

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 1 233 783 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

Note: Bibliography reflects the latest situation

(15) Correction information:

Corrected version no 1 (W1 B1)
Corrections, see page(s)
56-58,61-66,70,72,76,86,87,92,93

(51) Int Cl.:

A61K 39/295 (1985.01) **C07K 19/00** (1995.01)
A61P 31/12 (2000.01) **C12N 15/62** (1990.01)
C12N 5/10 (1990.01)

(48) Corrigendum issued on:

15.03.2006 Bulletin 2006/11

(86) International application number:

PCT/US2000/032249

(45) Date of publication and mention
of the grant of the patent:

09.03.2005 Bulletin 2005/10

(87) International publication number:

WO 2001/038358 (31.05.2001 Gazette 2001/22)

(21) Application number: **00982225.5**(22) Date of filing: **22.11.2000**

(54) HBV/HCV VIRUS-LIKE PARTICLE

HBV/HCV Virus-ähnliche Partikel
 PARTICULE DE TYPE VIRUS HBV/HCV

(84) Designated Contracting States:

**AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
 MC NL PT SE TR**

(30) Priority: **24.11.1999 US 167224 P**

(43) Date of publication of application:

28.08.2002 Bulletin 2002/35

(60) Divisional application:

04078119.7 / 1 535 628

(73) Proprietor: **CHIRON CORPORATION
 Emeryville, California 94608 (US)**

(72) Inventors:

- **SELBY, Mark,**
Chiron Corporation
Emeryville, CA 94608 (US)
- **GLAZER, Edward,**
Chiron Corporation
Emeryville, CA 94608 (US)
- **HOUGHTON, Michael,**
Chiron Corporation
Emeryville, CA 94608 (US)

(74) Representative: **Hallybone, Huw George et al**

**Carpmaels and Ransford,
 43 Bloomsbury Square
 London WC1A 2RA (GB)**

(56) References cited:

EP-A- 0 201 416 **US-A- 5 098 704**

- **LEE IHL-HEE ET AL:** "Presentation of the hydrophilic domains of hepatitis C viral E2 envelope glycoprotein on hepatitis B surface antigen particles." **JOURNAL OF MEDICAL VIROLOGY**, vol. 50, no. 2, 1996, pages 145-151, XP000990962 ISSN: 0146-6615 cited in the application
- **DATABASE WPI Section Ch, Week 199814**
Derwent Publications Ltd., London, GB; Class B04, AN 1998-156879 XP002164673 LEE: & KR 97 010 787 A (LG CHEM LTD), 27 March 1997 (1997-03-27)
- **MAJOR MARIAN E ET AL:** "DNA-based immunization with chimeric vectors for the induction of immune responses against the hepatitis C virus nucleocapsid." **JOURNAL OF VIROLOGY**, vol. 69, no. 9, 1995, pages 5798-5805, XP002164671 ISSN: 0022-538X

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

- INCHAUSPE G ET AL: "DNA vaccination for the induction of immune responses against hepatitis C virus proteins" VACCINE, GB, BUTTERWORTH SCIENTIFIC, GUILDFORD, vol. 15, no. 8, 1 June 1997 (1997-06-01), pages 853-856, XP004075669 ISSN: 0264-410X cited in the application
- NAKANO ISAO ET AL: "Immunization with plasmid DNA encoding hepatitis C virus envelope E2 antigenic domains induces antibodies whose immune reactivity is linked to the injection mode." JOURNAL OF VIROLOGY, vol. 71, no. 9, 1997, pages 7101-7109, XP002164672 ISSN: 0022-538X cited in the application

Description**TECHNICAL FIELD OF THE INVENTION**

5 [0001] The invention is related to the area of recombinant vaccines. It is particularly related to the field of chimeric antigens and virus-like particles for use in vaccines, especially combination vaccines for Hepatitis B virus (HBV) and Hepatitis C virus (HCV).

BACKGROUND OF THE INVENTION

10 [0002] Hepatitis C virus (HCV) infects approximately 1 % of the world's population and causes serious health problems. Over 75% of acutely infected individuals eventually progress to a chronic carrier state that can result in cirrhosis, liver failure, and hepatocellular carcinoma. A very small fraction of chronically infected patients clear HCV naturally and resolve chronic hepatitis. See Alter *et al.* (1992) N. Engl. J. Med. 327:1899-1905; Resnick and Koff. (1993) Arch. Intern. Med. 153:1672-1677; Seeff (1995) Gastrointest. Dis. 6:20-27; Tong *et al.* (1995) N. Engl. J. Med. 332:1463-1466. Immunization against E2 glycoproteins of some flaviviruses (see e.g., Konishi *et al.*, (1992) Virology 188: 714-720), including HCV (Ishii *et al.*, (1998) Hepatology 28: 1117-1120), may protect against infection. However, attempts to express recombinant HCV E1 and E2 glycoproteins have been frustrated by the fact that these proteins are not secreted from the host cell but are retained within the endoplasmic reticulum (Dubuisson *et al.* (1994) J. Virology 68: 6147-6160).

15 [0003] One approach to making vaccines for HCV and other viruses which has been attempted is to prepare chimeric antigens consisting of fusions of hepatitis B virus surface antigen (HBsAg) with a heterologous antigen, for example a portion of an HCV protein. See, e.g., Inchauspe *et al.* (1998) Dev. Biol. Stand. 92: 162-168; Nakano *et al.* (1997) J. Virol. (1997) 71: 7101-7109; and Inchauspe *et al.* (1997) Vaccine 15: 853-856. The use of HBsAg is attractive for the production of immunogenic compositions such as vaccines because HBsAg is highly immunogenic and is secreted from cultured cells in the form of virus-like particles (U.S. Patent 5,098,704). Attempts to introduce small portions of viral proteins into HBsAg have succeeded in the production of virus-like particles (see e.g., Delpeyroux *et al.* (1990) J. Virology 64: 6090-6100, who inserted an 11 amino acid segment of polio virus capsid protein into HBsAg). However, in one study only two out of six fusion proteins containing HBsAg combined with different hydrophilic domains of HCV E2 were secreted into the culture medium as virus-like particles (Lee *et al.* (1996) J. Med. Virol. 50: 145-151), possibly because the E2 inserts were too large or hydrophilic. The insertion site of heterologous epitopes into HBsAg may be an important factor. A study which inserted an epitope of HBV nucleocapsid (HBcAg) at various positions into HBsAg found that insertion into an internal site in HBsAg resulted in a chimeric protein that was immunogenic for HBcAg, while insertion at the C-terminus was weakly immunogenic (Schodel *et al.* (1992) J. Virology 66: 106-114). Insertion at the N-terminus prevented surface access of the HBcAg epitope in the resultant particles and was non-immunogenic (*Id.*). Apparently, the molecular context in which an epitope is presented is important in determining immunogenicity, probably because of subtle alterations of protein secondary and tertiary structure. This principle was further illustrated by Eckhart *et al.* ((1996) J. Gen. Virol. 77: 2001-2008), who introduced a conserved, six amino acid epitope of HIV-1 gp41 protein into influenza hemagglutinin and obtained neutralizing antibodies, but could not generate neutralizing antibodies when the same epitope was inserted into HBsAg. Smaller isolated epitopes are more likely to be sensitive to such effects than larger portions of an immunogenic protein.

40 [0004] Currently there is no method available for expressing entire E1 or E2 glycoproteins of HCV in virus-like particles for use in immunization. Available methods limit chimeric proteins based on HBsAg to the insertion of only small isolated domains of E2, which may or may not have a native immunogenic structure. Thus, there remains a need in the art for methods and materials that can be used to express HCV antigens in an immunogenic form in virus-like particles.

SUMMARY OF THE INVENTION

45 [0005] It is an object of the invention to provide HBV/HCV chimeric antigens for use in immunogenic compositions. It is a further object of the invention to provide virus-like particles comprising HBV/HCV chimeric antigens and methods and materials for producing such virus-like particles. It is another object of the invention to provide HBV/HCV combination vaccines. These and other objects of the invention are provided by one or more of the embodiments described below.

50 [0006] One embodiment of the invention provides a virus-like particle for use as an immunogen or as a component of a vaccine. The virus-like particle comprises a first HBsAg (hepatitis B virus surface antigen) and a chimeric antigen. The chimeric antigen comprises a second HBsAg which is linked to an HCV immunogenic polypeptide. The first and the second HBsAg each comprise a substantially complete S domain.

55 [0007] Another embodiment of the invention provides another virus-like particle for use as an immunogen or as a component of a vaccine. The virus-like particle comprises a first HBsAg and first and second chimeric antigens. The first chimeric antigen comprises a second HBsAg which is linked to a first immunogenic polypeptide comprising an HCV

E1 glycoprotein or a fragment thereof. The second chimeric antigen comprises a third HBsAg which is linked to a second immunogenic polypeptide comprising an HCV E2 glycoprotein or a fragment thereof. The first, second and third HBsAg each comprise a substantially complete S domain.

[0008] A further embodiment of the invention provides a method of producing virus-like particles. A cell is cultured in a culture medium, whereby the cell expresses virus-like particles comprising a first HBsAg and a chimeric antigen. The chimeric antigen comprises a second HBsAg which is linked to an HCV immunogenic polypeptide. The first and the second HBsAg each comprise a substantially complete S domain. The virus-like particles are then isolated from the culture medium.

[0009] Yet another embodiment is a method of producing a cell line that expresses virus-like particles. A cell is transfected with a vector that expresses virus-like particles comprising a first HBsAg and a chimeric antigen. The chimeric antigen comprises a second HBsAg which is linked to an HCV immunogenic polypeptide. The first and the second HBsAg each comprise a substantially complete S domain. The cell is cultured to produce a cell line that expresses the virus-like particles.

[0010] Still other embodiments of the invention are cell lines that express virus-like particles. In one cell line, the virus-like particles comprise a first HBsAg and a chimeric antigen. The chimeric antigen comprises a second HBsAg which is linked to an HCV immunogenic polypeptide. The first and the second HBsAg each comprise a substantially complete S domain. In another type of cell line, the virus-like particles comprise a first HBsAg and first and second chimeric antigens. The first chimeric antigen comprises a second HBsAg which is linked to a first immunogenic polypeptide comprising an HCV E1 glycoprotein or a fragment thereof, and the second chimeric antigen comprises a third HBsAg which is linked to a second immunogenic polypeptide comprising an HCV E2 glycoprotein or a fragment thereof. The first, second, and third HBsAg each comprise a substantially complete S domain.

[0011] The invention thus provides the art with novel methods and materials for the production of HBV/HCV combination vaccines.

25 **BRIEF DESCRIPTION OF THE DRAWINGS**

[0012]

30 Figures 1A and 1B-1F show the expression vector pCMVn (Fig. 1A) and its nucleotide sequence (Figs. 1B-1F; SEQ ID NO:1).

Figures 2A and 2B-2I show the expression vector pCMVII-pS2-sAg (Fig. 2A) and its nucleotide sequence (Figs. 2B-2I and SEQ ID NO:2; preS2 coding sequence begins at nucleotide position 1988 and ends at nucleotide base 2152, and SAg coding sequence begins at base 2153 and ends at 2830). The amino acid sequence of the encoded preS2-S polypeptide is also displayed in Figs. 2B-2I and in SEQ ID NO:3.

35 Figures 3A and 3B-3I show the expression vector pCMVII opti 330 E1/SAg (Fig. 3A) and its nucleotide sequence (Figs. 3B-3I and SEQ ID NO:4; 330 E1 coding sequence begins at nucleotide position 1992 and ends at nucleotide base 2483 and SAg coding sequence begins at base 2484). The amino acid sequence of the encoded chimeric antigen polypeptide is also displayed in Figs. 3B-3I and in SEQ ID NO:5.

40 Figures 4A and 4B-4F show the expression vector pCMV-II E2661-sAg (Fig. 4A) and its nucleotide sequence (Figs. 4B-4F and SEQ ID NO:6; 661 E2 coding sequence begins at nucleotide position 1997 and ends at nucleotide base 2900, and sAg coding sequence begins at base 2907). The amino acid sequence of the encoded chimeric antigen polypeptide is also displayed in Figs. 4B-4F and in SEQ ID NO:7.

45 Figure 5 shows the results of sucrose density gradient centrifugation of purified recombinant HBsAg virus-like particles. The experiment is described in Example 1.

Figures 6A and 6B illustrate the expression of HCVE2-HBsAg fusion protein in COS7 cells. Increasing amounts of sAg-encoding plasmid were expressed together with HCVE2-sAg fusion plasmid. The experiment is described in Example 2. The capture antibody was MAb sAg, and the detecting antibody was MAb E2 (Fig. 6A) or MAb sAg (Fig. 6B).

50 Figures 7A and 7B show the sedimentation profile of virus-like particles expressed from COS7 cells transiently transfected with different ratios of sAg:E2-sAg fusion protein. The experiment is described in Example 2. The capture antibody was MAb sAg, and the detecting antibody was MAb E2 (Fig. 7A) or MAb sAg (Fig. 7B).

Figures 8A and 8B demonstrate the expression of HCVE1-HBsAg fusion protein in COS7 cells. Increasing amounts of sAg-encoding plasmid were expressed together with HCVE1-sAg fusion plasmid. The experiment is described in Example 3. The capture antibody was MAb sAg, and the detecting antibody was MAb E2 (Fig. 8A) or MAb sAg (Fig. 8B).

55 Figures 9A and 9B show the sedimentation profile of virus-like particles expressed from COS7 cells transiently transfected with a 5:1 ratio of sAg:E1-sAg fusion protein. The experiment is described in Example 3. The capture antibody was MAb sAg, and the detecting antibody was MAb E1 (Fig. 9A) or MAb sAg (Fig. 9B).

Figures 10A and 10B show the co-expression and secretion of E1-sAg and E2-sAg fusion proteins in COS7 cells. Increasing amounts of sAg-encoding plasmid were expressed together with constant amounts of both E1-sAg and E2-sAg fusion plasmids. The experiment is described in Example 4. In Fig. 10A, detecting antibodies for E1 and E2 were employed, demonstrating the secretion into the media of both E1- and E2-derived polypeptides. In Fig. 10B, the detecting antibody was MAb sAg.

DETAILED DESCRIPTION OF THE INVENTION

[0013] A summary of standard techniques and procedures which may be employed in order to perform the invention follows. This summary is not a limitation on the invention but, rather, gives examples which may be used, but which are not required.

[0014] The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature e.g., Sambrook *Molecular Cloning: A Laboratory Manual, Second Edition* (1989); *DNA Cloning, Volumes I and II* (D.N. Glover ed. 1985); *Oligonucleotide Synthesis* (M.J. Gait ed, 1984); *Animal Cell Culture* (R.I. Freshney ed. 1986); the *Methods in Enzymology* series (Academic Press, Inc.), especially volumes 154 & 155; *Gene Transfer Vectors for Mammalian Cells* (J.H. Miller and M.P. Calos eds. 1987, Cold Spring Harbor Laboratory); Mayer and Walker, eds. (1987), *Immunochemical Methods in Cell and Molecular Biology* (Academic Press, London).

[0015] It must be noted that, as used in this specification and the appended claims, the singular forms "a", "an" and "the" include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to "an antigen" includes a mixture of two or more antigens, and the like.

[0016] Standard abbreviations for nucleotides and amino acids are used in this specification. For example, the following amino acid abbreviations are used throughout the text:

25	Alanine: Ala (A)	Arginine: Arg (R)
	Asparagine: Asn (N)	Aspartic acid: Asp (D)
	Cysteine: Cys (C)	Glutamine: Gln (Q)
	Glutamic acid: Glu (E)	Glycine: Gly (G)
30	Histidine: His (H)	Isoleucine: Ile (I)
	Leucine: Leu (L)	Lysine: Lys (K)
	Methionine: Met (M)	Phenylalanine: Phe (F)
	Proline: Pro (P)	Serine: Ser (S)
35	Threonine: Thr (T)	Tryptophan: Trp (W)
	Tyrosine: Tyr (Y)	Valine: Val (V)

L Definitions

[0017] In describing the present invention, the following terms will be employed, and are intended to be defined as indicated below.

[0018] The terms "polypeptide" and "protein" are used interchangeably herein and refer to a polymer of amino acid residues and are not limited to a minimum length of the product. Thus, peptides, oligopeptides, dimers, multimers, and the like, are included within the definition. Both full-length proteins and fragments thereof are encompassed by the definition. The terms also include postexpression modifications of the polypeptide, for example, glycosylation, acetylation, phosphorylation and the like. Furthermore, for purposes of the present invention, a "polypeptide" refers to a protein which includes modifications, such as deletions, additions and substitutions (generally conservative in nature), to the native sequence, so long as the protein maintains the desired activity. These modifications may be deliberate, as through site-directed mutagenesis, or may be accidental, such as through mutations of hosts which produce the proteins or errors due to PCR amplification.

[0019] An HCV polypeptide is a polypeptide, as defined above, derived from the HCV polyprotein. HCV encodes a single polyprotein having more than 3000 amino acid residues (Choo et al. *Science* (1989) 244:359-362; Choo et al. *Proc. Natl. Acad. Sci. USA* (1991) 88:2451-2455; Han et al. *Proc. Natl. Acad. Sci. USA* (1991) 88:1711-1715). The polyprotein is processed co- and post-translationally into both structural and non-structural (NS) proteins.

[0020] In particular, several proteins are encoded by the HCV genome. The order and nomenclature of the cleavage products of the HCV polyprotein is as follows: NH₂-C-E1-E2-NS2-NS3-NS4a-NS4b-NSSa-NSSb-COOH. Initial cleavage of the polyprotein is catalyzed by host proteases which liberate three structural proteins, the N-terminal nucleocapsid protein (termed "Core") and two envelope glycoproteins, "E1" (also known as E) and "E2" (also known as E2/NS1), as

well as nonstructural (NS) proteins that contain the viral enzymes. The NS regions are termed NS2, NS3, NS4 and NS5. NS2 is an integral membrane protein with proteolytic activity. NS2, either alone or in combination with NS3, cleaves the NS2-NS3 sissle bond which in turn generates the NS3 N-terminus and releases a large polyprotein that includes both serine protease and RNA helicase activities. The NS3 protease serves to process the remaining polyprotein. Completion of polyprotein maturation is initiated by autocatalytic cleavage at the NS3-NS4a junction, catalyzed by the NS3 serine protease. Subsequent NS3-mediated cleavages of the HCV polyprotein appear to involve recognition of polyprotein cleavage junctions by an NS3 molecule of another polypeptide. In these reactions, NS3 liberates an NS3 cofactor (NS4a), two proteins with unknown function (NS4b and NS5a), and an RNA-dependent RNA polymerase (NS5b). Any one of these proteins, as well as immunogenic fragments thereof, will find use with the subject chimeric antigens.

[0021] The polypeptide for use in the chimeric antigens need not be physically derived from HCV, but may be synthetically or recombinantly produced. Moreover, the polypeptide may be derived from any of the various HCV strains, such as from strains 1, 2, 3 or 4 of HCV (described further below). A number of conserved and variable regions are known between these strains and, in general, the amino acid sequences of epitopes derived from these regions will have a high degree of sequence homology, e.g., amino acid sequence homology of more than 30%, preferably more than 40%, preferably more than 50%, preferably more than about 75%, more preferably more than about 80%-85%, preferably more than about 90%, and most preferably at least about 95%-98% sequence identity, or more, when the two sequences are aligned. Thus, for example, the term "E2" polypeptide refers to the native E2 protein from any of the various HCV strains, as well as E2 analogs, muteins and immunogenic fragments, as defined further below.

[0022] The terms "analog" and "mutein" refer to biologically active derivatives of the reference molecule, or fragments of such derivatives, that retain desired activity, such as immunological activity as described herein. In general, the term "analog" refers to compounds having a native polypeptide sequence and structure with one or more amino acid additions, substitutions (generally conservative in nature) and/or deletions, relative to the native molecule, so long as the modifications do not destroy immunogenic activity. The term "mutein" refers to peptides having one or more peptide mimics ("peptoids"), such as those described in International Publ. No. WO 91/04282. Preferably, the analog or mutein has at least the same immunoactivity as the native molecule. Methods for making polypeptide analogs and muteins are known in the art and are described further below.

[0023] Particularly preferred analogs include substitutions that are conservative in nature, i.e., those substitutions that take place within a family of amino acids that are related in their side chains. Specifically, amino acids are generally divided into four families: (1) acidic - aspartate and glutamate; (2) basic - lysine, arginine, histidine; (3) non-polar - alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar - glycine, asparagine, glutamine, cysteine, serine threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are sometimes classified as aromatic amino acids. For example, it is reasonably predictable that an isolated replacement of leucine with isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar conservative replacement of an amino acid with a structurally related amino acid, will not have a major effect on the biological activity. For example, the polypeptide of interest may include up to about 5-10 conservative or non-conservative amino acid substitutions, or even up to about 15-25 conservative or non-conservative amino acid substitutions, or any integer between 5-25, so long as the desired function of the molecule remains intact. One of skill in the art may readily determine regions of the molecule of interest that can tolerate change by reference to Hopp/Woods and Kyte-Doolittle plots, well known in the art.

[0024] By "fragment" is intended a polypeptide consisting of only a part of the intact full-length polypeptide sequence and structure. The fragment can include a C-terminal deletion and/or an N-terminal deletion of the native polypeptide. An "immunogenic fragment" of a particular HCV protein will generally include at least about 5-10 contiguous amino acid residues of the full-length molecule, preferably at least about 15-25 contiguous amino acid residues of the full-length molecule, and most preferably at least about 20-50 or more contiguous amino acid residues of the full-length molecule, that define an epitope, or any integer between 5 amino acids and the full-length sequence, provided that the fragment in question retains the ability to elicit an immune response as defined below. For example, preferred immunogenic fragments, include but are not limited to fragments of HCV Core that comprise, e.g., amino acids 10-45, 10-53, 67-88, 81-130, 86-100, 120-130, 121-135 and 121-170 of the polyprotein, numbered relative to the HCV-1a sequence presented in Choo et al. (1991) *Proc Natl Acad Sci USA* 88:2451, as well as defined epitopes derived from the c33c region of the HCV polyprotein, as well as any of the other various epitopes identified from the HCV core, E1, E2, NS3 and NS4 regions. See, e.g., Chien et al. *Proc. Natl. Acad. Sci. USA* (1992) 89:10011-10015; Chien et al. *J. Gastroent. Hepatol.* (1993) 8: S33-39; Chien et al. International Publ. No. WO 93/00365; Chien, D.Y. International Publ. No. WO 94/01778; and U.S. Patent No. 6,150,087. Representative fragments of E1 and E2 polypeptides include C-terminally truncated variants of these molecules, such as E1 polypeptides terminating at, e.g., amino acids 369 and lower, such as e.g., E1 polypeptides ending in amino acids 351, 352, 353 and so on, and E2 polypeptides, terminating at about amino acids 730, such as E2 polypeptides ending in for example amino acids 716, 717, 718 and so on. These molecules are described in, e.g., U.S. Patent No. 6,121,020. "Antigenic determinant" refers to the site on an antigen or hapten to which a specific antibody molecule or specific cell surface receptor binds.

[0025] The term "epitope" as used herein refers to a sequence of at least about 3 to 5, preferably about 5 to 10 or 15,

and not more than about 1,000 amino acids (or any integer therebetween), which define a sequence that by itself or as part of a larger sequence, will stimulate a host's immune system to make a cellular antigen-specific immune response when the antigen is presented, or a humoral antibody response. An epitope for use in the subject invention is not limited to a polypeptide having the exact sequence of the portion of the parent protein from which it is derived. Indeed, viral genomes are in a state of constant flux and contain several variable domains which exhibit relatively high degrees of variability between isolates. Thus the term "epitope" encompasses sequences identical to the native sequence, as well as modifications to the native sequence, such as deletions, additions and substitutions (generally conservative in nature).

5 **[0026]** Regions of a given polypeptide that include an epitope can be identified using any number of epitope mapping techniques, well known in the art. See, e.g., *Epitope Mapping Protocols* in *Methods in Molecular Biology*, Vol. 66 (Glenn E. Morris, Ed., 1996) Humana Press, Totowa, New Jersey. For example, linear epitopes may be determined by e.g., concurrently synthesizing large numbers of peptides on solid supports, the peptides corresponding to portions of the protein molecule, and reacting the peptides with antibodies while the peptides are still attached to the supports. Such techniques are known in the art and described in, e.g., U.S. Patent No. 4,708,871; Geysen et al. (1984) *Proc. Natl. Acad. Sci. USA* 81:3998-4002; Geysen et al. (1986) *Molec. Immunol.* 23:709-715. Similarly, conformational epitopes are readily identified by determining spatial conformation of amino acids such as by, e.g., x-ray crystallography and 2-dimensional nuclear magnetic resonance. See, e.g., *Epitope Mapping Protocols*, *supra*. Antigenic regions of proteins can also be identified using standard antigenicity and hydropathy plots, such as those calculated using, e.g., the Omiga version 1.0 software program available from the Oxford Molecular Group. This computer program employs the Hopp/Woods method, Hopp et al., *Proc. Natl. Acad. Sci USA* (1981) 78:3824-3828 for determining antigenicity profiles, and the Kyte-Doolittle technique, Kyte et al., *J. Mol. Biol.* (1982) 157:105-132 for hydropathy plots.

