FIELD OF THE INVENTION
[0001] This invention relates to air compressors, and more particularly to cooling and noise
reduction systems for air compressors.
BACKGROUND OF THE INVENTION
[0002] This application is a continuation-in-part of U.S. Patent Application No. 09/777,210
filed February 5, 2001, the entire contents of which are incorporated herein by reference.
[0003] Air compressors commonly generate a significant amount of undesirable noise. Because
of the undesirable level of noise created by a compressor, it is often necessary to
provide a separate room near a work shop or job site to house the compressor. The
cost of providing a separate room for the compressor can be substantial. In other
arrangements air compressors are provided with enclosures, but to ensure the reliability
of an air compressor in all environments, it is also important chat an adequate supply
of cool ambient air is properly routed through the compressor enclosure and into key
areas of the compressor. The operating requirements of the compressor are directly
related to how well heat is transferred from the compressor components to the ambient
air. The design and layout of the compressor must ensure that a sufficient amount
of cool ambient air is available for all of the components of the compressor. However,
inlets and outlets that allow ambient air to pass through the compressor housing also
allow noise to leave the compressor housing. There is a trade off between providing
a sufficient cooling air flow through the compressor enclosure, and allowing compressor
noise to exit the compressor enclosure.
SUMMARY OF THE INVENTION
[0004] The invention relates to a cooling system and noise reduction system of an air compressor
unit that compresses air to pressures above normal atmospheric pressures. The air
compressor unit includes an enclosure that houses the compressor components. A partition
is provided to at least partially separate the interior of the enclosure into two
separate compartments: a discharge compartment, and a component compartment. A compressor
is disposed within the component compartment. Air flow is provided into the component
compartment, and air then flows into the discharge compartment. The discharge compartment
has a discharge aperture that permits air to exit the enclosure. An aftercooler is
disposed within the enclosure, and may separate the discharge compartment from the
component compartment. The aftercooler may be disposed between and separate the compressor
and the discharge aperture.
[0005] An additional partition may be provided to further separate the component compartment
into two separate compartments: a first compartment and a second compartment. The
compressor is disposed within the first compartment, and a motor is disposed within
the second compartment. A passage in the partition permits cooling air flow from the
first compartment to the second compartment.
[0006] The enclosure also has a compressor air flow inlet that is in fluid flow communication
with the first compartment, and a motor inlet that is in fluid flow communication
with the second compartment. The inlets permit cooling air to enter the first compartment
and the second compartment of the enclosure. The partition also has a first passage
that permits cooling air to flow from the first compartment to the second compartment,
and a second passage that permits cooling air to flow from the second compartment
to the discharge compartment. A blower moves cooling air into the inlets, and a shroud
covers the blower. A screen permits air to enter the shroud.
[0007] The arrangement of the invention provides adequate cooling air flow through the unit
while also reducing the amount of noise that emanates from the air compressor unit
by limiting the amount of noise exiting the enclosure in a direct "line of sight"
path. Sound generally emanates outwardly from a noise source in a relatively straight
line, or a "line of sight" path. The sound may reflect off a surface, but reflected
noise is reduced in the arrangement of the invention by employing the use of an acoustic
foam on surfaces of the enclosure to inhibit the reflection of sound.
[0008] By using acoustic foam, and reducing the direct "line of sight" path of the noise,
the noise emanating from the unit is reduced. The direct path "line of sight" is broken
up by creating multiple compartments and compartments in the enclosure, and having
the cooling air and noise flow in a serpentine path through the compartments. The
air flow path reduces the amount of direct "line of sight" noise that emanates from
the enclosure, and permits adequate cooling air flow.
[0009] The discharge aperture is the largest opening in the enclosure, and is the primary
location where noise can exit the enclosure. Noise may also exit the enclosure through
the inlets and the shroud. The primary noise sources in the unit are the compressor
and the motor. The discharge compartment separates the discharge aperture from the
noise sources, and inhibits noise from travelling in a direct path from the noise
source to the discharge aperture. Noise is prevented from directly reaching the discharge
aperture by the partition and baffles. The unit may also contain the primary noise
sources in additional separate compartments, which further reduces the amount of noise
that emanates from the enclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
[0010]
Fig. 1 is a perspective view of an air compressor unit embodying the invention.
