné à être au secteur d'anneau correspondant;

- une paroi de liaison reliant la paroi radiale amont avec la paroi radiale aval.

[0010] Selon l'invention, chaque secteur d'entretoise de support possède une languette longitudinale amont, fixée en amont et du côté extérieur de la paroi radiale amont, possédant une face d'appui externe à son extrémité amont, faisant saillie vers l'extérieur, de manière à être en appui sur la face interne du carter de turbine haute pression de la turbomachine et à exercer une poussée sur celle-ci lorsque le secteur d'entretoise de support est en place.

[0011] Dans la réalisation préférentielle du secteur d'entretoise, est prévue une encoche de positionnement sur l'extrémité amont pour recevoir un pion d'indexage en rotation, pénétrant dans un trou du carter haute pression de la turbomachine.

[0012] Il est préférable que les faces d'appui externes de l'extrémité amont de la languette ne soient pas continues, mais soient séparées par un décrochement.

[0013] Dans ce cas, lorsqu'on utilise l'encoche radiale pour le pion d'indexage, le décrochage est moins profond que la longueur dépassant du pion d'indexage pour constituer un moyen de détrompage angulaire lors du montage de l'ensemble.

Liste des figures

[0014] L'invention et ses différentes caractéristiques techniques seront mieux comprises à la lecture de la description suivante, illustrée par quelques figures représentant :

- figure 1, déjà décrite, la localisation de l'entretoise, objet de l'invention, dans une turbomachine;
- figure 2, en coupe, une entretoise d'une turbomachine de l'art antérieur;
- figures 3 et 4, deux schémas de montage de l'entretoise utilisée dans la turbomachine de la figure 2;
- figure 5, en coupe, le secteur d'entretoise de support selon l'invention;
- figure 6, en vue cavalière, le même secteur d'entretoise de support selon l'invention; et
- figure 7, en coupe cavalière, le montage du secteur d'entretoise de support selon l'invention sur le carter de la turbine haute pression d'une turbomachine.

Description détaillée d'une réalisation de l'invention

[0015] La figure 5 montre donc en coupe la réalisation principale du secteur d'entretoise de support 14, selon l'invention, fixé sur la paroi interne 1I du carter de turbine haute pression 1. Cette fixation s'effectue par un crochet

amont externe 16M s'insérant dans une encoche amont externe 17M du carter de turbine haute pression 1 et par un crochet aval externe 16V s'insérant dans une encoche aval externe 17V du carter de turbine haute pression 1. Ce secteur d'entretoise de support 14 sert à maintenir en place un secteur d'anneau 12 en face du sommet des pales 3 du rotor. Cette fixation s'effectue de manière analogue à l'aide d'un crochet amont interne 18M s'insérant dans une encoche amont interne 19M correspondante du secteur d'anneaux 12 et par crochet aval interne 18V s'insérant dans une pince 20' entourant ce même crochet aval interne 18V et un crochet aval interne 19V du secteur d'anneau 12. Ce type de fermeture permet d'assurer l'étanchéité au niveau du secteur d'anneau 12.

[0016] Or, en amont, le secteur d'entretoise de support 14 possède une languette 20, fixée sur la partie externe de la paroi amont 14M et s'étendant concentriquement à l'entretoise formée par tous les secteurs d'entretoise de support 14, c'est-à-dire au carter de turbine haute pression 1. Cette languette 20 possède une extrémité 21 qui se prolonge vers l'extérieur pour qu'une surface d'appui radial 22 vienne au contact avec la face interne 1I du carter de turbine haute pression 1. Les positions suggérées par les traits interrompus montrent la position naturelle à froid, à la fois du carter de turbine haute pression 1 et de la languette 20. Les traits forts représentent la position de fonctionnement, c'est-à-dire à chaud où les contraintes sont telles que des déformations ont lieu.

[0017] La figure 5, au moyen de flèches, montre également les différents efforts mis en jeu à ce niveau. Les différentes flèches, dont le pied se trouve sur une pièce, représentent les efforts appliqués à ces dernières, notamment par les gaz en fonctionnement normal de la turbomachine. De plus, elle permet de constater que la flexion engendrée n'a pas lieu dans un plan radial, c'està-dire perpendiculaire à l'axe du moteur, mais dans un plan longitudinal. En fonctionnement, cette flexion longitudinale est soulagée car les faces d'appui sont des surfaces fonctionnelles. De plus, le carter de turbine haute pression 1 se dilate plus que les anneaux de pilotage du carter 5 qui sont refroidis par les boîtiers d'impact. Cette dilatation différentielle soulage donc en flexion la languette 20.