10 **[0027]** As used herein, the term "conformational epitope" refers to a portion of a full-length protein, or an analog or mutein thereof, having structural features native to the amino acid sequence encoding the epitope within the full-length natural protein. Native structural features include, but are not limited to, glycosylation and three dimensional structure. Preferably, a conformational epitope is produced recombinantly and is expressed in a cell from which it is extractable 15 under conditions which preserve its desired structural features, e.g. without denaturation of the epitope. Such cells include bacteria, yeast, insect, and mammalian cells. Expression and isolation of recombinant conformational epitopes from the HCV polyprotein are described in e.g., International Publ. Nos. WO 96/04301, WO 94/01778, WO 95/33053, WO 92/08734.

20 **[0028]** As used herein the term "T-cell epitope" refers to a feature of a peptide structure which is capable of inducing T-cell immunity towards the peptide structure or an associated hapten. T-cell epitopes generally comprise linear peptide determinants that assume extended conformations within the peptide-binding cleft of MHC molecules, (Unanue et al., *Science* (1987) 236:551-557). Conversion of polypeptides to MHC class II-associated linear peptide determinants (generally between 5 - 14 amino acids in length) is termed "antigen processing" which is carried out by antigen presenting 25 cells (APCs). More particularly, a T-cell epitope is defined by local features of a short peptide structure, such as primary amino acid sequence properties involving charge and hydrophobicity, and certain types of secondary structure, such as helicity, that do not depend on the folding of the entire polypeptide. Further, it is believed that short peptides capable of 30 recognition by helper T-cells are generally amphipathic structures comprising a hydrophobic side (for interaction with the MHC molecule) and a hydrophilic side (for interacting with the T-cell receptor), (Margalit et al., *Computer Prediction of T-cell Epitopes, New Generation Vaccines* Marcel-Dekker, Inc, ed. G.C. Woodrow et al., (1990) pp. 109-116) and 35 further that the amphipathic structures have an α -helical configuration (see, e.g., Spouge et al. *J. Immunol.* (1987) 138: 204-212; Berkower et al. *J. Immunol.* (1986) 136:2498-2503).

40 **[0029]** Hence, segments of proteins which include T-cell epitopes can be readily predicted using numerous computer programs. (See e.g., Margalit et al., *Computer Prediction of T-cell Epitopes, New Generation Vaccines* Marcel-Dekker, Inc, ed. G.C. Woodrow et al., (1990) pp. 109-116). Such programs generally compare the amino acid sequence of a 45 peptide to sequences known to induce a T-cell response, and search for patterns of amino acids which are believed to be required for a T-cell epitope.

45 **[0030]** An "immunological response" to a polypeptide or composition is the development in a subject of a humoral and/or a cellular immune response to molecules present in the composition of interest. For purposes of the present invention, a "humoral immune response" refers to an immune response mediated by antibody molecules, while a "cellular immune response" is one mediated by T-lymphocytes and/or other white blood cells. One important aspect of cellular 50 immunity involves an antigen-specific response by cytolytic T-cells ("CTLs"). CTLs have specificity for peptide antigens that are presented in association with proteins encoded by the major histocompatibility complex (MHC) and expressed on the surfaces of cells. CTLs help induce and promote the intracellular destruction of intracellular microbes, or the lysis of cells infected with such microbes. Another aspect of cellular immunity involves an antigen-specific response by helper 55 T-cells. Helper T-cells act to help stimulate the function, and focus the activity of, nonspecific effector cells against cells displaying peptide antigens in association with MHC molecules on their surface. A "cellular immune response" also refers to the production of cytokines, chemokines and other such molecules produced by activated T-cells and/or other white blood cells, including those derived from CD4+ and CD8+ T-cells.

[0031] A composition, such as an immunogenic composition, or vaccine that elicits a cellular immune response may serve to sensitize a vertebrate subject by the presentation of antigen in association with MHC molecules at the cell surface. The cell-mediated immune response is directed at, or near, cells presenting antigen at their surface. In addition, antigen-specific T-lymphocytes can be generated to allow for the future protection of an immunized host.

[0032] The ability of a particular antigen or composition to stimulate a cell-mediated immunological response may be determined by a number of assays, such as by lymphoproliferation (lymphocyte activation) assays, CTL cytotoxic cell assays, or by assaying for T-lymphocytes specific for the antigen in a sensitized subject. Such assays are well known in the art. See, e.g., Erickson et al., *J. Immunol.* (1993) 151:4189-4199; Doe et al., *Eur. J. Immunol.* (1994) 24:2369-2376; and the examples below.

[0033] Thus, an immunological response as used herein may be one which stimulates the production of CTLs, and/or the production or activation of helper T-cells. The antigen of interest may also elicit an antibody-mediated immune response. Hence, an immunological response may include one or more of the following effects: the production of antibodies by B-cells; and/or the activation of suppressor T-cells and/or $\gamma\delta$ T-cells directed specifically to an antigen or antigens present in the composition or vaccine of interest. These responses may serve to neutralize infectivity, and/or mediate antibody-complement, or antibody dependent cell cytotoxicity (ADCC) to provide protection to an immunized host. Such responses can be determined using standard immunoassays and neutralization assays, well known in the art.

[0034] An "immunogenic" polypeptide or composition is one which elicits an immunological response as defined above.

[0035] A "recombinant" protein is a protein which retains the desired activity and which has been prepared by recombinant DNA techniques as described herein. In general, the gene of interest is cloned and then expressed in transformed organisms, as described further below. The host organism expresses the foreign gene to produce the protein under expression conditions.

[0036] By "isolated" is meant, when referring to a polypeptide, that the indicated molecule is separate and discrete from the whole organism with which the molecule is found in nature or is present in the substantial absence of other biological macromolecules of the same type. The term "isolated" with respect to a polynucleotide is a nucleic acid molecule devoid, in whole or part, of sequences normally associated with it in nature; or a sequence, as it exists in nature, but having heterologous sequences in association therewith; or a molecule disassociated from the chromosome.

[0037] "Homology" refers to the percent identity between two polynucleotide or two polypeptide moieties. Two DNA, or two polypeptide sequences are "substantially homologous" to each other when the sequences exhibit at least about 50%, preferably at least about 75%, more preferably at least about 80%-85%, preferably at least about 90%, and most preferably at least about 95%-98% sequence identity over a defined length of the molecules. As used herein, substantially homologous also refers to sequences showing complete identity to the specified DNA or polypeptide sequence.

[0038] In general, "identity" refers to an exact nucleotide-to-nucleotide or amino acid-to-amino acid correspondence of two polynucleotides or polypeptide sequences, respectively. Percent identity can be determined by a direct comparison of the sequence information between two molecules by aligning the sequences, counting the exact number of matches between the two aligned sequences, dividing by the length of the shorter sequence, and multiplying the result by 100. Readily available computer programs can be used to aid in the analysis, such as ALIGN, Dayhoff; M.O. in *Atlas of Protein Sequence and Structure* M.O. Dayhoff ed., 5 Suppl. 3:353-358, National biomedical Research Foundation, Washington, DC, which adapts the local homology algorithm of Smith and Waterman *Advances in Appl. Math.* 2:482-489, 1981 for peptide analysis. Programs for determining nucleotide sequence identity are available in the Wisconsin Sequence Analysis Package, Version 8 (available from Genetics Computer Group, Madison, WI) for example, the BESTFIT, PASTA and GAP programs, which also rely on the Smith and Waterman algorithm. These programs are readily utilized with the default parameters recommended by the manufacturer and described in the Wisconsin Sequence Analysis Package referred to above. For example, percent identity of a particular nucleotide sequence to a . reference sequence can be determined using the homology algorithm of Smith and Waterman with a default scoring table and a gap penalty of six nucleotide positions.

[0039] Another method of establishing percent identity in the context of the present invention is to use the MPSRCH package of programs copyrighted by the University of Edinburgh, developed by John F. Collins and Shane S. Sturrok, and distributed by IntelliCenetics, Inc. (Mountain View, CA). From this suite of packages the Smith-Waterman algorithm can be employed where default parameters are used for the scoring table (for example, gap open penalty of 12, gap extension penalty of one, and a gap of six). From the data generated the "Match" value reflects "sequence identity." Other suitable programs for calculating the percent identity or similarity between sequences are generally known in the art, for example, another alignment program is BLAST, used with default parameters. For example, BLASTN and BLASTP can be used using the following default parameters: genetic code = standard; filter = none; strand = both; cutoff = 60; expect = 10; Matrix = BLOSUM62; Descriptions = 50 sequences; sort by = HIGH SCORE; Databases = non-redundant, GenBank + EMBL + DDBJ + PDB + GenBank CDS translations + Swiss protein + Spupdate + PIR. Details of these programs can be found at the following internet address: <http://www.ncbi.nlm.nih.gov/cgi-bin/BLAST>.

[0040] Alternatively, homology can be determined by hybridization of polynucleotides under conditions which form stable duplexes between homologous regions, followed by digestion with single-stranded-specific nuclease(s), and size

determination of the digested fragments. DNA sequences that are substantially homologous can be identified in a Southern hybridization experiment under, for example, stringent conditions, as defined for that particular system. Defining appropriate hybridization conditions is within the skill of the art. See, e.g., Sambrook et al., *supra*; *DNA Cloning, supra*; *Nucleic Acid Hybridization, supra*.

5 [0041] A "coding sequence" or a sequence which "encodes" a selected polypeptide, is a nucleic acid molecule which is transcribed (in the case of DNA) and translated (in the case of mRNA) into a polypeptide *in vitro* or *in vivo* when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxy) terminus. A transcription termination sequence may be located 3' to the coding sequence.

10 [0042] "Operably linked" refers to an arrangement of elements wherein the components so described are configured so as to perform their desired function. Thus, a given promoter operably linked to a coding sequence is capable of effecting the expression of the coding sequence when the proper transcription factors, etc., are present. The promoter need not be contiguous with the coding sequence, so long as it functions to direct the expression thereof. Thus, for example, intervening untranslated yet transcribed sequences can be present between the promoter sequence and the 15 coding sequence, as can transcribed introns, and the promoter sequence can still be considered "operably linked" to the coding sequence.

20 [0043] "Recombinant" as used herein to describe a nucleic acid molecule means a polynucleotide of genomic, cDNA, viral, semisynthetic, or synthetic origin which, by virtue of its origin or manipulation is not associated with all or a portion of the polynucleotide with which it is associated in nature. The term "recombinant" as used with respect to a protein or 25 polypeptide means a polypeptide produced by expression of a recombinant polynucleotide. In general, the gene of interest is cloned and then expressed in transformed organisms, as described further below. The host organism expresses the foreign gene to produce the protein under expression conditions.

30 [0044] A "control element" refers to a polynucleotide sequence which aids in the expression of a coding sequence to which it is linked. The term includes promoters, transcription termination sequences, upstream regulatory domains, 35 polyadenylation signals, untranslated regions, including 5'-UTRs and 3'-UTRs and when appropriate, leader sequences and enhancers, which collectively provide for the transcription and translation of a coding sequence in a host cell.

35 [0045] A "promoter" as used herein is a DNA regulatory region capable of binding RNA polymerase in a host cell and initiating transcription of a downstream (3' direction) coding sequence operably linked thereto. For purposes of the 40 present invention, a promoter sequence includes the minimum number of bases or elements necessary to initiate transcription of a gene of interest at levels detectable above background. Within the promoter sequence is a transcription initiation site, as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase. Eucaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes.

45 [0046] A control sequence "directs the transcription" of a coding sequence in a cell when RNA polymerase will bind the promoter sequence and transcribe the coding sequence into mRNA, which is then translated into the polypeptide encoded by the coding sequence.

50 [0047] "Expression cassette" or "expression construct" refers to an assembly which is capable of directing the expression of the sequence(s) or gene(s) of interest. The expression cassette includes control elements, as described above, such as a promoter which is operably linked to (so as to direct transcription of) the sequence(s) or gene(s) of interest, and often includes a polyadenylation sequence as well. Within certain embodiments of the invention, the expression 55 cassette described herein may be contained within a plasmid construct. In addition to the components of the expression cassette, the plasmid construct may also include, one or more selectable markers, a signal which allows the plasmid construct to exist as single-stranded DNA (e.g., a M13 origin of replication), at least one multiple cloning site, and a "mammalian" origin of replication (e.g., a SV40 or adenovirus origin of replication).

[0048] "Transformation," as used herein, refers to the insertion of an exogenous polynucleotide into a host cell, irrespective of the method used for insertion: for example, transformation by direct uptake, transfection, infection, and the like. For particular methods of transfection, see further below. The exogenous polynucleotide may be maintained as a nonintegrated vector, for example, an episome, or alternatively, may be integrated into the host genome.

[0049] A "host cell" is a cell which has been transformed, or is capable of transformation, by an exogenous DNA sequence.

50 [0050] By "nucleic acid immunization" is meant the introduction of a nucleic acid molecule encoding one or more selected antigens into a host cell, for the *in vivo* expression of the antigen or antigens. The nucleic acid molecule can be introduced directly into the recipient subject, such as by injection, inhalation, oral, intranasal and mucosal administration, or the like, or can be introduced *ex vivo*, into cells which have been removed from the host. In the latter case, the transformed cells are reintroduced into the subject where an immune response can be mounted against the antigen encoded by the nucleic acid molecule.

55 [0051] As used herein, "treatment" refers to any of (i) the prevention of infection or reinfection, as in a traditional vaccine, (ii) the reduction or elimination of symptoms, and (iii) the substantial or complete elimination of the pathogen in question. Treatment may be effected prophylactically (prior to infection) or therapeutically (following infection).

[0052] By "vertebrate subject" is meant any member of the subphylum cordata, including, without limitation, humans and other primates, including non-human primates such as chimpanzees and other apes and monkey species; farm animals such as cattle, sheep, pigs, goats and horses; domestic mammals such as dogs and cats; laboratory animals including rodents such as mice, rats and guinea pigs; birds, including domestic, wild and game birds such as chickens, turkeys and other gallinaceous birds, ducks, geese, and the like. The term does not denote a particular age. Thus, both adult and newborn individuals are intended to be covered. The invention described herein is intended for use in any of the above vertebrate species, since the immune systems of all of these vertebrates operate similarly.

II. Modes of Carrying out the Invention

[0053] Before describing the present invention in detail, it is to be understood that this invention is not limited to particular formulations or process parameters as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments of the invention only, and is not intended to be limiting.

[0054] Although a number of compositions and methods similar or equivalent to those described herein can be used in the practice of the present invention, the preferred materials and methods are described herein.

[0055] As noted above, chimeric antigens which combine HBsAg with portions of HCV proteins enhance the presentation to the immune system of weakly immunogenic HCV proteins due to the strong antigenicity of HBsAg. Virus-like particles typically contain a membrane envelope in which are embedded one or more viral envelope proteins. Virus-like particles are secreted by a cell infected with a virus or a cell transfected with a nucleic acid molecule encoding one or more viral proteins.

[0056] Virus-like particles are an especially advantageous form of antigen presentation. Virus-like particles containing HBsAg chimeras combine the highly antigenic nature of HBsAg itself with the desirable presentation of other antigens at the surface of a particulate preparation.

[0057] The present invention provides methods and materials which enable the production of chimeric HBV/HCV antigens in the form of virus-like particles for the production of immunogenic compositions, such as vaccines. Utilizing co-expression of HBsAg together with the chimeric antigens, it is now possible to include large segments of HCV envelope glycoproteins fused to HBsAg in the form of virus-like particles. Such particles are especially well suited for use in immunogenic compositions.

[0058] The strategy for preparing HBV/HCV virus-like particles depends first on the production of one or more chimeric antigens for display in the particles. Such chimeric antigens are fusion proteins that comprise a substantially complete S domain of an HBsAg polypeptide (termed "sAg" herein) and an immunogenic HCV polypeptide or fragment thereof. An S domain of HBsAg, or any other polypeptide of the invention, is "substantially complete" if it contains the native sequence of the polypeptide with or without minor deletions of one or a few amino acids from either the N-terminal or C-terminal regions or within the polypeptide. For example the HBsAg S domain can be truncated by a few amino acids, i.e., up to about 3, 5, 7, or 10 amino acids, without greatly affecting either its antigenicity or ability to cause the formation of virus-like particles. Linker sequences of any desired length, preferably no more than a few amino acids, can be added between the polypeptides joined together to form the fusion protein. Either preS2 (formerly called preS) or both preS2 and preS1 domains of HBsAg can also be included at the amino terminus of the HBsAg polypeptide if desired.

[0059] Valenzuela, et al. (1982) *Nature* 298:347-350, describes the gene for HbsAg. See, also, Valenzuela, et al. (1979) *Nature* 280:815-819. Proteins derived from the HBV surface, such as the surface antigen, sAg, as well as the presurface sequences, preS1 and preS2, and any combination of these sequences, can spontaneously form particles upon expression in a suitable host cell, such as upon expression in mammalian, insect, yeast or *Xenopus* cells. Thus, as explained above, HCV/HBV virus-like particles for use in the present invention can include particle-forming polypeptides of sAg, preS1 and/or preS2, as well as particle-forming polypeptides from any combination of the above, such as sAg/preS1, sAg/preS2, and sAg/preS1/preS2. See, e.g., "HBV Vaccines - from the laboratory to license: a case study" in Mackett, M. and Williamson, J.D., *Human Vaccines and Vaccination*, pp. 159-176, for a discussion of HBV structure; and U.S. Patent Nos. 4,722,840, 5,098,704, 5,324,513, 5,965,140, Beames et al., *J. Virol.* (1995) 69:6833-6838, Birnbaum et al., *J. Virol.* (1990) 64:3319-3330, Zhou et al., *J. Virol.* (1991) 65:5457-5464, for descriptions of the recombinant production of various HBV particles.

[0060] HCV has a genome that contains a single open reading frame of approximately 9.5 kb, which is transcribed into a polyprotein. The HCV polyprotein is cleaved to form at least ten distinct products, which are NH₂--Core--E1-E2--p7-NS2--NS3--NS4a-NS4b-NS5a-NS5b-COOH. The HCV E1 and E2 proteins are posttranslationally glycosylated. The full-length sequence of the polyprotein is disclosed in European Publ. No. 388,232 and U.S. Patent No. 6,150,087. Moreover, sequences for the above HCV polyprotein products, and immunogenic polypeptides derived therefrom, are known (see, e.g., U.S. Patent No. 5,350,671). For example, a number of general and specific immunogenic polypeptides, derived from the HCV polyprotein, have been described. See, e.g., Houghton et al., European Publ. Nos. 318,216 and 388,232; Choo et al. *Science* (1989) 244:359-362; Kuo et al. *Science* (1989) 244:362-364; Houghton et al. *Hepatology* (1991) 14:381-388; Chien et al. *Proc. Natl. Acad. Sci. USA* (1992) 89:10011-10015; Chien et al. *J. Gastroent. Hepatol.*

(1993) 8:S33-39; Chien et al., International Publ. No. WO 93/00365; Chien, D.Y., International Publ. No. WO 94/01778. These publications provide an extensive background on HCV generally, as well as on the manufacture and uses of HCV polypeptide immunological reagents.

[0061] Any desired HCV polypeptide can be utilized as part of the chimeric antigen, including, for example, the E1 and/or E2 envelope glycoproteins of HCV. The E1 glycoprotein corresponds to amino acid residues 192 to 383, and E2 extends from approximately amino acid 384 to amino acid 746 in most HCV strains. See Choo et al. (1991) *Proc. Natl. Acad. Sci. USA* 88:2451-2455. Preferred E1 polypeptides are those beginning at any amino acid residue from any of positions 192-360 of the HCV polyprotein and extending any desired length up to and including residue 383. Preferred E2 polypeptides are those beginning at any amino acid residue from positions 384-725 of the HCV polyprotein and extending any desired length up to and including residue 746. A fragment of the E1 or E2 glycoproteins which is utilized in the chimeric antigen should preferably comprise an epitope, domain, or other structural unit which is immunogenic.

[0062] An E1 or E2 glycoprotein or fragment thereof for use in a chimeric antigen, will preferably retain or resemble its native conformation. If a substantially native conformation is retained for the HCV polypeptide in the fusion protein containing HBsAg, then antibodies generated to the HCV polypeptide will recognize and bind to the corresponding polypeptide in HCV.

[0063] Other HCV polypeptides may also be used in the chimeric antigens of the invention. For example, HCV polypeptides derived from the Core region, such as polypeptides derived from the region found between amino acids 1-191; amino acids 10-53; amino acids 10-45; amino acids 67-88; amino acids 86-100; 81-130; amino acids 121-135; amino acids 120-130; amino acids 121-170; and any of the Core epitopes identified in, e.g., Houghton et al., U.S. Patent No. 5,350,671; Chien et al. *Proc. Natl. Acad. Sci. USA* (1992) 89:10011-10015; Chien et al. *J. Gastroent. Hepatol.* (1993) 8:S33-39; Chien et al., International Publ. No. WO 93/00365; Chien, D.Y., International Publ. No. WO 94/01778; and U.S. Patent No. 6,150,087, will find use with the subject chimeric molecules.

[0064] Additionally, polypeptides derived from the nonstructural regions of the virus will also find use herein. The NS3/4a region of the HCV polyprotein has been described and the amino acid sequence and overall structure of the protein are disclosed in Yao et al. *Structure* (November 1999) 7:1353-1363. See, also, Dasmahapatra et al., U.S. Patent No. 5,843,752. As explained above, either the native sequence or immunogenic analogs can be used in the subject formulations. Dasmahapatra et al., U.S. Patent No. 5,843,752 and Zhang et al., U.S. Patent No. 5,990,276, both describe analogs of NS3/4a and methods of making the same.

[0065] Additionally, multiple epitope fusion antigens (termed "MEFAs"), as described in International Publ. No. WO 97/44469, may be used in the subject chimeras. Such MEFAs include multiple epitopes derived from two or more of the various viral regions. The epitopes are preferably from more than one HCV strain, thus providing the added ability to protect against multiple strains of HCV in a single vaccine.

[0066] Moreover, polypeptides for use in the subject chimeras may be derived from the NS3 region of the HCV polyprotein. A number of such polypeptides are known, including, but not limited to polypeptides derived from the c33c and c100 regions, as well as fusion proteins comprising an NS3 epitope, such as c25. These and other NS3 polypeptides are useful in the present compositions and are known in the art and described in, e.g., Houghton et al., U.S. Patent No. 5,350,671; Chien et al. *Proc. Natl. Acad. Sci. USA* (1992) 89:10011-10015; Chien et al. *J. Gastroent. Hepatol.* (1993) 8:S33-39; Chien et al., International Publ. No. WO 93/00365; Chien, D.Y., International Publ. No. WO 94/01778; and U.S. Patent No. 6,150,087.

[0067] It is readily apparent that a multitude of HCV polypeptides may be used in the subject chimeric molecules or may be coadministered therewith, in order to provide an immune response against the HCV antigen in question.

[0068] As explained above, the HCV antigens may be used in their entireties or immunogenic fragments thereof, as well as immunogenic variants, can be combined with an HBsAg polypeptide to form the chimeric antigen by fusion of the gene sequences encoding the desired polypeptide sequences, in proper reading frame, using standard techniques available in the art. Thus, the HBV or HCV polypeptides described for use in the invention can be modified by deletions, insertions, or conservative amino acid substitutions, provided that a substantially native conformation is retained for the HCV epitope intended for use as an immunogen. Preferably, the HCV polypeptide or polypeptide fragment is chosen so that, when expressed in a fusion protein with HBsAg, it substantially retains the native conformation of the corresponding portion of the HCV protein from which it was derived, *i.e.*, the approximate conformation existing in a mature HCV virion.

[0069] It should be noted that for convenience, the various HCV regions are generally defined with respect to the amino acid number relative to the polyprotein encoded by the genome of HCV-1a, as described in Choo et al. (1991) *Proc Natl Acad Sci USA* 88:2451, with the initiator methionine being designated position 1. However, the polypeptides for use with the present invention are not limited to those derived from the HCV-1a sequence. Any strain or isolate of HCV can serve as the basis for providing antigenic sequences for use with the invention. In this regard, the corresponding regions in another HCV isolate can be readily determined by aligning sequences from the two isolates in a manner that brings the sequences into maximum alignment.

[0070] Various strains and isolates of HCV are known in the art, which differ from one another by changes in nucleotide

and amino acid sequence. For example, isolate HCV J1.1 is described in Kubo *et al.* (1989) Japan. Nucl. Acids Res. 17:10367-10372; Takeuchi *et al.* (1990) Gene 91:287-291; Takeuchi *et al.* (1990) J. Gen. Virol. 71:3027-3033; and Takeuchi *et al.* (1990) Nucl. Acids Res. 18:4626. The complete coding sequences of two independent isolates, HCV-J and BK, are described by Kato *et al.*, (1990) Proc. Natl. Acad. Sci. USA 87:9524-9528 and Takamizawa *et al.*, (1991) J. Virol. 65:1105-1113, respectively. HCV-1 isolates are described by Choo *et al.* (1990) Brit. Med. Bull. 46:423-441; Choo *et al.* (1991) Proc. Natl. Acad. Sci. USA 88:2451-2455 and Han *et al.* (1991) Proc. Natl. Acad. Sci. USA 88: 1711-1715. HCV isolates HC-J1 and HC-J4 are described in Okamoto *et al.* (1991) Japan J. Exp. Med. 60:167-177. HCV isolates HCT 18-, HCT 23, Th, HCT 27, EC1 and EC10 are described in Weiner *et al.* (1991) Virol. 180:842-848. HCV isolates Pt-1, HCV-K1 and HCV-K2 are described in Enomoto *et al.* (1990) Biochem. Biophys. Res. Commun. 170: 1021-1025. HCV isolates A, C, D & E are described in Tsukiyama-Kohara *et al.* (1991) Virus Genes 5:243-254.

