[0001] This invention relates to a method of measuring the mean velocity of a fluid according
to the preamble of claim 1. The invention further relates to a device for measuring
velocity of a material according to the preamble of claim 14.
[0002] The idea of studying flow by magnetic resonance dates back to the work of the early
pioneers as described, for example, in Mansfield, P; Morris, P.G.; "NMR Imaging in
"Biomedicine"; Advances in Magnetic Resonance, Supplement 2; 1982; Academic Press,
Inc. Orlando 32887; p.235 section 7.3.5. Prior art devices for flow measurement or
flow mapping rely on two well-known methods viz. "Time-of-Flight" of saturated or
unsaturated spins or "Phase-Encoding" by application of a gradient field along the
direction of flow. (Cho, Z. et. al.; "Foundations of Medical Imaging;" John Wiley
& Sons, inc., New York, 1993, p374-386.) Exemplary of the "Time-of-Flight" method
is U.S. Patent No. 4,782,295 to Lew and of the "Phase-Encoding" method is U.S. Patent
No. 5,532,593 to Maneval. Analysis of chemical composition by chemical shift is discussed
in "Principles of Magnetic Resonance," third edidon chapter 4, by Slichter, C.P.,
Springer-Verlag, N.Y. 1989.
[0003] However, the prior art time-of-flight techniques require repetive Larmor r.f. pulses
at intervals short with respect to T
1, the spin-lattice relaxation constant, which varies with temperature and molecular
composition. Prior art Phase-Encoding techniques require gradients in a spin-echo
or stimulated echo sequence along a quasi-steady state flow vector.
[0004] US-5,757,187 teaches a method and device for magnetic resonance imaging, wherein
electric fields are used instead of magnetic gradient fields. The device is characterized
in that the birdcage of a conventional MRI device is supplied with a spatially circulating
electric voltage. Accordingly, the birdcage is to be provided with three electrically
isolated sets of connection.
SUMMARY OF THE INVENTION
[0005] Hence, it is an object of the invention to provide a simplified method for determining
the velocity of a fluid.
[0006] Such a method is defined in claim 1. A corresponding device is defined in claim 14.
The other claims define preferred embodiments of the method or the device.
[0007] Accordingly one preferred aspect of the present invention provides a universally
applicable simplified method to non-invasively measure the mean value of, or to map
the velocity profile of, the various domains of flow based on the dwell time of flowing
spins within a defined space containing a uniform H
1 Larmor radio frequency excitation field.
[0008] Another preferred aspect of the invention provides a method to measure or map the
signal received from moving spins within a defined space in the continuous presence
of the H
1 Larmor radio frequency excitation field by periodically phase modulating the H
0 strong main magnetic field by a periodic gradient field so as to cause the spins
to emit a line or band spectrum, centered at the Larmor frequency, whose sideband
amplitudes are known functions of the amplitude of the center-band Larmor frequency
signal emitted by the spins, said emitted center-band Larmor frequency signal amplitude
being a known function of the dwell time of the spins within a defined space within
the H
1 Larmor excitation field.
[0009] Another preferred aspect of the invention provides a method to continuously measure
the very weak sidebands of the emitted signal from the phase modulated spins in the
presence of the very strong H
1 central Larmor field by demodulating and then cross-correlating the received signal
with integral multiples of the phase modulating frequency of the periodic gradient
field.
[0010] In another preferred aspect of the invention, the pulsed Larmor radio frequency fields
and pulsed gradient fields are eliminated, thereby reducing or eliminating eddy currents,
transients, and Gibbs truncation artifacts.
[0011] Another preferred aspect of the invention provides a method to measure the velocity
of the spins from the measurement of the dwell time of the spins within the known
geometry of a defined portion of the H
1 Larmor excitation field, said known geometry being defined by a receiver coil preferably
wound orthogonal to the H
1 Larmor excitation field coil so as to substantially decouple the noise from, and
the signal from, the H
1 Larmor excitation field.
[0012] Another preferred aspect of the invention is to provide a measure of the flow velocity
within the known geometry of a defined portion of the H
1 Larmor excitation field constructed from measurements dependent on the dwell time
of the spins in a defined portion of the H
1 Larmor frequency excitation field as measured with the known adjustable strength
of that H
1 Larmor frequency excitation field, and not significantly dependent on the unknown
T
1 spin-lattice, the unknown T
2 spin-spin, the unknown D diffusion, or on other unknown parameters affecting spin
magnetization, spin diffusion, or spin coherence. These unknown parameters affect
the signal-to-noise of the measurements of this invention, but not significantly the
defined end point of these measurements, according to this invention.
[0013] A further preferred aspect of this invention is to perform a simultaneous chemical
and physical analysis of the flowing material.
[0014] A further preferred aspect of this invention is a flow meter for performing one or
more of the above methods.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015]
Fig. 1 is a cross section of an embodiment of the nuclear magnetic resonance flowmeter
constructed in accordance with one embodiment of the present invention, which cross
section is taken along a plane including the central axis of the flow passage.
Fig. 2 diagrammatically illustrates a conducting or superconducting solenoidal main
magnet for the H0 field and an orthogonal birdcage Larmor r.f. H1 coil which may be used in accordance with another embodiment of the present invention.
Fig. 3 is a sectional view of the flowmeter of Fig. 1, schematically illustrating
the placement of gradient coils for producing a modulating field hϕ in the detector section.
Fig. 4 is a schematic illustration of a Larmor r.f. excitation (nutation) coil for
the detector section of the flowmeter shown in Fig. 1.
Fig. 5 is a schematic illustration of an r.f. receiving coil for the detector section
of the flowmeter Fig 1.
Fig. 6 is a block diagram of a signal processing circuit for use with the flowmeter
of Fig. 1.
Figs. 7a through 7i are graphs and formulas illustrating the operation of the circuit
of Fig. 6.
Fig. 8 is an overall system block diagram of one embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0016] Figure 1 illustrates an embodiment in which the strong relatively homogenous H
0 static magnetic field required in all magnetic resonance devices is placed perpendicular
to the mean axis of flow. In Figure 1 there is shown a cross section of an embodiment
