(19)
(11) EP 1 226 945 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
31.07.2002 Bulletin 2002/31

(21) Application number: 02250368.4

(22) Date of filing: 18.01.2002
(51) International Patent Classification (IPC)7B41J 2/14
(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 24.01.2001 US 768676

(71) Applicant: Xerox Corporation
Rochester, New York 14644 (US)

(72) Inventors:
  • Gulvin, Peter M.
    Webster, New York 14580 (US)
  • Eklund, Elliott A.
    Penfield, New York 14526 (US)

(74) Representative: Rackham, Stephen Neil 
GILL JENNINGS & EVERY, Broadgate House, 7 Eldon Street
London EC2M 7LH
London EC2M 7LH (GB)

   


(54) Electrostatically-actuated device


(57) A micro-electromechanical fluid ejector including a substrate (20) having an insulating layer (30) thereon; a conductor (40) formed on said insulating layer (30); a membrane (50) adjacent said conductor (40), said membrane (50) having a corrugated, multi-layer structure for added rigidity; and an actuator chamber (54) formed between said membrane (50) and said conductor (40). The membrane (50) flexing toward said conductor (40) when a voltage bias is applied thereto.




Description


[0001] In ink-jet printing, droplets of ink are selectively ejected from a plurality of drop ejectors in a printhead. The ejectors are operated in accordance with digital instructions to create a desired image on a print medium moving past the printhead. The printhead may move back and forth relative to the sheet in a typewriter fashion, or in the linear array may be of a size extending across the entire width of a sheet, to place the image on a sheet in a single pass.

[0002] The ejectors typically comprise actuators connected to both a nozzle or drop ejection aperture and to one or more common ink supply manifolds. Ink is retained within each channel until there is a response by the actuator to an appropriate signal. In one embodiment of the ejector, the ink drop is ejected by the pressure transient due to volume displacement of an electrostatically- or magnetostatically-actuated deformable membrane, which typically is a capacitor structure with a flexible electrode, fixed counter electrode, and actuated by a voltage bias between the two electrodes.

[0003] Silicon-based actuators can also be employed in micro-electromechanical devices that can be used for pumping and switching, and wherein for example, silicon based actuators are, respectively, used for microfluid pumping, and optical switching. Fluids are pumped due to the volume displacement of an electrostatically- or magnetostatically-deformable membrane, which is a capacitor structure with a flexible electrode, fixed counter electrode, and actuated by a voltage bias between the two silicon electrodes. Optical switching occurs by the displacement of optical elements as a result of actuation due to electrostatic or magnetostatic interactions with other on-chip elements or a magnetostatic device package. For example, in optical switching a mirror can be employed as the optical element using electrostatic actuators to provide the displacement.

[0004] This capacitor structure which incorporates a deformable membrane for these silicon-based actuators can be fabricated in a standard polysilicon surface micro-machining process. It can be batch fabricated at low cost using existing silicon foundry capabilities. The surface micro-machining process has proven to be compatible with integrated microelectronics, allowing for the monolithic integration of the actuation with associated addressing electronics.

[0005] A problem associated with using such devices as actuators in ink jet printing is that to generate the pressure required for ejecting ink drops from the printhead, the membrane must be sufficiently rigid. Apart from increasing the membrane thickness or using stiffer material, which may not be allowed in a standardized surface-micromachining fabrication process, one solution is to make the membrane smaller. However, as the membrane shrinks, so does the displacement volume, and thus the size of the drop emitted. Therefore, it is desirable to increase the ink jet drop ejector ability to eject useful-sized drops of ink without decreasing the size of the ejector or increasing the thickness of the membranes.

[0006] There is provided an electrostatic device including a substrate having an insulating layer thereon; a conductor formed on said insulating layer; a membrane adjacent to said conductor, said membrane having a corrugated, multi-layer structure; and an actuator chamber formed by removing a sacrificial layer between said membrane and said conductor, said membrane flexing toward said conductor when a voltage bias is applied thereto.

