
Printed by Jouve, 75001 PARIS (FR)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(19)

E
P

1 
22

9 
44

4
A

1
TEPZZ_  9444A_T
(11) EP 1 229 444 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
07.08.2002 Bulletin 2002/32

(21) Application number: 01000681.5

(22) Date of filing: 29.11.2001

(51) Int Cl.7: G06F 9/48

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 29.11.2000 US 253848 P

(71) Applicant: Texas Instruments Incorporated
Dallas, Texas 75251 (US)

(72) Inventors:
• Milovanovic, Rajko

75093, Plano (US)
• Thrift, Philip R.

Dallas 75251, Texas (US)

(74) Representative: Holt, Michael et al
Texas Instruments Ltd.,
EPD MS/13,
800 Pavilion Drive
Northampton Business Park,
Northampton NN4 7YL (GB)

(54) Media accelerator

(57) Integration of DSP running algorithms with gen-
eral purpose processor running applications including
plugin objects as proxies for the DSP algorithms and

with quality of service including application controls of
algorithm scheduling and algorithm events reported to
the applications.



EP 1 229 444 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

TECHNICAL FIELD OF THE INVENTION

[0001] The invention relates to electronic devices,
and, more particularly, to multiprocessor and digital sig-
nal processor frameworks and methods.

DESCRIPTION OF THE RELATED ART

[0002] The growth of the Internet coupled with high-
speed network access has thrust real-time multimedia
processing into the computing mainstream. Indeed, the
proposed MPEG-21 standardization of multimedia
framework architecture considers seven architectural
elements: digital item definition, multimedia content rep-
resentation, digital item identification and description,
content management and usage, intellectual property
management and protection, terminals and networks,
and event reporting. Applications of such a architecture
could be in creation of a photo album distributed over
the computers of widely dispersed family members with
connections over the Internet and with editing facilities
or could be consumption of Internet streaming video
with related simultaneous additional content available
which needs resolution of quality of service (QoS) and
terminal and network resources available issues prior to
consumption.
[0003] MPEG-21 proposal standard interfaces aim to
shield users from network and terminal installation,
management, and implementation issues. Such archi-
tecture could include a global QoS manager in each ter-
minal which controls terminal resource and prediction
managers and interacts through APIs with a user plus
with network resource and prediction managers; see
Figure 25 and Figure 24 for general network architec-
ture.
[0004] The need for a QoS manager within a terminal/
network node (client/server) stems specifically from re-
al-time service requirements of all streaming-media
based applications. Streaming media applications have
to deal with heterogeneous codecs (encoders/decod-
ers) and filters with unique rendering deadlines. These
applications should also be able to exploit and translate
human perceptual characteristics to graceful degrada-
tions in the quality of service. They should be able to
handle reasonable amounts of jitter in their processing
and rendering cycles. For instance, in video applica-
tions, the frame rate for rendering has to be maintained
at 30 frames/sec (fps), which translates to a frame pe-
riod of 33 ms. The application, however, should be ca-
pable of withstanding limited instantaneous variations
as negotiated with the server. Also, at 30 fps, human
visual perception can withstand frame drops of about 6
frames/sec. The client application should again be ca-
pable of supporting a graceful degradation in perform-
ance (instantaneous dropping of frames) and maintain
a steady state of rendering within specific tolerances ne-

gotiated with the server. A QoS manager is the mecha-
nism that provides the necessary functions and capabil-
ities to realize such a real-time system.
[0005] Microsoft DirectShow provides an application
framework on a general-purpose processor for playback
of multimedia streams from local files or Internet servers
and for capture of multimedia streams from devices. Di-
rectShow revolves about a filter graph made of plugga-
ble filter components with a filter graph manager con-
trolling the connection of filters and the stream's data
flow through the filters. Applications control the filter
graph by communication with the filter graph manager;
see Figure 26. Playback from an Internet simply re-
quires the source filter be capable of reading from an
Internet URL. A parser filter after the source filter can
perform the parsing into audio, video, text, etc. streams;
see Figure 27. The filter graph manager controls and
also searches for needed filters (e.g., renderer) in a reg-
istry with merit values for selection. The filters have pins
for filter input/output. FGM supports media stream start-
ing, pausing, duration of play, by application/ActiveX
controls calls to the filter graph manager which access-
es methods of the filters, and the filter graph manager
posts events from the filters to the application.
[0006] A filter is a COM object for performing a task;
and a pin is a COM object created by a filter for unidi-
rectional data stream to/from the filter; see Figure 28. A
filter has IBaseFilter interface which enumerates the
pins, properties, et cetera and inherits from IMediaFilter
which allow control of state processing such as running,
pausing, and stopping, plus synchronization; called by
FGM. Pin interface supports transfer of time-stamped
data using shared memory or other resources, negotiate
data formats at pin-to-pin connections, buffer manage-
ment/allocation to minimize data copying and maximize
data throughput. IQualityControl interface on output
pins.
[0007] Data flow in filter graphs (protocols), including
quality control data, originates in the renderer and flows
upstream (or to QCM) through the filters until it finds a
filter capable of media data flow change. For example,
media sample protocol: how media samples are allocat-
ed and passed between filters. Quality management
protocol how filter graph adapts dynamically to hard-
ware and network conditions to degrade/improve per-
formance gracefully.
[0008] Media sample data flow by either push or pull:
source filter push by call IMemInputPin::Receive from
the downstream filter, or downstream pull by IAsyn-
cReader interface (IAsyncReader Transport). Media
samples are data objects which support IMediaSample
interface. Data from one filter to another is called "trans-
port", and there is support for local memory transport in
DirectShow classes: input pin supports IMemInputPin
interface and output pin. The IAsyncReader interface is
for pull.
[0009] Notenboom in U.S. Patent 5,748,468 and
Equator Technologies in PCT published application WO