of the nuclear magnetic resonance flowmeter constructed in accordance with the principles
of the present invention, which cross section is taken along a plane including the
central axis of the flow passage. The flow passage 1 extending from one extremity
2 to the other extremity 3 of the conduit 4 extends through a constant magnetic field
generally perpendicular to the direction of the fluid flow, which constant magnetic
field is provided by a magnet assembly 5 comprising a pair of pole face plates 6 and
7, a pair of permanent plate magnets 8 and 9, and flux path structures 10 and 11 connected
to one another. The magnetic assembly 5 and the conduit 4 are packaged into one single
integral assembly by means of two flanges 12 and 13 with fastening bolts and spacers
14, 15 and 16 made of a non-ferromagnetic material. The conduit 4 providing the flow
passage 1 is made of three sections; the two end sections 17 and 18 made of a non-ferromagnetic
material such as stainless steel, bronze, plastic or glass, and the NMR (nuclear magnetic
resonance) detector section 19 made of an electrically nonconducting diamagnetic material
of zero parity such as fluorocarbon plastics, glass or ceramic material. The NMR detector
section 19 includes a transmitter coil 20 wound on the outside surface thereof and
a receiver coil 21 wound on the outside surface of, or lying within, the NMR detector
section 19 near the entry to the transmitter coil 20. The NMR detector section 19
is connected to the two end sections 17 and 18 in a leak proof arrangement that may
include ring seals 22 and 23 or bonded coupling. The pole face plates 6 and 7 are
plates with polished faces made of a high quality ferromagnetic material such as silicon
steel, which are employed to provide a uniform magnetic field intermediate the two
pole faces of the magnet over a sizable length in the direction of the fluid flow.
The flux path structures including elements 10 and 11 are also made of a ferromagnetic
material.
[0017] Figure 2 illustrates an alternate but equivalent arrangement where the H
0 field is aligned with the mean axis of flow. This figure shows a typical conducting
or superconducting solenoidal main magnet for the H
0 field and an orthogonal birdcage Larmor r.f. H
1 coil as is well known in the art.
[0018] The length of either embodiment in Figure 1 or in Figure 2 is chosen to make the
transit time of the fastest portion of the range of measurement of spin velocities
comparable to the T
1 spin-lattice relaxation time so as to provide adequate magnetization making the detected
signal-to-noise ratio statistically acceptable. Longer magnet sections improve the
signal-to-noise ratio of the measurements, increase the cost of the construction and
size of the device, but do not significantly affect the theoretical end points, as
will become evident in the following development. The apparatus of Figure 1 is similar
to the apparatus described in U.S. Patent No. 4,782,295 to Lew and the apparatus of
Figure 2 is similar to the apparatus described in U.S. Patent No. 5,408,180 to Mistretta.
[0019] Figure 3 depicts one method, but not the only method, whereby a phase-modulating
periodic gradient component h
ϕ of H
o can be provided for the embodiment of Figure 1.
[0020] The phase-modulating periodic gradient is an Extremely Low Frequency (ELF) or a Very
Low Frequency (VLF) gradient field. Fig. 3 illustrates a method for producing the
modulating field 24 of amplitude h
ϕ in the detector section preferred for the embodiment of Fig. 1 in which the periodic
field of frequency Ω is created by periodic currents through the gradient coils 25.
A spacer 23 made of a nonconducting paramagnetic material of zero parity may be used
to secure the detector section. Other conventional gradient coil arrangements, as
are well known in the art, can be combined with Figure 1 or Figure 2 to provide a
periodic spatially ordered component to the H
0 main magnetic field (see Shenberg, Itzhak; Macovski, Albert; "Applications of time-varying
gradients in existing magnetic resonance imaging systems"; Med. Phys., vol 13(2),
p164-169 Mar 1982, N.Y., U.S.).
[0021] Fig. 4 illustrates the Larmor r.f. excitation (nutation) coil 20 preferred for the
detector section in the embodiment of Fig 1. Figure 4 shows how an H
1 Larmor frequency excitation field can be continuously applied perpendicular to the
H
0 main magnetic field in the embodiment of Figure 1. Conventional H
1 r. f. excitation coils of various configurations are well known in the art for both
the configuration of Figure 1 and the configuration of Figure 2. The strength of the
H
1 field can be controlled by the amplitude of the radio frequency current in the r.f.
coil through current amplifiers, as is well known in the art and this current strength
can be varied to alter the signal distribution emitted by the spins in the receiver
coil, according to this invention.
[0022] Figure 5 illustrates a preferred embodiment of a receiver coil for the configuration
of Figure 1. Fig. 5 demonstrates the r.f. receiving coil 21 of length L
2 preferred for the detector section in the embodiment of Fig 1. This receiver coil,
and others suitable for the configuration of Figure 1 and the configuration of Figure
2 are well known in the art. The receiver coil of Figure 5 is preferably placed near
the entry of the flow of spins into the H
1 Larmor r.f. excitation field and is preferably wound orthogonal to the winding of
the H
1 excitation field coil to substantially decouple power amplifier noise and signal,
as is well known in the art. The length of the receiver coil is preferably short enough
so that the transit time of the lowest flow velocities to be measured is short with
respect to T
2* spin-spin and D diffusion time effects, which decrease signal amplitude exponentially.
This affects the signal-to-noise of the measurement, but not significantly the theoretical
end point of the measurement according to this invention.
[0023] Figure 6 illustrates a preferred embodiment of a sideband demodulation detector 27
to reject the strong center band signal from the H
1 Larmor frequency r.f. excitation field and detect the amplitude of the relevant side
bands by cross-correlation with integral multiples of the reference phase modulation
frequency. (U.S. 5,757,187 to Wollin In Fig. 6, antenna 100 of the magnetic resonance
flowmeter receiver coil 21 is coupled to an impedance matching circuit 102, feeding
a noise matching preamplifier 104 through a protection circuit 106. The output of
the noise matching preamplifier is fed to an RF amplifier 108, the output of which
is directed to a double-balanced demodulator 110, 112. The output of the double-balanced
demodulator 110, 112 is fed through a summing amplifier 114 to an alternating current
integrator 116 and a low frequency amplifier 118. Each of the demodulators 110 and