[0071] Coding sequences for naturally occurring HCV polypeptides for use in the nucleic acid molecules or vectors of the invention can be obtained from any of the above cited strains of HCV or from newly discovered isolates isolated from tissues or fluids of infected patients. In choosing HCV polypeptides or their fragments from different HCV strains for use in a chimeric antigen of the invention, it is preferred that the nucleotide or amino acid sequences be aligned for maximum overlap between strains. This can be accomplished, for example, by compensating for insertions or deletions of amino acids so that the greatest possible overlap between strains is obtained prior to selecting a sequence for incorporation in the chimeric antigen. If a sequence disclosed herein is selected from another HCV strain, then preferably the corresponding sequence, *i.e.*, the sequence which is aligned to be identical at the greatest possible number of residues to the disclosed sequence, will be selected. Modified sequences which do not occur in nature can also be used.

A "nucleic acid molecule" according to the invention can be any nucleic acid such as DNA or RNA, either single or double stranded, or any analog or chemical derivative thereof which encodes a fusion protein of the invention or portion thereof or any HBsAg or portion thereof.

[0072] Nucleic acid molecules of the invention can be cloned into expression vectors and transformed into, for example, bacterial, yeast, plant, insect, or mammalian cells so that the chimeric antigens and virus-like particles of the invention can be expressed in and isolated from cell culture. Nucleic acid molecules can be contained within a plasmid, such as pBR322, pUC, ColE1, or related plasmids such as pCMV6a (see U.S. Patent 5,688,688) or plasmids derived therefrom. Nucleic acid molecules can also be contained within a viral vector, such as any vector derived from adenovirus, Sindbis virus, simian virus 40, cytomegalovirus, and retroviruses such as murine sarcoma virus, mouse mammary tumor virus, Moloney murine leukemia virus, and Rous sarcoma virus. Bacterial vectors, such as *Salmonella* spp., *Yersinia enterocolitica*, *Shigella* spp., *Vibrio cholerae*, *Mycobacterium* strain BCG, and *Listeria monocytogenes* can also be used. Minichromosomes such as MC and MC1, bacteriophages, cosmids, and replicons can be used as well.

[0073] Any suitable expression vector can be constructed or utilized to express any form of HBsAg or any chimeric antigen of the invention. A preferred vector is pCMVII, a pUC19-based cloning vector designed for expression in mammalian cells. pCMVII comprises the following elements: human CMV IE enhancer/promoter, human CMV intron A, a human tissue plasminogen activator (tPA) leader, a bovine growth hormone poly A terminator (BGHt), a ColE1 origin of replication, and an *Amp R* ampicillin resistance gene (Figs. 1A and 1B-1F, SEQ ID NO:1). pCMVII-pS2-sAg can be used for expression of preS2-HBsAg (Figs. 2A and 2B-2I, SEQ ID NOS:2 and 3). In pCMVII-pS2-sAg, the coding sequences for the preS2 and S domains of HBsAg have been inserted into pCMVII between CMV intron A and BGHt; this vector can also be modified by adding the coding sequences for the preS1 domain or removing the preS2 domain. Chimeric antigens containing HBsAg together with epitopes of HCV proteins can be constructed similar to pCMVII opti 330 E1/sAg (Figs. 3A and 3B-3I, SEQ ID NOS:4 and 5) or pCMVII-E2661-sAg (Figs. 4A and 4B-4F, SEQ ID NOS:6 and 7). These vectors are provided by way of example and are not intended to limit the scope of the invention. Isolated and purified pCMVII vectors containing an insert encoding HBsAg or a chimeric antigen can be dissolved in sterile 0.9% saline buffer or another suitable buffer prior to use.

[0074] The expression of chimeric antigens for use as immunogens requires transfection of eukaryotic cells with an expression vector. Any suitable eukaryotic cell line can be used, for example CHO cells or COS cells. A nucleic acid molecule that encodes a chimeric antigen can be incorporated into any vector suitable for transfection, for example a plasmid vector or a viral vector. If a viral vector is used, it will preferably produce defective, non-infectious viral particles so that the risk of contamination with infectious virus in a vaccine preparation is minimized.

[0075] Transfection can be performed by any known method and can result in either transient transfection or stable transfection. Stable transfection is preferred to establish a cell line producing HBV/HCV virus-like particles. Methods for obtaining stable transfection are well known and include, for example, selection for spontaneously stable transfecants, transfection with immortalizing genes (see, *e.g.*, Kataoka *et al.*, Methods Cell Biol. (1998) 57:69-91), and selection for genes providing resistance to antibiotics such as hygromycin B and neomycin. A preferred method for CHO cells involves selection for cells transfected with dihydrofolate reductase followed by amplification of the transgene using methotrexate (see Wurm *et al.*, Ann. N.Y. Acad. Sci. (1996) 782:70-78).

[0076] Co-expression of chimeric antigens with HBsAg results in formation and secretion of virus-like particles. Optimum secretion of virus-like particles requires a sufficient quantity of expression of HBsAg in relation to the expression

of chimeric antigen, and higher quantities of HBsAg expression generally improve the efficiency of chimeric antigen secretion. Secretion of chimeric antigen as virus-like particles can be optimized by varying the ratio of the coding sequences for HBsAg to the coding sequences for the chimeric antigen. Generally, useful secretion of virus-like particles will be obtained at a ratio of HBsAg coding sequences to chimeric antigen coding sequences of about 1:1, 2:1, 3:1, 4:1, 5:1, 7:1, 10:1, 20:1, 30:1, 40:1, 50:1, or 100:1. Ratios less than 1:1 provide reduced yield of virus-like particles containing chimeric antigen, while high ratios greater than 100:1 dilute out the chimeric antigen and eventually will limit the utility of the particles because of dilution of the chimeric antigen with HBsAg.

[0077] One strategy for transfecting host cells with the vectors of the invention, either for in vitro production of virus-like particles or for immunization of a host organism using a nucleic acid vaccine, is to provide two or more separate vectors, one that encodes HBsAg and one or more that each encode a chimeric antigen. Another strategy is to include both HBsAg and one or more chimeric antigens in a single construct. For example, an expression vector having a single open reading frame could have a coding sequence for HBsAg under control of a promoter, followed by sequences encoding one or more chimeric antigens, each preceded by an internal ribosomal entry site (IRES, see, e.g., Martinez-Salas (1999) Curr. Op. Biotechnol. 10: 458-464). Thus, the invention encompasses the use either of a single immunogenic polypeptide or multiple distinct immunogenic polypeptides in a single virus-like particle. Optionally, expression of immunogenic polypeptides can be regulated by including promoter and/or enhancer sequences in the expression vector which respond to activators introduced into the transfected cells.

[0078] Cells that have been transfected with plasmid or viral vectors expressing chimeric HBV/HCV antigens together with HBsAg can be analyzed to determine whether each antigen is being expressed and secreted in the form of virus-like particles. Any standard immunological assay can be used to detect HBV and HCV antigens, including, for example, chemiluminescence assays (see, e.g., Magic Lite assay in Examples 1-4; Woodhead, J.S. and Weeks, I. (1989) J. Biolumin. Chemilumin. 4:611-14), ELISA, and radioimmunoassays. Where an antigen is produced by transfected cells in culture, the amount of secretion of the antigen into the culture medium can be ascertained by comparing the amount of antigen in the culture medium with the amount remaining in lysed cells. The presence of virus-like particles can be confirmed by sedimentation of such particles from the culture medium into a density gradient, for example a sucrose density gradient (see Examples 1-3).

[0079] While expression in a mammalian cell line is preferred, other systems may also be employed to express virus-like particles of the invention. For example, yeast cell culture may be used (see U.S. Patent 5,098,704), in which case virus-like particles can be harvested by disrupting the cells using agitation with glass beads or another suitable method.

[0080] Generally, the proteins of the subject invention will naturally aggregate to form particles in the expression host. The particles may be enveloped having a lipid membrane coat, which may or may not include membrane proteins encoded by the virus. Alternatively, the particles may not include the lipid membrane or the membrane may be present initially or may be removed, in whole or in part. U.S. Patent Nos. 4,722,840 and 5,965,140, describe hybrid particles comprised of a particle-forming fragment of a structural protein from a virus, such as a particle-forming fragment of hepatitis B virus (HBV) surface antigen (HBsAg), fused to a heterologous polypeptide.

[0081] HBV/HCV virus-like particles can be purified after being harvested from a culture medium or cell suspension and before being used in an immunogenic composition. Any method can be used that is known to separate virus-like particles or viruses from surrounding proteins, lipids, nucleic acids, membranes, intact cells, and the like. Especially preferred are affinity chromatography methods; for example, an immobilized monoclonal antibody specific for HBsAg can be used. Additional suitable methods are gel filtration chromatography, ion exchange chromatography, and density gradient sedimentation. Methods for isolated chimeric virus-like particles are described in, e.g., U.S. Patent Nos. 4,722,840 and 5,965,140.

[0082] Any composition of the invention, such as a virus-like particle, or a nucleic acid molecule, can be used as an "immunogenic composition." An immunogenic composition preferably generates an immune response, as defined above, such as an antibody or a T-cell response, in a mammal to whom it is administered. An immunogenic composition of the invention can be, but is not limited to, a vaccine or a combination vaccine, e.g., an immunogenic composition that produces an immune response to more than one immunogen. Moreover, the chimeric proteins of the invention may be formulated into "antigenic compositions," e.g., compositions that include epitopes to which a specific antibody molecule or specific cell surface receptor binds.

[0083] Immunogenic and antigenic compositions containing HBV/HCV virus-like particles or a nucleic acid molecule encoding proteins which form virus-like particles can be administered to a mammal, such as a mouse, rabbit, baboon, chimpanzee, or human, to elicit anti-HCV antibodies *in vivo*. Injection of an immunogenic composition of the invention preferably results in the synthesis of virus-like particles in the host. Therefore, Compositions comprising nucleic acids should include sequences encoding both HBsAg and chimeric antigens such as HBsAg-E1 and/or HBsAg-E2 fusion proteins, as well as fusions with other HCV polypeptides. The weight:weight ratio of nucleic acids encoding HBsAg to nucleic acids encoding chimeric antigens is preferably 1:1, 2:1, 5:1, 10:1, 20:1, 30:1, 50:1, or 100:1 and results in the formation of virus-like particles in the cells of the host and their secretion within the host. More preferably, the ratio is in the range of 5:1 to 20:1.

[0084] Virus-like particles or nucleic acid molecules of an antigenic or immunogenic composition can be combined with adjuvants, immunostimulatory molecules, or carriers, including but not limited to, MF59 (described below), poly (dl-lactide-co-glycolide) microparticles (PLG, see, e.g., Delgado et al. (1999) *Vaccine* 17: 2927-2938), LT toxins, immune stimulating complexes (ISCOMS, see, e.g., Mowat et al. (1999) *Immunol. Lett.* 65: 133-140), and QS21 (see Singh & O'Hagan (1999) *Nat. Biotechnol.* 17: 1075-1081).

[0085] For example, preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59 (PCT Publ. No. WO 90/14837), containing 5% Squalene, 5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) RibiTM adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (DetoxTM); (3) saponin adjuvants, such as StimulonTM (Cambridge Bioscience, Worcester, MA) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (5) cytokines, such as interleukins (e.g., IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (e.g., gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc; (6) detoxified mutants of a bacterial ADP-ribosylating toxin such as a cholera toxin (CT), a pertussis toxin (PT), or an *E. coli* heat-labile toxin (LT), particularly LT-K63, LT-R72, CT-S109, PT-K9/G129; see, e.g., WO 93/13302 and WO 92/19265; (7) other substances that act as immunostimulating agents to enhance the effectiveness of the composition; and (8) microparticles with adsorbed macromolecules, as described in copending U.S. Patent Application Serial No. 09/285,855 (filed April 2, 1999) and international Patent Application Serial No. PCT/US99/17308 (filed July 29, 1999). Alum and MF59 are preferred.

[0086] As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-n-isoglutamine (nor-MDP), N-acetyl-nuramyl-L-alanyl-D-isoglutamyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.

[0087] An immunogenic composition may also comprise a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are well known to those in the art. Such carriers include, but are not limited to, large, slowly metabolized macromolecules, such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Liposomes, such as those described in U.S. 5,422,120, WO 95/13796, WO 91/14445, or EP 524,968 B1, as well as poly(dl-lactide-co-glycolide) microparticles (PLG, see, e.g., Delgado et al. (1999) *Vaccine* 17: 2927-2938), can also be used as a carrier for a composition of the invention.

[0088] Pharmaceutically acceptable salts can also be used in compositions of the invention, for example, mineral salts such as hydrochlorides, hydrobromides, phosphates, or sulfates, as well as salts of organic acids such as acetates, propionate, malonates, or benzoates.

[0089] Compositions of the invention generally contain pharmaceutically acceptable excipients, such as water, saline, glycerol, and ethanol, as well as substances such as wetting agents, emulsifying agents, or pH buffering agents.

[0090] The chimeric molecules of the present invention may be used for nucleic acid immunization, to generate an appropriate immune response, such as to activate HCV-specific T cells, using standard gene delivery protocols. Any method known in the art can be employed to package and deliver nucleic acid molecules of the invention, including nucleic acid molecules in an immunogenic composition. Methods for gene delivery are known in the art. See, e.g., U.S. Patent Nos. 5,399,346, 5,580,859, 5,589,466. For example, the coding sequences can be packaged in a viral vector, combined with lipid, peptoid excipients, PLG formulations, or gold particles. Preferably, an immunogenic composition is delivered as naked DNA or naked RNA. The expressed immunogenic polypeptide is preferably presented to the host immune system with native post-translational modifications, structure, and conformation.

[0091] For example, the constructs can be packaged in liposomes prior to delivery to the cells. Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed DNA to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight, *Biochim. Biophys. Acta.* (1991) 1097:1-17; Straubinger et al., in *Methods of Enzymology* (1983), Vol. 101, pp. 512-527.

[0092] Liposomal preparations for use with the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations, with cationic liposomes particularly preferred. Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy]propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, NY. (See, also, Felgner et al., *Proc Natl. Acad. Sci. USA* (1987) 84:7413-7416). Other commercially available lipids include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boehringer). Other cationic liposomes can be prepared from readily available materials using techniques well known in the

art. See, e.g., Szoka et al., *Proc. Natl. Acad. Sci. USA* (1978) 75:4194-4198; PCT Publication No. WO 90/11092 for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes. The various liposome-nucleic acid complexes are prepared using methods known in the art. See, e.g., Straubinger et al., in *METHODS OF IMMUNOLOGY* (1983), Vol. 101, pp. 512-527; Szoka et al., *Proc. Natl. Acad. Sci. USA* (1978) 75:4194-4198;

5 Papahadjopoulos et al., *Biochim. Biophys. Acta* (1975) 394:483; Wilson et al., *Cell* (1979) 17:77; Deamer and Bangham, *Biochim. Biophys. Acta* (1976) 443:629; Ostro et al., *Biochem. Biophys. Res. Commun.* (1977) 76:836; Fraley et al., *Proc. Natl. Acad. Sci. USA* (1979) 76:3348; Enoch and Strittmatter, *Proc. Natl. Acad. Sci. USA* (1979) 76:145; Fraley et al., *J. Biol. Chem.* (1980) 255:10431; Szoka and Papahadjopoulos, *Proc. Natl. Acad. Sci. USA* (1978) 75:145; and Schaefer-Ridder et al., *Science* (1982) 215:166.

10 [0093] The DNA can also be delivered in coacelate lipid compositions similar to those described by Papahadjopoulos et al., *Biochim. Biophys. Acta* (1975) 394:483-491. See, also, U.S. Patent Nos. 4,663,161 and 4,871,488.

15 [0094] A number of viral based systems have been developed for gene transfer into mammalian cells. For example, retroviruses provide a convenient platform for gene delivery systems, such as murine sarcoma virus, mouse mammary tumor virus, Moloney murine leukemia virus, and Rous sarcoma virus. A selected gene can be inserted into a vector and packaged in retroviral particles using techniques known in the art. The recombinant virus can then be isolated and delivered to cells of the subject either *in vivo* or *ex vivo*. A number of retroviral systems have been described (U.S. Patent No. 5,219,740; Miller and Rosman, *BioTechniques* (1989) 7:980-990; Miller, A.D., *Human Gene Therapy* (1990) 1:5-14; Scarpa et al., *Virology* (1991) 180:849-852; Bums et al., *Proc. Natl. Acad. Sci. USA* (1993) 90:8033-8037; and Boris-Lawrie and Temin, *Cur. Opin. Genet. Develop.* (1993) 3:102-109. Briefly, retroviral gene delivery vehicles of the present invention may be readily constructed from a wide variety of retroviruses, including for example, B, C, and D type retroviruses as well as spumaviruses and lentiviruses such as FIV, HIV, HIV-1, HIV-2 and SIV (see *RNA Tumor Viruses*, Second Edition, Cold Spring Harbor Laboratory, 1985). Such retroviruses may be readily obtained from depositories or collections such as the American Type Culture Collection ("ATCC"; 10801 University Blvd., Manassas, VA 20110-2209), or isolated from known sources using commonly available techniques.

20 [0095] A number of adenovirus vectors have also been described, such as adenoviruses Type 2 and Type 5 vectors. Unlike retroviruses which integrate into the host genome, adenoviruses persist extrachromosomally thus minimizing the risks associated with insertional mutagenesis (Haj-Ahmad and Graham, *J. Virol.* (1986) 57:267-274; Bett et al., *J. Virol.* (1993) 67:5911-5921; Mittereder et al., *Human Gene Therapy* (1994) 5:717-729; Seth et al., *J. Virol.* (1994) 68:933-940; Barr et al., *Gene Therapy* (1994) 1:51-58; Berkner, K.L. *BioTechniques* (1988) 6:616-629; and Rich et al., *Human Gene Therapy* (1993) 4:461-476).

25 [0096] Molecular conjugate vectors, such as the adenovirus chimeric vectors described in Michael et al., *J. Biol. Chem.* (1993) 268:6866-6869 and Wagner et al., *Proc. Natl. Acad. Sci. USA* (1992) 89:6099-6103, can also be used for gene delivery.

30 [0097] Members of the Alphavirus genus, such as but not limited to vectors derived from the Sindbis and Semliki Forest viruses, VEE, will also find use as viral vectors for delivering the gene of interest. For a description of Sindbis-virus derived vectors useful for the practice of the instant methods, see, Dubensky et al., *J. Virol.* (1996) 70:508-519; and International Publication Nos. WO 95/07995 and WO 96/17072.

35 [0098] Other vectors can be used, including but not limited to simian virus 40, cytomegalovirus. Bacterial vectors, such as *Salmonella* spp., *Yersinia enterocolitica*, *Shigella* spp., *Vibrio cholerae*, *Mycobacterium* strain BCG, and *Listeria monocytogenes* can be used. Minichromosomes such as MC and MC1, bacteriophages, cosmids (plasmids into which phage lambda cos sites have been inserted) and replicons (genetic elements that are capable of replication under their own control in a cell) can also be used.

40 [0099] The chimeric constructs may also be encapsulated, adsorbed to, or associated with, particulate carriers. Such carriers present multiple copies of a selected molecule to the immune system and promote trapping and retention of molecules in local lymph nodes. The particles can be phagocytosed by macrophages and can enhance antigen presentation through cytokine release. Examples of particulate carriers include those derived from polymethyl methacrylate polymers, as well as microparticles derived from poly(lactides) and poly(lactide-co-glycolides), known as PLG. See, e.g., Jeffery et al., *Pharm. Res.* (1993) 10:362-368; and McGee et al., *J. Microencap.* (1996).

45 [0100] A wide variety of other methods can be used to deliver the constructs to cells. Such methods include DEAE dextran-mediated transfection, calcium phosphate precipitation, polylysine- or polyornithine-mediated transfection, or precipitation using other insoluble inorganic salts, such as strontium phosphate, aluminum silicates including bentonite and kaolin, chromic oxide, magnesium silicate, talc, and the like. Other useful methods of transfection include electroporation, sonoporation, protoplast fusion, liposomes, peptoid delivery, or microinjection. See, e.g., Sambrook et al., *supra*, for a discussion of techniques for transforming cells of interest; and Felgner, P.L., *Advanced Drug Delivery Reviews* (1990) 5:163-187, for a review of delivery systems useful for gene transfer. One particularly effective method of delivering DNA using electroporation is described in International Publication No.

WO/0045823.

[0101] Additionally, biolistic delivery systems employing particulate carriers such as gold and tungsten, are useful for delivering the constructs of the present invention. The particles are coated with the construct to be delivered and accelerated to high velocity, generally under a reduced atmosphere, using a gun powder discharge from a "gene gun." For a description of such techniques, and apparatuses useful therefore, see, e.g., U.S. Patent Nos. 4,945,050; 5,036,006; 5,100,792; 5,179,022; 5,371,015; and 5,478,744..

[0102] The chimeric constructs can be delivered either directly to the vertebrate subject or, alternatively, delivered *ex vivo*, to cells derived from the subject and the cells reimplanted in the subject. For example, the constructs can be delivered as plasmid DNA, e.g., contained within a plasmid, such as pBR322, pUC, or ColE1.

[0103] An immunogenic composition of the invention is administered in a manner compatible with the particular composition used and in an amount which is effective to elicit an anti-HCV polypeptide antibody titer, such as an anti-E2 or anti-E1 antibody titer. Administration can be by any means known in the art, including intramuscular, intradermal, intraperitoneal, or subcutaneous injection, including injection using a biological ballistic gun ("gene gun"). Electroporation or iontophoresis can also be used. Administration may also be intranasal or oral. For oral administration of an immunogenic composition, a protein carrier is preferably included. An immunogenic composition, including compositions comprising naked DNA or RNA, is preferably injected intramuscularly to a large mammal, such as a baboon, chimpanzee, or human, at a dose of 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 5 or 10 mg/kg. A composition comprising virus-like particles is preferably injected intramuscularly to a large mammal, such as a human, at a dose of 0.01, 0.05, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 5 or 10 mg protein/kg body weight.

[0104] Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral, intranasal, and pulmonary administration, suppositories, and transdermal or transcutaneous applications (e.g., see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule. The composition may be administered in conjunction with other immunoregulatory agents.

[0105] Methods for the *ex vivo* delivery and reimplantation of transformed cells into a subject are known in the art and described in e.g., WO93/14778. Examples of cells useful in *ex vivo* applications include, for example, stem cells, particularly hematopoietic, lymph cells, macrophages, dendritic cells, or tumor cells. Generally, delivery of nucleic acids for both *ex vivo* and *in vitro* applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.

[0106] Immunogenic compositions comprising either HBV/HCV virus-like particles or nucleic acids encoding and expressing such virus-like particles can be administered either to a mammal that is not infected with HCV or can be administered to an HCV-infected mammal. The particular dosages of virus-like particles or nucleic acids will depend on a number of factors including, but not limited to, the species, age, and general condition of the mammal to which the composition is administered and the mode of administration of the composition. An effective amount of the composition of the invention can be readily determined using routine experimentation. *In vivo* models are well known and can be employed to identify appropriate doses. If desired, co-stimulatory molecules or adjuvants can also be provided before, after, or together with the immunogenic compositions. Immunogenic compositions can be administered more than once, as required for effective immunization. Administration of immunogenic compositions containing virus-like particles can be performed either before or after administration of immunogenic compositions containing nucleic acids, such that one form (protein or nucleic acid) provides a primary immunization and the other form boosts the immune response.

45 III. Experimental

[0107] Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. Those of skill in the art will readily appreciate that the invention may be practiced in a variety of ways given the teaching of this disclosure.

[0108] Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc.), but some experimental error and deviation should, of course, be allowed for.

EXAMPLE 1

55 Detection of HBV Virus-Like Particles Using Sucrose Density Gradient Sedimentation

[0109] Purified recombinant HBsAg particles were obtained in the form of a hepatitis B vaccine from Chiron Corp. Clinical Department Two hundred fifty μ L of a 37 μ g/mL suspension in 0.03 M citrate, 0.26 M NaCl, 0.005% polysorbate

80 was loaded onto a 5-30% (wt-vol) sucrose gradient and centrifuged 4 hrs at 40,000 rpm in a Beckman SW41 rotor. Ten fractions were removed and assayed for HBsAg by the Magic Lite Assay. The results are shown in Fig. 5.