[0007] A particular embodiment in accordance with this invention will now be described with reference to the accompanying drawings; in which:-

Figure 1 shows a cross-sectional view of the electrostatically actuated membrane in its undeflected state;

Figure 2 shows a cross-sectional view of the electrostatically actuated membrane in its deflected state;

Figure 3 shows a top-view of the corrugated electrostatically actuated membrane with radial and concentric support structures;

Figure 4 shows a cross-sectional view of the electrostatically actuated membrane of Figure 3;

Figures 5-10 show the basic process steps in a standard poly-silicon surface micro-machining process; and,

Figure 11 shows an ink-jet printer with a drop ejector printhead.



[0008] Now referring to Figure 11, incorporating the printhead 111 and actuator drop ejector 50 of the present invention, in an ink-jet printer 110, droplets of ink are ejected from several drop ejectors 50 in printhead 111, onto a sheet 112. The ejectors are operated in accordance with digital instructions to create a desired image on a print medium moving past the printhead 111. The printhead 111 may move back and forth relative to the sheet in a scanning motion to generate the printed image swath by swath. Alternately, the printhead may be held fixed and the media moved relative to it, creating an image as wide as the printhead in a single pass.

[0009] Turning to Figures 1 - 4, the drop ejector utilizes deformable membrane 50 as an actuator. The membrane can be formed using standard polysilicon surface micro-machining, where the polysilicon structure that is to be released is deposited on a sacrificial layer that is finally removed. Electrostatic forces between deformable membrane 50 and counter-electrode 40 deform the membrane. In one embodiment the membrane is actuated using a voltage drive mode, in which the voltage difference is controlled between the parallel plate conductors that form the membrane 50 and the counter-electrode 40, which is useful for a drop generating device that ejects a constant drop size. In another mode of operation the membrane is actuated using a charge drive mode, wherein the charge between the parallel plate conductors is controlled, thus enabling a variable drop size device. The two different modes of operation, voltage drive and charge drive, lead to different actuation forces but either use the same or a different power source.

[0010] Actuator chamber 54 can either be sealed at some other pressure, or open to atmosphere to allow the air in the actuator chamber to escape (hole not shown). For grayscale printing, which uses the charge-drive mode, the membrane can be pulled down to an intermediate position. The volume reduction in the actuator chamber will later determine the volume of fluid displaced when an upper chamber and nozzle plate has been added. Nozzle plate (not shown) is located above electrostatically actuated membrane 50, forming a fluid pressure chamber between the nozzle plate and the membrane. The nozzle plate has a nozzle formed therein. Fluid is fed into this chamber from a fluid reservoir (not shown). The fluid pressure chamber can be separated from the fluid reservoir by a check valve to restrict fluid flow from the fluid reservoir to the fluid pressure chamber. The membrane is initially pulled-down by electrostatic forces generated by an applied voltage between the membrane and counter-electrode. Fluid fills in the displaced volume in the fluid pressure chamber created by the membrane deflection and is ejected through the nozzle when the membrane is released by removing the applied voltage.

[0011] Substrate 20 is typically a silicon wafer. However, substrate 20 may be any flat substrate such as glass or metal with a thin insulating film. Insulator 30 is typically a thin film of silicon nitride. Conductor 40 acts as the counter electrode and is typically either a metal or a doped semiconductor film such as polysilicon. Membrane 50 is made from a structural material such as polysilicon, and is typically fabricated in a surface micro-machining process. It can also be another conducting material such as thin metallic film. Inner structure 56 is attached to a part of membrane 50 and together with the isolated landing pad 43 acts to prevent the membrane from touching the conductor in an area where voltage has been applied Actuator chamber 54 between membrane 50 and substrate 20 can be formed using typical techniques such as are used in surface micro-machining. A sacrificial layer such as silicon dioxide, deposited by chemical vapor deposition (CVD), is then covered over by the structural material that forms the membrane. Openings left at the edge of the membrane (not shown) allow the sacrificial layer to be removed between the membrane and counter-electrode in a post-processing etch. A typical etchant for oxide is concentrated hydrofluoric acid. In this processing step inner structure 56 acts to keep the membrane from sticking to the underlying surface when the liquid etchant capillary forces pull it down during drying.