[0018] Sur la paroi interne 1I du carter, on peut remarquer une petite portion de surface inclinée 29, placée juste en amont de l'extrémité 21 de la languette 20. Ainsi, en amont, le carter 1 a une épaisseur réduite. Ceci permet d'insérer les crochets externes 16M et 16V de chaque secteur d'entretoise de support 14 avant que la surface d'appui radial 22 de la languette 20 ne rentre en contact avec la face intérieure 1I du carter 1. Ceci facilite le montage de chaque secteur d'entretoise de support 14. En effet, chaque secteur d'entretoise de support 14 peut être positionné ou décalé angulairement avant d'être en contact serré avec les différentes parties du carter 1.

45

[0019] Sur cette figure 5, des flèches traversent des orifices du système ou des espaces entre plusieurs pièces. Elles symbolisent le passage des gaz dans l'ensemble constitué au niveau des secteurs d'entretoise de support 14. A ce sujet, on note que l'extrémité 21 de la languette 20, le côté extérieur de la paroi amont 14M et le crochet amont 16M possèdent des évidements qui permettent le passage de ces gaz. Ces évidements sont mieux visualisés sur les figures 6 et 7.

[0020] En effet, en référence à la figure 6, on voit que l'extrémité 21 de la languette 20 est équipée, non seulement d'une série de surface d'appui radial 22, mais que celles-ci sont séparées par des évidements 23 pour le passage des gaz et d'au moins une encoche de positionnement 25 dont la profondeur est plus importante que la profondeur des évidements 23 et dont la fonction est explicitée plus loin. Ces évidements 23 permettent de limiter l'intensité des efforts transistant dans l'assemblage. Ces surfaces d'appui radial 22 sont placées à l'extrémité 21 de la languette 20 pour répartir les efforts dans les pièces et assurer un meilleur maintien en position de surfaces fonctionnelles de l'assemblage. On pourrait envisager de placer ces surfaces d'appui radial 22 plus près du corps des secteurs d'entretoise d'appui 14. De même, la partie extérieure de la paroi amont 14M possède également des évidements 24M pour le passage des gaz, ainsi que la partie extérieure de la paroi aval 14V qui possède aussi des évidements 24V analogues aux évidements 24M de la paroi amont. Sur cette figure 6, il est également possible de voir, de manière un peu moins distincte, des évidements 26M pratiqués sur le crochet amont externe 16M, toujours pour le passage des gaz, comme l'illustre la figure 5.

[0021] La fonction de l'encoche de positionnement 25 est expliquée maintenant en considérant la figure 7. En effet, sur celle-ci, a été représenté un pion anti-rotation 27 monté serré dans un trou 28 du carter 1. Son rôle est de contribuer au positionnement angulaire d'un secteur d'entretoise de support 14 en ne permettant à celui-ci d'être inséré dans les encoches 17M et 17V du carter 1 que si l'encoche de positionnement 25 se trouve en face du pion anti-rotation 27. En effet, la longueur de la partie dépassante de ce pion anti-rotation 27 est supérieure à la profondeur des évidements 23 entre les surfaces d'appui radial 22 de l'extrémité 21 de la languette 20. De la sorte, seul un tel positionnement unique permet le montage en position des secteurs d'entretoise 14. Le pion de centrage 27 est épaulé pour éviter qu'il ne s'échappe vers l'extérieur de l'assemblage.

[0022] Sur cette même figure 7 figure, on distingue clairement, les évidements 26M pratiqués dans les crochets amont externes 16M. On distingue également les évidements aval 24V pratiqués dans la partie externe de la paroi aval 14V, tout comme pour les évidements amont externes 24V pratiqués sur la partie externe de la paroi amont 14M.

[0023] On note que, pour le montage, il n'y a pas besoin de cambrer ou de préparer chaque secteur d'en-

tretoise de support 14 avant de l'introduire dans les éléments de fixation du carter de turbine haute pression 1. De plus, il est possible de procéder au positionnement angulaire sans que chaque secteur d'entretoise de support 14 ne soit serré.