Magic Lite Assay

[0110] This describes a highly sensitive immunochemiluminescence assay used to detect HBV and HCV antigens. One hundred μ L of sample was added to a 12 x 75 mm polystyrene tube. One hundred μ L (30 μ g) of a "capture" antibody was added to the sample. The capture antibody was covalently linked to paramagnetic particles by glutaraldehyde crosslinking a mixture of 6:1 paramagnetic particles:antibody. The tubes were vortexed and incubated in a 37°C water bath for 20 minutes. Next the tubes were placed on a magnetic rack where the paramagnetic particles (PMP) can aggregate. This allowed for washing and decanting. After the third wash, 100 μ L of a "detecting" antibody, which was covalently linked to dimethylacridinium, was added and the tube was vortexed. The tubes were again incubated at 37°C for 20 minutes and then placed on a magnetic rack for washing and decanting. After the third wash, the tubes were placed in a Ciba Coming Magic Lite chemiluminometer to measure the analyte bound. Results were expressed in arbitrary units of light intensity (relative light units, RLU).

Antibodies

[0111] Anti-sAg was provided by Chiron Diagnostics (Walpole, MA) and was directed against serotypes AYW and ADW. MAb 5E5/H7 was obtained from mice using HeLa E1/E2 amino acids 1-967 as an immunogen and recognizes the E2 epitope 384-655. MAb 3D5/C3 was also obtained from mice immunized with HeLa E1/E2 amino acids 1-967 and recognizes E1 epitope 211-217.

EXAMPLE 2

Expression of HBV/HCV Virus-Like Particles Containing Chimeric HBsAg-E2-661 Antigen in COS7 Cells

[0112] Five μ g of pCMV-II-E2661-sAg (Fig. 4A) and increasing amounts of pCMV-II-pS2-sAg (Fig. 2A) were prepared. Expression from pCMV-II-pS2-sAg resulted in a mixture of about 5-20% preS2-S-polypeptide, with the remainder being S-polypeptide. Ratios of sAg to E2661-sAg plasmids used were 0:1, 1:1, 5:1, and 10:1 on a μ g DNA basis. The total amount of DNA in each tube was normalized to 55 μ g by the addition of pCMV-km-Bgal. This mixture was transfected into COS7 cells using the LT1 transfection reagent from Panvera, as described below. At 48 hours post-transfection, media and soluble lysates (obtained by incubating cell monolayers in PBS with 0.1% NP40 and centrifuging to remove insoluble debris) were removed and assayed by the Magic Lite Assay, with capture by anti-sAg followed by detection with a conjugated anti-E2 MAb (5E5/H7, see Example 1) (Fig. 6A) or MAbs sAg (Fig. 6B). Both E2 and sAg were increasingly secreted into the medium as the ratio of sAg:E2661-sAg was increased, with an optimum secretion at ratios in the range of 5:1 to 10:1.

[0113] In order to characterize the virus-like particles, 1 mL of culture medium from each condition was loaded onto a 5-30% sucrose gradient. The samples were centrifuged 4 hrs at 40,000 rpm using a Beckman SW41 rotor. Eleven fractions were removed and assayed for E2 (Fig. 7A) or sAg (Fig. 7B) by the Magic Lite Assay. Both E2 and sAg were observed in highest amount in fraction 4, which is the same gradient position for the peak distribution of HBsAg-containing virus-like particles (Fig. 5).

Transfection Protocol

[0114] Cells were seeded in 6-well plates the day prior to transfection so as to achieve 50-60% confluence at the time of transfection. Opti-mem (100 μ L) and LT-1 transfection reagent (12 μ L) were added to a sterile polypropylene tube and incubated at room temperature for five minutes. Three μ g of DNA was then added to the tube, which was incubated another five minutes at room temperature. During this incubation period, the cells were washed with Opti-mem (2 mLs per well). Two mLs Opti-mem were added to each well, followed by 100 μ L of the Opti-mem/LT-1/DNA mixture. The cells were then incubated for four hours at 37°C, followed by aspiration and addition of culture medium (1.5 mL/well of DMEM + 10% FBS). At 48 hours post transfection, the medium was harvested and the cell monolayers were solubilized using PBS containing 0.1% NP-40. Both the harvested medium and the solubilized cells were centrifuged to remove debris.

55

EXAMPLE 3Expression of HBV/HCV Virus-Like Particles Containing Chimeric HBsAg-E1-330 Antigen in COS7 Cells

5 [0115] Mixtures of pCMV-II-optiE1330-sAg (2.5 μ g DNA) and various amounts of pCMV-II-pS2-sAg were prepared to provide ratios of sAg plasmid to E1-sAg plasmid of 0:1 (control), 1:1,5:1,10:1, and 20:1. Expression from pCMV-II-pS2-sAg resulted in a mixture of about 5-20% preS2-S-polypeptide, with the remainder being S-polypeptide. The total amount of DNA in each tube was normalized to 52.5 μ g by the addition of pCMV-km- β gal. The mixtures were transfected into COS7 cells using the LT1 transfection reagent from Panvera. At 48 hours post-transfection, the media and soluble lysates were recovered and assayed by the Magic Lite Assay. Capture was with anti-sAg followed by detection with a conjugated anti-E1 MAb (eD5/C3) (Fig. 8A) or MAb sAg (Fig. 8B). Both E1 and sAg were increasingly secreted into the medium as the ratio of sAg:E2661-sAg was increased, with an optimum secretion at ratios in the range of 5:1 to 20:1.

10 [0116] In order to characterize the virus-like particles, 1 mL of culture medium from each condition was loaded onto a 5-30% sucrose gradient. The samples were centrifuged 4 hrs at 40,000 rpm using a Beclan SW41 rotor. Eleven fractions were removed and assayed for E1 (Fig. 9A) or sAg (Fig. 9B) by the Magic Lite Assay. Both E1 and sAg were observed in highest amount in fractions 4-6, which is similar to the gradient position for the peak distribution of HBsAg-containing virus-like particles (Fig. 5).

EXAMPLE 4Expression of HBV/HCV Virus-Like Particles Containing Both HBsAg-E2-661 and HBsAg-E1-330 Chimeric Antigens in COS7 Cells

25 [0117] A mixture of pCMVII opti 330 E1-sAg and pCMV-II-E2661-sAg (0.5 μ g DNA of each plasmid) was combined with increasing amounts of pCMV-II-pS2-sAg. The total amount of DNA in each tube was normalized to 26 μ g by the addition of pCMV-kM- β gal. The mixture was transfected into COS7 cells using the LT1 transfection reagent from Panvera. At 48 hours post-transfection, media and soluble lysates were recovered and assayed by the Magic Lite Assay, with capture by anti-sAg followed by detection with a conjugated anti-E2 or anti-E1 MAb (Fig. 10A) or a conjugated anti-sAg (Fig. 10B).

EXAMPLE 5Use of HBV/HCV Virus-Like Particles to Generate an Immune Response

35 [0118] In order to test the ability of the subject HBV/HCV virus-like particles to generate an immune response *in vivo*, the following experiment was done. Four groups of 10 mice (Group 2 had 9 mice) were administered either DNA encoding HCV E2661 and pCMV-II, at a ratio of 5 times pCMV-II to E2661 (Group 1); pCMV-II-E2661-sAg (Fig. 4A) and pCMV-II, at a ratio of 5 times pCMV-II to pCMV-II-E2661-sAg (Group 2); pCMV-II-E2661-sAg and pCMV-II-pS2-sAg (Fig. 2A) at a ratio of 5 times pCMV-II-pS2-sAg to pCMV-II-E2661-sAg (Group 3); and pCMV-II and pCMV-II-pS2-sAg, at a ratio of 5 times pCMV-II-pS2-sAg to pCMV-II (Group 4).

40 [0119] All were immunized twice with 90 μ g (45 μ g/leg) per immunization, at day 0 and day 21, and blood was collected. Antibody titers were assessed by ELISA using a truncated E2 molecule, E2₇₁₅, which had been expressed in CHO cells, using the Magic Lite Assay described above. Results are shown in Table 1.

45

Group #	Treatment	GM +/- SE
1	E2661 + 5x vector	1300 +/- 85
2	E2661-sAg + 5x vector	1547 +/- 690
3	E2661-sAg + 5x pS2sAg	4175 +/- 603
4	Vector + 5x pS2sAg	0

55 [0120] A second experiment was run, again using 10 animals per group, except Group 5, which had 5 mice. The groups and results are shown in Table 2. Treatment protocol and antibody determination was as described above.

Group #	Treatment	GM +/- SE
1	E2661 + 5x vector	724+/96
2	E2661 + 5x pS2sAg	222 +/- 90
3	E2661-sAg + 5x vector	1018 +/- 305
4	E2661-sAg + 5x pS2sAg	1290 +/- 292
5	mock	0

[0121] As can be seen, titers to E2 in the E2₆₆₁-immunized mice were reduced in the presence of 5x sAg. This might have resulted from competition for docking to the endoplasmic reticulum. The E2 titers were higher when the E2 was fused to sAg. The addition of sAg in place of vector resulted in little change in titer. While this difference is small, comparison to the control with sAg is warranted.. Since excess sAg caused a reduction in E2 titers in the unfused antigen, in the context of the fusion there was an apparent compensation. This presumably reflects the ability of sAg to promote secretion of the fusion.

[0122] Thus, chimeric HCV/HBV virus-like particles, as well as methods of making and using the same are disclosed. From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the appended claims.

SEQUENCE LISTING

[0123]

<110> Chiron Corporation

Selby, Mark

Glazer, Edward

Houghton, Michael

<120> HBV/HCV VIRUS-LIKE PARTICLE

<130> PP01635.003

<140>

<141>

<160> 7

<170> Patent In Ver. 2.0

<210> 1

<211> 4276

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: plasmid pCMVII

<400> 1

tcgcgcgttt cgggtatgac ggtaaaaacc tctgacacat gcagctcccc gagacggtca 60
 cagcttgcct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
 5 ttggcgggtg tcggggctgg ctttaactatg cggcatcaga gcagattgta ctgagagtgc 180
 accatatgaa gcttttgca aaagcctagg cttccaaaaa agcctcctca ctacttctgg 240
 10 aatagctcag aggccgaggc ggccctcgcc tctgcataaa taaaaaaaaat tagtcagcca 300
 tggggcggag aatgggcgga actgggcggg gagggattt ttggctattt gccattgcat 360
 acgttgtatc tatatcataa tatgtacatt tatattggct catgtccaaat atgaccgcca 420
 15 tgttgacatt gattattgac tagttattaa tagtaatcaa ttacgggtc attagttcat 480
 agccatata tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg 540
 20 cccaaacgacc cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata 600
 gggactttcc attgacgtca atgggtggag tatttacggt aaactgccc cttggcagta 660
 catcaagtgt atcatatgcc aagtccgccc cttattgacg tcaatgacgg taaatggccc 720
 25 gcctggcatt atgcccagta catgacctta cgggacttcc ctacttggca gtacatctac 780
 gtattagtca tcgctattac catggtgatg cggttttggc agtacacccaa tggcgtgga 840
 tagcggtttg actcacgggg atttccaagt ctccacccca ttgacgtcaa tggagtttg 900
 30 ttttggcacc aaaatcaacg ggactttcca aaatgtcgta ataaccccgcc cccgttgacg 960

35

40

45

50

55

caaatggcg gttaggcgtgt acgggtggag gtcttatataa gcagagctcg ttttagtgaac 1020
 cgtcagatcg cctggagacg ccatccacgc tgtttgacc tccatagaag acaccggac 1080
 5 cgatccagcc tccgcggccg ggaacggtgc attggAACgc ggattccccg tgccaagagt 1140
 gacgtaagta cccctatag actctatagg cacaccctt tggctttat gcatgtata 1200
 ctgttttgg cttgggcct atacacccc gctccttatg ctataggta tggtagtgc 1260
 10 tagcctatag gtgtgggtta ttgaccatta ttgaccactc ccctattggt gacgatactt 1320
 tccattacta atccataaca tggctctttg ccacaactat ctctattggc tatatgccaa 1380
 15 tactctgtcc ttcagagact gacacggact ctgtatTTT acaggatggg gtccatttt 1440
 tatttacaaa ttcacatata caacaacgccc gtcccccgtg cccgcagttt ttattaaaca 1500
 tagcgtggga tctccgacat ctcgggtacg tggccggac atggctctt ctccggtagc 1560
 20 ggccggagctt ccacatccga gccctggtcc catccgtcca gcggctcatg gtcgctcggc 1620
 agctccttgc tcctaacagt ggaggccaga cttaggcaca gcacaatgcc caccaccacc 1680
 agtgtgccgc acaaggccgt ggccggtaggg tatgtgtctg aaaatgagct cggagattgg 1740
 gctcgacact ggacgcagat ggaagactta aggcagcggc agaagaagat gcaggcagct 1800
 25 gagttgttgtt attctgataa gagtcagagg taactccgt tgccgtctg ttaacggtgg 1860
 agggcagtgt agtctgagca gtactcgttg ctgcccgcgc cgccaccaga cataatagct 1920
 gacagactaa cagactgttc cttccatgg gtctttctg cagtcaccgt cgtcgaccta 1980
 30 agaattcaga ctcgagcaag tctagaaagg cgcgcaga tatcaaggat ccactacgcg 2040
 ttagagctcg ctgatcagcc tcgactgtgc cttctagttg ccagccatct gttgtttgcc 2100
 cctccccgt gccttccttg accctggaaag gtgccactcc cactgtcctt tcctaataaa 2160
 35 atgaggaaat tgcatacgat tgcatacgat ggtgtcattc tattctgggg ggtgggggtgg 2220
 ggcaggacag caagggggag gattgggaag acaatagcag gcatgctggg gagctttcc 2280
 gcttcctcgc tcactgactc gctgcgcgtcg gtcgttcggc tgccgcgagc ggtatcagct 2340
 40 cactcaaagg cggtaataacg gttatccaca gaatcagggg ataacgcagg aaagaacatg 2400
 tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgc ggcgttttc 2460
 cataggctcc gccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga 2520
 45 aacccgacag gactataaag ataccaggcg ttccccctg gaagctccct cgtgcgcct 2580
 cctgttccga ccctgcccgt taccggatac ctgtccgcct ttctcccttc gggaaagcgtg 2640
 gcgctttctc aatgctcagc ctgttaggtat ctcagttcgg tgcgttgcgt tgcgtccaaag 2700
 50 ctgggctgtg tgcacgaacc ccccgttcag cccgaccgc ggcgtttatc cggtaactat 2760

cgtcttgagt ccaacccggt aagacacgac ttatgccac tggcagcagc cactggtaac 2820
 aggattagca gagcgaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaac 2880
 5 tacggctaca ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc 2940
 gaaaaaagag ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggtttt 3000
 10 tttgtttgca agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc 3060
 ttttctacgg ggtctgacgc tcagtggAAC gaaaactcac gttaaggat tttggtcATG 3120
 15 agattatcaa aaaggatctt cacctagatc cttttaaatt aaaaatgaag ttttaatca 3180
 atctaaagta tatatgagta aacttggtct gacagttacc aatgcttaat cagtgaggca 3240
 cctatctcag cgatctgtct attcggtca tccatagttg cctgactccc cgtcgtag 3300
 20 ataactacga tacgggaggg cttaccatct ggccccagtg ctgcaatgtat accgcgagac 3360
 ccacgctcac cggctccaga tttatcagca ataaaccagc cagccggaag ggccgagcgc 3420
 agaagtggtc ctgcaacttt atccgcctcc atccagtcta ttaattgttgc cgggaagct 3480
 25 agagtaagta gttcgccagt taatagtttgc cgcAACgttgc ttgcccattgc tacaggatc 3540
 gtgggtcac gtcgtcggtt tggtatggct tcattcagct ccggttccca acgatcaagg 3600
 30 cgagttacat gatccccat gttgtcaaa aaagcggtaa gtccttcgg tcctccgatc 3660
 gttgtcagaa gtaagttggc cgcagtgtta tcactcatgg ttatggcagc actgcataat 3720
 tctcttactg tcatgcctac cgtaaagatgc ttttctgtga ctggtagtgc ctcaaccaag 3780
 35 tcattctgag aatagtgtat gcgccgaccg agttgtctt gcccggcgtc aatacggat 3840
 aataccgcgc cacatagcag aactttaaaa gtgctcatca ttggaaaacg ttcttcgggg 3900
 cgaaaactct caaggatctt accgctgttgc agatccagtt cgtgtaaacc cactcgtag 3960
 40 cccaaactgtat cttcagcattc ttttactttc accagcggtt ctgggtgagc aaaaacagga 4020
 aggcaaaatg cgcaaaaaaa gggataagg ggcacacggaa aatgttgaat actcataactc 4080
 45 ttctttttc aatattatttgc aagcatttat cagggttatt gtctcatgag cggatacata 4140
 tttgaatgtat tttagaaaaaa taaacaaata ggggtccgc gcacatttcc cggaaaagtg 4200
 ccacctgacg tctaagaaac cattattatc atgacattaa cctataaaaaa taggcgtatc 4260
 50 acgaggccct ttctgtc 4276

<210> 2

<211> 5128

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: plasmid pCMVII-pS2-SAg

<220>

<221> CDS

5 <222> (1988)..(2830)

<400> 2

10 **tgcgcgttt cggtgatgac ggtaaaaacc tctgacacat gcagctcccg gagacggtca 60**
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
15 **accatatgaa gcttttgca aaagcctagg cctccaaaaa agcctctca ctacttctgg 240**
aatagcttag aggccgaggc ggcctcgcc tctgcataaa taaaaaaaaat tagtcagcca 300
20 **tggggcggag aatgggcgga actgggcggg gagggaatta ttggctattt gccattgcat 360**
acgttgtatc tatatcataa tatgtacatt tatattggct catgtccaaat atgaccgcca 420
tgttgacatt gattattgac tagttattaa tagtaatcaa ttacgggtc attagttcat 480
25 **agcccatata tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg 540**
cccaacgacc cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata 600
gggactttcc attgacgtca atgggtggag tatttacggt aaactgccc cttggcagta 660
30 **catcaagtgt atcatatgcc aagtccgccc cctattgacg tcaatgacgg taaatggccc 720**
gcctggcatt atgcccagta catgaccta cggactttc ctacttggca gtacatctac 780
gtattagtca tcgctattac catggtgatg cgggtttggc agtacaccaa tggcgtgga 840
35 **tagcggttg actcacgggg atttccaagt ctccacccca ttgacgtcaa tggaggttg 900**
tttggcacc aaaatcaacg ggactttcca aaatgtcgta ataacccgc cccgttgacg 960
40 **caaatggcg gtaggcgtgt acggtggag gtctatataa gcagagctcg tttagtgaac 1020**
cgtcagatcg cctggagacg ccatccacgc tgggtttgacc tccatagaag acaccggac 1080
45 **cgtatccagcc tccggggccg ggaacggtgc attggaacgc ggattcccg tgccaagagt 1140**
gacgtaaagta ccgcctatacg actctatagg cacacccctt tggcttttat gcatgtata 1200
ctgtttttgg cttggggcct atacaccccg gtccttatg ctataggtga tggtatacg 1260
50 **tagcctatag gtgtgggtta ttgaccatta ttgaccactc ccctattggt gacgatactt 1320**
tccattacta atccataaca tggcttttg ccacaactat ctctattggc tatatgcca 1380
tactctgtcc ttcagagact gacacggact ctgtatTTT acaggatggg gtccatttt 1440
55 **tatttacaaa ttcacatata caacaacgcc gtcccccgtg cccgcagttt ttattaaaca 1500**
tagcgtggaa tctccgacat ctcgggtacg tggccggac atggcgtttt ctccggtagc 1560

ggcggagctt ccacatccga gccctggtcc catccgtcca gcccgtcatg gtcgctcggc 1620
 agctccttgc tcctaacagt ggaggccaga cttaggcaca gcacaatgcc caccaccacc 1680
 5 agtgtgccgc acaaggccgt ggcggtaggg tatgtgtctg aaaatgagct cggagattgg 1740
 gctcgacct ggacgcagat ggaagactta aggcagcggc agaagaagat gcaggcagct 1800
 gagttgttgtt attctgataa gagtcagagg taactccgt tgccgtgctg ttaacggtgg 1860
 10 agggcagtgt agtctgagca gtactcggtt ctgccgcgc cgccaccaga cataatagct 1920
 gacagactaa cagactgttc cttccatgg gtctttctg cagtcaccgt cgtcgaccta 1980
 15 agaattc atg cag tgg aac tcc act gcc ttc cac caa act ctg cag gat 2029
 Met Gln Trp Asn Ser Thr Ala Phe His Gln Thr Leu Gln Asp
 1 5 10
 20 ccc aga gtc agg ggt ctg tat ctt cct gct ggt ggc tcc agt tca gga 2077
 Pro Arg Val Arg Gly Leu Tyr Leu Pro Ala Gly Gly Ser Ser Ser Gly
 15 20 25 30
 25 aca gta aac cct gct ccg aat att gcc tct cac atc tgg tca atc tcc 2125
 Thr Val Asn Pro Ala Pro Asn Ile Ala Ser His Ile Ser Ser Ile Ser
 35 40 45
 30 gcg agg act ggg gac cct gtg acg aac atg gag aac atc aca tca gga 2173
 Ala Arg Thr Gly Asp Pro Val Thr Asn Met Glu Asn Ile Thr Ser Gly
 50 55 60
 35 ttc cta gga ccc ctg ctc gtg tta cag gcg ggg ttt ttc ttg ttg aca 2221
 Phe Leu Gly Pro Leu Leu Val Leu Gln Ala Gly Phe Phe Leu Leu Thr
 65 70 75
 40 aga atc ctc aca ata ccg cag agt cta gac tgg tgg act tct ctc 2269
 Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu
 80 85 90
 45 aat ttt cta ggg gga tct ccc gtg tgg ctt ggc caa aat tgg cag tcc 2317
 Asn Phe Leu Gly Gly Ser Pro Val Cys Leu Gly Gln Asn Ser Gln Ser
 95 100 105 110
 50 cca acc tcc aat cac tca cca acc tcc tgg tgt cct cca att tgg cct ggt 2365
 Pro Thr Ser Asn His Ser Pro Thr Ser Cys Pro Pro Ile Cys Pro Gly
 115 120 125
 55 tat cgc tgg atg tgg ctg cgg cgt ttt atc ata ttc ctc ttc atc ctg 2413
 Tyr Arg Trp Met Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu
 130 135 140
 60 ctg cta tgc ctc atc ttc tta ttg gtt ctt ctg gat tat caa ggt atg 2461
 Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met
 145 150 155
 65 ttg ccc gtt tgg cct cta att cca gga tca aca aca acc agt acg gga 2509
 Leu Pro Val Cys Pro Leu Ile Pro Gly Ser Thr Thr Ser Thr Gly
 160 165 170
 70 cca tgc aaa acc tgc acg act cct gct caa ggc aac tct atg ttt ccc 2557

	Pro Cys Lys Thr Cys Thr Thr Pro Ala Gln Gly Asn Ser Met Phe Pro			
175	180	185	190	
5	tca tgt tgc tgt aca aaa cct acg gat gga aat tgc acc tgt att ccc Ser Cys Cys Cys Thr Lys Pro Thr Asp Gly Asn Cys Thr Cys Ile Pro		2605	
	195	200	205	
10	atc cca tcg tcc tgg gct ttc gca aaa tac cta tgg gag tgg gcc tca Ile Pro Ser Ser Trp Ala Phe Ala Lys Tyr Leu Trp Glu Trp Ala Ser		2653	
	210	215	220	
15	gtc cgt ttc tct tgg ctc agt tta cta gtg cca ttt gtt cag tgg ttc Val Arg Phe Ser Trp Leu Ser Leu Leu Val Pro Phe Val Gln Trp Phe		2701	
	225	230	235	
20	gta ggg ctt tcc ccc act gtt tgg ctt tca gct ata tgg atg atg tgg Val Gly Leu Ser Pro Thr Val Trp Leu Ser Ala Ile Trp Met Met Trp		2749	
	240	245	250	
25	tat tgg ggg cca agt ctg tac agc atc gtg agt ccc ttt ata ccg ctg Tyr Trp Gly Pro Ser Leu Tyr Ser Ile Val Ser Pro Phe Ile Pro Leu		2797	
	255	260	265	270
30	.. tta cca att ttc ttt tgt ctc tgg gta tac att taagaattca gactcgagca 2850 Leu Pro Ile Phe Phe Cys Leu Trp Val Tyr Ile			
	275	280		
35	agtctagaaa ggccgcgccaa gatataagg atccactacg cgtagatcgatcg 2910 cctcgactgt gccttctagt tgccagccat ctgttgggg cccctcccccc gtgccttcct 2970 tgaccctgga aggtgccact cccactgtcc tttcttaata aaatgaggaa attgcatcgc 3030 attgtctgag taggtgtcat tctattctgg ggggtggggt ggggcaggac agcaaggggg 3090 aggattggga agacaatagc aggcatgctg gggagctctt ccgccttcctc gtcactgac 3150 tcgcgtcgct cggcgttgc gctgcggcga gcggtatcg ctcactcaaa ggccgtataata 3210 cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa 3270 40 aaggccagga accgtaaaaaa ggccgcgttg ctggcgaaaa tccataggct ccgccttcct 3330 gacgagcatc aaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa 3390 agataccagg cgcccccccc tggaaagctcc ctcgtgcgtc ctccctgttcc gaccctgccc 3450 45 cttaccggat acctgtccgc ctttctccct tcggaaagcg tggcgctttc tcaatgtca 3510 cgctgttaggt atctcagttc ggtgttaggtc gttcgctcca agctggctg tgtgcacgaa 3570 cccccgttc agcccgaccg ctgcgcctta tccggtaact atcgcttga gtccaaacccg 3630 50 gtaagacacg acttatacgcc actggcagca gccactggta acaggattag cagagcgagg 3690 tatgttaggcg gtgctacaga gttcttgaag tggtggccta actacggcta cactagaagg 3750 55 acagtatttg gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc 3810			

tcttgatccg gcaaacaaaac caccgctggc agcggtggtt tttttgttttcaagcagcag 3870
 attacgcgca gaaaaaaagg atctcaagaa gatccttga tctttctac ggggtctgac 3930
 5 gctcagtgga acgaaaactc acgttaaggg atttggtca tgagattatc aaaaaggatc 3990
 ttcacctaga tcctttaaa ttaaaaatga agttttaat caatctaaag tatatatgag 4050
 10 taaacttggt ctgacagtta ccaatgctta atcagtgagg cacctatctc agcgatctgt 4110
 ctatttcggt catccatagt tgcctgactc cccgtcgtgt agataactac gatacgggag 4170
 15 ggcttaccat ctggccccag tgctgcaatg ataccgcgag acccacgctc accggctcca 4230
 gatttatcag caataaacca gccagccgga agggccgagc gcagaagtgg tcctgcaact 4290
 ttatccgcct ccatccagtc tattaattgt tgccggaaag ctagagtaag tagttcgcca 4350
 20 gttaatagtt tgcgcaacgt tggtgccatt gctacaggca tcgtgggtgc acgctcgctg 4410
 tttggatgg cttcattcag ctccggttcc caacgatcaa ggcgagttac atgatcccc 4470
 atgttgca aaaaagcggt tagtccttc ggtcctccga tcgttgcag aagtaagttg 4530
 25 gccgcagtgt tatkactcat gttatggca gcactgcata attctcttac tgtcatgcca 4590
 tccgtaagat gctttctgt gactggtag tactcaacca agtcttctg agaatagtgt 4650
 atgcggcgac cgagttgctc ttgccccggc tcaatacggg ataataccgc gccacatagc 4710
 30 agaactttaa aagtgctcat cattggaaaa cgttcttcgg ggcggaaaact ctcaggatc 4770
 ttaccgctgt tgagatccag ttctatgtaa cccactcgtag cacccaaactg atcttcagca 4830
 35 tctttactt tcaccagcgt ttctgggtga gcaaaaacag gaaggcaaaa tgccgcaaaa 4890
 aagggaataa gggcgacacg gaaatgttga atactcatac tcttccttt tcaatattat 4950
 tgaagcattt atcagggtta ttgtctcatg agcggataca tatttgaatg tatttagaaa 5010
 40 aataaaacaaa taggggttcc ggcacattt ccccgaaaag tgccacctga cgtctaaagaa 5070
 accattatta tcatgacatt aacctataaa aataggcgta tcacgaggcc ctggctc 5128 .