112 is supplied by a quadrature output from the magnetic resonance master radio frequency
oscillator 28, illustrated in Figure 8. The demodulated outputs are then added at
summer 114 to provide a cross-correlated input to the integrator 116 (estimating the
direct current J
0( ) term) as well as to an amplifier 118 that, in turn, feeds additional sets of double-balanced
demodulators 120, each of whose added cross-correlated outputs are also summed by
summers 122 and integrated by integrators 124, thereby estimating the relative strength
of each sideband element of the spectrum, J
n( ).
[0024] Figures 7a - 7i provide a signal analysis of Figure 6 showing demodulation and cross-correlation
techniques and the generalized output equation from which the flow velocity of the
spins can be measured or mapped. As such, Figs. 7a - 7i provide is a stepwise mathematical
analysis of the signal processing in the circuit of Fig. 6. (Poularikas, Alexander
D., "The Transforms and Applications Handbook" CRC-IEEE press, Boca Raton, Florida,
1996;_pages 29, 185, 214, 221).
[0025] Figure 8 is an overall system block diagram of the invention. In Fig. 8 the flowmeter
assembly 26 receiver coil output is fed to the synchronous demodulator and cross-correlation
detector 27 for synchronous demodulation with the Larmor r.f. ω
0 oscillator 28 and cross-correlation detection with integral multiples of the phase
modulating frequency Ω from the frequency divider 29. The output of the demodulator-detector
27 is fed to the controller 30 which controls the gain of the r.f. power amplifier
32, whose frequency is controlled by the Larmor r.f. ω
0 oscillator 28, and whose output adjusts the current in the H
1 Larmor r.f. coil of the flowmeter assembly 26, so as to set the output of the demodulator-detector
27 to a desired level, as set by the controller 30. This control loop is designed
for rapid response, and the current output of the ω
0 r.f. amplifier 32 then measures the flow velocity as described herein. The frequency
divider 29 is fed from the r.f. oscillator 28 and controls the frequency Ω of the
amplifier 31, which feeds the phase modulating coils 25 in the flowmeter assembly
26. The gain of the amplifier 31 is controlled by the output of the controller 30
in a strongly damped slowly responding manner, as is well-known in servo-mechanism
theory, to secure the highest signal-to-noise level, as described in this invention.
The frequency of the ω
0 Larmor frequency oscillator 28 is also controlled by the output of the controller
30 in a very strongly damped very slow-responding manner to secure the highest signal-to-noise
level by compensating for any varying load impedance on the H
1 r.f. coil, caused by physical changes or chemical shift as is well known in the art.
("Principles of Magnetic Resonance," third edition chapter 4, by Slichter, C.P., Springer-Verlag,
N.Y. 1989. ch. 2.8 p 35-39). The current output of the Larmor r.f. power amplifier
32, is a desired measured quantity and is a function of mean flow velocity, as described
herein, and is fed to a meter or other suitable indicator or recording device 33.
The frequency of the ω
0 Larmor frequency oscillator 29 is a measure of chemical and physical composition
of the flowing material ("Principles of Magnetic Resonance," third edition chapter
4, by Slichter, C.P., Springer-Verlag, N.Y. 1989.).
[0026] Prior art time-of-flight techniques are more complex, requiring repetitive Larmor
r.f. pulses at intervals short with respect to T
1, the spin-lattice relaxation constant, which varies with temperature and molecular
composition. Prior art Phase-Encoding techniques require gradients in a spin-echo
or stimulated echo sequence along a quasi-steady state flow vector. This invention
preferably does not employ pulse techniques, is relatively independent of spin relaxation
and diffusion, and can rapidly respond to changes in mean velocity of flow in the
high Reynolds number measurement mode, or to changes in the velocity profile in the
low Reynolds number mapping mode.
METHOD OF OPERATION
[0027] In the measurement mode of operation the amplitude of the current in the H
1 Larmor frequency r.f. excitation coil is adjusted to control the amplitude of the
measured sidebands in the detection circuit. The H
1 field is applied continuously, and preferably not pulsed. The maximum signal, or
the minimum signal, or a particular value of the signal in a selected sideband, is
preferably chosen as the end-point for measurement of the mean value of the velocity
profile; and the magnitude of the current in the H
1 r.f. coil required to achieve the chosen signal level is a measured parameter and
is a known or measured function of the dwell time of the spins in the defined geometry
of the receiver coil, as will be demonstrated herein.
[0028] Alternatively, in the mapping mode (no embodiment of the invention) the amplitude
of the H
1 Larmor frequency excitation field is preferably held constant, the amplitude of the
phase modulating component of the main strong H
0 field is spatially distributed by "gradient coils" (Shenberg, Itzhak; Macovski, Albert
"Applications of time-varying gradients in existing magnetic resonance imaging systems";
Med. Phys., vol 13(2), p164-169 Mar 1982, N.Y., U.S.) and the received sidebands are
used in a matrix approximation of the equations at the end of Figure 7(i). Inverting
the matrix or solving by Cramer's rule provides a spatial map of the signal distribution,
as is more fully described in U.S. Patent No. 5,757,187 to Wollin
[0029] As shown in Fig. 8, the controller 30 compares the detected amplitude of the designer
selected sideband to a designer selected control condition, i.e., maximum value (eq.
17), minimum value (eq. 18, 19), or some intermediate value chosen for optimum system
performance and thereby creates an error signal of appropriate sense to adjust the
gain of the Larmor r.f. power amplifier 32 to meet this design condition. The output
current of the Larmor r.f. power amplifier 32 is proportional to the Larmor r.f. excitation
(nutation) field strength H
1 in coil 20 and, therefore, is a measure of mean flow velocity (eq. 17, 18).
[0030] A slower calibration loop measures the mean square error signal output from the controller
30 and adjusts the amplitude of the phase modulating current (according to eq. 25).
[0031] Similarly an even slower calibration loop adjusts the frequency of the Larmor r.f.
master oscillator 28 to compensate for changes in coil loading, as is well known in
the art, ("Principles of Magnetic Resonance," third edition chapter 4, by Slichter,
C.P., Springer-Verlag, N.Y. 1989.) permitting estimation of changes in chemical and
physical composition of the flowing material.
THEORY OF OPERATION
[0032] It is well known that a solid or fluid medium of diamagnetic material with a non-zero
spin or non-zero parity placed in a constant magnetic field becomes magnetized in
accordance with equation:

(See, U.S. 4,901,018 to Lew)
where m is the magnetization of the medium, K
1 is the magnetic susceptibility, H
0 is the intensity of the large static near homogenous main magnetic field, t
1 is the mean dwell time of the spins in the H
0 field, and T
1 is the spin lattice relaxation time, which is a measure of the rate of transfer of
energy from the spins to the surrounding medium. Before entering the measurement section,
defined by the H
1 excitation field, the medium has acquired statistically significant magnetization.
The length of the device from its input to the measurement section containing the
H
1 excitation field is chosen to allow sufficient magnetization of the fastest moving
spins to produce adequate signal strength in the presence of the total noise of the
device to permit reliable estimation of the desired measurement in each mode of operation.
This is preferably achieved by adding additional identical magnetizing sections for
measuring or mapping at higher flow rates.
[0033] The H
0 main magnetic field cause the spins to precess near a Larmor frequency ω
0 where

with γ being the gyromagnetic ratio, a constant for each spin species. Periodically
varying H
0 by phase modulating coils, as in Fig. 3, periodically varies ω
0 to produce ω
ϕ
where:

where h
ϕ and Ω are the amplitude and temporal frequency of the periodic component of H
0 and ω
ϕ is the instantaneous angular velocity of precession of the spins about the axis of
H
0. This amplitude h
ϕ can be made a spatial function by time-varying excitation of existing gradient coil
sets for mapping velocity or perfusion distributions. (Shenberg, Itzhak; Macovski,
Albert; "Applications of time-varying gradients in existing magnetic resonance imaging
systems"; Med. Phys., vol 13(2), p164-169 Mar 1982, N.Y., U.S. and U.S. Patents 5,412,322
and 5,757,187 to Wollin)
[0034] The H
1, excitation field is applied orthogonal to the H
o field, as exemplified in Fig. 4, and is of frequency ω
0. It produces excitation or nutation of the spins at an angular frequency ω
1, where:

[0035] This nutation produces a component of magnetization perpendicular to the H
0 field which can be detected by the voltage it induces in the receiver coil whose
area vector is perpendicular to the H
0 field, in accordance with Maxwell's Second Law, (see U.S. Patent No. 5,412,322 and
5,757,187 to Wollin, as detected in the coil exemplified in Fig. 5.
[0036] The voltage induced in the receiver coil has a band or line spectrum. This spectrum
consists of sidebands equally distributed about the central Larmor frequency by integral
multiples of the phase modulating frequency Ω whose amplitude distribution is defined
by the various solutions to Sommerfeld's integral; i.e. Bessel, Neumann, or Hankel
functions; and whose width is defined by the H
0 static field inhomogeneity and any applied or intrinsic static gradients as analyzed
in Fig. 7.
[0037] Rejecting the central ω
0 frequency of the signal by demodulation in the presence of the H
1 Larmor r.f. field, permits measurement of the sideband amplitudes by cross-correlation
with integral multiples of the reference phase modulating frequency Ω as shown in
Figs. 6 and 7. This permits estimation of the sideband amplitudes without necessarily
utilizing pulse techniques, providing that the spins retain significant coherence
during their transit through the geometric volume defined by the receiver coil.
[0038] During or after excitation by the H
1 Larmor r.f. field, spins rapidly lose their phase coherence by many different mechanisms,
some of which are adiabatic and, therefore, involve no change in entropy. Those that
are not adiabatic involve either passive diffusion (governed by the heat equation)
or turbulent displacement or random alterations in the local magnetic field. The net
detectable magnetism m
t is exponentially related to the transit time t
2 through the H
1 field:

[0039] Where θ is the colatitude of the nutation produced by the H
1, field, T
2 is the spin-spin relaxation constant, D is the passive diffusion constant of the
medium, and K
3 is a coefficient containing γ and the local gradient field strength. The effect of
the exponential term is to reduce signal strength exponentially with the dwell time
t
2 of the spins in the H
1 Larmor r.f. field, which effect dictates that short receiver coils be used in slow
flow applications. Several such short coils may be arranged sequentially and connected
in series to permit selection of the lowest range of flow velocities to be measured.
[0040] The receiver coil exemplary in Fig. 5 is preferably wound orthogonal to the H
1 Larmor radio frequency excitation coil to minimize noise coupling and excitation
signal coupling between the excitation r.f. power amplifier circuitry and the receiver
circuitry.
[0041] During transit through the H
1 Larmor r.f. excitation field, the spins nutate through a colatitude angle θ, as is
well known in the art (Slichter, C.P.; "Principles of Magnetic Resonance"; Springer-Verlag,
New York; Third Edition, 1989, Chapter 2). The detectable transverse magnetization
then varies as the spins traverse the receiver coil within the H
1 excitation field, since from eq (4):

and from eq(1) and eq(5)

where T
2* is the effective T
2, which includes spin-spin relaxation, diffusion, and local field in homogeneity etc.,
as is well known in the art.
[0042] Defining

where v is the velocity of each element in the velocity profile of each flow domain.
Then the total receiver coil transverse magnetization M
T for each element of ν is
where K is a constant
H0 is the main magnetic field strength, a design constant
H1 is the excitation field strength, controllable in the device
L1 is the effective length of the H0 field, chosen for each maximum range of flow.
L2 is the effective length of the receiver coil, chosen for each minimum range of flow.
ℓ is the distance traveled by each element of the medium through the sensitive volume
of the receiver coil; eq. 9
T1 is the spin-lattice relaxation time of the medium which typically ranges between
1-5 seconds.
T2* is the effective free induction decay damping coefficient which typically varies
between 50-500 msecs.
v is the velocity of each element of the velocity profile
[0043] If the L
1 magnetizing sections are long enough, i.e.

and the L
2 receiver coil is short enough, i.e.

then

for each element of velocity v in each velocity profile.
[0044] For a velocity profile of mean value v within the receiver coil, the maximum net
magnetization M
T (max) is:

when

or

[0045] The minimum net magnetization is zero or minimum when

or

[0046] For protons

with H
1 in amp/meter. For a four cm wide receiver coil, for example,

[0047] Thus, adjusting H
1 field strength to obtain a specified sideband signal yields the mean velocity of
flow.
[0048] As is more completely shown in Wollin, U.S. Patent 5,757,187, symmetrical even spatial
spin signal distributions produce only even order sidebands and asymmetrical odd distributions
produce only odd order sidebands; from Fig. 7(i) and