[0024] On note que les surfaces de chaque secteur d'entretoise de support 14 qui sont en appui sont des surfaces fonctionnelles, à savoir les surfaces d'appui radial 22 de la languette 20, et les surfaces intérieures des crochets externes 16M et 16V. Compte tenu du fait que la partie du carter de turbine haute pression 1 se trouvant en regard de la languette 20 se dilate plus que cette dernière, en fonctionnement, la pression sur l'extrémité 21 de la languette 20, exercée par la paroi du carter de la turbine haute pression 1, est amoindrie et la languette 20 est légèrement soulagée en pression. Toutefois, les efforts des gaz de fonctionnement du moteur contribuent à assurer le positionnement de l'ensemble des secteurs d'entretoise de support 14.

[0025] On comprend que la languette 20 de chaque secteur d'entretoise de support 14, appuyant contre la paroi interne 1I du carter de turbine haute pression 1, contribue à positionner les autres surfaces fonctionnelles de chaque secteur d'entretoise de support 14 contre les éléments de fixation du carter de turbine haute pression 1. En d'autres termes, il y a un contact intime, notamment au niveau des crochets externes amont 16M et 16V avec les éléments qui se trouvent en face. De plus, la languette 20 a tendance à positionner chaque secteur d'entretoise de support 14 de manière la plus écartée du carter de turbine haute pression 1, réduisant ainsi le jeu J subsistant entre le sommet de chaque pale 3 et les secteurs d'anneaux 12 fixés aux secteurs d'entretoise de support 14.