[0012] Typically the flexible membrane 50 is thin. When a voltage is applied the membrane 50 is actuated (pulled down) by the electrostatic force between it and the fixed counter electrode 40. An inner structure 56 on the underside of the membrane 50 rests on the electrically-isolated center section (landing pad) 43 of the counter electrode. The outer structure 58 and insulated landing pad 42 are similar to the inner structure 56 and the isolated landing pad 43. The outer structure 58 and insulated landing pad 42 are fabricated in the silicon surface micro-machining process, and consist of protrusions on the underside of the membrane 50 with corresponding landing pads patterned in the counter-electrode 40. The outer structure 58 and insulated landing pad 42 serve to define a minimum electrode 40 spacing in area 53 where contact is likely to occur, thus preventing arcing and actuator 10 failure. The outer structure 58 is located outwardly from the inner structure 56, at an outwardly position from inner structure 56, at a distance from the inner structure 56 that minimizes excessive flexing of the membrane 50 at the susceptible region 53. By defining a minimum electrode 40 spacing similar or equal to the spacing at the actuator 10 center, contact and resulting arcing will be eliminated and the life of the actuator 10 will be lengthened significantly.

[0013] Now referring to the present invention in more detail, the present invention is an actuator having a corrugated, multi-layer silicon membrane structure for increased membrane rigidity.

[0014] Figures 3 and 4 show a corrugated, multi-layer structure. The structure is made by patterning concentric circular and/or radial holes in the oxide layer between the top and the bottom polysilicon layers. The concentric rings and radial segments in Figure 3 correspond to places where the top layer of poly-silicon 201 drops down to contact the bottom polysilicon layer 202. The space in between the layers is originally filled with silicon dioxide, but the etch holes in the bottom poly-silicon layer allow the oxide to be dissolved in the release process. Alternatively, the oxide could be left in place, in which case the etch holes are not needed. The removal of the oxide is likely to reduce the overall stress and stress-induced bending of the device.

[0015] The invention has many advantages. It enables a membrane of increased rigidity without reducing the size of the membrane. When used to generate drops in ink-jet printing, a smaller membrane would produce a smaller displacement volume and thus, smaller ink drops. In addition, the invention enables stiffer actuator membranes while still using the standard thicknesses of the component layers in the standard polysilicon surface micro-machining process. Thicker layers are indeed possible to a point, but represent highly non-standard and non-optimal process conditions, likely leading to unacceptably low device yields from the fabrication process.

[0016] It is possible to fabricate thicker membranes, which have increased rigidity, by simply stacking layers of polysilicon and oxide in the surface micromachining process. However, this leads to large regions where oxide layers are enclosed between poly-silicon layers, causing problems with warping due to high amounts of internal stress in these multilayer structures. The current invention avoids these problems by making the regions of enclosed oxide smaller and allowing for their release during fabrication.

[0017] More rigid poly-silicon membranes can be fabricated by stacking polysilicon layers only, removing the intervening oxide layer before deposition of the 2nd poly-silicon layer. However, this approach only doubles the thickness, whereas the current invention enables corrugated structures which have the rigidity of much thicker poly-silicon membranes.