Fig. 2 is a side elevation view of the air compressor unit of Fig. 1.
Fig. 3 is a perspective cut-away view of the air compressor unit of Fig. 1.
Fig. 4 is a partially exploded rear perspective view of the air compressor unit of
Fig. 1.
[0011] Before the embodiments of the invention are explained in detail, it is to be understood
that the invention is not limited in its application to the details of construction
and the arrangements of components set forth in the following description or illustrated
in the drawings. The invention is capable of other embodiments and of being practiced
or of being carried out in various ways. Also, it is to be understood that the phraseology
and terminology used herein is for the purpose of description and should not be regarded
as limiting.
[0012] Although references are made below to directions, such as left, right, up, down,
top, bottom, front, rear, back etc., in describing the drawings, they are made relative
to the drawings (as normally viewed) for convenience. These directions are not intended
to be taken literally or limit the present invention in any form.
DETAILED DESCRIPTION
[0013] As shown in Figs. 1 and 2, the air compressor unit 10 includes an enclosure 14 that
surrounds the unit 10 to reduce the amount of noise that emanates from the unit 10.
The enclosure 14 defines an interior volume within the enclosure 14. In the illustrated
embodiment, the enclosure 14 has a substantially rectangular box shape, and has a
base 18, front wall 22, rear wall 26, a first side wall 30, a second side wall 32,
and a top wall 34. The enclosure 14 is preferably made from metal, or a similar rigid,
durable material, such as plastic. In Figs. 1 and 2, a controller 36 is disposed on
the front wall 22, and includes components for controlling the unit 10.
[0014] Fig. 3 is a cut-away view showing the internal components of the unit 10. The interior
volume of the enclosure 14 is separated into multiple compartments. A partition 38
at least partially separates the interior volume within the enclosure 14 into two
compartments: a discharge compartment 40 and a component compartment 42. The component
compartment 42 may be further divided into a first compartment 44 and a second compartment
46. In the illustrated embodiment, the first compartment 44 and the second compartment
46 together make up the component compartment 42. As illustrated in Fig. 3, the first
compartment 44 is disposed near the right side of the enclosure 14, and the second
compartment 58 is disposed near the lower left side of the enclosure 14. In Fig. 3,
a compressor 50 is disposed in the first compartment 44, and a motor 54 is disposed
in the second compartment 46. The partition 38 may at least partially separate the
first compartment 44 from the second compartment 46.
[0015] In the illustrated embodiment, the partition 38 extends between the front wall 22
and the rear wall 26, and the partition 38 intersects the second side wall 32 and
the base 18. The partition 38 may comprise one continuous section, or multiple interconnected
sections. The partition 38 may be made from sheet metal, plastic, or a similar rigid,
durable material, and may also include a layer of acoustic foam 58 that absorbs sound
waves and reduces the amount of noise that travels through the enclosure 14. In the
illustrated embodiment, the foam 58 is disposed on the side of the partition 38 facing
away from the second compartment 46, and toward the discharge compartment 40 and first
compartment 44. Additionally, the base 18 and walls 22, 26, 30, 32, 34 of the enclosure
14 may include a layer of acoustic foam 58 to impede the emanation of sound from the
enclosure 14.
[0016] The top wall 34 has a discharge aperture 60 disposed near the second side wall 32.
The discharge aperture 60 is in fluid flow communication with the discharge compartment
40, and allows air to exit the enclosure 14. The discharge compartment 40 is separated
from the component compartment 42. Additionally, the discharge compartment 40 substantially
separates the discharge aperture 60 from the noise sources. The discharge aperture
60 may have multiple louvers 62 that permit the cooling air flow to exit the enclosure
14, and also reduce the amount of noise that emanates from the unit 10.
[0017] In the illustrated embodiment, an aftercooler 64 is disposed within the enclosure
14. In Fig. 3, the aftercooler 64 extends between the front wall 22, the rear wall
26, the partition 38, and the top wall 34. The aftercooler 64 is a heat exchanger
that cools the compressed air from the compressor 50. Cooling ambient air flow over
the fins of the aftercooler 64 is required to adequately cool the compressed air within
the aftercooler 64. In the illustrated embodiment, the aftercooler 64 is disposed
between the compressor 50 and the discharge aperture 60, and at least partially separates
the discharge compartment 40 from the component compartment 42. More particularly,
the aftercooler 64 separates the discharge compartment 40 from the first compartment
44.