45 <210> 3
 <211> 281
 <212> PRT.
 <213> Artificial Sequence

50 <220>
 <223> Description of Artificial Sequence: plasmid pCMVII-pS2-SAg

55 <400> 3

Met Gln Trp Asn Ser Thr Ala Phe His Gln Thr Leu Gln Asp Pro Arg
 1 5 10 15

5 Val Arg Gly Leu Tyr Leu Pro Ala Gly Gly Ser Ser Ser Gly Thr Val

20 25 30

10 Asn Pro Ala Pro Asn Ile Ala Ser His Ile Ser Ser Ile Ser Ala Arg
 35 40 45

15 Thr Gly Asp Pro Val Thr Asn Met Glu Asn Ile Thr Ser Gly Phe Leu
 50 55 60

20 Gly Pro Leu Leu Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile
 65 70 75 80

25 Leu Thr Ile Pro Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe
 85 90 95

30 Leu Gly Gly Ser Pro Val Cys Leu Gly Gln Asn Ser Gln Ser Pro Thr
 100 105 110

35 Ser Asn His Ser Pro Thr Ser Cys Pro Pro Ile Cys Pro Gly Tyr Arg
 115 120 125

40 Trp Met Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Leu
 130 135 140

45 Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro
 145 150 155 160

50 Val Cys Pro Leu Ile Pro Gly Ser Thr Thr Ser Thr Gly Pro Cys
 165 170 175

55 Lys Thr Cys Thr Thr Pro Ala Gln Gly Asn Ser Met Phe Pro Ser Cys
 180 185 190

60 Cys Cys Thr Lys Pro Thr Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro
 195 200 205

65 Ser Ser Trp Ala Phe Ala Lys Tyr Leu Trp Glu Trp Ala Ser Val Arg
 210 215 220

70 Phe Ser Trp Leu Ser Leu Leu Val Pro Phe Val Gln Trp Phe Val Gly
 225 230 235 240

75 Leu Ser Pro Thr Val Trp Leu Ser Ala Ile Trp Met Met Trp Tyr Trp
 245 250 255

80 Gly Pro Ser Leu Tyr Ser Ile Val Ser Pro Phe Ile Pro Leu Leu Pro
 260 265 270

85 Ile Phe Phe Cys Leu Trp Val Tyr Ile
 275 280

<210> 4
 <211> 5459

<212> DNA

<213> Artificial Sequence

<220>

5 <223> Description of Artificial Sequence: pCMVII opti 330 E1/SAg

<220>

<221> CDS

<222> (1992) .. (3161)

10

<400> 4

15

20

25

30

35

40

45

50

55

tcgcgcgttt cggtgatgac ggtaaaaacc tctgacacat gcagctcccg gagacggtca 60
 cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
 5 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgtt ctgagagtgc 180
 accatatgaa gcttttgca aaagcctagg cctccaaaaa agcctcctca ctacttctgg 240
 10 aatagcttag aggccgaggc ggctcggcc tctgcataaa taaaaaaaaat tagtcagcca 300
 tggggcggag aatgggcgga actgggcggg gagggaaatta ttggctattt gccattgcat 360
 acgttgtatc tatatcataa tatgtacatt tatattggct catgtccaaat atgaccgcca 420
 15 tggacatt gattatttgc tagttattaa tagtaatcaa ttacgggtc attagttcat 480
 agccatata tggagttccg cggtacataa cttacggtaa atggcccgcc tggctgaccg 540
 20 cccaaacgacc cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata 600
 gggactttcc attgacgtca atgggtggag tatttacggt aaactgccc cttggcagta 660
 catcaagtgt atcatatgcc aagtccgccc cctattgacg tcaatgacgg taaatggccc 720
 25 gcctggcatt atgcccagta catgaccta cggactttc ctacttggca gtacatctac 780
 gtattagtca tcgctattac catggtgatg cgggtttggc agtacaccaa tggcgtgga 840
 tagcggttg actcacgggg atttccaaatg ctccacccca ttgacgtcaa tggagttt 900
 30 ttttggcacc aaaatcaacg ggactttcca aaatgtcgta ataaccccgcc cccgttgacg 960
 caaatggcg gtaggcgtgt acgggtggag gtctatataa gcagagctcg ttttagtgaac 1020
 cgtcagatcg cctggagacg ccattccacgc tggtttgacc tccatagaag acaccggac 1080
 35 cgatccagcc tccgcggccg ggaacgggtgc attggAACgc ggattcccg tgccaagagt 1140
 gacgtaaatg ccgcctatacg actctatagg cacacccctt tggctttat gcatgctata 1200
 40 ctgtttttgg cttggggcct atacacccca gtcctttagt ctataggtga tggtagtgc 1260
 tagcctatacg gtgtgggtta ttgaccatta ttgaccactc ccctattggt gacgatactt 1320
 tccattacta atccataaca tggcttttg ccacaactat ctctattggc tatatgccaa 1380
 45 tactctgtcc ttcagagact gacacggact ctgtatTTT acaggatggg gtccatttt 1440
 tatttacaaa ttcacatata caacaacgcc gtcccccgtg cccgcagttt ttatataaca 1500
 tagcgtggga ttcggacat ctcgggtacg tggccggac atggctttt ctccggtagc 1560
 50 ggcggagctt ccacatccga gccctggtcc catccgtcca gcccgtcatg gtccgtccgc 1620

agtccttgc tcctaacagt ggaggccaga cttaggcaca gcacaatgcc caccaccacc 1680
 5 agtgtgccgc acaaggccgt ggccgttaggg tatgtgtctg aaaatgagct cggagattgg 1740
 gctcgacact ggacgcagat ggaagactta aggcagccgc agaagaagat gcaggcagct 1800
 gagttgttgtt attctgataa gactcagagg taactcccgta tgccgtgctg ttaacggtgg 1860
 10 agggcagtgt agtctgagca gtactcggtt ctgccgcgc cgccaccaga cataatagct 1920
 gacagactaa cagactgttc cttccatgg gtctttctg cagtcaccgt cgtcgacgaa 1980
 ttcaagcaat c atg gat gca atg aag aga ggg ctc tgc tgt gtg ctg ctg 2030
 15 Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu
 1 5 10

ctg tgt gga gca gtc ttc gtt tgc ccc agc gct agc tac cag gtg cgc 2078
 Leu Cys Gly Ala Val Phe Val Ser Pro Ser Ala Ser Tyr Gln Val Arg
 15 20 25

aac agc acc ggc ctg tac cac gtg acc aac gac tgc ccc aac agc agc 2126
 Asn Ser Thr Gly Leu Tyr His Val Thr Asn Asp Cys Pro Asn Ser Ser
 30 35 40 45

atc gtg tac gag gcc gac gcc atc ctg cac acc ccc ggc tgc gtg 2174
 Ile Val Tyr Glu Ala Ala Asp Ala Ile Leu His Thr Pro Gly Cys Val
 50 55 60

ccc tgc gtg cgc gag ggc aac gcc agc cgc tgc tgg gtg gcc atg acc 2222
 Pro Cys Val Arg Glu Gly Asn Ala Ser Arg Cys Trp Val Ala Met Thr
 65 70 75

ccc acc gtg gcc acc cgc gac ggc aag ctg ccc gcc acc cag ctg cgc 2270
 Pro Thr Val Ala Thr Arg Asp Gly Lys Leu Pro Ala Thr Gln Leu Arg
 80 85 90

35 cgc cac atc gac ctg ctg gtg ggc agc gcc acc ctg tgc agc gcc ctg 2318
 Arg His Ile Asp Leu Leu Val Gly Ser Ala Thr Leu Cys Ser Ala Leu
 95 100 105

40 tac gtg ggc gac ctg tgc ggc agc gtg ttc ctg gtg ggc cag ctg ttc 2366
 Tyr Val Gly Asp Leu Cys Gly Ser Val Phe Leu Val Gly Gln Leu Phe
 110 115 120 125

45 acc ttc agc ccc cgc cgc cac tgg acc acc cag ggc tgc aac tgc agc 2414
 Thr Phe Ser Pro Arg Arg His Trp Thr Thr Gln Gly Cys Asn Cys Ser
 130 135 140

atc tac ccc ggc cac atc acc ggc cac cgc atg gcc tgg gac atg atg 2462
 Ile Tyr Pro Gly His Ile Thr Gly His Arg Met Ala Trp Asp Met Met
 145 150 155

50 atg aac tgg agc ccc acc acc atg gag aac atc aca tca gga ttc cta 2510
 Met Asn Trp Ser Pro Thr Thr Met Glu Asn Ile Thr Ser Gly Phe Leu
 160 165 170

55 gga ccc ctg ctc gtg tta cag ggc ggg ttt ttc ttg ttg aca aga atc 2558
 Gly Pro Leu Leu Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile
 175 180 185

	ctc aca ata ccg cag agt cta gac tcg tgg act tct ctc aat ttt	2606
5	Leu Thr Ile Pro Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe	
	190 195 200 205	
	ctc ggg gga tct ccc gtg tgt ctt ggc caa aat tcg cag tcc cca acc	2654
	Leu Gly Gly Ser Pro Val Cys Leu Gly Gln Asn Ser Gln Ser Pro Thr	
	210 215 220	
10	tcc aat cac tca cca acc tcc tgt cct cca att tgt cct ggt tat cgc	2702
	Ser Asn His Ser Pro Thr Ser Cys Pro Pro Ile Cys Pro Gly Tyr Arg	
	225 230 235	
15	tgg atg tgt ctg cgg cgt ttt atc ata ttc ctc atc ctg ctg cta	2750
	Trp Met Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Leu	
	240 245 250	
	tgc ctc atc ttc tta ttg gtt ctt ctg gat tat caa ggt atg ttg ccc	2798
	Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro	
	255 260 265	
20	gtt tgt cct cta att cca gga tca aca aca acc agt acg gga cca tgc	2846
	Val Cys Pro Leu Ile Pro Gly Ser Thr Thr Ser Thr Gly Pro Cys	
	270 275 280 285	
25	aaa acc tgc acg act cct gct caa ggc aac tct atg ttt ccc tca tgt	2894
	Lys Thr Cys Thr Pro Ala Gln Gly Asn Ser Met Phe Pro Ser Cys	
	290 295 300	
30	tgc tgt aca aaa cct acg gat gga aat tgc acc tgt att ccc atc cca	2942
	Cys Cys Thr Lys Pro Thr Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro	
	305 310 315	
	tcg tcc tgg gct ttc gca aaa tac cta tgg gag tgg gcc tca gtc cgt	2990
	Ser Ser Trp Ala Phe Ala Lys Tyr Leu Trp Glu Trp Ala Ser Val Arg	
	320 325 330	
35	tcc tct tgg ctc agt tta cta gtg cca ttt gtt cag tgg ttc gta ggg	3038
	Phe Ser Trp Leu Ser Leu Leu Val Pro Phe Val Gln Trp Phe Val Gly	
	335 340 345	
40	ctt tcc ccc act gtt tgg ctt tca gct ata tgg atg atg tgg tat tgg	3086
	Leu Ser Pro Thr Val Trp Leu Ser Ala Ile Trp Met Met Trp Tyr Trp	
	350 355 360 365	
45	ggg cca agt ctg tac agc atc gtg agt ccc ttt ata ccg ctg tta cca	3134
	Gly Pro Ser Leu Tyr Ser Ile Val Ser Pro Phe Ile Pro Leu Leu Pro	
	370 375 380	
	att ttc ttt tgt ctc tgg gta tac att taagaattca gactcgagca	3181
	Ile Phe Phe Cys Leu Trp Val Tyr Ile	
	385 390	
50	agtctagaaa ggcgcgccaa gatatcaagg atccactacg cgtagatgcgtcgatcg	3241
	cctcgactgt gccttctagt tgccagccat ctgttgttg cccctcccccc gtgccttcct	3301
	tgaccctgga aggtgccact cccactgtcc tttcctaata aatgaggaa attgcatgc	3361
55	attgtctgag taggtgtcat tctattctgg ggggtggggt ggggcaggac agcaaggggg	3421

aggattggga agacaatagc aggcatgctg gggagctctt ccgcttcctc gctcactgac 3481
 tcgctgcgct cggtcggtcg gctgcggcga gcggtatcag ctcactcaaa ggccgtaata 3541
 5 cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa 3601
 aaggccagga accgtaaaaa ggccgcgttg ctggcggtt tccataggtt ccgcggccct 3661
 10 gacgagcatc aaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa 3721
 agataccagg cgtttcccccc tggaaagctcc ctgcgtcgct ctccgttcc gacectgccc 3781
 cttaaccggat acctgtccgc ctttctccct tcggaaagcg tggcgcttcc tcaatgctca 3841
 15 cgctgttaggt atctcagttc ggtgttaggtc gttcgctcca agctgggctg tgtgcacgaa 3901
 ccccccgttc agcccgaccg ctgcgcctt tccggtaact atcgcttga gtccaaacccg 3961
 gtaagacacg acttatacgcc actggcagca gccactggta acaggattag cagagcgagg 4021
 20 tatgttaggcg gtgctacaga gttcttgaag tgggtggctt actacggcta cactagaagg 4081
 acagtatttg gtatctgcgc tctgctgaag ccagttaccc tcggaaaaag agttggtagc 4141
 25 tcttgatccg gcaaacaac caccgtggt agcggtggtt tttttgtttt caagcagcag 4201
 attacgcgcgca gaaaaaaagg atctcaagaa gatccttta tctttctac ggggtctgac 4261
 gctcagtggc acgaaaactc acgttaaggg attttggtca tgagattatc aaaaaggatc 4321
 30 ttcacctaga tcctttaaa ttaaaaatga agttttaaat caatctaaag tatatatgag 4381
 taaacttggt ctgacagtta ccaatgcttta atcagtgagg cacctatctc agcgatctgt 4441
 ctatccgtt catccatagt tgcctgactc cccgtcggt agataactac gatacgggag 4501
 35 ggcttaccat ctggccccag tgctgcaatg ataccgcgag acccacgctc accggctcca 4561
 gatttatcag caataaacca gccagccgga agggccgagc gcagaagtgg tcctgcaact 4621
 ttatccgcct ccatccagtc tattaattgt tgccggaaag ctagagtaag tagttcgcca 4681
 40 gttaatagtt tgcgcacagt tggtgcatt gctacaggca tcgtgggtgc acgctcgctg 4741
 tttggtatgg cttcattcag ctccggttcc caacgatcaa ggcgagttac atgatcccc 4801
 45 atgttgcgcgca aaaaagcggt tagctccttc ggtccctccga tcgttgcag aagtaagttg 4861
 gccgcagtgt tatcactcat gtttatggca gcactgcata attctcttac tgtcatgcca 4921
 tccgtaagat gctttctgt gactggtgag tactcaacca agtcattctg agaatagtgt 4981
 50 atgcggcgac cgagttgctc ttgcccggcg tcaatacggg ataataccgc gccacatagc 5041
 agaactttaa aagtgcgtcat cattggaaaa cgttcttgg ggcgaaaact ctcaaggatc 5101
 ttaccgctgt tgagatccag ttgcgtttaa cccactcggt cacccaaactg atcttcagca 5161
 55 tcttttactt tcaccagcgt ttctgggtga gcaaaaacag gaaggcaaaa tgccgcaaaa 5221

aaggaataa gggcgacacg gaaatgttga atactcatac tcttccttt tcaatattat 5281
5 tgaagcattt atcagggtta ttgtctcatg agcggataca tatttgaatg tatttagaaa 5341
aataaacaaa taggggtcc ggcacatcc ccccgaaaag tgccacctga cgtctaagaa 5401
accattatta tcatgacatt aacctataaa aataggcgta tcacgaggcc cttdcgtc 5459

10

<210> 5
<211> 390
<212> PRT
<213> Artificial Sequence

15

<220>
<223> Description of Artificial Sequence: pCMVII opti 330 E1/SAg

20

25

30

35

40

45

50

55

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly
 1 5 10 15

5 Ala Val Phe Val Ser Pro Ser Ala Ser Tyr Gln Val Arg Asn Ser Thr
 - 20 25 30

Gly Leu Tyr His Val Thr Asn Asp Cys Pro Asn Ser Ser Ile Val Tyr
 35 40 45

10 Glu Ala Ala Asp Ala Ile Leu His Thr Pro Gly Cys Val Pro Cys Val
 50 55 60

15 Arg Glu Gly Asn Ala Ser Arg Cys Trp Val Ala Met Thr Pro Thr Val
 65 70 75 80

Ala Thr Arg Asp Gly Lys Leu Pro Ala Thr Gln Leu Arg Arg His Ile
 85 90 95

20 Asp Leu Leu Val Gly Ser Ala Thr Leu Cys Ser Ala Leu Tyr Val Gly
 100 105 110

Asp Leu Cys Gly Ser Val Phe Leu Val Gly Gln Leu Phe Thr Phe Ser
 115 120 125

25 Pro Arg Arg His Trp Thr Thr Gln Gly Cys Asn Cys Ser Ile Tyr Pro
 130 135 140

Gly His Ile Thr Gly His Arg Met Ala Trp Asp Met Met Met Asn Trp
 145 150 155 160

30 Ser Pro Thr Thr Met Glu Asn Ile Thr Ser Gly Phe Leu Gly Pro Leu
 165 170 175

Leu Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile
 180 185 190

35 Pro Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly
 195 200 205

40 Ser Pro Val Cys Leu Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His

45

50

55

5	210	215	220
	Ser Pro Thr Ser Cys Pro Pro Ile Cys Pro Gly Tyr Arg Trp Met Cys		
	225	230	235
	Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Leu Cys Leu Ile		
	245	250	255
10	Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro		
	260	265	270
	Leu Ile Pro Gly Ser Thr Thr Ser Thr Gly Pro Cys Lys Thr Cys		
	275	280	285
15	Thr Thr Pro Ala Gln Gly Asn Ser Met Phe Pro Ser Cys Cys Cys Thr		
	290	295	300
	Lys Pro Thr Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp		
20	305	310	315
	320		
	Ala Phe Ala Lys Tyr Leu Trp Glu Trp Ala Ser Val Arg Phe Ser Trp		
	325	330	335
25	Leu Ser Leu Leu Val Pro Phe Val Gln Trp Phe Val Gly Leu Ser Pro		
	340	345	350
	Thr Val Trp Leu Ser Ala Ile Trp Met Met Trp Tyr Trp Gly Pro Ser		
	355	360	365
30	Leu Tyr Ser Ile Val Ser Pro Phe Ile Pro Leu Leu Pro Ile Phe Phe		
	370	375	380
	Cys Leu Trp Val Tyr Ile		
	385	390	

<210> 6

<211> 5882

<212> DNA

40 <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: plasmid pCMV-II-E2661-sAg

45 <220>

<221> CDS

<222> (1992)..(3584)

<400> 6

tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60
cagcttgtct gtaaggcgat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
5 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accatatgaa gcttttgca aaagcctagg cctccaaaaa agcctcctca ctacttctgg 240
10 aatagctcag aggccgaggc ggcctcggcc tctgcataaa taaaaaaaaat tagtcagcca 300