[0049] (Jahnke, E.; Emde, F.; Tables of Functions, 4th edition, Dover Publications, New
York 1945, p.128.) Therefore, if the velocity profile is symmetrical, only even order
sidebands will be present, making detection of the second side band preferable, with
a maximum value of

or

and

[0050] The minimum value of the phase modulation frequency Ω must be greater than the band
width Δω
0 of the Larmor frequency (Shenberg, Itzhak; Macovski, Albert, "Applications of time-varying
gradients in existing magnetic resonance imaging systems"; Med. Phys., vol 13(2),
p164-169 Mar 1982, N.Y., U.S., eq.3) which is determined by the homogeneity of the
main magnetic field H
0 and any applied or intrinsic static gradients. Δω
0 also determines the minimum Johnson-Nyquist noise power P
a which is identical in each sideband Fig. 7(c) as

where K
b is Boltzmann's constant and τ is the absolute temperature.
[0051] Measurement of a mean velocity of flow in a flow profile does not require absence
of turbulence. Linear components of fluid momentum perpendicular to the mean axis
of flow do not appreciably affect magnetization by the uniform magnetic field H
0, spin nutation by the uniform H
1 excitation r.f. Larmor field, or signal reception by the short receiver coil since
such linear components are small compared to the mean fluid momentum. Relatively slow
components of rotational momentum permit adiabatic spin alignment with the main magnetic
field H
0 ("Principles of Magnetic Resonance," third edition chapter 4, by Slichter, C.P.,
Springer-Verlag, N.Y. 1989, p. 23) and should not significantly dephase the spins
if the time of transit through the receiver coil is short. However, strong translational
and rotational components of momentum producing "eddy currents" are known to produce
signal loss (Cho, Z. et. al.; "Foundations of Medical Imaging;" John Wiley & Sons,
Inc., New York, 1993, p374-386) and are avoided by proper methods of meter pipe design
and, if necessary, by flow conditioners, as is known to those skilled in the art.
(Spitzer, David W. "Industrial Flow Measurement;" Instrument Society of America, 1990,
p. 97).
[0052] In the slower laminar regimens of flow, at low Reynolds numbers, the velocity profile
may be mapped (U.S. 5,757,187 to Wollin) or the mean value determined as above. However,
very slow flowing spins near the pipe wall will be subject to signal loss by T
1 and T
2* effects, tending to increase the measured mean velocity of flow.
[0053] For a non-uniform velocity profile, at lower Reynold's numbers, the effect of varying
H
1 on the signal distribution or signal mean value is far more complex and is more completely
developed for both mapping or measurement in U.S. 5,532,5923 to Maneval and in U.S.
5,757,187 to Wollin.
[0054] Therefore, as is shown above, controlling the current in the H
1 excitation coil to produce a selected side band amplitude in the receiver circuit
output measures the mean velocity of flow. Non-uniform velocity profiles may be mapped
by continuously inverting the matrix equation containing the sideband amplitudes,
approximately the integral Fig 7(i) (U.S. 5,757,187 to Wollin). Tuning the r.f. ω
0 generator for maximum power match between the H
1 excitation coil and the flowing medium yields an estimate of the chemical and physical
composition of the flowing material (Slichter, op.cit.).
[0055] It should be noted while nuclear magnetic resonance methods have been described above,
the principles and embodiments of this invention are applicable to either nuclear
or electron magnetic resonance.
[0056] While the above description has been concerned with determining the velocity of fluid
in pipe using a flow meter, the method and apparatus of the preferred embodiments
of the present invention may be used to determine the velocity of a moving pipe in
a fluid (i.e., a speedometer). Therefore, since the flow meter described above and
illustrated in Figures 1-3 measures the relative velocity between a pipe and a fluid,
the flow meter may be attached to a boat or other body moving in a fluid to determine
the velocity of the boat or other moving body relative to a stationary or moving fluid.
[0057] Furthermore, the principles and embodiments of this invention apply not only to liquid
or gas fluid flow in pipes, but also to flow of other fluid materials, such as mixtures,
slurries, aggregates, blowing particles, viscous plastic as well as to the conveyance
of solid material through a flow meter device.
[0058] Preferred embodiments of the invention have now been described. It will be appreciated
by those skilled in the art that such embodiments are intended to exemplify the invention.
Various other embodiments of the invention will be apparent, which fall within the
scope of the invention, as defined by the appended claims.
1. A method of non-invasively determining a mean value of a relative velocity between
a material and a container, comprising:
applying a strong time-invariant magnetic field H0 to the container;
applying a Larmor radio frequency excitation field H1 to a detection section of said container, orthogonal to the H0 field, for exciting spins within the material;
applying a phase modulating periodic component hϕ, the component being periodic in time and of a frequency Ω much smaller than the
Larmor frequency, to the strong time-invariant magnetic field H0 over said detection section of the container;
receiving signals from said spins in the material in the detection section of the
container, the spins precessing about the magnetic field being phase modulated due
to the presence of the phase modulating periodic field, thus giving rise to a line
or band spectrum, consisting of sidebands equally distributed about the central Larmor
frequency; and
determining the mean velocity from said signals, the method being characterised in that the mean velocity is determined from the strength of said Larmor frequency excitation
field necessary to obtain a specified sideband signal.
2. The method of claim 1, wherein said container comprises a cylindrical pipe and said
detection section comprises a section of the pipe to which the field component hϕ and field H1 are applied.
3. The method of claim 1, wherein said Larmor radio frequency excitation field H1 is applied to a signal sensitive volume of a receiver coil tuned near a Larmor frequency
ω0.
4. The method of claim 3, further comprising:
demodulating the signals from the phase-modulated magnetic resonance spins received
by the receiver coil by convolution with the frequency of the Larmor frequency ω0 excitation field H1; and
detecting the demodulated signals by cross-correlation with integral multiples of