[0018] As shown in Fig. 3, the aftercooler 64 at least partially defines the discharge compartment
40. In the illustrated embodiment, the discharge compartment 40 is defined by the
partition 38, the second side wall 32, the rear wall 25, the front wall 22, the top
wall 34, and the aftercooler 64. As mentioned above, the discharge aperture 60 is
in fluid flow communication with the discharge compartment 40. The discharge compartment
40 insulates the discharge aperture 60 from the primary noise sources of the unit
10. It is not necessary for the aftercooler 64 to form a portion of the border between
the discharge compartment 40 and the first compartment 44. The aftercooler 64 could
be located elsewhere, however the aftercooler 64 must be in a position to have adequate
cooling ambient air flow over the aftercooler 64.
[0019] Alternatively, the aftercooler 64 could be located elsewhere within the enclosure
14, or possibly outside of the enclosure 14. The partition 38 could extend upwardly
to intersect the top wall 34 and substantially separate the discharge compartment
40 from the first compartment 44. In the illustrated embodiment, the discharge compartment
40 is not completely sealed from the first compartment 44 because cooling air must
flow from the first compartment 44 to the discharge compartment 40, and exit through
the discharge aperture 60.
[0020] Noise generally emanates in a direct, or "line of sight", path from a noise source.
The illustrated invention is intended to reduce the amount of noise emanating from
the enclosure 14 by breaking up the "line of sight" transference of noise and disrupting
the direct path in which sound travels from the noise source toward an outlet. The
discharge aperture 60 is an outlet through which noise may emanate from the enclosure
14. In the illustrated unit 10, the two main noise sources are the compressor 50 and
the motor 54. A fan or blower 66 (described below) may also be a noise source. The
compressor 50 generally creates more noise than the motor 54, and the illustrated
embodiment has a barrier comprised of the partition 38, aftercooler 64, and a baffle
70 disposed between the compressor 50 and the discharge aperture 60.
[0021] In Fig. 3, the compressor 50 is disposed in the first compartment 44. In the illustrated
embodiment, the compressor 50 is a reciprocating compressor or piston compressor.
Alternatively, the compressor 50 could be a rotary compressor or other type of conventional
air compressor. A reciprocating compressor generally requires more air flow to cool
the compressor than a rotary compressor requires. Therefore, the flow of adequate
cooling air through the enclosure 14 is a significant concern when the compressor
50 is a reciprocating compressor. The compressor 50 is usually the component of the
unit 10 that creates the most noise, and is contained within the component compartment
42 and separated from the discharge compartment 40 and discharge aperture 60.
[0022] The discharge compartment 40 generally creates a barrier between the noise sources
and the discharge aperture 60. The barrier between the compressor 50 and the discharge
aperture 60 may be formed by the partition 38, the aftercooler 64, walls 22, 26, 30,
32, 34, a baffle 70, or other similar structures. These barriers obstruct the path
of the noise, and force the noise and air to take a serpentine path from the compressor
50 toward the discharge aperture 60.
[0023] As shown in Fig. 3, the baffle 70 is disposed near the discharge aperture 60, between
the discharge aperture 60 and the compressor 50. The baffle 70 extends downwardly
from the top wall 34 to break up the "line of sight" direct path for noise emanating
from the compressor 50 to the discharge aperture 60. The baffle 70 is a solid member
that may be made of metal, plastic, or a similar rigid material, and may include a
layer of acoustic foam 58. The baffle 70 does not extend completely from the top wall
34 to the partition 38, because air must flow past the baffle 70 to reach the discharge
aperture 60. The baffle 70 also helps create an even air distribution over the aftercooler
64 when the aftercooler 64 is located near the baffle 70.
[0024] In the illustrated embodiment, the baffle 70 does not extend completely from the
rear wall 26 to the front wall 22. The controller 36 (Fig. 1) is mounted on the front
wall 22, and extends rearwardly from the front wall 22 into the discharge compartment
40. The controller 36 may prevent the baffle 70 from fully extending from the rear
wall 26 to the front wall 22.