1 2



EP 1 229 444 A1

3

5

10

15

20

25

30

35

40

45

50

55

99/12097 each describe methods of allocating proces-
sor resources to multiple tasks. Notenboom considers
a host processor plus coprocessor with tasks allocated
to coprocessor resources according to a priority system.
Equator Technologies schedules processor resources
according to task time consumption with each task pre-
senting at least one service level (processor resource
consumption rate) supported, and the resource manag-
er admits a task if sufficient resources for a supported
service level exist.
[0010] Systems with two or more processors, each
processor with its own operating system or BIOS, in-
clude systems with widely separated processors con-
nected via the Internet and also systems with two or
more processors integrated on the same semiconductor
die, such as a RISC CPU plus one or more DSPs.
[0011] The XDAIS standard prescribes interfaces for
algorithms which run on DSPs; this provides reusable
objects. XDAIS requires an algorithm implement the
standard interface IALG plus an extension for running
the algorithm. XDAIS also requires compliance with cer-
tain flexibility rules such as relocatable code and naming
conventions. A client application can manage an in-
stance of the algorithm by calling into a table of function
pointers. With the XDAIS standard/guidelines the algo-
rithm developer is able to develop or convert an algo-
rithm so that it is easier to plug into a DSP application.
[0012] Figure 20 shows a diagram of how data flows
through the processing elements of current heterogene-
ous systems. The data transactions are numbered 1
through 6 to show time ordering. For each transaction
data must pass through the system bus under control of
the Central Control Processor (CCP). The CCP initiates
transactions by sending messages or triggers via the
control paths to the various processing elements in the
system.
[0013] Processing elements in Figure 20 are shown
as separate processors (e.g. DSPs, ASICs, GPPs, etc.)
capable of running a defined set of tasks. That is why
each is shown with its own memory. Processing ele-
ments can also be individual tasks running on the same
processor.
[0014] In some cases, the same data must pass
through the system bus multiple times (e.g. transactions
1 and 2, 3 and 4, and 5 and 6). In such systems data
must pass through the system bus a total of 2 + (2 x n)
times, or in this case 6 times. Each pass through the
system bus and intervention by the CCP introduces data
flow overhead and reduces overall system throughput.
[0015] Data flow overhead negatively impacts how
much data can move through the system in a given time
frame and thereby restricts the amount of data the sys-
tem is capable of processing. Such a system would like-
ly be performing fewer useful tasks than the sum of ca-
pabilities of its elements might otherwise indicate.

SUMMARY OF THE INVENTION

[0016] The present invention provides a real-time
platform with quality of service (QoS) control for inte-
grating general-purpose processor streaming media ap-
plications and/or media players with DSP media algo-
rithms.
[0017] This has advantages including simplifying cli-
ent application programming for applications on a sys-
tem including DSPs and which make use of DSP algo-
rithms.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] For a more complete understanding of the
present invention, reference is now made to the follow-
ing detailed description of certain particular and illustra-
tive embodiments and the features and aspects thereof,
by way of example only, and with reference to the figures
of the accompanying drawings in which:

Figures 1a-1c show a preferred embodiment iDSP
architecture;
Figures 2a-2b illustrates a preferred embodiment
quality of service;
Figures 3-13 are timing diagrams for QoS;
Figures 14-19 show a preferred embodiment mem-
ory analysis;
Figure 20 shows known data flow in a heterogene-
ous system;
Figures 21-23 show preferred embodiment data
flows;
Figures 24-25 illustrate client-server and MPEG-21
systems; and
Figures 26-28 illustrate Direct Show filters and ap-
plication control.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0019] The preferred embodiments (iDSP) provide re-
al-time platforms with quality of service (QoS) control for
integrating general purpose processor (GPP) streaming
media applications and/or media players with DSP me-
dia algorithms such as codecs, transforms, renderers,
capturers, sources, and sinks.
[0020] IDSP provides (1) a media-domain framework
that is compliant with the XDAIS algorithm standard, (2)
processing and management of multiple, concurrent
media streams, and (3) real-time media processing with
guaranteed in-box QoS and MPEG-21 compliance.
GPP applications include DirectShow applications with
various filters replaced by iDSP plugins and correspond-
ing iDSP components on an integrated DSP.
[0021] Figures 1a-1c schematically illustrates the iD-
SP framework integrating DSP algorithms alg1, ...alg3
(iDSP components) into a GPP media application
through corresponding GPP proxy objects p_alg1, ...

3 4



EP 1 229 444 A1

4

5

10

15

20

25

30

35

40

45

50

55

p_alg3 (iDSP plugins) on a hardware platform including
a RISC processor (GPP) bridged to a DSP with the GPP
running a real-time OS (RTOS). The framework has an
API for application developers and an API for algorithm
developers. The iDSP Programmer's Guide in the Ap-
pendix provides details on the APIs plus an example of
a DirectShow application with iDSP acceleration of G.
723 audio decoding.
[0022] Figures 2a-2b schematically illustrate a pre-
ferred embodiment iDSP framework and scheduler with
Figure 2a showing data and control flow between plu-
gins in the GPP application and corresponding data
graphs of algorithms on the DSP. Indeed, the dataflow
graph for pluginA has five algorithms in two tracks and
that for pluginB has two algorithms and data return. Fig-
ure 2b shows execution of the iDSP scheduler which
includes algorithm priority analysis. QoS support in the
iDSP framework includes event notifications sent from
the scheduler to the plugins and control from the plugins
to the scheduler so that the application using the plugins
can impact the QoS. In particular,

-- An IDSPPlugin is the application interface to a da-
taflow (directed acyclic) graph of one or more ID-
SPComponents.

-- An IDSPPlugin is created by specifying a set of in-
put and output IDSPFormat types.

-- The data I/O interface to IDSPPlugin is the time-
stamped issue/reclaim model: media buffers from
the application using IDSPPlugins are stamped with
a presentation time.

-- Arrows show data flow of IDSPBuffers (time-
stamped media buffers) between IDSPPlugins and
IDSPComponents and between IDSPComponents.

-- IDSPBuffers are time-stamped (with IDSPTimes).
-- The IDSPScheduler optimizes on-time execution of

IDSPComponents to maintain on-time (synchro-
nized) presentation (audio and video) of media.

-- IDSPQoSEvents are received asynchronously by
IDSPPlugins. The types are:

IDSPQoS_ALG_COMPLETED

IDSPQoS_PRESENTATION_TIME_NOT_ME
T
IDSPQoS_INSUFFICIENT_DATA

IDSPQoS_INSUFFICENT_CYCLES_AVAILA
BLE

IDSPQoS_INSUFFICIENT_MEMORY_AVAIL
ABLE

-- IDSPQosControls are sent by IDSPPlugins. The
types are:

IDSPQOS_SET_RATE
IDSPQoS_SET_QUALITY_LEVEL

IDSPQoS_GET_STATS (memory utilized, cy-
cles utilized, quality level, rate, percent of buff-
ers meeting deadline, quality level needed for
meeting deadline).

-- The IDSPScheduler provides QoS scheduling and
event notification:

IDSPQoS_priority() is computed based on the
time-criticality to meet presentation deadline. If
the highest priority component cannot be rum,
the IDSPScheduler analyzes the environment
and sends an IDSPQoSEvent. The application
can adjust the quality level or the rate.

[0023] More generally, QoS is supported in iDSP in
the following interfaces described in the iDSP Program-
mer's Guide in the Appendix:

IDSPPlugin_issue(),
IDSPPlugin_reclaim(),
IDSPPlugin_getPerformance(),
IDSPPlugin_optimize(),
IDSPPluginManager_getMemoryUtil(),
IDSPPluginManager_getProcessorUtil(),
IDSPCommand(),
IDSPRateChangeCommand()

[0024] Indeed, the key to QoS is "on time" rendering,
and iDSP includes support for QoS management for ap-
plication programmers by:

-- providing access to runtime data measuring the
earliness/lateness of media buffers along the data-
flow chain.