[0018] The actuator structure and, in particular, the corrugated membrane of the present invention can be formed using the well-known polysilicon surface micro-machining process. Corrugated structures of this type can also be fabricated from materials other than silicon using other micro-fabrication processes not discussed here. A basic sequence of process steps in poly-silicon surface micro-machining is shown in Figures 5 - 10. In the beginning of the wafer processing, there is a silicon substrate wafer 20, a Low Pressure Chemical Vapor Deposition (LPCVD) low stress silicon nitride electrically insulating layer 30 approximately 0.6 µm thick, a conductor layer 40, a first 2.0 µm sacrificial oxide layer 206, a 0.5-2.0 µm thick LPCVD low stress polysilicon layer (poly) 202, and a photoresist layer (not shown). The silicon substrate wafer is typically 525 µm in thickness, n or p-type, with 0.5 ohm-cm resistivity. The surface of the wafer is heavily doped with phosphorous in a standard diffusion furnace using POCl3 as the dopant source, to reduce charge feed through to the substrate from the electrostatic devices on the surface. A photoresist layer (not shown) is used for patterning the poly layer 202.

[0019] In Figure 6, photoresist is patterned, and this pattern is transferred into the polysilicon (or poly) layer 202 using Reactive Ion Etching (RIE) to create small holes 205 approximately 0.75 µm deep. In Figure 7, a second 2.0 µm Phospho-Silicate Glass (PSG) sacrificial oxide layer 206 is then deposited by LPCVD. The second glass layer 206 is patterned using a photoresist layer (not shown) and unwanted second oxide layer 206 is selectively removed in a radial and/or concentric grid pattern using RIE, as shown in Figure 8. Then the photoresist is stripped, and an additional polysilicon layer 201, approximately 2.0 µm thick is deposited as shown in Figure 9. The two layers 202 and 201 form the corrugated membrane actuator 50.

[0020] In Figure 10, the second sacrificial oxide layer 206 has been etched, using wet or dry etching through etch holes (shown as 205 in Figure 6), to release the membrane 50 so that it can be mechanically actuated. An alternative method for creating release etch holes that is not shown in the figures is to have the holes come from the backside of the wafer. This is possible by using wet anisotropic etching technology similar to the etching technology used in forming the reservoir in the state of the art thermal ink jet devices, or using dry etching techniques such as Deep Reactive Ion Etching (DRIE). An etch hole can also be formed on the front side of the wafer, by providing a continuous oxide pathway through the side of the membrane 50. This pathway can be protected from refill by the fluid in the pressure chamber design formed in the thick polyimide.


Claims

1. A device, comprising:

a substrate (20);

a membrane (50) adjacent said substrate (20), said membrane (50) having a corrugated, multi-layer structure; and

an actuator chamber (54) formed between said membrane (50) and said substrate (20), said membrane (50) flexing toward said substrate (20) said when a voltage bias is applied thereto.


 
2. An electrostatic device according to claim 1, wherein said substrate (20) has an insulating layer (30) thereon and a conductor (40) formed on said insulating layer (30).
 
3. A micro-electromechanical fluid ejector, comprising

a substrate (20) having an insulating layer (30) thereon;

a conductor (40) formed on said insulating layer (30) ;

a membrane (50) adjacent to said conductor (40), said membrane (50) having a corrugated, multi-layer structure;

a nozzle plate surrounding the membrane, the nozzle plate having a nozzle top and nozzle sides;

a pressure chamber formed between the nozzle plate and the membrane (50), wherein fluid is stored;

a nozzle formed in the nozzle plate for ejecting fluid;

a power source connected between the conductor (40) and the membrane (50), the power source when activated supplying sufficient force to deflect the membrane top towards the conductor (40), and in consequence ejecting fluid from said nozzle in pressure chamber.


 
4. An electrostatic device according to claim 2 or 3, wherein said corrugated, multi-layer structure comprises a radial corrugated support structure.
 
5. An electrostatic device according to claim 2 or 3, wherein said corrugated, multi-layer structure comprises a concentric corrugated support structure.
 
6. An electrostatic device according to claim 2 or 3, wherein said corrugated, multi-layer structure comprises a combined radial and concentric corrugated support structure.
 




Drawing



















Search report