[0025] Additional baffles 70 may also be included within the enclosure 14 to further impede
the emanation of noise. The location of additional baffles 70 could depend upon the
location of other features, such as the aftercooler 64, partition 38, or discharge
aperture 60. As mentioned above, the aftercooler 64 could be placed at a different
location, and the partition 38 or additional baffles 70 could be used to define the
discharge compartment 40.
[0026] In the illustrated embodiment, the compressor 50 is powered by the motor 54. The
motor 54 may be a conventional electric motor, and may be disposed in the second compartment
46. The compressor 50 and the motor 54 are both interconnected or mounted to the base
18, and power may be transferred from the motor 54 to the compressor 50 through a
belt drive 72 (Fig. 4). The motor 54 generally creates less noise than the compressor
50. The motor 54 could be mounted at a different location than shown in the illustrated
embodiment, and could possibly be disposed outside the enclosure 14 depending on the
amount of noise emitted by the motor 54.
[0027] Noise reduction must be balanced with adequate cooling air flow, because the unit
10 must still have sufficient air flow through the enclosure 14 to cool the compressor
50, motor 54 and aftercooler 64. The enclosure 14 has at least one cooling air inlet
to allow sufficient cooling ambient air to enter the enclosure 14. As illustrated
in Fig. 3, the enclosure 14 has two inlets in the rear wall 26: a primary inlet 74
and a secondary inlet 78. Both air inlets 74, 78 are in fluid flow communication with
the component compartment 42 to provide a sufficient flow of cooling air into the
enclosure 14. In the illustrated embodiment, the primary inlet 74 is in fluid flow
communication with the first compartment 44, and the secondary inlet 78 is in fluid
flow communication with the second compartment 46. More air generally enters the enclosure
14 through the primary inlet 74 than through the secondary inlet 78. As described
below, the air inlets 74, 78 may also permit sound to emanate from the enclosure 14.
[0028] Fig. 4 illustrates a partially exploded rear view of the enclosure 14. The motor
54 has a drive wheel 80 that extends through the secondary inlet 78 in the rear wall
26. The motor 54 rotates the drive wheel 80 and powers a belt drive 72. The belt drive
72 rotates a blower 66 that forces air into the enclosure 14 through the primary inlet
74 and the secondary inlet 78. The blower 66 is coupled to the enclosure 14, and is
also interconnected to a compressor shaft (not shown). The belt drive 72 rotates the
compressor shaft (not shown) which powers the compressor 50 (Fig. 3).
[0029] As illustrated in Fig. 4, a shroud 84 is coupled to the rear wall 26, and covers
the belt drive 72, the blower 66, and the drive wheel 80. The shroud 84 may be made
from plastic, metal, or a similar relatively rigid material. The shroud 84 may be
coupled to the enclosure 14 with conventional fasteners, such as screws or bolts.
The blower 66 is a source of noise, and the shroud 84 at least partially surrounds
the blower 66 to prevent noise from emanating from the blower 66 to the atmosphere.
[0030] The shroud 84 may define an intake compartment 88 that houses the blower 66. In the
illustrated embodiment, the intake compartment 88 is in fluid communication with the
primary inlet 74, the secondary inlet 78, and an air intake 90. The intake compartment
88 breaks up the direct "line of sight" path for noise that may emanate through the
inlets 74, 78 toward the air intake 90.
[0031] In the illustrated embodiment, the blower 66 is preferably a rotary blower. Alternatively,
the blower 66 could be a propeller-type fan. It is preferable to have a high static
pressure within the shroud 84 to force the cooling air through the inlets 74, 78,
and through the indirect air flow paths and multiple compartments in the enclosure
14. A rotary blower 66 generally produces a higher static pressure than a propeller
fan.
[0032] The blower 66 draws air into the shroud 84 through the air intake 90. The high static
pressure of the blower 66 forces the cooling air through the enclosure 14 to provide
adequate cooling air for the components of the unit 10. A screen 94 is disposed in
the air intake 90, and allows air to enter the shroud 84. The screen 94 prevents large
objects from entering the shroud 84 that may damage the blower 66 or the unit 10.