-- providing an interface to components for adjusting
QoS - which can be extended to new capabilities
required by a specific media player

-- providing access to a component's memory and
processor utilization

-- providing a runtime scheduler that optimizes the
"on-time" behavior of time-based media

[0025] The media application developer can use
these iDSP features to build QoS into the application,
interfacing with a media player's specific QoS manage-
ment.
[0026] All data streams in iDSP are time-based:
IDSPPlugin_issue() and IDSPPlugin_reclaim() provide,
in addition to data transfer, time I/O information that can
be used to measure earliness and lateness in process-
ing throughout the dataflow graph. An application can
use this data to obtain a measure of performance and
determine adjustments needed to adjust media
processing. The iDSP scheduler optimizes the dataflow
to avoid lateness. IDSPPlugin_optimize() can be used
to reduce the frame rate for a plugin so that lateness is
minimized. IDSPPlugin_getPerformance() provides a

5 6



EP 1 229 444 A1

5

5

10

15

20

25

30

35

40

45

50

55

measure of how "on time" the plugin is doing.
[0027] IDSPCommand is the base type for all ID-
SPComponent commands, including QoS commands.
IDSPRateChangeCommand is a type that is provided
by iDSP 2.0. IDSPComponents that handle this com-
mand will adjust their frame rate accordingly. Application
developers will extend IDSPCommand for QoS com-
mands required by their player development.
[0028] IDSPPluginManager_getMemoryUtil() and
IDSPPluginManager_getPro-cessorUtil() are used to
determine the load on the system of a plugin. This can
be used by the application to see whether a new player
can be constructed at all. It is also used by the iDSP
load balancer in managing component allocations to
multiple processors.
[0029] Core properties of MPEG-21 compliant QoS
management in iDSP.
[0030] In the following "OEM sw" denotes all software
the box builder has integrated (from own and 3rd party
sources) with iDSP (assumed to include DSP/BIOS II)
software.

-- iDSP Services Available to OEM Software include
the following media service requests which can be
issued to iDSP:

Plug - - embed new iDSP media service inside
OEM software on GPP side
Play - - feed media into a plugged iDSP service
Connect - - two existing (aggregate or simple)
iDSP media services into an aggregate one
QoS - - (A) inquire, (B) set, and (C) be alerted
about (an aspect of) iDSP QoS during Plug,
Play, and Connect.

-- QoS Features

1. OEM Software can in principle inquire about
any aspect of iDSP QoS
2. OEM Software can in principle set any aspect
of iDSP QoS
3. OEM Software can in principle be alerted
about any aspect of iDSP QoS
4. QoS fully conforms to all relevant-for-iDSP
MPEG-21 terminal QoS requirements and to a
sensible subset (maybe empty) of its network
QoS requirements - both as much as they are
currently articulated by MPEG-21.
5. With version II of DSP/BIOS, available class-
es of iDSP services on a given DSP are fixed
at DSP code image load time (= reset time for
all DSP services). When DSP/BIOS adds DLL
capability, available classes of iDSP services
will be changeable while DSP performs its serv-
ices.
6. iDSP manages QoS towards OEM software
"by exception": "All's as expected by OEM soft-
ware - and thus doesn't bother OEM software -

unless (a) specifically tells the opposite or (b)
fails to notify periodically (period settable by
OEM software) that all's well.
7. All media streamed digital items are strongly
typed. This prevents hooking up wrong iDSP
components or services -with OEM software or
among themselves.
8. All media frames are real-time stamped. iD-
SP guarantees timely media processing.
9. Actual frame processing time is available to
OEM sw for all current and several past frames
for all active streamed digital items.
10. iDSP can vary media frame rate - as in-
structed by the OEM sw, or proactively as a part
of graceful degradation.
11. When resources get close to depletion, if
now OEM software QoS instructions, iDSP on
its own starts graceful degradation of service.
12. iDSP component can not stall/block iDSP
services longer than is the variance for the
agreed level of semantic load for the stream it
is a part of. The moment it exceeds this thresh-
old, iDSP kills it and notifies OEM software. If
iDSP (and not OEM software) is rendering, it
will substitute another active or default
streamed digital item in the place of the killed
one; substitution priorities will have been initial-
ly agreed with OEM software when that partic-
ular OEM software invoked iDSP first time, and
could have been modified by OEM software at
any time past that (for example, at ea new
streamed digital item start/stop, or during
streamed digital item/s/).
13. When Plugging, before starting Play, OEM
sets the expected average load and variance
for that (set of) media streamed digital item(s).
14. iDSP alerts OEM software if inter-(last few)
frames load variance is above the set one, and
suggests options to handling the increased
load. (NOTE - - steady larger or just a peak may
be known by OEM software)
15. iDSP is optimized for maximal media value
add throughput for a given DSP processing ca-
pacity, by iDSP framework dynamically manag-
ing the ratio of DSP compute time versus
DSP-GPP communications time, to best fit the
disparity in DSP's internal vs. external memory
access performance.
16 Atomic semantic unit of transfer to/from
OEM software is a media frame.
17. iDSP schedules the sum of current media
services, including management of latencies,
inter-frame variations, inter-streamed digital
item cross-loading.
18. Conflict between multiple pieces of OEM
software is not possible: All potential conflicting
requests by two or more such entities are re-
solved by iDSP in a pre-defined deterministic

7 8



EP 1 229 444 A1

6

5

10

15

20

25

30

35

40

45

50

55

manner.
19. Master iDSP media service load balancing
is done on GPP, and distributed iDSP schedul-
ing on each DSP.
20. iDSP supports one GPP with multiple
DSPs.
21. With DSP/BIOS II the whole image for a giv-
en DSP is loaded in one go, with all iDSP com-
ponent classes as iDSP-wrapped and sched-
uled DSP/BIOS II tasks. Multiple instances of a
given class are created by OEM software's
runtime service request to iDSP.
22. Scheduling is driven by iDSP QoS-opti-
mized interplay between ongoing DSP media
operations and real time-based media flow or
new service requests from OEM software.
23. iDSP component ("DSP alg") is inside a full
object component shell, and an active QoS-
maximizing agent under framework's guid-
ance.
24. iDSP component ("DSP alg") does only
standards-prescribed media processing. Algo-
rithm's I/O is managed by the iDSP framework,
uniformly for all algorithms.
25. Only iDSP framework manipulates iDSP
components, with a goal to maximize QoS pro-
vided by integral platform. OEM software can
only issue iDSP service requests.
26. iDSP framework has a built-in support for
adding new types of algorithms, with assured
automatic compatibility QA by (e.g., XDAIS-
compliant) extending of media object compo-
nent formats.
27. Using the Connect service request, OEM
software can link iDSP components into direct-
ed non-cyclical graphs (simplest example is
chains), with automatic compatibility QA inside
iDSP using object component formats.
28. iDSP framework has audio-video sync sup-
port for situations when there is no media player
in OEM software. When starting the second of
the two (audio + video) streams, OEM software
using iDSP synchronizes up with the first one.
Start of both streams can be delayed and/or
tied to a specific "start now in sync (both al-
ready booked)" to make sure delay in process-
ing the second start does not prevent iDSP de-
livery sync with mutual inter-sample temporal
deviation smaller than the prescribed one.