10

15

20

25

30

35

40

45

50

55

tggggcggag aatgggcgga actgggcggg gagggaaatta ttggctattt gccattgcat 360
 acgttgtatc tatatcataa tatgtacatt tatattggct catgtccaaat atgaccgcca 420
 5 tttgtacatt gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat 480
 agcccatata tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg 540
 10 cccaaacgacc cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata 600
 gggactttcc attgacgtca atgggtggag tatttacggt aaactgccc cttggcagta 660
 15 catcaagtgt atcatatgcc aagtccgccc cctattgacg tcaatgacgg taaatggccc 720
 gcctggcatt atgcccagta catgacccctt cgggactttc ctacttggca gtacatctac 780
 gtatttagtca tcgctattac catggtgatg cgggtttggc agtacaccaa tgggcgtgga 840
 20 tagcggtttg actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagttt 900
 ttttggcacc aaaatcaacg ggactttcca aatgtcgta ataacccgc cccggtgacg 960
 caaatggcg gtaggcgtgt acggtgggag gtctatataa gcagagctcg ttttagtgaac 1020
 25 cgtcagatcg cctggagacg ccattccacgc tggtttgacc tccatagaag acacccggac 1080
 cgatccagcc tccgcggccg ggaacgggtgc attggaacgc ggattccccc tgccaagagt 1140
 gacgtaaagta ccgcctatacg actctatagg cacacccctt tggcttttat gcatgctata 1200
 30 ctgtttttgg cttggggcct atacacccca gtcctttagt ctataaggta tggtagatct 1260
 tagcctatacg gtgtgggtta ttgaccatta ttgaccactc ccctattggt gacgatactt 1320
 tccattacta atccataaca tggcttttg ccacaactat ctctattggc tatatgccaa 1380
 35 tactctgtcc ttcagagact gacacggact ctgtttttt acaggatggg gtccatttat 1440
 tatttacaaa ttcacatata caacaacgcg gtcccccgtc cccgcagttt ttattaaaca 1500
 tagcgtggga tctccgacat ctcgggtacg tggtccggac atgggtctt ctccggtagc 1560
 40 ggccggagctt ccacatccga gccctggtcc catccgtcca gcccgtcatg gtcgtcggc 1620
 agtccttgc tcctaacagt ggaggccaga cttaggcaca gcacaatgcc caccaccacc 1680
 45 agtgtgccgc acaaggccgt ggcggtaggg tatgtgtctg aaaatgagct cggagattgg 1740
 gctcgcacct ggacgcagat ggaagactta aggcagccgc agaagaagat gcaggcagct 1800
 gagttgttgtt attctgataa gagtcagagg taactccgt tgccgtgctg ttaacgggtgg 1860
 50 agggcagtgt agtctgagca gtactcggtt ctgccgcgc cgccaccaga cataatagct 1920
 gacagactaa cagactgttc cttccatgg gtctttctg cagtcacccgt cgtcgacgaa 1980
 ttcaagcaat c atg gat gca atg aag aga ggg ctc tgc tgt gtg ctg ctg 2030
 Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu

	ctg tgt gga gca gtc ttc gtt tcg ccc agc gct agc gaa acc cac gtc Leu Cys Gly Ala Val Phe Val Ser Pro Ser Ala Ser Glu Thr His Val	15	20	25	2078
5	acc ggg gga agt gcc ggc cac act gtg tct gga ttt gtt agc ctc ctc Thr Gly Gly Ser Ala Gly His Thr Val Ser Gly Phe Val Ser Leu Leu	30	35	40	2126
10	gca cca ggc gcc aag cag aac gtc cag ctg atc aac acc aac ggc agt Ala Pro Gly Ala Lys Gln Asn Val Gln Leu Ile Asn Thr Asn Gly Ser	50	55	60	2174
15	tgg cac ctc aat agc acg gcc ctg aac tgc aat gat agc ctc aac acc Trp His Leu Asn Ser Thr Ala Leu Asn Cys Asn Asp Ser Leu Asn Thr	65	70	75	2222
20	ggc tgg ttg gca ggg ctt ttc tat cac cac aag ttc aac tct tca ggc Gly Trp Leu Ala Gly Leu Phe Tyr His His Lys Phe Asn Ser Ser Gly	80	85	90	2270
25	tgt cct gag agg cta gcc agc tgc cga ccc ctt acc gat ttt gac cag Cys Pro Glu Arg Leu Ala Ser Cys Arg Pro Leu Thr Asp Phe Asp Gln	95	100	105	2318
30	ggc tgg ggc cct atc agt tat gcc aac gga agc ggc ccc gac cag cgc Gly Trp Gly Pro Ile Ser Tyr Ala Asn Gly Ser Gly Pro Asp Gln Arg	110	115	120	2366
35	ccc tac tgc tgg cac tac ccc cca aaa cct tgc ggt att gtg ccc gcg Pro Tyr Cys Trp His Tyr Pro Pro Lys Pro Cys Gly Ile Val Pro Ala	130	135	140	2414
40	aag agt gtg tgt ggt ccg gta tat tgc ttc act ccc agc ccc gtg gtg Lys Ser Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser Pro Val Val	145	150	155	2462
45	gtg gga acg acc gac agg tcg ggc gcg ccc acc tac agc tgg ggt gaa Val Gly Thr Thr Asp Arg Ser Gly Ala Pro Thr Tyr Ser Trp Gly Glu	160	165	170	2510
50	aat gat acg gac gtc ttc gtc ctt aac aat acc agg cca ccg ctg ggc Asn Asp Thr Asp Val Phe Val Leu Asn Asn Thr Arg Pro Pro Leu Gly	175	180	185	2558
55	aat tgg ttc ggt tgt acc tgg atg aac tca act gga ttc acc aaa gtg Asn Trp Phe Gly Cys Thr Trp Met Asn Ser Thr Gly Phe Thr Lys Val	190	195	200	2606
	tgc gga gcg cct cct tgt gtc atc gga ggg gcg ggc aac aac acc ctg Cys Gly Ala Pro Pro Cys Val Ile Gly Gly Ala Gly Asn Asn Thr Leu	210	215	220	2654
	cac tgc ccc act gat tgc ttc cgc aag cat ccg gac gcc aca tac tct His Cys Pro Thr Asp Cys Phe Arg Lys His Pro Asp Ala Thr Tyr Ser	225	230	235	2702
	cgg tgc ggc tcc ggt ccc tgg atc aca ccc agg tgc ctg gtc gac tac Arg Cys Gly Ser Gly Pro Trp Ile Thr Pro Arg Cys Leu Val Asp Tyr	240	245	250	2750

	ccg tat agg ctt tgg cat tat cct tgt acc atc aac tac acc acc ata ttt Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Ile Asn Tyr Thr Ile Phe 255 260 265	2798
5	aaa atc agg atg tac gtg gga ggg gtc gaa cac agg ctg gaa gct gcc Lys Ile Arg Met Tyr Val Gly Gly Val Glu His Arg Leu Glu Ala Ala 270 275 280 285	2846
10	tgc aac tgg acg cgg ggc gaa cgt tgc gat ctg gaa gat agg gac agg Cys Asn Trp Thr Arg Gly Glu Arg Cys Asp Leu Glu Asp Arg Asp Arg 290 295 300	2894
15	tcc gag atc gat atg gag aac atc aca tca gga ttc cta gga ccc ctg Ser Glu Ile Asp Met Glu Asn Ile Thr Ser Gly Phe Leu Gly Pro Leu 305 310 315	2942
20	ctc gtg tta cag gcg ggg ttt ttc ttg ttg aca aga atc ctc aca ata Leu Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile 320 325 330	2990
25	ccg cag agt cta gac tcg tgg tgg act tct ctc aat ttt cta ggg gga Pro Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly 335 340 345	3038
30	tct ccc gtg tgt ctt ggc caa aat tcg cag tcc cca acc tcc aat cac Ser Pro Val Cys Leu Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His 350 355 360 365	3086
35	tca cca acc tcc tgt cct cca att tgt cct ggt tat cgc tgg atg tgt Ser Pro Thr Ser Cys Pro Pro Ile Cys Pro Gly Tyr Arg Trp Met Cys 370 375 380	3134
40	ctg cgg cgt ttt atc ata ttc ctc ttc atc ctg ctg cta tgc ctc atc Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Leu Cys Leu Ile 385 390 395	3182
45	ttc tta ttg gtt ctt ctg gat tat caa ggt atg ttg ccc gtt tgt cct Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro 400 405 410	3230
50	cta att cca gga tca aca aca acc agt acg gga cca tgc aaa acc tgc Leu Ile Pro Gly Ser Thr Thr Ser Thr Gly Pro Cys Lys Thr Cys 415 420 425	3278
55	acg act cct gct caa ggc aac tct atg ttt ccc tca tgt tgc tgt aca Thr Thr Pro Ala Gln Gly Asn Ser Met Phe Pro Ser Cys Cys Cys Thr 430 435 440 445	3326
	aaa cct acg gat gga aat tgc acc tgt att ccc atc cca tgc tcc tgg Lys Pro Thr Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp 450 455 460	3374
	gct ttc gca aaa tac cta tgg gag tgg gcc tca gtc cgt ttc tct tgg Ala Phe Ala Lys Tyr Leu Trp Glu Trp Ala Ser Val Arg Phe Ser Trp 465 470 475	3422
	ctc agt tta cta gtg cca ttt gtt cag tgg ttc gta ggg ctt tcc ccc Leu Ser Leu Leu Val Pro Phe Val Gln Trp Phe Val Gly Leu Ser Pro 480 485 490	3470

act gtt tgg ctt tca gct ata tgg atg atg tgg tat tgg ggg cca agt	3518
Thr Val Trp Leu Ser Ala Ile Trp Met Met Trp Tyr Trp Gly Pro Ser	
495 500 505	
5	
ctg tac agc atc gtg agt ccc ttt ata ccg ctg tta cca att ttc ttt	3566
Leu Tyr Ser Ile Val Ser Pro Phe Ile Pro Leu Leu Pro Ile Phe Phe	
510 515 520 525	
10	
tgt ctc tgg gta tac att taagaattca gactcgagca agtctagaaa	3614
Cys Leu Trp Val Tyr Ile	
530	
15	
ggcgcgccaa gatataagg atccactacg cgtagatcg cgctgatcg cctcgactgt	3674
gccttctagt tgccagccat ctgttgggg cccctccccc gtgccttcct tgaccctgga	3734
aggtgccact cccactgtcc tttcctaata aaatgaggaa attgcacgcg attgtctgag	3794
20	
taggtgtcat tctattctgg ggggtggggt gggcaggac agcaaggggg aggattggga	3854
agacaatagc aggcatgctg gggagctttt ccgccttcctc gctcaactgac tcgctgcgct	3914
cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa ggcggtaata cggttatcca	3974
25	
cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga	4034
accgtaaaaa ggccgcgttg ctggcggtt tccataggtt ccgcggccct gacgagcatc	4094
acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg	4154
30	
cgtttcccccc tggaaagctcc ctcgtgcgct ctccgttcc gaccctgccc cttaccggat	4214
acctgtccgc ctttctccct tcgggaagcg tggcgcttcc tcaatgctca cgctgttaggt	4274
atctcagttc ggtgttaggtc gttcgctcca agctggctg tgtgcacgaa ccccccgttc	4334
35	
agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaaacccg gtaagacacg	4394
acttatcgcc actggcagca gccactggta acaggattag cagagcgagg tatgttaggcg	4454
40	
gtgctacaga gttcttgaag tggggccta actacggcta cactagaagg acagtatttgc	4514
gtatctgcgc tctgctgaag ccagttaccc tcggaaaaag agttggtagc tcttgcgtcc	4574
gcaaacaacac caccgctggc agcggtggtt tttttgtttt caagcagcag attacgcgca	4634
45	
aaaaaaaagg atctcaagaa gatccttga tctttctac ggggtctgac gctcagtggaa	4694
acgaaaaactc acgttaaggg attttggtca tgagattatc aaaaaggatc ttcacctaga	4754
tcctttaaa ttaaaaatga agttttaaat caatctaaag tatatatgag taaaacttgggt	4814
50	
ctgacagtta ccaatgctta atcagtgagg cacctatctc agcgatctgt ctatttcgtt	4874
catccatagt tgcctgactc cccgtcggt agataactac gatacgggag ggcttaccat	4934
ctggccccag tgctgcaatg ataccgcgag acccacgctc accggctcca gatttatcag	4994
55	
caataaacca gccagccgga agggccgagc gcagaagtgg tcctgcaact ttatccgcct	5054

5 ccatccagtc tattaattgt tgccgggaag ctagagtaag tagtcgcca gttaatagtt 5114
 tgcgcaacgt tggtgccatt gctacaggca tcgtggtgc acgctcgctg tttggtatgg 5174
 cttcattcag ctccggttcc caacgatcaa ggcgagttac atgatcccccc atgttgtgca 5234
 aaaaagcggt tagtccttc ggtcctccga tcgttgcag aagtaagttg gccgcagtgt 5294
 10 tatcaactcat ggttatggca gcactgcata attctttac tgcgcgcata tccgtaagat 5354
 gcttttctgt gactggtgag tactcaacca agtcattctg agaatagtgt atgcggcgac 5414
 15 cgagttgctc ttgccccggcg tcaatacggg ataataccgc gccacatagc agaactttaa 5474
 aagtgcgtcat cattggaaaa cgttcttcgg ggcgaaaaact ctcaaggatc ttaccgctgt 5534
 tgagatccag ttcgatgtaa cccactcgta cacccaaactg atcttcagca tctttactt 5594
 20 tcaccagcgt ttctgggtga gcaaaaacag gaaggcaaaa tgccgcaaaa aaggaaataa 5654
 gggcgacacg gaaatgttga atactcatac tcttccttt tcaatattat tgaagcattt 5714
 atcagggtta ttgtctcatg agcggataca tatttgaatg tatttagaaa aataaacaaa 5774
 25 taggggttcc ggcacatcc cccgaaaaag tgccacctga cgtctaagaa accattatta 5834
 tcatgacatt aacctataaa aataggcgta tcacgaggcc ctttcgtc 5882

30 <210> 7
 <211> 531
 <212> PRT
 <213> Artificial Sequence

35 <220>
 <223> Description of Artificial Sequence: plasmid pCMV-II-E2661-sAg
 <400> 7

40

45

50

55

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly
 1 5 10 15

5 Ala Val Phe Val Ser Pro Ser Ala Ser Glu Thr His Val Thr Gly Gly
 20 25 30

Ser Ala Gly His Thr Val Ser Gly Phe Val Ser Leu Leu Ala Pro Gly
 35 40 45

10 Ala Lys Gln Asn Val Gln Leu Ile Asn Thr Asn Gly Ser Trp His Leu
 50 55 60

15 Asn Ser Thr Ala Leu Asn Cys Asn Asp Ser Leu Asn Thr Gly Trp Leu
 65 70 75 80

Ala Gly Leu Phe Tyr His His Lys Phe Asn Ser Ser Gly Cys Pro Glu
 85 90 95

20 Arg Leu Ala Ser Cys Arg Pro Leu Thr Asp Phe Asp Gln Gly Trp Gly
 100 105 110

25

30

35

40

45

50

55

5	Pro Ile Ser Tyr Ala Asn Gly Ser Gly Pro Asp Gln Arg Pro Tyr Cys	115	120	125
	Trp His Tyr Pro Pro Lys Pro Cys Gly Ile Val Pro Ala Lys Ser Val	130	135	140
	Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser Pro Val Val Val Gly Thr	145	150	155
10	Thr Asp Arg Ser Gly Ala Pro Thr Tyr Ser Trp Gly Glu Asn Asp Thr	165	170	175
	Asp Val Phe Val Leu Asn Asn Thr Arg Pro Pro Leu Gly Asn Trp Phe	180	185	190
15	Gly Cys Thr Trp Met Asn Ser Thr Gly Phe Thr Lys Val Cys Gly Ala	195	200	205
20	Pro Pro Cys Val Ile Gly Gly Ala Gly Asn Asn Thr Leu His Cys Pro	210	215	220
	Thr Asp Cys Phe Arg Lys His Pro Asp Ala Thr Tyr Ser Arg Cys Gly	225	230	235
	Ser Gly Pro Trp Ile Thr Pro Arg Cys Leu Val Asp Tyr Pro Tyr Arg	245	250	255
	Leu Trp His Tyr Pro Cys Thr Ile Asn Tyr Thr Ile Phe Lys Ile Arg	260	265	270
30	Met Tyr Val Gly Gly Val Glu His Arg Leu Glu Ala Ala Cys Asn Trp	275	280	285
	Thr Arg Gly Glu Arg Cys Asp Leu Glu Asp Arg Asp Arg Ser Glu Ile	290	295	300
35	Asp Met Glu Asn Ile Thr Ser Gly Phe Leu Gly Pro Leu Leu Val Leu	305	310	315
	Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser	325	330	335
40	Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Ser Pro Val	340	345	350
	Cys Leu Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser Pro Thr	355	360	365
45	Ser Cys Pro Pro Ile Cys Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg	370	375	380
	Phe Ile Ile Phe Leu Phe Ile Leu Leu Cys Leu Ile Phe Leu Leu	385	390	395
50	Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Ile Pro	405	410	415
	Gly Ser Thr Thr Ser Thr Gly Pro Cys Lys Thr Cys Thr Thr Pro	420	425	430

Ala Gln Gly Asn Ser Met Phe Pro Ser Cys Cys Cys Thr Lys Pro Thr
 435 440 445
 5 Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala Phe Ala
 450 455 460
 Lys Tyr Leu Trp Glu Trp Ala Ser Val Arg Phe Ser Trp Leu Ser Leu
 10 465 470 475 480
 Leu Val Pro Phe Val Gln Trp Phe Val Gly Leu Ser Pro Thr Val Trp
 485 490 495
 15 Leu Ser Ala Ile Trp Met Met Trp Tyr Trp Gly Pro Ser Leu Tyr Ser
 500 505 510
 Ile Val Ser Pro Phe Ile Pro Leu Leu Pro Ile Phe Phe Cys Leu Trp
 515 520 525
 20 Val Tyr Ile
 530

25

Claims

1. A virus-like particle for use as an immunogen, comprising a first hepatitis B virus surface antigen (HBsAg) and a chimeric antigen, wherein the Chimeric antigen comprises a second HBsAg which is covalently linked to an HCV immunogenic polypeptide, and wherein the first and the second HBsAg each comprise a substantial complete S domain.
2. The virus-like particle of claim 1, wherein the first HBsAg consists essentially of preS2 and S domains.
3. The virus-like particle of claim 2, wherein the first HBsAg consists essentially of preS1, preS2, and S domains.
4. The virus-like particle of claim 1, wherein the carboxy terminus of the HCV immunogenic polypeptide is linked to the amino terminus of the second HBsAg.
5. The virus-like particle of claim 1; wherein the first HBsAg expressed in excess relative to the chimeric antigen.
6. The virus-like particle of claim 5, wherein the first HBsAg is expressed using an amount of DNA that is between and 100 times the amount of DNA used to express the chimeric antigen.
- 45 7. The virus-like particle of claim 1, wherein the HCV immunogenic polypeptide comprises an HCV E1 glycoprotein, an immunogenic fragment of an HCV E1 glycoprotein, an HCV E2 glycoprotein, or an immunogenic fragment of an HCV E2 glycoprotein.
- 50 8. The virus-like particle of claim 1, wherein the HCV immunogenic polypeptide consists essentially of an HCV E1 glycoprotein, an immunogenic fragment of an HCV E1 glycoprotein, an HCV E2 glycoprotein, or an immunogenic fragment of an HCV E2 glycoprotein.
- 55 9. The virus-like particle of claim 7, wherein the HCV immunogenic polypeptide comprises (a) amino acid residues 192 to 330 of an HCV-1 polyprotein; or (b) the corresponding residues of other HCV isolates; or (c) an immunogenic sequence having at least about 80% sequence identity to (a) or (b).
10. The virus-like particle of claim 7, wherein the HCV immunogenic polypeptide comprises (a) amino acid residues 384 to 661 of an HCV-1 polyprotein; or (b) the corresponding residues of other HCV isolates; or (c) an immunogenic

sequence having at least about 80% sequence identity to (a) or (b).

- 5 11. The virus-like particle of claim 10, wherein the HCV immunogenic polypeptide consists essentially of amino acid residues 384 to 661 of an HCV polyprotein.
- 10 12. The virus-like particle of claim 1, wherein the HCV immunogenic polypeptide comprises (1) an HCV E1 glycoprotein or a fragment thereof and (2) an HCV E2 glycoprotein or a fragment thereof.
- 15 13. A virus-like particle for use as an immunogen, comprising a first HBsAg and first and second chimeric antigens, wherein the first chimeric antigen comprises a second HBsAg which is covalently linked to a first immunogenic polypeptide comprising an HCV E1 glycoprotein or an immunogenic fragment thereof, wherein the second chimeric antigen comprises a third HBsAg which is covalently linked to a second immunogenic polypeptide comprising an HCV E2 glycoprotein or an immunogenic fragment thereof, and wherein the first, second, and third HBsAg each comprise a substantially complete S domain.
- 20 14. The virus-like particle of claim 13, wherein the first HBsAg consists essentially of preS2 and S domains.
- 25 15. The virus-like particle of claim 13, wherein the first HBsAg consists essentially of preS1, preS2, and S domains.
- 30 16. The virus-like particle of claim 13, wherein the carboxy terminus of the first immunogenic polypeptide is linked to the amino terminus of the second HBsAg and the carboxy terminus of the second immunogenic polypeptide is linked to the amino terminus of the third HBsAg.
- 35 17. The virus-like particle of claim 13, wherein the first HBsAg is expressed in excess relative to the total amount of the first and second chimeric antigens.
- 40 18. The virus-like particle of claim 17, wherein the first HBsAg is expressed using an amount of DNA that is between 1 and 100 times the total amount of the DNA used to express the first and second chimeric antigens.
- 45 19. The virus-like particle of claim 13, wherein the first immunogenic polypeptide comprises (a) amino acid residues 192 to 330 of an HCV-1 polyprotein; or (b) the corresponding residues of other HCV isolates; or (c) an immunogenic sequence having at least about 80% sequence identity to (a) or (b).
- 50 20. The virus-like particle of claim 13, wherein the second immunogenic polypeptide comprises (a) amino acid residues 384 to 661 of an HCV-1 polyprotein; or (b) the corresponding residues of other HCV isolates; or (c) an immunogenic sequence having at least about 80% sequence identity to (a) or (b).
22. The virus-like particle comprising a first HBsAg and a chimeric antigen, wherein the chimeric antigen comprises a second HBsAg which is linked to an HCV immunogenic polypeptide, and wherein the first and the second HBsAg each comprise a substantially complete S domain; and a pharmaceutically acceptable carrier.
23. The immunogenic composition of claim 22, wherein the first HBsAg is expressed in excess compared to the chimeric antigen.
24. The immunogenic composition of claim 23, wherein the first HBsAg is expressed using an amount of DNA that is between 1 and 100 times the amount of DNA used to express the chimeric antigen.
- 55 25. The immunogenic composition of claim 22, wherein the HCV immunogenic polypeptide comprises an HCV E1 glycoprotein, an immunogenic fragment of an HCV E1 glycoprotein, an HCV E2 glycoprotein, or an immunogenic fragment of an HCV E2 glycoprotein.

26. The immunogenic composition of claim 22, wherein the HCV immunogenic polypeptide comprises (a) amino acid residues 192 to 330 of an HCV-1 polyprotein; or (b) the corresponding residues of other HCV isolates; or (c) an immunogenic sequence having at least about 80% sequence identity to (a) or (b).

5 27. The immunogenic composition of claim 22, wherein the HCV immunogenic polypeptide consists essentially of amino acid residues 192 to 330 of an HCV-1 polyprotein; or (b) the corresponding residues of other HCV isolates.

10 28. The immunogenic composition of claim 22, wherein the HCV immunogenic polypeptide comprises (a) amino acid residues 384 to 661 of an HCV-1 polyprotein; or (b) the corresponding residues of other HCV isolates; or (c) an immunogenic sequence having at least about 80% sequence identity to (a) or (b).

15 29. The immunogenic composition of claim 22, wherein the HCV immunogenic polypeptide comprises (a) amino acid residues 384 to 661 of an HCV-1 polyprotein; or (b) the corresponding residues of other HCV isolates.

20 30. An immunogenic composition comprising virus-like particles, comprising a first HBsAg and Urst and second chimeric antigens, wherein the first chimeric antigen comprises a second HBsAg which is linked to a first immunogenic polypeptide comprising an HCV E1 glycoprotein or an immunogenic fragment thereof, wherein the second chimeric antigen comprises a third HBsAg which is linked to a second immunogenic polypeptide comprising an HCV E2 glycoprotein or an immunogenic fragment thereof, and wherein the first, second, and third HBsAg each comprise a substantially complete S domain.

31. The immunogenic composition of claim 30, wherein the first HBsAg consists essentially of preS2 and S domains.

25 32. The immunogenic composition of claim 30, wherein the first HBsAg consists essentially of preS1, preS2, and S domains.

30 33. The immunogenic composition of claim 30, wherein the carboxy terminus of the first immunogenic polypeptide is linked to the amino terminus of the second HBsAg and the carboxy terminus of the second immunogenic polypeptide is linked to the amino terminus of the third HBsAg.

35 34. The immunogenic composition of claim 30, wherein the first HBsAg is expressed in excess relative to the total amount of the first and second chimeric antigens.

40 35. The immunogenic composition of claim 34, wherein the first HBsAg is expressed using an amount of DNA that is between 1 and 100 times the amount of DNA used to express the chimeric antigen.

45 36. The immunogenic composition of claim 30, wherein the first immunogenic polypeptide comprises (a) amino acid residues 192 to 330 of an HCV-1 polyprotein; or (b) the corresponding residues of other HCV isolates; or (c) an immunogenic sequence having at least about 80% sequence identity to (a) or (b).

50 37. The immunogenic composition of claim 30, wherein the second immunogenic polypeptide comprises (a) amino acid residues 384 to 661 of an HCV-1 polyprotein; or (b) the corresponding residues of other HCV isolates; or (c) an immunogenic sequence having at least about 80% sequence identity to (a) or (b).

45 38. An in vitro method of producing virus-like particles comprising the steps of:

55 culturing a cell in a culture medium, whereby the cell expresses virus-like particles comprising a first HBsAg and a chimeric antigen, wherein the chimeric antigen comprises a second HBsAg which is covalently linked to an HCV immunogenic polypeptide, and wherein the first and the second HBsAg each comprise a substantially complete S domain; and isolating the virus-like particles from the culture medium.

39. The method of claim 38, wherein the cell is a CHO cell or a COS cell.

55 40. An in vitro method of producing a cell line that expresses virus-like particles, comprising the steps of:

55 transfecting a cell with a vector that expresses virus-like particles comprising a first HBsAg and a chimeric antigen, wherein the chimeric antigen comprises a second HBsAg which is covalently linked to an HCV immu-

nogenic polypeptide, and wherein the first and the second HBsAg each comprise a substantially complete S domain; and
 culturing the cell to produce a cell line that expresses the virus-like particles.

5 **41.** The method of claim 40, wherein the vector is a plasmid vector.

10 **42.** The method of claim 40, wherein the plasmid vector is pCMVII opti 330 E (SEQ ID NO:4) or pCMV-II-E2661-sAg (SEQ ID NO:6).

15 **43.** The method of claim 40, wherein the vector is a viral vector.

20 **44.** The method of claim 43, wherein the viral vector is essentially free of infectious virus.

25 **45.** A cell line that expresses a virus-like particle comprising a first HBsAg and a chimeric antigen, wherein the chimeric antigen comprises a second HBsAg which is linked to an HCV immunogenic polypeptide, and wherein the first and the second HBsAg each comprise a substantially complete S domain.

30 **46.** A cell line that expresses a virus-like particle comprising a first HBsAg and first and second chimeric antigens, wherein the first chimeric antigen comprises a second HBsAg which is linked to a first immunogenic polypeptide comprising an HCV E1 glycoprotein or an immunogenic fragment thereof, wherein the second chimeric antigen comprises a third HBsAg which is linked to a second immunogenic polypeptide comprising an HCV E2 glycoprotein or an immunogenic fragment thereof, and wherein the first, second, and third HBsAg each comprise a substantially complete S domain.

25 Patentansprüche

1. Virusähnliches Partikel zur Verwendung als Immunogen, umfassend ein erstes Hepatitis-B-Virus-Oberflächen-Antigen (HBsAg) und ein chimäres Antigen, wobei das chimäre Antigen ein zweites HBsAg umfasst, das kovalent mit einem immunogenen HCV-Polypeptid verbunden ist, und wobei das erste und das zweite HBsAg jeweils eine im Wesentlichen vollständige S-Domäne umfassen.