[0033] In Figs. 3 and 4, the arrows, identified by the letters A-M, represent the direction
of the cooling air flow path through the shroud 84 and the enclosure 14. Air flow
A is drawn into the shroud through the air intake 90, and the blower 66 and shroud
84 direct the air flow B toward the primary inlet 74 and the secondary inlet 78. Air
flow C enters the enclosure 14 through the primary inlet 74, and air flow D enter
the enclosure 14 through the secondary inlet 78.
[0034] The rotary blower 66 generally draws the air into the shroud 84 through the air intake
90, and then redirects the air flow in a radial direction from the blower 66, thus
creating a circular air flow pattern within the shroud 84. In the illustrated embodiment,
the shroud 84 is shaped with a rounded surface to guide the circular, indirect air
flow toward the inlets 74, 78. The circular air flow and high static pressure created
by the blower 66 allows the air to flow in an indirect path, which impedes noise from
emanating from the shroud 84.
[0035] Noise exiting the enclosure 14 through the inlets 74, 78 can not emanate in a direct
"line of sight" path from the inlets 74, 78 to the air intake 90, and will be at least
partially blocked by the shroud 84. Therefore, the rotary blower 66 and shroud 84
create an indirect air flow and reduce the amount of noise emanating from the enclosure
14. A propeller fan generally blows air in a direct path. If a propeller fan were
used, it would permit additional noise to leave the enclosure 14 through the direct
path from the inlets 74, 78, past the propeller fan, and out the air intake 90.
[0036] In Fig. 4, air flow C enters the enclosure 14 through the primary inlet 74, and continues
through the primary inlet 74 in Fig. 3 as air flow E. In Fig. 4, air flow D enters
the enclosure 14 through the secondary inlet 78, and continues through the secondary
inlet 78 in Fig. 3 as air flow J. The high static pressure of the air flow forces
the air to flow through the multiple compartments and exit the enclosure 14 through
the discharge aperture 60.
[0037] As mentioned above, the enclosure 14 illustrated in Fig. 3 is separated into multiple
compartments 40, 44, 46, and the various components of the unit 10 are disposed within
these separate compartments 40, 44, 46. The multiple compartments 40, 44, 46 isolate
the noise sources and reduce the amount of noise that emanates from the enclosure
14. Because of the multiple compartment arrangement of the enclosure 14, cooling air
is forced through the multiple compartments 40, 44, 46 to adequately cool the components
of the unit 10. The multiple compartment arrangement causes the air flow to change
direction and flow in an indirect, serpentine path as it passes through the enclosure
14.
[0038] The air flow enters the enclosure 14 and is divided to pass through the various compartments
40, 44, 46. The air flow then collects and converges in the discharge compartment
40 before exiting the enclosure through the discharge aperture 60. The compartments
and the air flow may be arranged in a series path or a parallel path. In the illustrated
embodiment, the air flow takes a parallel path through the unit 10. The unit 10 as
a whole has one inlet for the air flow, the air intake 90 (Fig. 4), and one outlet
for the air flow, the discharge aperture 60. After entering the air intake 90 (Fig.
4), the air flow splits into multiple air flow paths, and then converges to a single
air flow path as the air exits through the discharge aperture 60.
[0039] As shown in Fig. 3, the enclosure 14 has a first passage 110, a second passage 114
and a third passage 118 that interconnect the compartments 40, 44, 46 and facilitate
air flow through the enclosure 14. The first passage 110 connects the first compartment
44 and the discharge compartment 40. In the illustrated embodiment, the aftercooler
64 is disposed in the first passage. The second passage 114 connects the first compartment
44 and the second compartment 46. The third passage 118 connects the second compartment
46 and the discharge compartment 40. The passages 110, 114, 118 permit fluid flow
between the compartments 40, 44, 46.
[0040] Air flow E enters the first compartment 44 through the primary inlet 74 and may cool
the compressor 50 before splitting into two air flows. A first air flow E, F, G, M
may flow from the first compartment 44, through the first passage 110 and the aftercooler
64, into the discharge compartment 40, and past the baffle 70 before exiting through
the discharge aperture 60. A second air flow E, I, K, L, M may flow from the first
compartment 44, through the second passage 110, and into the second compartment 46
to cool the motor 54. The second air flow K, L, M then proceeds from the second compartment
46, through the second passage 118, into the discharge compartment, and out of the
enclosure 14 through the discharge aperture 60. In the illustrated embodiment, the
air flow enters the discharge compartment 40 through both the first passage 110 and
the third passage 118. The first air flow E, F, G, M and the second air flow E, I,
K, L, M both converge in the discharge compartment 40 before the combined air flow
M exits through the discharge aperture 60.