[0031] QoS timing management - The Quality of Serv-
ice (QoS) manager in the iDSP system, hereby referred
to as iDSP-QoSM, is a mechanism to provide negotiated
levels of service to client applications. It provides for a
guaranteed quality-of-service with a pre-determined
degradation policy that is communicated to the clients.
The iDSP-QoSM has the following characteristics: (1) It
is defined within the limited context of streaming media

processing. (2) It is defined for multi-processor environ-
ments with load-sharing capabilities, although the pre-
ferred embodiment illustrated in Figures 1a-1c has only
a single DSP (server).
[0032] The functions performed by the iDSP-QoSM
generally include the following: (1) Monitor the steady-
state processing load on the servers (DSPs) in the sys-
tem. (2) Distribute load from an overloaded server to its
peers. (3) Negotiate service requirements with the client
application for registering any additional load onto the
servers. (4) Predict future load on the servers based on
specific characteristics of individual objects being serv-
iced by the servers. (5) Algorithm run time prediction will
be based on cycles of processor time instead of time to
process: This way the algorithm run time prediction is
not tied to the processor operating frequency.
[0033] In Texas Instruments TMS320C62XX DSPs
there is a limited amount of internal (on-chip) data mem-
ory. With the exception of the TMS320C6211 (and its
derivatives), the TMS320C62XX DSPs do not have a
Data Cache to make external memory (Off-chip) ac-
cesses efficient. Internal memory is at the highest level
in the Data memory hierarchy of a TMS320C62XX DSP.
Therefore all algorithms that run on a TMS320C62XX
DSP want to use internal memory for their data work-
space because that is the highest level of efficiency for
accessing data memory.
[0034] Typically, algorithms for DSPs are developed
assuming that they own the entire DSP processor,
hence all the internal memory of the DSP. This makes
integrating several different algorithms, be they the
same (Homogeneous) or different (Heterogeneous), ex-
tremely difficult. A set of rules is required for the algo-
rithm developer concerning a common method of ac-
cessing and using system resources such as internal
memory.
[0035] The preferred embodiments provide a method
to increase Processor Utilization when running multiple
Algorithms on Data Cache-less DSPs by using a Data
Paging Architecture for DSP internal memory. Develop-
ing or converting DSP Algorithms to be compliant to with
a Data Paging architecture can be accomplished with
Texas Instruments XDAIS standard. This standard re-
quires the Algorithm developer to define at least one or
more memory regions that will support all the data mem-
ory for the algorithm. Among these user defined regions
one or all are selected to run in internal memory of a
TMS320C62X DSP by the Algorithm developer. Within
the DSP system software portion of the application the
internal memory is divided into system support and a
data workspace (page). All the algorithms within the
DSP application share the workspace and own the en-
tire workspace at execution time. On a context switch
between two algorithms the DSP system software will
handle respectively the transfer between the workspace
and the external shadow memory of each algorithm. The
preferred embodiments provide:

9 10



EP 1 229 444 A1

7

5

10

15

20

25

30

35

40

45

50

55

(1) Sharing internal data memory in data cache-less
DSP between two or more DSP algorithms increas-
es processor utilization.
(2) Running multiple algorithms from the same
shared internal memory allows each algorithm to
enjoy the maximum efficiency in the TMS320C62X
DSP environment when accessing data memory to
support stack requirements and algorithm internal
variables.
(3) This architecture would function on any single
processor with internal memory and a DMA utility
that has access to the internal memory of the proc-
essor.
(4) Performing Context switches only at data input
frame boundaries provides the best efficiency of the
data paging architecture.

[0036] Supports asymmetric page transfers of algo-
rithm data that is read only.
[0037] The data flow in an application may be from
algorithm to algorithm, and the preferred embodiments
provide for the data to remain in one or more DSPs rath-
er than being bussed to an from a GPP for each algo-
rithm execution.
[0038] QoS for multiple servers - A preferred embod-
iment configuration in which the iDSP Quality of Service
Manager (iDSP-QoSM) is defined consists of a host
processor with a pool of Digital Signal Processors
(DSPs) as peer servers. An umbrella QoS-manager that
performs all functions necessary for maintaining a spe-
cific quality of service manages this pool of DSP servers.
The host processor is a general-purpose processor
(GPP), which is connected to the DSPs through a hard-
ware interface such as shared memory or a bus type
interface. The QoS manager may be part of a iDSP or,
more generally, a separate manager on the DSPs. The
system is driven both by hardware and software inter-
rupts. The preferred implementation is to let the main
user (client) application run on the GPP and specific
services run on the DSPs on a load-sharing basis. Run-
ning concurrently with the QoS manager, on all proces-
sors, may be a framework such as the iDSP Media
Framework. The iDSP-QoS manager performs three
main functions: (1) classification of objects, (2) sched-
uling of objects, and (3) prediction of execution times of
objects.
[0039] These functions will be described below, in a
GPP/multi-DSP environment, using a media specific ex-
ample.

a. Classification of objects

[0040] In a media specific environment, the object
translates to a media codec/filter (algorithm). Media ob-
jects can be classified based on their stream type, ap-
plication type or algorithm type. Depending on the type
of the algorithm the QoS managers defines metrics
known as Codec-cycles, Filter-Cycles etc.

b. Scheduling of objects (Hard-deadlines)

[0041] The iDSP-QoSM schedules the algorithm ob-
jects based on a two-phase scheduler. The first phase
is a high-level scheduler that determines if a new media
stream is schedulable on the DSP and sets hard-real
time deadlines for Codec-cycles. The second phase
schedules individual media frames and makes use of
the hard real-time deadlines from the first phase. The
first phase runs at object negotiation time and typically
on the host (GPP). The second phase would run on the
DSPs (servers) and runs on a per frame basis.
[0042] The first phase of scheduling is when the QoS
manager determines on average if the object can be
supported with already concurrently running objects. Al-
so required, as part of the first phase scheduling is con-
sideration of sufficient support for the object in terms of
memory. The object memory buffers for internal usage,
input and output, must be fixed statically at the time of
its instantiation to remove the uncertainty of allocating
memory dynamically. The iDSP Media platform only
runs XDAIS compliant algorithms. The developers are
required to define the processing times under different
conditions for their algorithms. The approximate times
required for data transport to and from the servers are
determined at the time of initialization which is factored
in by the QoS manager when it sets deadlines for each
object.
[0043] Each DSP object is required to supply the fol-
lowing information to the QoS Manager:

n Codec-cycle and Number of Frames (Default:
frames/second)