the modulating frequency Ω of the phase modulating periodic field component hϕ, to continuously measure the relative mean velocity.
5. The method of claim 4, wherein the strength of the Larmor radio frequency excitation
H1 field is adjusted to produce a maximum, minimum, or other defined level of the signals
detected by the receiver coil or coils.
6. The method of claim 5, further comprising:
shifting the Larmor frequency ω0 of the H1 excitation field to create an impedance match to the material moving within the container;
and
measuring changes in chemical and physical composition of the moving material manifested
by a shift of their Larmor frequency.
7. The method of claim 4, further comprising adjusting an amplitude of the phase modulating
periodic field component hϕ of the magnetic field H0 to achieve a maximum obtainable detected signal output.
8. The method of claim 2, wherein the material comprises a liquid or gas fluid moving
along an axis of the pipe.
9. The method of claim 2, wherein the material comprises a slurry, aggregate, blowing
particles, a viscous plastic or solid material moving along an axis of the pipe.
10. The method of claim 1, wherein the container moves with respect to the material, so
that the velocity of the container is measured.
11. The method of claim 1 wherein the container is stationary.
12. The method of claim 1, wherein the Larmor radio frequency excitation field H1 is a continuous, non-pulsed field.
13. The method of claim 3, wherein the receiver coil is wound orthogonal to an Larmor
excitation field H1 coil so as to decouple a noise from, and a signal from, the Larmor excitation field
H1.
14. An apparatus for determining a mean value of a relative velocity between a material
and a container (4), the apparatus comprising a container;
means (5) arranged to apply a strong time-invariant magnetic field H0 to the container;
means (25) arranged to apply a phase modulating periodic component hϕ, the component being periodic in time, to the strong time-invariant magnetic field
H0 over a detection section of the container;
means (20, 28) arranged to apply a Larmor radio frequency excitation field H1 to said detection section of said container, orthogonal to the H0 field, for exciting spins within the material;
means (21) arranged to receive radio frequency signals from said spins within the
material in the detection section of the container;
a sideband demodulation detector arranged to detect the amplitude of sidebands caused
by spins precessing about the magnetic field and which are phase modulated due to
the presence of the phase modulating periodic field, thus giving rise to a line or
band spectrum, consisting of sidebands equally distributed about the central Larmor
frequency; characterized in that the apparatus comprises a velocity determining circuit arranged to determine the
mean velocity from the strength of said Larmor frequency excitation field necessary
to obtain a specified sideband signal.
15. A velocity measurement apparatus according to claim 14, wherein the container (4)
is cylindrical;
the apparatus further comprising a receiving coil (21) adjacent to a detection section
of the container as the means arranged to receive radio frequency signals;
and wherein the velocity determining circuit is electrically coupled to the receiving
coil.
16. The apparatus of claim 15, wherein the means (5) arranged to apply a strong time-invariant
magnetic field H0 comprises permanent or resistive magnets (8, 9) located adjacent to the pipe or a
solenoid magnet wound around the container.
17. The apparatus of claim 16, wherein the means arranged to apply a phase modulating
periodic component hϕ comprises a coil (25) wound adjacent to said detection section of said container.
18. The apparatus of claim 17, wherein the means arranged to apply a Larmor radio frequency
excitation field H1 comprises a cylindrical or a bird cage radio frequency emitting coil (20) adjacent
the detection section of said container.
19. The apparatus of claim 18, wherein the means (21) arranged to receive radio frequency
signals is a receiver coil (21) wound orthogonal to the Larmor radio frequency excitation
field H1 emitting coil.
20. The apparatus of claim 15, wherein the velocity determining circuit comprises:
a Larmor frequency oscillator (28) for producing a Larmor frequency signal which is
fed to a frequency divider and an amplifier;
the frequency divider supplying a reference phase modulation frequency to
a sideband detector arranged to detect an amplitude of sidebands of a signal received
by the means for receiving radio frequency signals, the detection being performed
by cross-correlation with integral multiples of the reference phase modulation frequency;
wherein the amplifier is arranged to provide an output velocity signal, the gain of
the amplifier is controlled by the sideband detector, and the output of the amplifier
is connected to the means arranged to apply a Larmor radio frequency signal.
1. Verfahren zur nichtinvasiven Bestimmung eines Mittelwerts einer Relativgeschwindigkeit
zwischen einem Stoff und einem Behälter, beinhaltend:
das Anlegen eines starken zeitinvarianten Magnetfelds H0 an den Behälter;
das Anlegen eines Larmor-Hochfrequenz-Anregungsfelds H1 an einen Erfassungsabschnitt des genannten Behälters senkrecht zum H0-Feld zur Anregung von Spins im Stoff;
das Anwenden einer phasenmodulierenden periodischen Komponente hϕ, welche zeitlich periodisch ist und eine viel niedrigere Frequenz Ω als die Larmor-Frequenz
aufweist, auf das starke zeitinvariante Magnetfeld H0 über den genannten Erfassungsabschnitt des Behälters;
das Empfangen von Signalen der genannten Spins im Stoff im Erfassungsabschnitt des
Behälters, wobei die um das Magnetfeld präzedierenden Spins infolge der Anwesenheit
des phasenmodulierenden periodischen Felds phasenmoduliert sind und damit ein Linien-
oder Bandspektrums entstehen lassen, das aus gleichmässig um die zentrale Larmor-Frequenz
verteilten Seitenbändern besteht; und
das Bestimmen der mittleren Geschwindigkeit anhand der genannten Signale, wobei das
Verfahren dadurch gekennzeichnet ist, dass die mittlere Geschwindigkeit aus der zur Erzeugung eines festgelegten Seitenbandsignals
notwendigen Stärke des Larmorfrequenz-Anregungsfelds bestimmt wird.
2. Verfahren nach Anspruch 1, worin der genannte Behälter ein zylindrisches Rohr beinhaltet
und der genannte Erfassungsabschnitt einen Abschnitt des Rohrs beinhaltet, an den
die Feldkomponente hϕ und das Feld H1 angelegt werden.
3. Verfahren nach Anspruch 1, worin das genannte Larmor-Hochfrequenz-Anregungsfeld H1 an ein signalempfindliches Volumen einer auf die Nähe einer Larmor-Frequenz ω0 abgestimmten Empfangsspule angelegt wird.
4. Verfahren nach Anspruch 3, weiter beinhaltend:
das Demodulieren der von der Empfangsspule empfangenen Signale der phasenmodulierten
magnetischen Resonanzspins durch Faltung mit der Frequenz des Anregungsfelds H1 der Larmor-Frequenz ω0; und
die Erfassung der demodulierten Signale durch Kreuzkorrelation mit ganzzahligen Mehrfachen
der Modulationsfrequenz Ω der phasenmodulierenden periodischen Feldkomponente hϕ zur kontinuierlichen Messung der mittleren Relativgeschwindigkeit.
5. Verfahren nach Anspruch 4, worin die Stärke des Larmor-Hochfrequenz-Anregungsfelds
H1 so eingestellt wird, dass ein Maximal-, Minimal- oder ein anderer definierter Pegel
der von der Empfangsspule oder den -spulen erfassten Signale erzeugt wird.
6. Verfahren nach Anspruch 5, weiter beinhaltend:
das Verschieben der Larmor-Frequenz ω0 des H1-Anregungsfelds, um eine Impedanzanpassung an den sich im Behälter bewegenden Stoff
zu erzielen; und
die Messung von Veränderungen der chemischen oder physikalischen Zusammensetzung des
bewegten Stoffs durch eine Verschiebung von deren Larmor-Frequenz.
7. Verfahren nach Anspruch 4, weiter beinhaltend die Einstellung einer Amplitude der
phasenmodulierenden periodischen Feldkomponente hϕ des Magnetfelds H0 derart, dass ein grösstmögliches erfassbares Ausgangssignal erhalten wird.
8. Verfahren nach Anspruch 2, worin der Stoff eine Flüssigkeit oder ein Gas beinhaltet,
welche(s) sich entlang der Rohrachse bewegt.
9. Verfahren nach Anspruch 2, worin der Stoff Schlamm, Stoffgemische, geblasene Partikel,
zähflüssige plastische oder feste Stoffe beinhaltet, welche sich entlang der Rohrachse
bewegen.
10. Verfahren nach Anspruch 1, worin der Behälter sich in Bezug auf den Stoff bewegt,
so dass die Geschwindigkeit des Behälters gemessen wird.
11. Verfahren nach Anspruch 1, worin der Behälter ortsfest ist.
12. Verfahren nach Anspruch 1, worin das Larmor-Hochfrequenz-Anregungsfeld H1 ein kontinuierliches, ungepulstes Feld ist.
13. Verfahren nach Anspruch 3, worin die Empfangsspule senkrecht zu einer Spule für das
Larmor-Anregungsfeld H1 gewickelt ist, um Störgeräusch sowie Signal vom Larmor-Anregungsfeld H1 zu entkoppeln.
14. Apparat zur Bestimmung eines Mittelwerts einer Relativgeschwindigkeit zwischen einem
Stoff und einem Behälter (4), wobei der Apparat einen Behälter beinhaltet;
Mittel (5) zum Anlegen eines starken zeitinvarianten Magnetfelds H0 an den Behälter;
Mittel (25) zum Anwenden einer phasenmodulierenden periodischen Komponente hϕ, welche zeitlich periodisch ist, auf das starke zeitinvariante Magnetfeld H0 über einen Erfassungsabschnitt des Behälters;
Mittel (20, 28) zum Anlegen eines Larmor-Hochfrequenz-Anregungsfelds H1 an den genannten Erfassungsabschnitt des genannten Behälters senkrecht zum H0-Feld zur Anregung von Spins im Stoff;
Mittel (21) zum Empfang von Radiofrequenzsignalen der genannten Spins im Stoff im
Erfassungsabschnitt des Behälters;
einen Seitenband-Demodulationsdetektor zur Erfassung der Amplitude von Seitenbändern,
welche durch Spins erzeugt werden, die um das Magnetfeld präzedieren und infolge der
Anwesenheit des phasenmodulierenden periodischen Felds phasenmoduliert sind und damit
zur Entstehung eines Linien- oder Bandspektrums führen, das aus gleichmässig um die
zentrale Larmor-Frequenz verteilten Seitenbändern besteht;
dadurch gekennzeichnet, dass der Apparat eine Geschwindigkeitsbestimmungsschaltung zur Bestimmung der mittleren
Geschwindigkeit anhand der zur Erzeugung eines festgelegten Seitenbandsignals notwendigen
Stärke des Larmor-Frequenz-Anregungsfelds beinhaltet.
15. Geschwindigkeitsmessapparat nach Anspruch 14, worin der Behälter (4) zylindrisch ist;
wobei der Apparat als Mittel zum Empfang von Radiofrequenzsignalen weiter eine an
einen Erfassungsabschnitt des Behälters angrenzende Empfangsspule (21) beinhaltet;
und worin die Geschwindigkeitsbestimmungsschaltung mit der Empfangsspule elektrisch
gekoppelt ist.
16. Apparat nach Anspruch 15, worin das Mittel (5) zum Anlegen eines starken zeitinvarianten
Magnetfelds H0 an das Rohr angrenzende Permanent- oder Widerstandsmagnete (8, 9) oder einen um den
Behälter gewickelten Elektromagneten beinhaltet.
17. Apparat nach Anspruch 16, worin das Mittel zum Anlegen einer phasenmodulierenden periodischen
Komponente hϕ eine an den genannten Erfassungsabschnitt des genannten Behälters angrenzend gewickelte
Spule (25) beinhaltet.
18. Apparat nach Anspruch 17, worin das Mittel zum Anlegen eines Larmor-Hochfrequenz-Anregungsfelds
H1 eine an den Erfassungsabschnitt des genannten Behälters angrenzende zylindrische
oder Bird Cage-Hochfrequenz-Sendespule (20) beinhaltet.
19. Apparat nach Anspruch 18, worin das Mittel (21) zum Empfang von Radiofrequenzsignalen
eine senkrecht zur Sendespule für das Larmor-Radiofrequenz-Anregungsfeld H1 gewickelte Empfangsspule (21) ist.
20. Apparat nach Anspruch 15, worin die Geschwindigkeitsbestimmungsschaltung beinhaltet:
einen Larmor-Frequenz-Oszillator (28) zur Erzeugung eines Larmor-Frequenz-Signals,
welches einem Frequenzteiler und einem Verstärker zugeführt wird;
wobei der Frequenzteiler eine Referenz-Phasenmodulationsfrequenz liefert für
einen Seitenband-Detektor zur Erfassung einer Amplitude von Seitenbändern eines vom
Mittel zum Empfang von Hochfrequenzsignalen empfangenen Signals, wobei die Erfassung
durch Kreuzkorrelation mit ganzzahligen Mehrfachen der Referenz-Phasenmodulationsfrequenz
erfolgt;
worin der Verstärker in der Lage ist, ein Geschwindigkeits-Ausgangssignal zu liefern,
die Verstärkung des Verstärkers durch den Seitenband-Detektor gesteuert wird und der
Ausgang des Verstärkers mit dem Mittel zum Anlegen eines Larmor-Hochfrequenzsignals
verbunden ist.
1. Procédé de détermination non invasive d'une valeur moyenne d'une vitesse relative
entre une matière et un récipient, comprenant:
l'application d'un champ magnétique puissant H0 temporellement invariant au récipient;
l'application d'un champ d'excitation radiofréquence de Larmor H1 à une section de détection dudit récipient, orthogonalement au champ H0, afin d'exciter des spins dans la matière;
l'application d'une composante périodique modulatrice de phase hϕ, ladite composante étant périodique dans le temps et ayant une fréquence Ω largement
inférieure à la fréquence de Larmor, au champ magnétique puissant H0 temporellement invariant sur ladite section de détection du récipient;
la réception de signaux desdits spins dans la matière dans la section de détection
du récipient, les spins précessant autour du champ magnétique étant modulés en phase
à raison de la présence du champ périodique modulateur de phase, engendrant ainsi
un spectre de raies ou de bandes constitué de bandes latérales distribuées uniformément
autour de la fréquence de Larmor centrale; et