[0041] The second passage 114 is sized to balance the amount of heat within the enclosure
14 between the first compartment 44 and the second compartment 46. The second passage
114 is sized to allow a sufficient amount of cooling air to flow through the second
passage 114 to maintain the first compartment 44 and the second compartment 46 at
similar temperatures. Additionally, the size of the second passage 114 effects the
total amount of air that passes through the first passage 110 and the aftercooler
64. The size of the second passage 114 may be used to "fine tune" the air flow through
the enclosure 14. When the size of the second passage 114 is increased, more air flows
through the second passage 114, and less air flows through the first passage 110 and
the aftercooler 64. Similarly, when the size of the second passage 114 is decreased,
less air flows through the second passage 114, and more air flows through the first
passage 110 and the aftercooler 64.
[0042] Air flow J entering the second compartment 46 through the secondary inlet 78 also
cools the motor 54. Air flow J then joins air flow I, K, L and flows through the third
passage 118 into the discharge compartment 40, and merges with the combined air flow
M which exits through the discharge aperture 60. In the illustrated embodiment, air
flow I through the second passage 114 from the first compartment 44 cools the front
of the motor 54, and air flow J entering the second compartment 46 through the secondary
inlet 78 cools the back of the motor 54. The dual air flow, I and J, cooling the motor
54 from the second passage 114 and the secondary inlet 78 permits the size of the
secondary inlet 78 to be relatively small, thereby reducing the amount of noise that
emanates from the enclosure 14 through the motor inlet 78.
[0043] As shown in Fig. 3, the third passage 118 permits air to exit the second compartment
46, and flow into the discharge compartment 40. The size of the third passage 118
is preferably small enough to reduce the amount of noise radiating from the motor
54 toward the discharge aperture 60, and large enough to permit adequate cooling air
to flow from the second compartment 46 to the discharge compartment 40. The balance
between these two factors must be considered when selecting the size of the third
passage 118. In the illustrated embodiment, the third passage 118 is located near
the second side wall 32, and is slightly offset from the motor 54 to reduce the amount
of direct "line of sight" noise that exits the enclosure 14 through the discharge
aperture 60.
1. An air compressor unit comprising:
an enclosure defining an interior volume;
a partition at least partially separating the interior volume into at least two compartments,
said at least two compartments including a discharge compartment and a component compartment;
a compressor disposed within the component compartment; and
a discharge aperture in the enclosure in fluid flow communication with the discharge
compartment and providing for discharge air flow from the enclosure.
2. The unit of claim 1, further comprising an aftercooler disposed within the enclosure,
wherein the discharge compartment and component compartment are at least partially
separated by the aftercooler.
3. The unit of claim 2, wherein the aftercooler is disposed between the compressor and
the discharge aperture.
4. The unit of claim 1, wherein the component compartment further comprises a first compartment
and a second compartment.
5. The unit of claim 4, wherein the compressor is disposed within the first compartment.
6. The unit of claim 4, wherein the compressor is powered by a motor.
7. The unit of claim 6, wherein the motor is disposed within the second compartment.
8. The unit of claim 4, wherein the first compartment and second compartment are at least
partially separated by the partition.
9. The unit of claim 8, further comprising at least one passage in the partition permitting
fluid flow between the first compartment and the second compartment.
10. The unit of claim 4, further comprising at least one passage in the partition permitting
fluid flow between the component compartment and the discharge compartment.
11. The unit of claim 10, wherein the at least one passage permits fluid flow between
the second compartment and the discharge compartment.
12. The unit of claim 10, further comprising a passage permitting fluid flow between the
first compartment and the discharge compartment.
13. The unit of claim 10, wherein the discharge compartment includes at least two inlet
passages permitting fluid flow to enter the discharge compartment.
14. The unit of claim 1, further comprising a baffle projecting into the discharge compartment
from the enclosure, wherein the baffle is disposed between the compressor and the
discharge aperture.