[0044] Tacc Average time to compute a Codec-cycle
in number of target server (DSP)cycles.
[0045] Tacd Display time of a Codec-cycle in number
of target server (DSP) cycles.
[0046] For a video codec, n will usually be the number
of frames between successive I-Frames (e.g. 15
frames). And Tacc will usually be the sum of the maxi-
mum amount of time required for an I-Frame plus the
average time required for the P and B frames. The QoS
Manager keeps track of the Tccd for all media objects.
This time (in terms of DSP cycles) is based on the cur-
rent frame rate. For example, for a 30 fps video stream
and n = 15, let Tccd=125 Mcycles.
[0047] The QoS Manager can now determine if a new
stream is schedulable as follows. Let S be the sum of
the Codec-cycles (Tacc) for all streams currently sched-
uled. If (S + Tacc) for the new stream is less than the
Tccd for the new stream, the stream is schedulable, oth-
erwise it is not. For example, assume there is an Object-
A with n = 15, Taxc= 39.5 Mcycles (158 ms), and Tccd =
125 Mcycles (500 ms), and there are no tasks scheduled
on the DSP (so S = 0). The QoS Manager is notified to
schedule resources for a new stream that requires Ob-
ject-A. Because S + 39.5 = 39.5 Mcycles < 125 Mcycles

11 12



EP 1 229 444 A1

8

5

10

15

20

25

30

35

40

45

50

55

(500 ms), we can schedule the stream. When a second
stream comes along requiring Object-A, it is also sched-
uled because S + 39.5 = 79 Mcycles (316 ms) < 125
Mcycles (500 ms). A third stream can also be scheduled.
A fourth stream, however, cannot be scheduled be-
cause that requires 158 Mcycles (632 ms), so we cannot
meet the 500 ms hard deadline. At this point the QoS
Manager negotiates to reduce the frame rate of a stream
and, failing that, will reject the stream altogether.
[0048] A modification allows the scheduler to handle
heterogeneous media objects with differing Codec-cy-
cle times. Objects with longer Tccd are prorated to the
smallest Tccd. For example, assume there is an Object-
B with n = 30, Taxc = 40 Mcycles (160 ms), and Tccd =
169 Mcycles (675 ms), and there are two Object-A ob-
jects (as defined above) scheduled on the DSP (so S =
79 Mcycles /316 ms). We can schedule the new Object-
B stream because S + 40 * (125/158) = 110.45 Mcycles
(S + 160* 500/675 = 435 ms). This is provably correct
since (79+40 < 125) Mcycles / (316 + 160 < 500)ms, so
we can actually guarantee all the streams within the
shorter Codec-cycle deadline of 500 ms. What happens
when a second stream requiring Object-B needs sched-
uling? 110.45 + 40*125/158 = 139 > 125 M cycles / 435
+ 160*(500/675) = 554 ms > 500 ms. Therefore, the
scheduler rejects this stream and begins negotiating as
mentioned above.
[0049] The iDSP-QoSM will negotiate with the appli-
cation or its proxy to reserve sufficient processing band-
width for a media object based on the Codec-cycle. This
negotiation will take into account an object's required
memory, requested QoS level and available MIPS of the
DSP with other running concurrent DSP applications. As
the object selection changes, the QoS manager will per-
form a renegotiation of DSP processor bandwidth. Input
parameters to the negotiation process of the QoS man-
ager require the application to define the following for
an object:

(1) DSP memory requirements (Number and size of
input/output buffers)

(2) Desired QoS level (typically expressed in
Frames per second)

(3) Worst case runtime for starting the object.

(4) Has hard real-time deadlines for sequences of
media frames, called Codec-cycles (number of
frames and average execution time).

[0050] The second phase scheduling of objects in the
iDSP-QoS manager is based on two aspects, whose
deadline comes first as and who has the higher priority.
Consider the following example, if Object-A has a dead-
line at 10ms and Object-D has a deadline at 3ms the
iDSP QoS manager will schedule Object-D to run first
even though Object-A is of a higher priority. Since we

know the approximate runtimes of the objects we can
determine the "No Later" time when an object must be
started so that it still meets its deadline. In Figure 3 it is
predicted that Object-D will finish before the "No Later"
start point for Object-A. In this scenario there is not a
deadline conflict between the higher priority Object-A
and Object-D. Therefore Object-A runs after the lower
priority Object-D.
[0051] In another scheduling example where priority
would weigh in over first deadline is if the "No Later" time
of the higher priority Object-A is before the predicted fin-
ish-time of Object-D predicted. In this case Object-A
would run first since it is higher priority and Object-D
would be allowed to run after, further only if Object-D
meets its frame dropping parameters specified at object
instantiation time; see Figure 4.
[0052] For the iDSP QoS to manage the deadlines to
the best possible efficiency, the GPP must let the data
input frames to the DSP subsystem as soon as possible
to allow the maximum amount of time between arrival
time and deadline for an object. The greater the time for
a data frame between its arrival and its deadline allows
the iDSP-QoSM more flexibility in the scheduling of the
respective objects with other concurrent objects.

c. Runtime Prediction of Objects (Soft-deadlines)

[0053] The central function of the iDSP-QoSM is to
predict the required processing times for the next input
frames of all scheduled objects. This prediction is non-
trivial and unique to an object. The QoS manager pre-
dicts the runtime for an object by using the statistics of
previous run times to calculate the expected run time for
the next input frame. The expected runtime for an object
is a function (unique to an object) of previous runtimes
with a maximum possible positive change (also deter-
mined uniquely for each object). For instance, in the
case of video objects, the periodicity of I, P and B frames
are deterministic. Hence, future processing times can
be predicted based on the type of present frame and its
location within the periodicity of the video frames. Such
predictions performed on all concurrent algorithms di-
rectly helps in dynamically re-allocating priorities based
on the predicted processing times and approaching
hard deadlines.
[0054] These predictions are the key enablers for
managing soft-deadlines and jitters in processing times.
The iDSP-QoSM, based on the predictions, will instan-
taneously reschedule the objects for processing. This
instantaneous rescheduling occurs within the Codec-
cycle deadline times (hard-deadlines defined on an av-
erage) of individual objects. This method is unique in the
sense that individual frames are weighted according to
both hard and soft deadlines. In the example above we
assumed that all frames in Object-B required the same
amount of time when we averaged the workload for the
500ms overlap with Object-A. This may not be true as
the frames for Object-B may require more time during

13 14



EP 1 229 444 A1

9

5

10

15

20

25

30

35

40

45

50

55

the actual overlap or Object-B may not be given the av-
erage amount of time. Therefore, frames closest to their
Codec-cycle deadline receive a higher priority.
[0055] If the predicted runtime violates the user-de-
fined time requirements the QoS manager will take one
of several possible actions.
[0056] In a Single DSP configuration:

(level 1) A simple binary cut off: This results in an
automatic frame-drop. The object in question
should be capable of indicating if frame drops will
cause catastrophic results.
(level 2) A general reduction in allotted runtime of
lower priority objects with a pre-emption of the ob-
ject at the end of the allocated time. This may or
may not result in a frame-drop.
(level 3) Objects are required to have the ability to
accept QoS commands such as scaling back quality
of the output data.

[0057] In a Multiple DSP configuration:

(1) At the end of each QoS time-slice, messages
with load-data are sent from each DSP to the GPP.
(2) The GPP resorts to a redistribution of objects
ONLY in the case of an estimated dead-line miss.
This re-allocation of tasks is to be performed by the
GPP (ORB layer) after receiving the "load-data"
from the serving DSPs. However, to reduce task
switching time, it is VERY DESIRABLE that all
DSPs operate from a common cluster of external
memory space.