la détermination de la vitesse moyenne à partir desdits signaux,
le procédé étant caractérisé en ce que la vitesse moyenne est déterminée sur la base de la puissance dudit champ d'excitation
à fréquence de Larmor nécessaire pour obtenir un signal à bande latérale spécifié.
2. Procédé selon la revendication 1, où ledit récipient comprend un tube cylindrique
et ladite section de détection comprend une section du tube à laquelle sont appliqués
la composante de champ hϕ et le champ H1.
3. Procédé selon la revendication 1, où ledit champ d'excitation radiofréquence de Larmor
H1 est appliqué à un volume sensible aux signaux d'une bobine réceptrice accordée à
proximité d'une fréquence de Larmor ω0.
4. Procédé selon la revendication 3, comprenant en outre:
la démodulation des signaux des spins en résonance magnétique modulés en phase reçus
par la bobine réceptrice par convolution avec la fréquence du champ d'excitation H1 à fréquence de Larmor ω0; et
la détection des signaux démodulés par corrélation croisée avec des multiples entiers
de la fréquence de modulation Ω de la composante de champ modulatrice de phase périodique
hϕ afin de mesurer continuellement la vitesse relative moyenne.
5. Procédé selon la revendication 4, où la puissance du champ d'excitation radiofréquence
de Larmor H1 est réglée de manière à produire un niveau maximum, minimum ou un autre niveau défini
des signaux détectés par la bobine ou les bobines de réception.
6. Procédé selon la revendication 5, comprenant en outre:
le décalage de la fréquence de Larmor ω0 du champ d'excitation H1 de manière à créer une adaptation d'impédance à la matière se déplaçant à l'intérieur
du récipient; et
la mesure de changements de la composition chimique et physique de la matière en déplacement
manifestés par un décalage de leur fréquence de Larmor.
7. Procédé selon la revendication 4, comprenant en outre le réglage d'une amplitude de
la composante de champ périodique modulatrice de phase hϕ du champ magnétique H0 de manière à obtenir un signal de sortie détecté qui soit le maximum pouvant être
atteint.
8. Procédé selon la revendication 2, où la matière comprend un liquide ou un gaz se déplaçant
le long d'un axe du tube.
9. Procédé selon la revendication 2, où la matière comprend une bouillie, un agrégat,
des particules soufflées, une matière plastique ou solide visqueuse se déplaçant le
long d'un axe du tube.
10. Procédé selon la revendication 1, où le récipient se déplace par rapport à la matière,
de sorte que la vitesse du récipient est mesurée.
11. Procédé selon la revendication 1, où le récipient est stationnaire.
12. Procédé selon la revendication 1, où le champ d'excitation radiofréquence de Larmor
H1 est un champ continu non pulsé.
13. Procédé selon la revendication 3, où la bobine réceptrice est enroulée orthogonalement
à une bobine pour le champ d'excitation de Larmor H1 de manière à découpler du champ d'excitation de Larmor H1 un bruit ainsi qu'un signal.
14. Appareil pour déterminer une valeur moyenne d'une vitesse relative entre une matière
et un récipient (4), l'appareil comprenant un récipient;
des moyens (5) agencés de sorte à appliquer au récipient un champ magnétique puissant
H0 temporellement invariant;
des moyens (25) agencés de sorte à appliquer au champ magnétique puissant H0 temporellement invariant sur une section de détection du récipient une composante
périodique modulatrice de phase hϕ, ladite composante étant périodique dans le temps;
des moyens (20, 28) agencés de sorte à appliquer un champ d'excitation radiofréquence
de Larmor H1 à ladite section de détection dudit récipient, orthogonalement au champ H0, afin d'exciter des spins dans la matière;
des moyens (21) agencés de sorte à recevoir des signaux radiofréquence desdits spins
dans la matière dans la section de détection du récipient;
un détecteur à démodulation des bandes latérales agencé de sorte à détecter l'amplitude
de bandes latérales crées par des spins précessant autour du champ magnétique et qui
sont modulés en phase à raison de la présence du champ périodique modulateur de phase,
engendrant ainsi un spectre de raies ou de bandes constitué de bandes latérales distribuées
uniformément autour de la fréquence de Larmor centrale;
caractérisé en ce que l'appareil comprend un circuit de détermination de la vitesse agencé de sorte à déterminer
la vitesse moyenne sur la base de la puissance dudit champ d'excitation à fréquence
de Larmor nécessaire pour obtenir un signal à bande latérale spécifié.
15. Appareil de mesure de la vitesse selon la revendication 14, où le récipient (4) est
cylindrique;
l'appareil comprenant en outre une bobine réceptrice (21) adjacente à une section
de détection du récipient en tant que moyen agencé de sorte à recevoir des signaux
radiofréquence;
et où le circuit de détermination de la vitesse est électriquement couplé à la bobine
réceptrice.
16. Appareil selon la revendication 15, où le moyen (5) agencé de sorte à appliquer un
champ magnétique puissant H0 temporellement invariant comprend des aimants permanents ou résistifs (8, 9) adjacents
au tube ou un aimant solénoïde enroulé autour du récipient.
17. Appareil selon la revendication 16, où le moyen agencé de sorte à appliquer une composante
périodique modulatrice de phase hϕ comprend une bobine (25) enroulée à côté dudit récipient.
18. Appareil selon la revendication 17, où le moyen agencé de sorte à appliquer un champ
d'excitation radiofréquence de Larmor H1 comprend une bobine émettrice (20) de radiofréquence cylindrique ou en cage d'oiseau
adjacente à la section de détection dudit récipient.
19. Appareil selon la revendication 18, où le moyen (21) agencé de sorte à recevoir des
signaux radiofréquence est une bobine réceptrice (21) enroulée orthogonalement à la
bobine émettrice du champ d'excitation radiofréquence de Larmor H1.
20. Appareil selon la revendication 15, où le circuit de détermination de la vitesse comprend:
un oscillateur à fréquence de Larmor (28) pour produire un signal à fréquence de Larmor,
qui est alimenté à un diviseur de fréquence et à un amplificateur;
le diviseur de fréquence fournissant une fréquence référence de modulation de phase
à
un détecteur de bandes latérales agencé de sorte à détecter une amplitude des bandes
latérales d'un signal reçu par le moyen de réception de signaux radiofréquence, la
détection étant effectuée par corrélation croisée avec des multiples entiers de la
fréquence référence de modulation de phase;
où l'amplificateur est agencé de sorte à fournir un signal de sortie de vitesse, le
gain de l'amplificateur est commandé par le détecteur de bandes latérales et la sortie
de l'amplificateur est reliée au moyen agencé de sorte à appliquer un signal radiofréquence
de Larmor.