Revendications

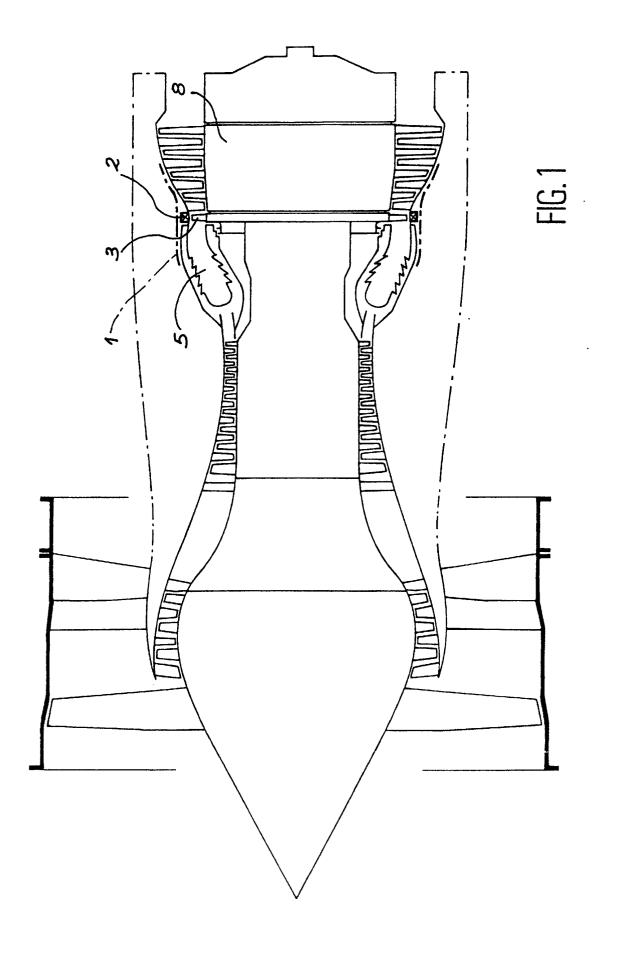
40

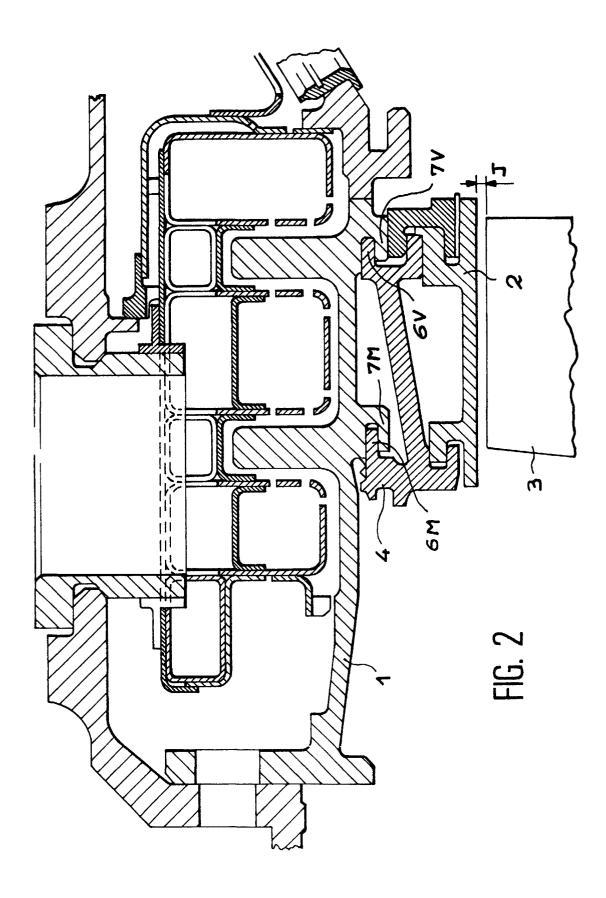
- 1. Secteur d'entretoise de support (14) d'anneau de stator (12) de la turbine haute pression d'une turbomachine avec rattrapage de jeu de montage des secteurs d'entretoises (14) et de fonctionnement (J) entre les secteurs d'anneau (12) et le sommet des pales (3) du rotor, comprenant :
 - une paroi radiale amont (14M) avec un crochet amont externe (16M) destiné à être engagé axialement avec une encoche amont (17M) correspondant d'un carter de turbine haute pression (1) de la turbomachine;
 - un crochet interne amont (18M) destiné à être engagé dans une encoche amont (19M) correspondante d'un secteur d'anneau (12);
 - une paroi radiale aval (14V) avec un crochet externe aval (16V) destiné à être engagé axialement avec une encoche aval (17V) correspondante du carter de turbine haute pression (1) de la turbomachine;

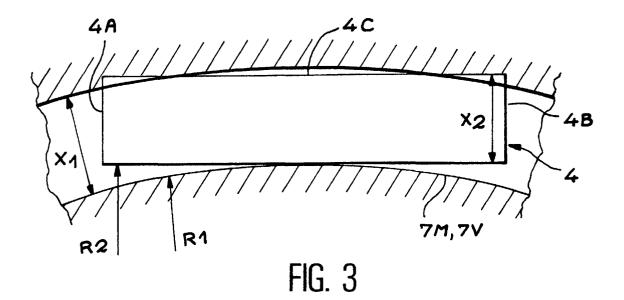
- un crochet interne aval (18V) destiné à être fixé au secteur d'anneau (12) correspondant, et
- une languette (20), longitudinale, fixée du côté extérieur de la paroi, possédant une surface d'appui radial (22) externe, à son extrémité avant (21) qui fait saillie vers l'extérieur, de manière à être en appui sur la face interne (1I) du carter de turbine haute pression (1) de la turbomachine et à exercer une poussée sur celleci, lorsque le secteur d'entretoise de support (14) est en place,

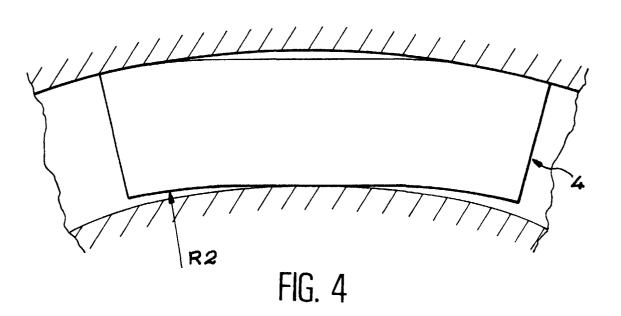
caractérisé en ce que, la languette (20) étant fixée en amont du côté de la paroi amont (14M), la surface d'appui radial (22) de l'extrémité (21) de la languette amont (20) n'est pas continue, mais est séparée par des évidements (23), de manière à ce que les gaz puissent passer.