[0058] All objects executing in the iDSP system have
to be deterministic in execution times. DSP objects can
be broken down into three types, compressing of data
(encoding), decompressing of data (decoding) and data
conversion (pre or post processing of data for objects).
The objects are presented data in blocks to process;
these blocks are called input data frames. The objects
process an input data frame and generate an output da-
ta frame. As with any computational data, both input and
output data frames are bounded in terms of size and the
amount of processing. Based on the size of any given
input frame there can be a precise determination of the
maximum amount of processing that a DSP, or any other
computer for that matter, will have to perform on that
input frame.
[0059] Each object, before it is integrated into the iD-
SP system, is required to declare the worst case run
time for that object for a single frame. This worst case
run time is used to calculate the run time of the first input
data frame so the object can be started. The QoS man-
ager is not able to characterize the input data frame be-
fore the object is run. Since encoder and decoder ob-
jects rarely run in worst case scenarios the first input
frame will be costly (since it has to be predicted to be
worst case). This worst case schedule is likely to cause

a greater than actual runtime for the first frame. This is
only a problem if the actual runtime is greater than the
worst case schedule.
[0060] As stated earlier, the processing time of an al-
gorithm object will vary between input frames. At the out-
set, the iDSP-QoSM will start with the worst case value
for the first data input frame. After the first frame, the
QoS manager will predict the processing time for the
next input frame based on the characteristics of the al-
gorithm and the measured processing time for the first
frame. For each subsequent frame, the it predicts an ap-
proximate processing time, based on the semantics and
the history of the algorithm object. For example, encoder
objects use the object semantics (e.g., I, P, and B frame
types) along with the average encoding time of the pre-
vious similar input frames for predicting future encoding
time requirements. Encoder objects work on the same
size input frame each time they are scheduled for exe-
cution. The variations in processing times come from
factors like the activity level in the frame, degrees of mo-
tion between frames etc. These variations, however are
bounded. Hence, the processing time between two
frames will have a finite maximum difference which can
be added to the predicted processing time to determine
the worst case processing time for the next frame. See
Figures 5-6.
[0061] Decoding objects are typically presented vari-
able sized input frames. The processing time of an input
data frame is directly proportional to its size. To deter-
mine if there will be an increase in the next frame
processing time, the QoS manager will check the mag-
nitude of difference in the present and the next data in-
put frame sizes. A similar argument, as with the encoder,
also holds for the decoder i.e., the difference in the
processing between two semantically similar frames is
bounded. The maximum or worst case processing time
for a decoder is the largest possible buffer that is defined
for the object. See Figure 7.
[0062] Conversion objects run similar to encoder ob-
jects in that they always work on the same size input
frames. Each frame always takes the same amount of
processing time and is a single pass through the input
frame. Therefore the processing time per input frame
will always remain constant.
[0063] Each object will receive from the user applica-
tion a relative time in which the passed frame must be
completed by the object. An example would be that the
application specifies that this frame must be processed
in the next 7mS. Since there is no common software
clock between the host GPP and the DSP deadlines can
only be specified in relative terms. We assume transport
time of data frames between the host and the DSP to
be deterministic. The iDSP system keeps an internal
clock against which the data frame receives a times-
tamp upon arrival and then calculates the expected
processing time. After computing the expected process-
ing time the QoS manager now schedules the data
frame execution.

15 16



EP 1 229 444 A1

10

5

10

15

20

25

30

35

40

45

50

55

[0064] Before an object can be scheduled, the QoS
manager determines the appropriate order of execution
of the object compared against other concurrent ob-
jects. If there are no other objects processing input
frames, the object frame is immediately scheduled for
execution. If there are other objects running, the QoS
manager determines execution order by considering the
priority, expected deadlines and hard or soft real time
requirements of each requested object. See Figure 8.
[0065] When multiple objects, with different runtime
priorities, are combined onto the same DSP, the QoS
manager will compute a runtime prediction for each ob-
ject based on the object's specific runtime calculation.
It then schedules different tasks based on a scheduling
object (TBD). The following three scheduling scenarios
are possible:

(1) All the objects run to completion on the input da-
ta frames given and complete within the application-
specified deadline. This scenario is presented in
Figure 9, notice that all the objects in the picture
complete before each object deadline. If all objects
complete before their respective deadlines, work
required of the QoS manager is minimal.
(2) The processing load increases on one or more
objects (ex: Object-B), but, this does NOT CAUSE
the prediction deadlines for following objects to be
missed. It is possible for the load to increase on one
or more objects such as in Object-B. Depending on
the object, missing a deadline may be acceptable if
subsequent data frames of the same object are
processed within their deadline restriction. An ex-
ample would be in a H263 encoder where an "I"
frame takes the longest to compute. The frame fol-
lowing the "I" frame is always a "P" frame and typi-
cally has a lot smaller processing requirements.
This allows the "I" frame processing to cycle steal
from the following P frame processing. Thus, miss-
ing the deadline on one frame may not be cata-
strophic if there is sufficient processing room on the
next frame.

Since the deadline for Object-B has been ex-
ceeded, the overall system effect has to be deter-
mined. If the missing of deadline by Object-B does
not cause the prediction deadlines for following ob-
jects to be missed then the overall system hazard
is minimal. See Figures 10-11.
(3) The processing load increases on one or more
objects (Ex: Object-B), but, this CAUSES the pre-
diction deadlines for following objects to be missed.
See Figure 12.

In this case, the missing of deadline by Object-
B causes the prediction deadlines for following ob-
jects to be missed. Even in this case, the overall
system hazard may or may not be minimal. Each of
the concurrently running objects might be able to
steal cycles from subsequent frames and hence
avoid a domino-effect of missed deadlines.

The iDSP-QoSM proposes a set of rules for
soft-deadline management. This set of rules is de-
signed to limit a snow-balling effect of missed dead-
lines resulting from a single critical missed deadline.
(1) Every algorithm object provides the QoS man-
ager a maximum number of frame-drops/second al-
lowed. (2) Each object updates a running count of
the number of 'missed deadlines' as a moving av-
erage after each processing cycle. (3) When an ob-
ject exceeds its limit of missed deadlines, change
the priority of the object to the highest value. Origi-
nal priority is restored once the number drops below
the limit. (4) All subsequent frames that miss their
deadline after the limit, are dropped. This results in
a temporary lowering of the QoS to the next imme-
diate level. This instantaneous drop in QoS (should
be extremely rare) is then reported to the client. (5)
Frames are dropped as a rule, ONLY if the DSP has
not even started the object in question even after
the passage of its deadline.

d. Throttle control for periodic media rendering

[0066] For a given algorithm object, the iDSP-QoSM
assumes that there is only one request in the ready
queue at any instant. Media streams, in general, have
periodic deadlines (e.g., 30 frames/sec for video
streams) specified as quality of service constraints to
the QoS manager. Audio and video rendering compo-
nents in a media system can buffer frames to handle
variances in arrival times, allowing frames to arrive
slightly ahead of schedule. But these buffers are finite
and so the upstream components of a media system
must carefully throttle the relative speeds at which
frames are processed.
[0067] Two mechanisms are provided by the iD-
SP-QoSM for throttling the processing speeds of algo-
rithm objects.