15. The unit of claim 1, further comprising at least one cooling air inlet in the enclosure.
16. The unit of claim 15, further comprising a blower disposed near the at least one cooling
air inlet, wherein the blower is powered by the motor and forces air into the enclosure
through at least one cooling air inlet.
17. The unit of claim 16, further comprising a shroud coupled to the enclosure, and at
least partially covering the blower, wherein the shroud has an air intake.
18. The unit of claim 15, wherein the component compartment further comprises a first
compartment and a second compartment.
19. The unit of claim 18, wherein the at least one cooling air inlet includes a primary
inlet and a secondary inlet, wherein the primary inlet is in fluid flow communication
with the first compartment, and the motor inlet is in fluid flow communication with
the second compartment.
20. The unit of claim 1, wherein the partition includes a layer of foam for absorbing
noise.
21. The unit of claim 1, wherein the enclosure includes a layer of foam for absorbing
noise.
22. The unit of claim 1, wherein the compressor is a reciprocating compressor.
23. An air compressor unit comprising:
a compressor and a motor disposed within the unit;
a rotary blower that draws air into the unit and generates an air flow through the
unit;
an air intake port permitting a single initial air flow to enter the unit;
a discharge aperture permitting a single final air flow to exit the unit;
multiple compartments within the unit through which an air flow passes, wherein the
multiple compartments are arranged in parallel, such that a single initial air flow
enters the unit through the intake port, the multiple compartments divide the initial
air flow into multiple intermediate air flows, the multiple intermediate air flows
converge to the single final air flow, and the single final air flow exits the unit
through the discharge compartment.
24. The unit of claim 23, wherein the multiple compartments include an intake compartment,
a first compartment, a second compartment, and a discharge compartment.
25. The unit of claim 24, wherein the air intake is in fluid flow communication with the
intake compartment, and the initial air flow enters the intake compartment through
the air intake.
26. The unit of claim 24, wherein the multiple intermediate air flows include a first
air flow and a second air flow:
the first air flow passes through the first compartment and the discharge compartment;
the second air flow passes through the first compartment, the second compartment,
and the discharge compartment; and
the first air flow and the second air flow converge into the final air flow in the
discharge compartment.
27. The unit of claim 24, wherein the discharge aperture is in fluid flow communication
with the discharge compartment, and the final air flow exits the discharge compartment
through the discharge aperture.
28. The unit of claim 24, wherein the compressor is disposed in the first compartment.
29. The unit of claim 24, wherein the motor is disposed in the second compartment.
30. The unit of claim 24, wherein an aftercooler is disposed between the first compartment
and the discharge compartment.
31. The unit of claim 24, wherein the rotary blower is disposed in the intake compartment.
32. The unit of claim 24, wherein a partition at least partially separates the first compartment
from the second compartment, and the partition at least partially separates the second
compartment from the discharge compartment.
33. The unit of claim 32, wherein the partition includes a layer of noise absorbing foam.
34. The unit of claim 23, wherein the compressor is a reciprocating compressor.
35. An air compressor unit comprising:
an intake compartment having an air intake permitting air to enter the unit;
a blower disposed within the intake compartment drawing air into the intake compartment
through the air intake, and generating an air flow through the unit;
a primary inlet permitting fluid flow between the intake compartment and a first compartment;
a secondary inlet permitting fluid flow between the intake compartment and a second
compartment;
a first passage permitting fluid flow between the first compartment and a discharge
compartment;
a second passage permitting fluid flow between the first compartment and a second
compartment;
a third passage permitting fluid flow between the second compartment and the discharge
compartment; and
a discharge aperture in fluid flow communication with the discharge aperture, permitting
air to exit the unit.
36. The unit of claim 35, further comprising a compressor disposed within the first compartment.
37. The unit of claim 36, wherein the compressor is a reciprocating compressor.
38. The unit of claim 35, further comprising a motor disposed within the second compartment.
39. The unit of claim 35, further comprising an aftercooler disposed near the first passage.
40. The unit of claim 35, wherein a partition at least partially separates the first compartment
from the second compartment, and the partition at least partially separates the second
compartment from the discharge compartment.
41. The unit of claim 40, wherein the partition includes a layer of noise absorbing foam.