30 **2.** Virusähnliches Partikel nach Anspruch 1, wobei das erste HBsAg im Wesentlichen aus preS2- und S-Domänen besteht.

35 **3.** Virusähnliches Partikel nach Anspruch 2, wobei das erste HBsAg im Wesentlichen aus preS1-, preS2- und S-Domänen besteht.

40 **4.** Virusähnliches Partikel nach Anspruch 1, wobei der Carboxy-Terminus des immunogenen HCV-Polypeptids mit dem Amino-Terminus des zweiten HBsAg verbunden ist.

45 **5.** Virusähnliches Partikel nach Anspruch 1, wobei das erste HBsAg im Vergleich zum chimären Antigen im Überschuss exprimiert wird.

50 **6.** Virusähnliches Partikel nach Anspruch 5, wobei das erste HBsAg unter Verwendung einer Menge von DNA exprimiert wird, die zwischen 1 und 100 Mal der Menge der DNA liegt, die verwendet wird, um das chimäre Antigen zu exprimieren.

55 **7.** Virusähnliches Partikel nach Anspruch 1, wobei das immunogene HCV-Polypeptid ein HCV-E1-Glycoprotein, ein immunogenes Fragment eines HCV-E1-Glycoproteins, ein HCV-E2-Glycoprotein oder ein immunogenes Fragment eines HCV-E2-Glycoproteins umfasst.

60 **8.** Virusähnliches Partikel nach Anspruch 1, wobei das immunogene HCV-Polypeptid im Wesentlichen aus einem HCV-E1-Glycoprotein, einem immunogenen Fragment eines HCV-E1-Glycoproteins, einem HCV-E2-Glycoprotein oder einem immunogenen Fragment eines HCV-E2-Glycoproteins besteht.

65 **9.** Virusähnliches Partikel nach Anspruch 7, wobei das immunogene HCV-Polypeptid (a) Aminosäurereste 192 bis 330 eines HCV-1-Polyproteins; oder (b) die korrespondierenden Reste anderer HCV-Isolate; oder (c) eine immun-

ogene Sequenz, die mindestens 80% Sequenzidentität mit (a) oder (b) hat, umfasst.

5 10. Virusähnliches Partikel nach Anspruch 7, wobei das immunogene HCV-Polypeptid (a) Aminosäurereste 384 bis 661 eines HCV-1-Polyproteins; oder (b) die korrespondierenden Reste anderer HCV-Isolate; oder (c) eine immunogene Sequenz, die mindestens 80% Sequenzidentität mit (a) oder (b) hat, umfasst.

10 11. Virusähnliches Partikel nach Anspruch 10, wobei das immunogene HCV-Polypeptid im Wesentlichen aus Aminosäureresten 384 bis 661 eines HCV-Polyproteins besteht.

15 12. Virusähnliches Partikel nach Anspruch 1, wobei das immunogene HCV-Polypeptid (1) ein HCV-E1-Glycoprotein oder ein Fragment davon und (2) ein HCV-E2-Glycoprotein oder ein Fragment davon umfasst.

13. Virusähnliches Partikel zur Verwendung als Immunogen, umfassend ein erstes HBsAg und erste und zweite chimäre Antigene, wobei das erste chimäre Antigen ein zweites HBsAg umfasst, das mit einem ersten immunogenen Polypeptid kovalent verbunden ist, wobei das erste immunogene Polypeptid ein HCV-E1-Glycoprotein oder ein immunogenes Fragment davon umfasst, und wobei das zweite chimäre Antigen ein drittes HBsAg umfasst, das kovalent mit einem zweiten immunogenen Polypeptid verbunden ist, wobei das zweite immunogene Polypeptid ein HCV-E2-Glycoprotein oder ein immunogenes Fragment davon umfasst und wobei das erste, zweite und dritte HBsAg jeweils eine im Wesentlichen vollständige S-Domäne umfassen.

20 14. Virusähnliches Partikel nach Anspruch 13, wobei das erste HBsAg im Wesentlichen aus preS2- und S-Domänen besteht.

25 15. Virusähnliches Partikel nach Anspruch 13, wobei das erste HBsAg im Wesentlichen aus preS1-, preS2- und S-Domänen besteht.

30 16. Virusähnliches Partikel nach Anspruch 13, wobei der Carboxy-Terminus des ersten immunogenen Polypeptids mit dem Amino-Terminus des zweiten HBsAg und der Carboxy-Terminus des zweiten immunogenen Polypeptids mit dem Amino-Terminus des dritten HBsAg verbunden ist.

35 17. Virusähnliches Partikel nach Anspruch 13, wobei das erste HBsAg im Vergleich zur Gesamtmenge der ersten und zweiten chimären Antigene im Überschuss exprimiert wird.

40 18. Virusähnliches Partikel nach Anspruch 17, wobei das erste HBsAg unter Verwendung einer Menge von DNA exprimiert wird, die zwischen 1 und 100 Mal der Gesamtmenge der DNA liegt, die verwendet wird, um die ersten und zweiten chimären Antigene zu exprimieren.

45 19. Virusähnliches Partikel nach Anspruch 13, wobei das erste immunogene Polypeptid (a) Aminosäurereste 192 bis 330 eines HCV-1-Polyproteins; oder (b) die korrespondierenden Reste anderer HCV-Isolate; oder (c) eine immunogene Sequenz, die mindestens 80% Sequenzidentität mit (a) oder (b) hat, umfasst.

20. Virusähnliches Partikel nach Anspruch 13, wobei das zweite immunogene Polypeptid (a) Aminosäurereste 384 bis 661 eines HCV-1-Polyproteins; oder (b) die korrespondierenden Reste anderer HCV-Isolate; oder (c) eine immunogene Sequenz, die mindestens 80% Sequenzidentität mit (a) oder (b) hat, umfasst.

45 21. Virusähnliches Partikel nach Anspruch 13, wobei das erste immunogene Polypeptid im Wesentlichen aus Aminosäureresten 192 bis 330 eines HCV-1-Polyproteins und das zweite immunogene Polypeptid im Wesentlichen aus Aminosäureresten 384 bis 661 eines HCV-1-Polyproteins besteht.

50 22. Immunogene Zusammensetzung, umfassend:

ein virusähnliches Partikel, umfassend ein erstes HBsAg und ein chimäres Antigen, wobei das chimäre Antigen ein zweites HBsAg umfasst, das mit einem immunogenen HCV-Polypeptid verbunden ist, und wobei das erste und das zweite HBsAg jeweils eine im Wesentlichen vollständige S-Domäne umfassen; und einen pharmazeutisch verträglichen Träger.

55 23. Immunogene Zusammensetzung nach Anspruch 22, wobei das erste HBsAg im Vergleich mit dem chimären Antigen im Überschuss exprimiert wird.

24. Immunogene Zusammensetzung nach Anspruch 23, wobei das erste HBsAg unter Verwendung einer Menge von DNA exprimiert wird, die zwischen 1 und 100 Mal der Menge der DNA liegt, die verwendet wird, um das chimäre Antigen zu exprimieren.

5 25. Immunogene Zusammensetzung nach Anspruch 22, wobei das immunogene HCV-Polypeptid ein HCV-E1-Glycoprotein, ein immunogenes Fragment eines HCV-E1-Glycoproteins, ein HCV-E2-Glycoprotein oder ein immunogenes Fragment eines HCV-E2-Glycoproteins umfasst.

10 26. Immunogene Zusammensetzung nach Anspruch 22, wobei das immunogene HCV-Polypeptid (a) Aminosäurereste 192 bis 330 eines HCV-1-Polyproteins; oder (b) die korrespondierenden Reste anderer HCV-Isolate; oder (c) eine immunogene Sequenz, die mindestens 80% Sequenzidentität mit (a) oder (b) hat, umfasst.

15 27. Immunogene Zusammensetzung nach Anspruch 22, wobei das immunogene HCV-Polypeptid im Wesentlichen aus Aminosäureresten 192 bis 330 eines HCV-1-Polyproteins; oder (b) den korrespondierenden Resten anderer HCV-Isolate besteht.

20 28. Immunogene Zusammensetzung nach Anspruch 22, wobei das immunogene HCV-Polypeptid (a) Aminosäurereste 384 bis 661 eines HCV-1-Polyproteins; oder (b) die korrespondierenden Reste anderer HCV-Isolate; oder (c) eine immunogene Sequenz, die mindestens 80% Sequenzidentität mit (a) oder (b) hat, umfasst.

25 29. Immunogene Zusammensetzung nach Anspruch 22, wobei das immunogene HCV-Polypeptid (a) Aminosäurereste 384 bis 661 eines HCV-1-Polyproteins; oder (b) die korrespondierenden Reste anderer HCV-Isolate umfasst.

30 30. Immunogene Zusammensetzung, umfassend virusähnliche Partikel, umfassend ein erstes HBsAg und erste und zweite chimäre Antigene, wobei das erste chimäre Antigen ein zweites HBsAg umfasst, das mit einem ersten immunogenen Polypeptid verbunden ist, wobei das erste immunogene Polypeptid ein HCV-E1-Glycoprotein oder ein immunogenes Fragment davon umfasst, und wobei das zweite chimäre Antigen ein drittes HBsAg umfasst, das mit einem zweiten immunogenen Polypeptid verbunden ist, wobei das zweite immunogene Polypeptid ein HCV-E2-Glycoprotein oder ein immunogenes Fragment davon umfasst und wobei das erste, zweite und dritte HBsAg jeweils eine im Wesentlichen vollständige S-Domäne umfassen.

35 31. Immunogene Zusammensetzung nach Anspruch 30, wobei das erste HBsAg im Wesentlichen aus preS2- und S-Domänen besteht.

32. Immunogene Zusammensetzung nach Anspruch 30, wobei das erste HBsAg im Wesentlichen aus preS1-, preS2- und S-Domänen besteht.

40 33. Immunogene Zusammensetzung nach Anspruch 30, wobei der Carboxy-Terminus des ersten immunogenen Polypeptids mit dem Amino-Terminus des zweiten HBsAg und der Carboxy-Terminus des zweiten immunogenen Polypeptids mit dem Amino-Terminus des dritten HBsAg verbunden ist.

34. Immunogene Zusammensetzung nach Anspruch 30, wobei das erste HBsAg im Vergleich mit der Gesamtmenge des ersten und zweiten chimären Antigen im Überschuss exprimiert wird.

45 35. Immunogene Zusammensetzung nach Anspruch 34, wobei das erste HBsAg unter Verwendung einer Menge von DNA exprimiert wird, die zwischen 1 und 100 Mal der Menge DNA liegt, die verwendet wird, um das chimäre Antigen zu exprimieren.

50 36. Immunogene Zusammensetzung nach Anspruch 30, wobei das erste immunogene Polypeptid (a) Aminosäurereste 192 bis 330 eines HCV-1-Polyproteins; oder (b) die korrespondierenden Reste anderer HCV-Isolate; oder (c) eine immunogene Sequenz, die mindestens 80% Sequenzidentität mit (a) oder (b) hat, umfasst.

55 37. Immunogene Zusammensetzung nach Anspruch 30, wobei das zweite immunogene Polypeptid (a) Aminosäurereste 384 bis 661 eines HCV-1-Polyproteins; oder (b) die korrespondierenden Reste anderer HCV-Isolate; oder (c) eine immunogene Sequenz, die mindestens 80% Sequenzidentität mit (a) oder (b) hat, umfasst.

38. In vitro-Verfahren zur Herstellung virusähnlicher Partikel, umfassend die folgenden Schritte:

Züchten einer Zelle in einem Kulturmedium, wobei die Zelle virusähnliche Partikel exprimiert, die ein erstes HBsAg und ein chimäres Antigen umfassen, wobei das chimäre Antigen ein zweites HBsAg umfasst, das kovalent mit einem immunogenen HCV-Polypeptid verbunden ist, und wobei das erste und das zweite HBsAg jeweils eine im Wesentlichen vollständige S-Domäne umfassen;
 5 und Isolieren der virusähnlichen Partikel aus dem Kulturmedium.

39. Verfahren nach Anspruch 38, wobei die Zelle eine CHO-Zelle oder eine COS-Zelle ist.

40. In vitro-Verfahren zur Herstellung einer Zelllinie, die virusähnliche Partikel exprimiert, umfassend die folgenden Schritte: Transfizieren einer Zelle mit einem Vektor, der virusähnliche Partikel exprimiert, die ein erstes HBsAg und ein chimäres Antigen umfassen, wobei das chimäre Antigen ein zweites HBsAg umfasst, das kovalent mit einem immunogenen HCV-Polypeptid verbunden ist, und wobei das erste und das zweite HBsAg jeweils eine im Wesentlichen vollständige S-Domäne umfassen; und Züchten der Zelle, um eine Zelllinie zu erzeugen, die die virusähnlichen Partikel exprimiert.
 15

41. Verfahren nach Anspruch 40, wobei der Vektor ein Plasmidvektor ist.

42. Verfahren nach Anspruch 40, wobei der Plasmidvektor pCMVII opti 330 E1 (SEQ ID NR: 4) oder pCMV-II-E2661-sAg (SEQ ID NR: 6) ist.
 20

43. Verfahren nach Anspruch 40, wobei der Vektor ein viraler Vektor ist.

44. Verfahren nach Anspruch 43, wobei der virale Vektor im Wesentlichen von infektiösen Viren frei ist.

45. Zelllinie, die ein virusähnliches Partikel exprimiert, das ein erstes HBsAg und ein chimäres Antigen umfasst, wobei das chimäre Antigen ein zweites HBsAg umfasst, das mit einem immunogenen HCV-Polypeptid verbunden ist, und wobei das erste und das zweite HBsAg jeweils eine im Wesentlichen vollständige S-Domäne umfassen.
 25

46. Zelllinie, die ein virusähnliches Partikel umfasst, das ein erstes HBsAg und erste und zweite chimäre Antigene umfasst, wobei das erste chimäre Antigen ein zweites HBsAg umfasst, das mit einem ersten immunogenen Polypeptid verbunden ist, wobei das erste immunogene Polypeptid ein HCV-E1-Glycoprotein oder ein immunogenes Fragment davon umfasst, und wobei das zweite chimäre Antigen ein drittes HBsAg umfasst, das mit einem zweiten immunogenen Polypeptid verbunden ist, wobei das zweite immunogene Polypeptid ein HCV-E2-Glycoprotein oder ein immunogenes Fragment davon umfasst, und wobei das erste, zweite und dritte HBsAg jeweils eine im Wesentlichen vollständige S-Domäne umfassen.
 30
 35

Revendications

40. 1. Particule du type virus pour son utilisation en tant qu'immunogène, comprenant un premier antigène de surface du virus de l'hépatite B (HBsAg) et un antigène chimère, l'antigène chimère comprenant un second HBsAg lié de façon covalente à un polypeptide immunogène du VHC et le premier et le second HBsAg comprenant chacun un domaine S substantiellement complet.

45. 2. Particule du type virus selon la revendication 1, le premier HBsAg étant essentiellement constitué par les domaines preS2 et S.

3. Particule du type virus selon la revendication 2, le premier HBsAg étant essentiellement constitué par les domaines preS1, preS2 et S.

50. 4. Particule du type virus selon la revendication 1, la terminaison carboxy du polypeptide immunogène du VHC étant liée à la terminaison amino du second HBsAg.

55. 5. Particule du type virus selon la revendication 1, le premier HBsAg étant exprimé en excès par rapport à l'antigène chimère.

6. Particule du type virus selon la revendication 5, le premier HBsAg étant exprimé à l'aide d'une quantité d'ADN qui est égale entre 1 et 100 fois la quantité d'ADN utilisée pour exprimer l'antigène chimère.

7. Particule du type virus selon la revendication 1, le polypeptide immunogène du VHC comprenant une glycoprotéine E1 du VHC, un fragment immunogène d'une glycoprotéine E1 du VHC, une glycoprotéine E2 du VHC, ou un fragment immunogène d'une glycoprotéine E2 du VHC.

5 8. Particule du type virus selon la revendication 1, le polypeptide immunogène du VHC étant constitué essentiellement par une glycoprotéine E1 du VHC, un fragment immunogène d'une glycoprotéine E1 du VHC, une glycoprotéine E2 du VHC, ou un fragment immunogène d'une glycoprotéine E2 du VHC.

10 9. Particule du type virus selon la revendication 7, le polypeptide immunogène du VHC comprenant (a) les restes d'acides aminés 192 à 330 d'une polyprotéine de VHC-1 ; ou (b) les restes correspondants d'autres isolats de VHC ; ou (c) une séquence immunogène ayant au moins 80 % d'identité par rapport aux séquences (a) ou (b).

15 10. Particule du type virus selon la revendication 7, le polypeptide immunogène du VHC comprenant (a) les restes d'acides aminés 384 à 661 d'une polyprotéine de VHC-1 ; ou (b) les restes correspondants d'autres isolats de VHC ; ou (c) une séquence immunogène ayant au moins 80 % d'identité par rapport aux séquences (a) ou (b).

20 11. Particule du type virus selon la revendication 10, le polypeptide immunogène du VHC étant constitué essentiellement par les restes d'acides aminés 384 à 661 d'une polyprotéine du VHC.

25 12. Particule du type virus selon la revendication 1, le polypeptide immunogène du VHC comprenant (1) une glycoprotéine E1 du VHC ou un de ses fragments et (2) une glycoprotéine E2 du VHC ou un de ses fragments.

30 13. Particule du type virus pour son utilisation en tant qu'immunogène, comprenant un premier HBsAg et un premier et un second antigènes chimères, le premier antigène chimère comprenant un second HBsAg lié de façon covalente à un premier polypeptide immunogène comprenant une glycoprotéine E1 du VHC ou un de ses fragments immunogènes, le second antigène chimère comprenant un troisième HBsAg lié de façon covalente à un second polypeptide immunogène comprenant une glycoprotéine E2 du VHC ou un de ses fragments immunogènes, et le premier, le second et le troisième HBsAg comprenant chacun un domaine S substantiellement complet.

35 14. Particule du type virus selon la revendication 13, le premier HBsAg étant essentiellement constitué par les domaines preS2 et S.

15. Particule du type virus selon la revendication 13, le premier HBsAg étant essentiellement constitué par les domaines preS1, preS2 et S.

40 16. Particule du type virus selon la revendication 13, la terminaison carboxy du premier polypeptide immunogène étant liée à la terminaison amino du second HBsAg et la terminaison carboxy du second polypeptide immunogène étant liée à la terminaison amino du troisième HBsAg.

17. Particule du type virus selon la revendication 13, le premier HBsAg étant exprimé en excès par rapport à la somme des quantités du premier et du second antigènes chimères.

45 18. Particule du type virus selon la revendication 17, le premier HBsAg étant exprimé à l'aide d'une quantité d'ADN qui est égale entre 1 et 100 fois la quantité d'ADN utilisée pour exprimer le premier et le second antigènes chimères.

19. Particule du type virus selon la revendication 13, le premier polypeptide immunogène comprenant (a) les restes d'acides aminés 192 à 330 d'une polyprotéine de VHC-1 ; ou (b) les restes correspondants d'autres isolats de VHC ; ou (c) une séquence immunogène ayant au moins 80 % d'identité par rapport aux séquences (a) ou (b).

50 20. Particule du type virus selon la revendication 13, le second polypeptide immunogène comprenant (a) les restes d'acides aminés 384 à 661 d'une polyprotéine de VHC-1 ; ou (b) les restes correspondants d'autres isolats de VHC ; ou (c) une séquence immunogène ayant au moins 80 % d'identité par rapport aux séquences (a) ou (b).

21. Particule du type virus selon la revendication 13, le premier polypeptide immunogène étant constitué essentiellement par les restes d'acides aminés 192 à 330 d'une polyprotéine de VHC-1 et le second polypeptide immunogène étant constitué essentiellement par les restes d'acides aminés 384 à 661 d'une polyprotéine du VHC-1.

55 22. Composition immunogène comprenant :

une particule du type virus comprenant un premier HBsAg et un antigène chimère, l'antigène chimère comprenant un second HBsAg lié à un polypeptide immunogène du VHC et le premier et le second HBsAg comprenant chacun un domaine S substantiellement complet ; et un support pharmaceutiquement acceptable.

5

23. Composition immunogène selon la revendication 22, le premier HBsAg étant exprimé en excès par rapport à l'antigène chimère.

10

24. Composition immunogène selon la revendication 23, le premier HBsAg étant exprimé à l'aide d'une quantité d'ADN qui est égale entre 1 et 100 fois la quantité d'ADN utilisée pour exprimer l'antigène chimère.

15

25. Composition immunogène selon la revendication 22, le polypeptide immunogène du VHC comprenant une glycoprotéine E1 du VHC, un fragment immunogène d'une glycoprotéine E1 du VHC, une glycoprotéine E2 du VHC, ou un fragment immunogène d'une glycoprotéine E2 du VHC.

20

26. Composition immunogène selon la revendication 22, le polypeptide immunogène du VHC comprenant (a) les restes d'aminoacides 192 à 330 d'une polyprotéine de VHC-1 ; ou (b) les restes correspondants d'autres isolats de VHC ; ou (c) une séquence immunogène ayant au moins 80 % d'identité par rapport aux séquences (a) ou (b).

25

27. Composition immunogène selon la revendication 22, le polypeptide immunogène du VHC étant constitué essentiellement par les restes d'aminoacides 192 à 330 d'une polyprotéine de VHC-1 ; ou (b) les restes correspondants d'autres isolats de VHC.

30

28. Composition immunogène selon la revendication 22, le polypeptide immunogène du VHC comprenant (a) les restes d'aminoacides 384 à 661 d'une polyprotéine de VHC-1 ; ou (b) les restes correspondants d'autres isolats de VHC ; ou (c) une séquence immunogène ayant au moins 80 % d'identité par rapport aux séquences (a) ou (b).

35

29. Composition immunogène selon la revendication 22, le polypeptide immunogène du VHC comprenant (a) les restes d'aminoacides 384 à 661 d'une polyprotéine de VHC-1 ; ou (b) les restes correspondants d'autres isolats de VHC.

40

30. Composition immunogène comprenant des particules du type virus, comprenant un premier HBsAg et un premier et un second antigènes chimères, le premier antigène chimère comprenant un second HBsAg lié à un premier polypeptide immunogène comprenant une glycoprotéine E1 du VHC ou un de ses fragments immunogènes, le second antigène chimère comprenant un troisième HBsAg lié à un second polypeptide immunogène comprenant une glycoprotéine E2 du VHC ou un de ses fragments immunogènes, et le premier, le second et le troisième HBsAg comprenant chacun un domaine S substantiellement complet.

45

31. Composition immunogène selon la revendication 30, le premier HBsAg étant essentiellement constitué par les domaines preS2 et S.

50

32. Composition immunogène selon 1a revendication 30, le premier HBsAg étant essentiellement constitué par les domaines preS1, preS2 et S.

33. Composition immunogène selon la revendication 30, la terminaison carboxy du premier polypeptide immunogène étant liée à la terminaison amino du second HBsAg et la terminaison carboxy du second polypeptide immunogène étant liée à la terminaison amino du troisième HBsAg.

34. Composition immunogène selon la revendication 30, le premier HBsAg étant exprimé en excès par rapport à la somme des quantités du premier et du second antigènes chimères.

35. Composition immunogène selon la revendication 34, le premier HBsAg étant exprimé à l'aide d'une quantité d'ADN qui est égale entre 1 et 100 fois la quantité d'ADN utilisée pour exprimer l'antigène chimère.

55

36. Composition immunogène selon la revendication 30, le premier polypeptide immunogène comprenant (a) les restes d'aminoacides 192 à 330 d'une polyprotéine de VHC-1 ; ou (b) les restes correspondants d'autres isolats de VHC ; ou (c) une séquencé immunogène ayant au moins 80 % d'identité par rapport aux séquences (a) ou (b).

37. Composition immunogène selon la revendication 30, le second polypeptide immunogène comprenant (a) les restes

d'aminoacides 384 à 661 d'une polyprotéine de VHC-1 ; ou (b) les restes correspondants d'autres isolats de VHC ; ou (c) une séquence immunogène ayant au moins 80 % d'identité par rapport aux séquences (a) ou (b).

38. Méthode *in vitro* pour la production de particules du type virus, comprenant les étapes de :

5 la culture d'une cellule dans un milieu de culture, la cellule exprimant des particules du type virus comprenant un premier HBsAg et un antigène chimère, l'antigène chimère comprenant un second HBsAg lié de façon covalente à un polypeptide immunogène du VHC et le premier et le second HBsAg comprenant chacun un domaine S substantiellement complet ; et

10 l'isolement des particules du type virus du milieu de culture.

39. Méthode selon la revendication 38, dans laquelle la cellule est une cellule CHO ou une cellule COS.

40. Méthode *in vitro* pour la production d'une lignée cellulaire exprimant des particules du type virus, comprenant les étapes de :

15 la transfection d'une cellule par un vecteur qui exprime des particules du type virus comprenant un premier HBsAg et un antigène chimère, l'antigène chimère comprenant un second HBsAg lié de façon covalente à un polypeptide immunogène du VHC et le premier et le second HBsAg comprenant chacun un domaine S substantiellement complet ; et

20 la culture de la cellule pour produire une lignée cellulaire qui exprime des particules du type virus.