(1) The client of the DSP algorithm object controls
the speed at which it invokes the processing func-
tion (server) of the algorithm object. This can result
in sub-optimal behavior of the QoS manager's
scheduling algorithm if the requests are made with-
in the time period they must be fulfilled. For exam-
ple, consider algorithm object A above in which buff-
er A1 must be processed within time period T1 and
buffer A2 must be processed within time period T2.
Fig.

where T1 and T2 are two successive periods,
[x] indicates arrival of buffer x, {x} indicates comple-
tion of processing of buffer x. See Figure 13a.
(2) The QoS Manager controls the throttling of the
media stream. This mechanism allows the client to
invoke an algorithm object's processing function,
with an input buffer, as soon as possible. The QoS
manager will then append a 'start-deadline' to the
input buffer. The scheduler does NOT schedule this

17 18



EP 1 229 444 A1

11

5

10

15

20

25

30

35

40

45

50

55

buffer until after the 'start deadline'. The client
blocks until the processing of its present buffer is
completed. See Figure 13b.

[0068] Thus, in both cases, there is at most one re-
quest per algorithm object, in the QoS manager ready
queue at any instant.
[0069] Memory paging - To best run multiple algo-
rithms on a DSP, or any processor for that matter, a set
of rules must be established so that system resources
are shared fairly among the algorithms. These rules
specify access to peripherals of the processor such as
DMA, internal memory and scheduling methods for the
algorithms. Once a set of rules has been accepted a sys-
tem interface can be developed for the algorithms to
plug into so that they can access system resources. A
common system interface provides the algorithm devel-
oper well defined bounds in which to develop algorithms
sooner since they can concentrate solely on the algo-
rithm development and not system support issues. Such
an interface is the Texas Instruments iDSP Media Plat-
form DSP framework. All access between an algorithm
and a TMS320C62XX DSP occur through this frame-
work.
[0070] The Texas Instruments XDAIS standard re-
quirement establishes rules that allow the plug-ability of
more than one algorithm into the iDSP Media Platform
"...allows system integrators to quickly assemble pro-
duction quality systems from one or more algorithms."
The XDAIS standard requires that the algorithm meet a
common interface requirement called the Alg interface.
There are several rules imposed by the XDAIS stand-
ard, most significant is that the algorithm cannot directly
define memory or directly access hardware peripherals.
System services are provided through the single com-
mon interface for all algorithms. Therefore the systems
integrator only provides a DSP framework that supports
the Alg interface to all the algorithms. The Alg interface
also provides to the algorithm developers a means of
accessing system services and invocation for their al-
gorithm.
[0071] An algorithm must exactly define its internal
memory requirements. This is a necessity for a paging
architecture to support multi-algorithms accessing the
same space in internal memory. XDAIS compliant Algo-
rithms are required to specify their internal and external
memory requirements.
[0072] The internal (on-chip) memory has to be divid-
ed up into two areas. First is the System overhead area,
this is support for the OS data structures for a particular
DSP system configuration. The second area is for the
algorithms to use but only when they have been sched-
uled to execute. Both memory areas have to be fixed in
size. This second area of memory is called the algorithm
on-chip workspace; in other terms this workspace area
can also be described as a data overlay or data memory
page. See Figure 14.
[0073] To determine how much memory is available

for the algorithm on-chip workspace, the system devel-
oper takes the total amount of internal data memory
space available and subtracts out the amount needed
to support system software such as the OS support and
data support for the paging architecture. The OS con-
figuration, such as tasks, semaphores, should be set by
the system DSP designer to a maximum size that sup-
ports the total number of algorithms the designer wants
to have running concurrently at one time. This keeps OS
support overhead to a minimum and increases the al-
gorithm workspace.
[0074] For an algorithm to run in this environment its
internal memory requirements must be less than the
size of the workspace. Otherwise the system integrator
cannot integrate the algorithm; the limitation is that there
is only one page per algorithm. This architecture does
not support multiple pages for an algorithm.
[0075] The algorithm workspace is divided into three
components, Stack (mandatory), Persistent Memory
and Non-Persistent memory. There is sometimes a
fourth component that will be discussed later dealing
with read only portions of persistent memory. See Figure
15.
[0076] An algorithm only uses the on-chip workspace
while it is executing. When an algorithm is scheduled to
execute the DSP system software will transfer the algo-
rithm's workspace from its external storage location
(shadow storage) into the internal workspace on-chip.
When the algorithm yields control, the DSP system soft-
ware will determine which algorithm to run next, if it is
the same algorithm then there is no need to transfer in
the workspace. If the next algorithm is a different algo-
rithm then the current workspace is stored in its shadow
location in external memory and the next algorithm's
workspace is transferred in. See Figure 16.
[0077] The entire workspace for an algorithm is not
transferred at context switch time. Only the used portion
of the stack and persistent data memory are transferred.
The algorithm's stack is at its highest level (least used)
when an algorithm is at its highest level in its call stack.
In other words the algorithm is at its entry point.
[0078] The ideal context switch for an algorithm hap-
pens when its stack is at its highest level because that
means there is less data to transfer off-chip into shadow
storage. See Figurel7.
[0079] The preferred embodiment data page architec-
tures require the context switch to be most efficient.
Context switch processing overhead takes away from
the time the DSP can execute algorithms. Since the best
time to context switch an algorithm is on its call bound-
ary, the pre-empting of algorithms should be absolutely
minimized. Pre-empting an algorithm when its stack is
greater than its minimum will de-grade the overall sys-
tem. This should be a requirement, but it might accept-
able to pre-empt on a very limited basis. See Figures
18-19.
[0080] A special case of the algorithm workspace is if
the algorithm requires a read only persistent memory.