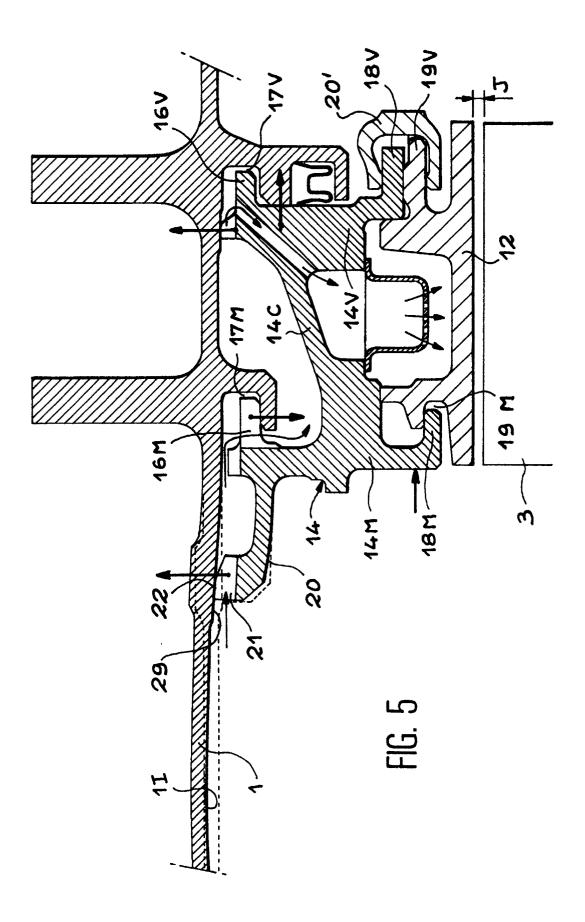
- 2. Secteur d'entretoise de support (14) selon la revendication 1, caractérisé en ce qu'il comprend une encoche de positionnement (25) sur l'extrémité externe de la paroi amont (14M) pour recevoir un pion d'indexage en rotation (27) pénétrant dans un trou (28) du carter de turbine haute pression (1).
- 3. Secteur d'entretoise de support selon les revendications 2, caractérisé en ce que les évidements externes (23) à l'extrémité externe de la paroi amont (14M) sont moins profonds que la longueur dépassant du pion d'indexage (27) pour constituer un moyen de détrompage angulaire lors du montage.