19 20



EP 1 229 444 A1

12

5

10

15

20

25

30

35

40

45

50

55

This type of memory is used for look-up tables used by
the algorithm. Since this memory is never modified then
it only needs to be read in and not written. This asym-
metric page transfer decreases the overhead with the
context switch of the algorithm.
[0081] With this data paging architecture a single al-
gorithm can be instantiated more than once. Since the
algorithm has defined what its needs for internal mem-
ory requirements, the DSP system integrator can more
than one instance of the same algorithm. The DSP sys-
tem software keeps track of the multiple instances and
the when to schedule each instance of an algorithm. The
limit of number of instances is how much external mem-
ory there is in the DSP system to maintain the shadow
version of the algorithm instance.
[0082] The DSP system software has to manage each
instance so that it is correctly matched to the algorithm
data upon scheduling the algorithm. Since most DSP
algorithms are instantiated as tasks, the DSP system
software could use the task environment pointer as a
means to manage the algorithm instances.
[0083] Data flow with chaining - The data flow pre-
ferred embodiments rely on integrating processing ele-
ments, providing them a shared memory space, and
routing data directly between processing elements with-
out intervention by the GPP. Such a system is shown in
Figure 21.
[0084] When processing element PEa completes
processing a chunk of data it writes the resulting data to
a pre-defined output buffer in shared memory. PEa then
notifies the next processing element, PEb in the chain
via the appropriate control path. The notification indi-
cates which shared memory buffer PEb should use as
input. PEb then reads the data from the input buffer for
further processing. In this manner data is passed be-
tween all processing elements required until all data has
been consumed.
[0085] A set of buffers, as described above, is used
to communicate data between two processing elements
and comprises an I/O channel between those elements.
Multiple I/O channels may exist between any two
processing elements allowing multiple data streams to
be processed simultaneously (i.e. in parallel) by the sys-
tem. Figure 22 shows and example of parallel process-
ing of multiple data streams, s1 and s2.
[0086] A series of processing elements connected by
I/O channels constitutes a channel chain. Several chan-
nel chains can be defined within a particular system. In
the case of a mid-chain processing element each input
channel has an associated output channel. Terminal
processing elements have only input or output chan-
nels.
[0087] A processing element's input channel defines
the buffer(s) from which data is to be read. A processing
element's output channel defines the buffer(s) to which
data is to be written as well as which processing element
to notify afterwards.
[0088] Types of control messages between the data

processing elements and the central control processor
(CCP) are.

(1) status messages: data stream processing start-
ed, stopped, aborted, paused, resumed, etc...
(2) quality of service messages: time stamps, sys-
tem load, resources free/busy, etc...
(3) data stream control messages: start, stop,
pause, resume, rewind, etc...
(4) system load messages: tasks running, number
of active channels, channels per processing ele-
ment, etc...

[0089] In a preferred embodiment, the creation and
association of I/O channels with processing elements is
defined statically via a configuration file which can be
read at system initialization time. For each bitstream
type to be processed, the configuration file defines a
channel chain (i.e. data path) connecting the appropri-
ate processing elements. The collective processing of
all processing elements in a channel chain results in
complete consumption of the data.
[0090] In the case where multiple data paths exist for
a given bitstream, alternate or backup channel chains
could be defined. Bitstreams could be routed to these
in case of unavailability of any processing element of a
primary channel chain. Determination of the bitstream
type at runtime and dynamic QoS analysis selects the
channel chain through which the data is routed. At runt-
ime all legal channel chains in the system are fixed and
unmodifiable.
[0091] In another preferred embodiment, channel
chains for different bitstreams could be constructed dy-
namically when a new bitstream arrives at the commu-
nication processor. Bitstream information derived at
runtime would be sent via control message(s) to the
CCP which would determine the processing elements
required and dynamically allocate I/O channels between
them. This approach would allow resources to be taken
out of service or brought online at runtime allowing the
system to adapt automatically.
[0092] In the shared memory heterogeneous system,
data flows between the processing elements via the ex-
ternal shared memory without intervention by the CCP.
Data never appears on the bus so the speed of a data
transaction is determined by shared memory access
time rather than bus transport time. Since CCP interven-
tion is also minimized, CCP response and processing
delays are eliminated from the overall data flow time.
This enhances the throughput of the system by minimiz-
ing data transfer time between processing elements.

a. An example

[0093] A typical application of the data flow tech-
niques discussed herein would be for media processing
systems. Such a system would initiate and control
streams of broadband media for processing such as de-

21 22



EP 1 229 444 A1

13

5

10

15

20

25

30

35

40

45

50

55

coding, encoding, translating, converting, scaling, etc..
It would be able to process media streams originating
from local disk or from a remote machine/server via
communication mediums such as cable modem, DSL,
or wireless. Figure 23 shows an example of such a sys-
tem.
[0094] The media processing system of Figure 23
contains five processing elements:

(1) DSL or Cable Modem I/O front-end DSP
(2) media processing DSP
(3) video/graphics overlay processor
(4) H.263 decoder task
(5) color space converter task

[0095] The H.263 stream entering the front-end I/O
DSP follows a channel chain defined by numbered arcs
1 through 3. Each channel connects 2 processing ele-
ments and is composed of a set of I/O buffers used to
pass data between the elements. Control flow is shown
via the shaded arcs.
[0096] The H.263 stream flows from the I/O front-end
DSP into a channel 1 I/O buffer defined in global shared
memory. The I/O front-end DSP notifies the destination
processing element associated with channel 1, i.e. the
H.263 decoder task on the media processing DSP, that
its input buffer is full and ready to be read. The H.263
decoder task reads from the channel 1 I/O buffer, de-
codes the data and writes the resulting YUV data to the
channel 2 I/O buffer in local shared memory.
[0097] Note that channels can be inter-processor or
intra-processor. Data can pass between processors via
global shared memory (inter-processor) or via shared
memory "local" to a given processor (intra-processor).
In Figure 23, channels 1 and 3 are inter-processor and
channel 2 is intra-processor.

Claims

1. A framework for real-time media applications on an
applications processor in communication with an al-
gorithm processor, comprising:

a plurality of plugins for a real-time media ap-
plication on an applications processor;
a plurality of algorithm components on an algo-
rithm processor, each of said plugins corre-
sponding to one or more algorithm component
(s), and said algorithm processor in communi-
cation with said applications processor;
a component scheduler on said algorithm proc-
essor;

wherein said scheduler provides quality of
service for said application with regard to said com-
ponents by:

(i) component scheduling in response to con-
trols from said plugins relating to execution of
said components; and
(ii) notification of events related to execution of
said components sent to said plugins.

2. The framework of claim 1, wherein said controls in-
clude a set of data rate for one of said components.

3. The framework of claim 1 or claim 2, wherein said
events include notice of failure of meeting a pres-
entation time for one of said components.

4. The framework of any of claims 1-3, further com-
prising:

an applications processor scheduler for deter-
mining deadlines for a media stream that can
be scheduled on said algorithm processor, and
wherein said scheduler on said algorithm proc-
essor schedules a frame at a time of said media
stream.

5. The framework of any of claims 1-4, further com-
prising:

a plurality of second algorithm components on
a second algorithm processor, with said second
algorithm processor in communication with
said applications processor and said algorithm
processor and said plugins also relate to said
second algorithm components.

23 24



EP 1 229 444 A1

14



EP 1 229 444 A1

15



EP 1 229 444 A1

16



EP 1 229 444 A1

17



EP 1 229 444 A1

18



EP 1 229 444 A1

19



EP 1 229 444 A1

20



EP 1 229 444 A1

21



EP 1 229 444 A1

22



EP 1 229 444 A1

23



EP 1 229 444 A1

24



EP 1 229 444 A1

25



EP 1 229 444 A1

26



EP 1 229 444 A1

27



EP 1 229 444 A1

28



EP 1 229 444 A1

29



EP 1 229 444 A1

30


	bibliography
	description
	claims
	drawings
	search report