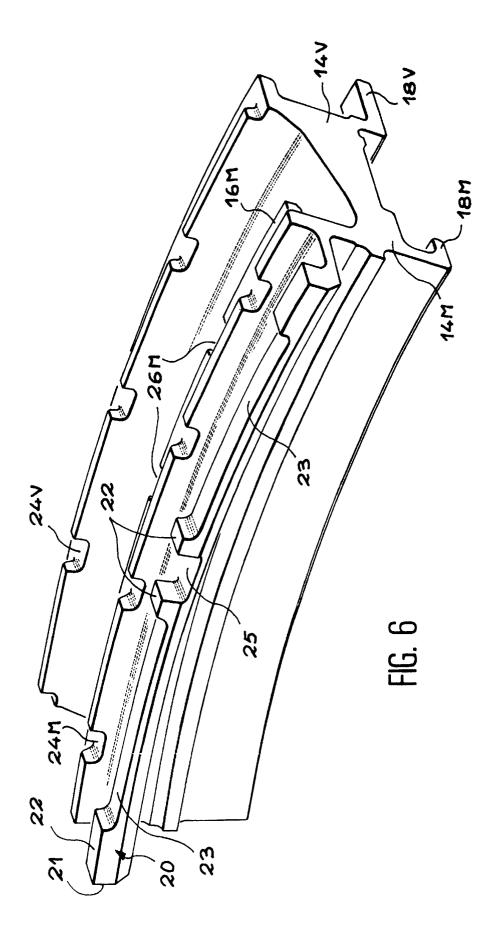

55

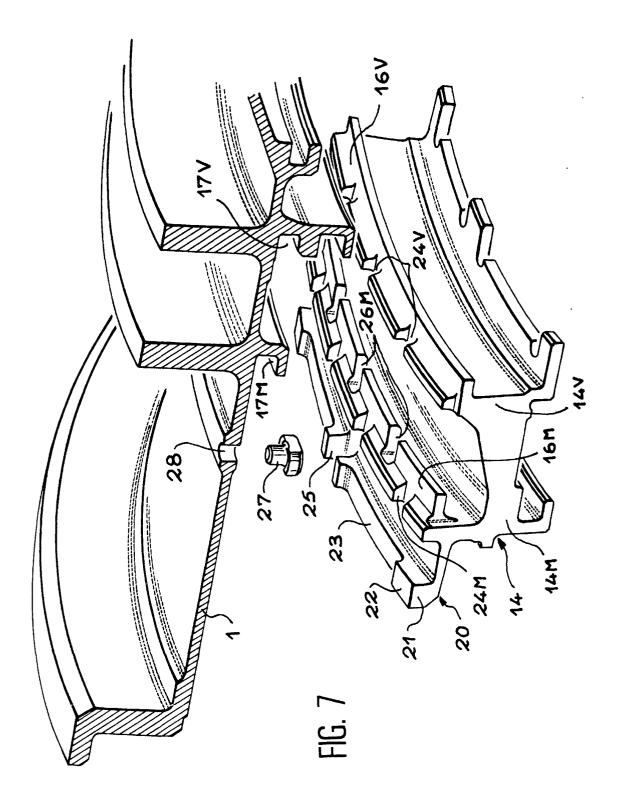

35


40


45


50





Office européen des brevets RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande EP 02 29 0005

atégorie	Citation du document avec des parties pertir		33011,	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int.CI.7)
٩	FR 2 780 443 A (SNE 31 décembre 1999 (1 * figures 3-5 *			1-4	F01D25/24
4	US 5 127 793 A (ELO 7 juillet 1992 (199 * abrégé *		ET AL)	1	
Ą	US 5 056 988 A (COR 15 octobre 1991 (19 * abrégé *		J ET AL)	1	
A	US 5 022 816 A (MAI 11 juin 1991 (1991- * abrégé *		AL)	1	
A	EP 0 516 322 A (GEN 2 décembre 1992 (19 * figure 1 *			1	
4	FR 2 743 603 A (SNE 18 juillet 1997 (19 * figures *		÷.,	2,4	DOMAINES TECHNIQUES RECHERCHES (Int.CI.7)
A	WO 00 57033 A (SCHE PETER (DE); SIEMENS 28 septembre 2000 (* figures 8,9 *	AG (DE))	;TIEMANN	1	

, , , , , , , , , , , , , , , , , , ,	ésent rapport a été établi pour tou		, , , , , , , , , , , , , , , , , , ,	<u> </u>	<u></u>
	LA HAYE	Date d'achèvement de 24 mai		Arg	entini, A
X : parl Y : parl	ATEGORIE DES DOCUMENTS CITE ticulièrement pertinent à lui seul ticulièrement pertinent en combinaisor re document de la même catégorie	E Lavecun D	: théorie ou princip : document de bre date de dépôt ou): cité dans la dema : cité pour d'autres	vet antérieur, ma après cette date ande	ais publié à la

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

EP 02 29 0005

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé ci-dessus.

Lesdits members sont contenus au fichier informatique de l'Office européen des brevets à la date du

Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

24-05-2002

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication	
FR 2780443	A	31-12-1999	FR EP JP US	2780443 A1 0967364 A1 2000045707 A 6200091 B1	31-12-1999 29-12-1999 15-02-2000 13-03-2001	
US 5127793	A	07-07-1992	CA DE FR GB IL JP	2039821 A1 4101872 A1 2662746 A1 2244523 A ,B 96975 A 4330302 A	01-12-1991 05-12-1991 06-12-1991 04-12-1991 15-03-1993 18-11-1992	
US 5056988	А	15-10-1991	CA DE FR GB IT JP	2034405 A1 4031477 A1 2658242 A1 2240818 A 1243833 B 3242402 A	13-08-1991 14-08-1991 16-08-1991 14-08-1991 28-06-1994 29-10-1991	
US 5022816	A	11-06-1991	DE IL JP JP	4033678 A1 95974 A 2975085 B2 3151525 A	25-04-1991 06-09-1992 10-11-1999 27-06-1991	
EP 0516322	A	02-12-1992	US CA DE DE DE JP JP JP	5169287 A 2065679 A1 69205889 D1 69205889 T2 0516322 A1 1972723 C 5141270 A 6102983 B	08-12-1992 21-11-1992 14-12-1995 18-07-1996 02-12-1992 27-09-1995 08-06-1993 14-12-1994	
FR 2743603	A	18-07-1997	FR GB US	2743603 A1 2309053 A ,B 5775874 A	18-07-1997 16-07-1997 07-07-1998	
WO 0057033	Α	28-09-2000	WO EP	0057033 A1 1163430 A1	28-09-2000 19-12-2001	

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82