41. Méthode selon la revendication 40, dans laquelle le vecteur est un vecteur plasmide.

25 42. Méthode selon la revendication 40, dans laquelle le vecteur plasmide est pCMVII opti 330 E1 (SEQ ID n°:4) ou pCMV-II-E2661-sAg (SEQ ID n°:6).

43. Méthode selon la revendication 40, dans laquelle le vecteur est un vecteur viral.

30 44. Méthode selon la revendication 43, dans laquelle le vecteur viral est essentiellement exempt de virus infectieux.

45. Lignée cellulaire qui exprime des particules du type virus comprenant un premier HBsAg et un antigène chimère, l'antigène chimère comprenant un second HBsAg lié à un polypeptide immunogène du VHC et le premier et le second HBsAg comprenant chacun un domaine S substantiellement complet.

35 46. Lignée cellulaire qui exprime des particules du type virus comprenant un premier HBsAg et un premier et un second antigènes chimères, le premier antigène chimère comprenant un second HBsAg lié à un premier polypeptide immunogène comprenant une glycoprotéine E1 du VHC ou un de ses fragments immunogènes, le second antigène chimère comprenant un troisième HBsAg lié à un second polypeptide immunogène comprenant une glycoprotéine E2 du VHC ou un de ses fragments immunogènes, et le premier, le second et le troisième HBsAg comprenant chacun un domaine S substantiellement complet.

45

50

55

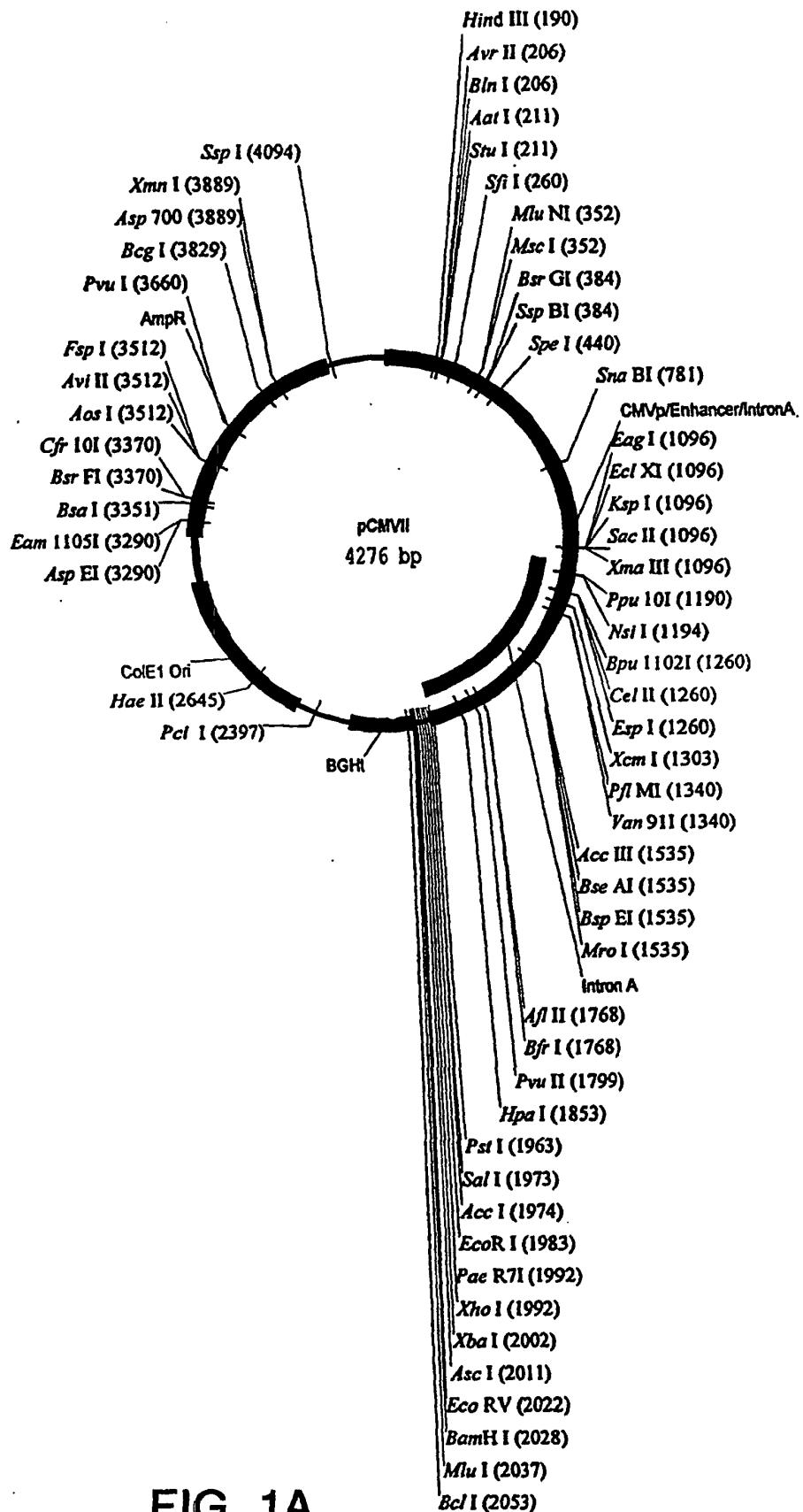


FIG. 1A

SEQ ID NO: 1

pCMV II

1 TCGCCGGTPTT CGGTGATGAC GGTGAAACCC TCTGACACAT GCAGCTCCCC
AGGGCCAAA CCCACTACTG CCACTTTGG AGACTGTGTA CGTCGAGGGC

51 GAGACGGTCA CAGCTTGCT GTAAACGGAT GCCGGGAGCA GACAAGCCCG
CTCTGCCAGT GTCGAACAGA CATTCGCTA CGGCCCTCGT CTGTTGGGC

101 TCAGGGCGCG TCAGCGGTG TTGGCGGTG TCGGGGCTGG CTTAACTATG
AGTCCCAGC AGTCGCCAC AACCGCCAC AGCCCCGACC GAATTGATAAC

HindIII

151 CGGCATCAGA GCAGATTGTA CTGAGAGTGC ACCATATGAA GCTTTTGCA
GCCGTAGTCT CGTCTAACAT GACTCTCACG TGGTATACTT CGAAAAACGT

201 AAAGCCCTAGG CCTCCAAAAA AGCCCTCTCA CTACITCTGG AATAGCTCAG
TTTCGGATCC GGAGGTTTT TCGGAGGAGT GATGAAGACC TTATCGAGTC

251 AGCCCGAGGC CCCCTGGCC TCTCCATAAA TAAAAAAAT TAGTCAGCCA
TCCGGCTCCG CCGGAGCCGG AGACGTATTG ATTTTTTTA ATCAGTCGGT

301 TGGGGCGGAG AATGGGGGA ACTGGGGGG GAGGGAAATTA TTGGCTATTG
ACCCCGCCTC TTACCCGGCT TGACCCGGCC CTCCCTTAAT AACCGATAAC.

351 GCCATTGCAT ACGTTGTATC TATATCATAA TATGTACATT TATATTGGCT
CGGTAACGTA TGCAACATAG ATATAGTATT ATACATGTAA ATATAACCGA

401 CATGTCCAAT ATGACCGCCA TGTGACATT GATTATTGAC TAGTTATTAA
GTACAGGTTA TACTGGCGT ACAACTGTA CTAATAACTG ATCAATAATT

451 TAGTAATCAA TTACGGGTC ATTAGTTCAT AGCCCATATA TGGAGTTCCG
ATCATTAGTT AATCCCCAG TAATCAAGTA TCGGTTATAT ACCTCAAGGC

501 CGTTACATAA CTTACGGTAA ATGGCCGCC TGGCTGACCG CCCAACGACC
GCAATGTATT GAATGCCATT TACCGGGCGG ACCGACTGGC GGTTGGCTGG

551 CCCGCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA
GGGGGGTAA CTGCAGTTAT TACTGCATAC AAGGGTATCA TTGCGGTTAT

601 GGGACTTTCC ATTGACGTCA ATGGGTGGAG TATTTACGGT AACTGCCA
CCCTGAAAGG TAACTGCAGT TACCCACCTC ATAAATGCCA TTGACGGGT

651 CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTCCGCC CCTATTGACG
GAACCGTCAT GTAGTTACACA TAGTATACGG TTCAGGCAGG GGATAACTGC

701 TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCAGTA CATGACCTTA
AGTTACTGCC ATTACCGGG CGGACCGTAA TACGGTCAT GTACTGGAAAT

751 CGGGACTTTTC CTACTGGCA GTACATCTAC GTATTAGTCA TCGCTATTAC
GCCCTGAAAG GATGAACCGT CATGTAGATG CATAATCAGT AGCGATAATG

801 CATGGTGTG CGGTTTTGGC AGTACACCAA TGGGCGTGG TAGCGGTTTG
GTACCACTAC GCCAAACCG TCATGTGGTT ACCCCGACCT ATCGCCAAAC

851 ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTG
TGAGTCCCC TAAAGGTTCA GAGGTGGGGT AACTGCAGTT ACCCTCAAAC

FIG. 1B

EP 1 233 783 B9 (W1B1)
 [drawing(s) replaced or added]

901 TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA ATAACCCCGC
 AAAACCGTGG TTTTGTGTC CCTGAAAGGT TTTACAGCAT TATTGGGGCG

951 CCCGTTGACG CAAATGGCG GTAGGCGTGT ACGGTGGGAG GTCTATATAA
 GGGCAACTGC TTTTACCCCGC CATCCGACAC TGCCACCCTC CAGATATATT

1001 GCAGAGCTCG TTTAGTGAAC CGTCAGATCG CCTGGAGACG CCATCCACGC
 CGTCTCGAGC AAATCACTTG GCAGTCTAGC GGACCTCTGC GGTAGGTGGC

1051 TGTGTTGACC TCCATAGAAG ACACCGGGAC CGATCCAGCC TCCGGGGCG
 ACAAAACCTGG AGGTATCTTC TGTGGCCCTG GCTAGGTCGG AGGCGCCGGC

1101 GGAACGGTGC ATTGGAACGC GGATTCCCCG TGCCAAGAGT GACGTAAGTA
 CCTTGCCACG TAACCTTGC CGCTAAGGGC ACGGTTCTCA CTGCATTCTAT

1151 CCGCCTATAG ACTCTATAGG CACACCCCTT TGGCTCTTAT GCATGCTATA
 GCGGGATATC TGAGATATCC GTGTGGGGAA ACCGAGAATA CGTACGATAT

1201 CTGTTTTGG CTTGGGGCCT ATACACCCCC GCTCTTATG CTATAGGTGA
 GACAAAAAACC GAACCCCGGA TATGTGGGGG CGAGGAATAC GATATCCACT

1251 TGGTATAGCT TAGCCTATAG GTGTGGGTTA TTGACCATTA TTGACCACTC
 ACCATATCGA ATCGGATATC CACACCCAAAT AACTGGTAAT AACTGGTGAG

1301 CCCTATTGGT GACGATACTT TCCATTACTA ATCCATAACA TGGCTCTTGT
 GGGATAACCA CTGCTATGAA ACCTAATGAT TAGGTATTGT ACCGAGAAC

1351 CCACAACTAT CTCTATTGGC TATATGCCA TACTCTGTCC TTCAGAGACT
 GGTGTTGATA GAGATAACCG ATATACGGTT ATGAGACAGG AAGTCTCTGA

1401 GACACGGACT CTGTATTTTT ACAGGATGGG GTCCATTAT TATTTACAAA
 CTGTGCTGAA GACATAAAAA TGTCTTACCC CAGTAAATA ATAATGTTT

1451 TTCAACATATA CAACAAACGCC GTCCCCCGTG CCCCCAGTTT TTATTAACCA
 AAGTGTATAT GTTGTGGGG CAGGGGGCAC GGGCGTCAAA AATAATTGT

1501 TAGCGTGGGA TCTCCGACAT CTCGGGTAGC TGTTCGGAC ATGGGCTCTT
 ATCGCACCCCT AGAGGCTGTA GAGCCCATGC ACAAGGCTG TACCCGAGAA

1551 CTCCGGTAGC GGCAGGAGCTT CCACATCGGA GCGCTGGTCC CATCCGTCCA
 GAGGCCATCG CGCGCTCGAA GTGTAGGCT CGGGACCAGG GTAGGCAGGT

1601 GCGGCTCATG GTCGCTCGGC AGCTCTTGC TCTAACAGT GGAGGCCAGA
 CGCCGAGTAC CAGCGAGCCG TCGAGGAACG AGGATTGTCA CCTCCGGTCT

1651 CTTAGGCACA GCACAATGCC CACCACCAAGTGTGGCCG ACAAGGCCGT
 GAATCCGTGT CGTGTACGG GTGGTGGTGG TCACACGGCG TGTTCGGCA

1701 GGCAGGAGCTT TATGTGTCTG AAAATGAGCT CGGAGATTGG GCTCGCACCT
 CCGCCATCCC ATACACAGAC TTTTACTCGA GCCTCTAACCG CGAGCGTGGAA

1751 GGACGCAGAT GGAAGACTTA AGGCAGCGGC AGAAGAAGAT GCAGGGCAGCT
 CCTGCGTCTA CCTTCTGAAT TCCGTGGCCG TCTTCTCTA CGTCCGTGCA

1801 GAGTTGTGT ATTCTGATAA GAGTCAGAGG TAATCTCCGT TGCGGTGCTG
 CTCACAAACA TAAGACTATT CTCAGTCTCC ATTGAGGGCA ACGCCACGAC

FIG. 1C

EP 1 233 783 B9 (W1B1)
 [drawing(s) replaced or added]

1851	TTAACGGTGG AGGGCACTGT AGTCTGAGCA GTACTCGTTC CTGGCCGGCG AATTGCCACC TCCCCTCACA TCAGACTCGT CATGAGCAAC GACGGCCGCG
1901	CGCCACAGA CATAATAGCT GACAGACTAA CAGACTGTTG CTTTCATGG CGGGTGGTCT CTATTATCGA CTGCTGATT GTCTGACAAG GAAAGGTACC
	SalI EcoRI XbaI
1951	GTCTTTCTG CAGTCACCGT CGTCGACCTA AGAATTAGA CTCGAGCAAG CAGAAAAGAC GTCACTGGCA GCAGCTGGAT TCTTAAGTCT GAGCTCGTTC
	XbaI AscI EcoRV BamHI MluI
2001	TCTAGAAAGG CGGCCAAAGA TATCAAGGAT CCACTACCGG TTAGAGCTCG AGATCTTCC CGGGGTTCT ATAGTCCCTA GGTGATCCGC AATCTCGAGC
2051	CTGATCAGCC TCGACTGTC CTTCTAGTTG CCAGCCATCT GTTGTTCGCC GACTAGTCGG AGCTGACACG GAAGATCAAC GGTCGGTAGA CAACAAACGG
2101	CCTCCCCCGT GCCTTCTTGC ACCCTGGAAG GTGCCACTCC CACTGTCCTT GGAGGGGCA CGGAAGGAAC TGGGACCTTC CACGGTAGG GTGACAGGAA
2151	TCCTAATAAA ATGACCAAAT TCCATCCAT TGTCTGAGTA GGTGTCAATT AGGATTATTT TACTCCTTTA ACCTAGCGTA ACAGACTCAT CCACAGTAAG
2201	TATTCCTGGG GGTGGGTGG CGCAGGACAG CAAGGGGAG GATTGGGAAG ATAAGACCCC CCACCCACC CGTCCCTGTC GTTCCCCCTC CTAACCCCTTC
2251	ACAATAGCAG GCATGCTGGG GAGCTCTTC GCTTCTCGC TCACTGACTC TGTATCGTC CGTACGACCC CTCGAGAAGG CGAAGGACGG AGTGAATGAG
2301	GCTGGCTCG GTCTTCGGC TCGGGCGAGC GGTATCAGCT CACTCAAAGG CGACGGGAGC CAGCAAGCCG ACGCCGCTCG CCATAGTCGA GTGAGTTCC
2351	CGGTAAATACG GTTATCCACA GAATCAGGGG ATAACGCAGG AAAGAACATG GCCATTATGC CAATAGGTGT CTTAGTCCCC TATTGCGTCC TTTCTTGTAC
2401	TGAGCAAAAG GCGAGCAAA GGCAGGAAC CGTAAAAGG CGCGCTTGCT ACTCGTTTTC CGGTGGTTT CGGGTCTTGC GCATTTTCC GGCGCAACGA
2451	GGCGTTTTC CATAGGCTCC GCCCCCTGA CGAGCATCAC AAAATCGAC CGCCAAAAG GTATCCGAGG CGGGGGACT GCTCGTAGTG TTTTAGCTG
2501	CCTCAAGTCAG GAGGTGGCGA AACCCGACAG GACTATAAAG ATACCAGGCG CGACTTCAGT CTCCACCGCT TTGGGCTGTC CTGATATTC TATGGTCCGC
2551	TTTCCCCCTG GAAGCTCCCT CGTGGCTCT CCGTGTCCGA CCCTGCGCT AAAGGGGAC CTTCGAGGGA GCACGGAGA GGACAAGGCT GGGACGGCGA
2601	TACCGGATAC CTGTCGGCTT TTCTCCCTTC GGGAAAGCGTG GCGCTTTCTC ATGGCTATG GACAGGGGA AAGAGGGAAAG CCCTTCGAC CGCGAAAGAG
2651	AATGCTCACG CTGTAAGGTAT CTCACTTCGG TGTAAGGTGGT TCGCTCCAAG TTACCGAGTGC GACATCCATA GAGTCAGGCC ACATCCAGCA AGCGAGGTTTC
2701	CTGGGCTGTG TGCACGAACC CCCCCTTCAG CCCGACCGCT GCGCTTATC GACCCGACAC ACCTGCTTGG GGGGCAAGTC GGGCTGGCGA CGCGGAATAG

FIG. 1D

EP 1 233 783 B9 (W1B1)
 [drawing(s) replaced or added]

2751 CGGTAACAT CGTCTTGAGT CCAACCCGGT AAGACACGAC TTATGCCAC
 CCCATTGATA GCAGAACTCA GGTTGGGCA TTCTGTGCTG AATAGCGGTG

2801 TGGCAGCAGC CACTGGTAAAC AGGATTAGCA GACCCAGGTA TGTAGGGGT
 ACCGTCGTG GTGACCATIG TCCTAATCGT CTGGCTCCAT ACATCCGCCA

2851 GCTACAGAGT TCTTGAAGTG GTGGCTAAC TACGGCTACA CTAGAAGGAC
 CGATGTCTCA AGAACTTCAC CACCCGGATIG ATGCCGATGT GATCTTCCTG

2901 AGTATTTGGT ATCTGGCTC TGCTGAAGCC AGTTACCTTC GGAAAAAGAG
 TCATAAACCA TAGACGGAG ACGACTTCGG TCAATGGAAG CCTTTTTCTC

2951 TTGGTAGCTC TTGATCCGGC AAACAAACCA CCGCTGGTAG CGGTGGTTTT
 AACCATCGAG AACTAGGGCG TTTGTTGGT GGCGACCATC GCCACCAAAA

3001 TTTGTTGCA AGCAGCAGAT TACGGCGAGA AAAAAAGGAT CTCAAGAAGA
 AAACAAACGT TCGTCGTCTA ATGCCGCTCT TTTTTCTCTA GAGTTCTTCT

3051 TCCCTTGATC TTTTCTACGG CGTCTGACGC TCAGTGGAAC GAAAACTCAC
 AGGAAACTAG AAAAGATGCC CCAGACTGGC AGTCACCTTG CTTTTGAGTG

3101 GTTAAGGGAT TTTGGTCATG AGATTATCAA AAAGGATCTT CACCTAGATC
 CAATTCCCTA AAACCACTAC TCTAATAGTT TTTCTAGAA GTGGATCTAG

3151 CTTTTAAATT AAAATGAAG TTTTAAATCA ATCTAAAGTA TATATGAGTA
 GAAAATTAA TTTTACTTC AAAATTTAGT TAGATTCTAT ATATACTCAT

3201 AACCTGGTCT GACAGTTACC AATCCCTAACT CAGTGAGGCA CCTATCTCAG
 TTGAACCAGA CTGTCATGG TTACGAATTA GTCACTCCGT GGATAGAGTC

3251 CGATCTGTCT ATTTCTGTC TCCATAGTIG CCTGACTCCC CGTCGTGTAG
 GCTAGACAGA TAAAGCAAGT AGGTATCAAC GGACTGAGGG GCACCCACATC

3301 ATAACATACGA TACGGGAGGG CTTACCATCT GGCCCCAGTC CTGCAATGAT
 TATTGATGCT ATGCCCTCCC GAATGGTACA CGGGGGTCAC GACGTTACTA

3351 ACCGGCAGAGAC CCACCGTCAC CGGCTCCAGA TTTATCAGCA ATAAACCAAGC
 TGGCGCTCTG GGTGCGACTG CGCGAGGTCT AAATAGTCGT TATTGGTCTG

3401 CAGCCGGAGAG GCGCGAGCGC AGAAGTGGTC CTGCAACTTT ATCCGCTCC
 GTCGGGCTTC CGGGCTCGCG TCTTCACCAAG GACGTTAAA TAGGCGGGAGG

3451 ATCCAGTCTA TTAATTGTTG CGGGGAAGCT AGAGTAAGTA GTTCGCCAGT
 TAGGTCAAGAT AATTAACAAAC GGCCTTCGA TCTCATTCTAT CAAGCGGTCA

3501 TAATAGTTG CGCAACGTTG TTGCCATTGC TACAGGGCATC GTGGTGTAC
 ATTATCAAAAC CGGTTGCAAC AACGGTAACG ATGTCCTGTAG CACCACAGTG

3551 GCTCGTCGTT TGGTATGGCT TCATTCAAGCT CGGGTTCCC ACGATCAAGG
 CGAGCAGCAA ACCATACCGA AGTAAGTCGA GGCAAGGGT TGCTAGTTCC

3601 CGAGTTACAT GATCCCCCAT GTTGTGCAAA AAAGCGGTTA GCTCCTTCGG
 GCTCAATGTA CTAGGGGTA CAACACGTTT TTTGCCAAT CGAGGAAGCC

3651 TCCCTCCGATC GTTGTGCAAA GTAAAGTTGGC CGCAGTGTAA TCACTCATGG
 AGGAGGCTAG CAACAGTCCTT CATTCAACCG CGGTCAACAAAT AGTGAGTACC

FIG. 1E

3701 TTATGGCAGC ACTGCATAAT TCTCTTACTG TCATGCCATC CGTAAGATGC
 AATACCGTCG TGACGTATTA AGAGAATGAC AGTACGGTAG GCATTCTACG

3751 TTTTCTGTGA CTGGTGAGTA CTCAACCAAG TCATTCTGAG AATAGTGTAT
 AAAAGACACT GACCACTCAT GAGTTGGTTC AGTAAGACTC TTATCACATA

3801 GCGGCGACCG AGTTGCTCTT GCCCCGGTC AATACGGGAT AATACCGCGC
 CGCCGCTGGC TCAACGAGAA CGGGCCGAG TTATGCCCTA TTATGGCGCG

3851 CACATAGCAG AACTTTAAAA GTGCTCATCA TTGGAAAAACG TTCTTCGGGG
 GTGTATCGTC TTGAAATTTC CACGAGTAGT AACCTTTGCC AAGAAGCCCC

3901 CGAAAACCTCT CAAGGATCTT ACCGCTGTTG AGATCCAGTT CGATGTAACC
 GCTTTTGAGA GTTCCTAGAA TGGCGACAAC TCTAGGTCAA GCTACATTGG

3951 CACTCGTGCA CCCAACTGAT CTTCAGCATC TTTTACTTTC ACCAGCGTTT
 GTGAGCACGT GGGTTGACTA GAAGTCGTAG AAAATGAAAG TGGTCGCAAA

4001 CTGGGTGAGC AAAAACAGGA AGGCAAAATG CCGCAAAAAAA GGGAAATAAGG
 GACCCACTCG TTTTTGTCTT TCCGTTTTAC GGCCTTTTTT CCCTTATTCC

4051 GCGACACGGA AATGTTGAAT ACTCATACTC TTCCCTTTTC AATATTATTG
 CGCTGTGCCT TTACAACCTA TGAGTATGAG AAGGAAAAAG TTATAATAAC

4101 AAGCATTAT CAGGGTTATT GTCTCATGAG CGGATACATA TTTGAATGTA
 TTCTGAAATA GTCCCAATAA CAGAGTACTC GCCTATGTAT AAACCTACAT

4151 TTTAGAAAAAA TAAACAAATA GGGGTTCCGC GCACATTTCC CCGAAAAGTG
 AAATCTTTTT ATTGTTAT CCCCAAGGCG CGTGTAAAGG GGCTTTTCAC

4201 CCACCTGACG TCTAAGAAAC CATTATTATC ATGACATTAA CCTATAAAAAA
 GGTGGACTGC AGATTCTTG GTAATAATAG TACTGTAATT GGATTTTTT

4251 TAGGCGTATC ACGAGGCCCT TTCTGTC
 ATCCGCATAG TGCTCCGGGA AAGCAG

FIG. 1F

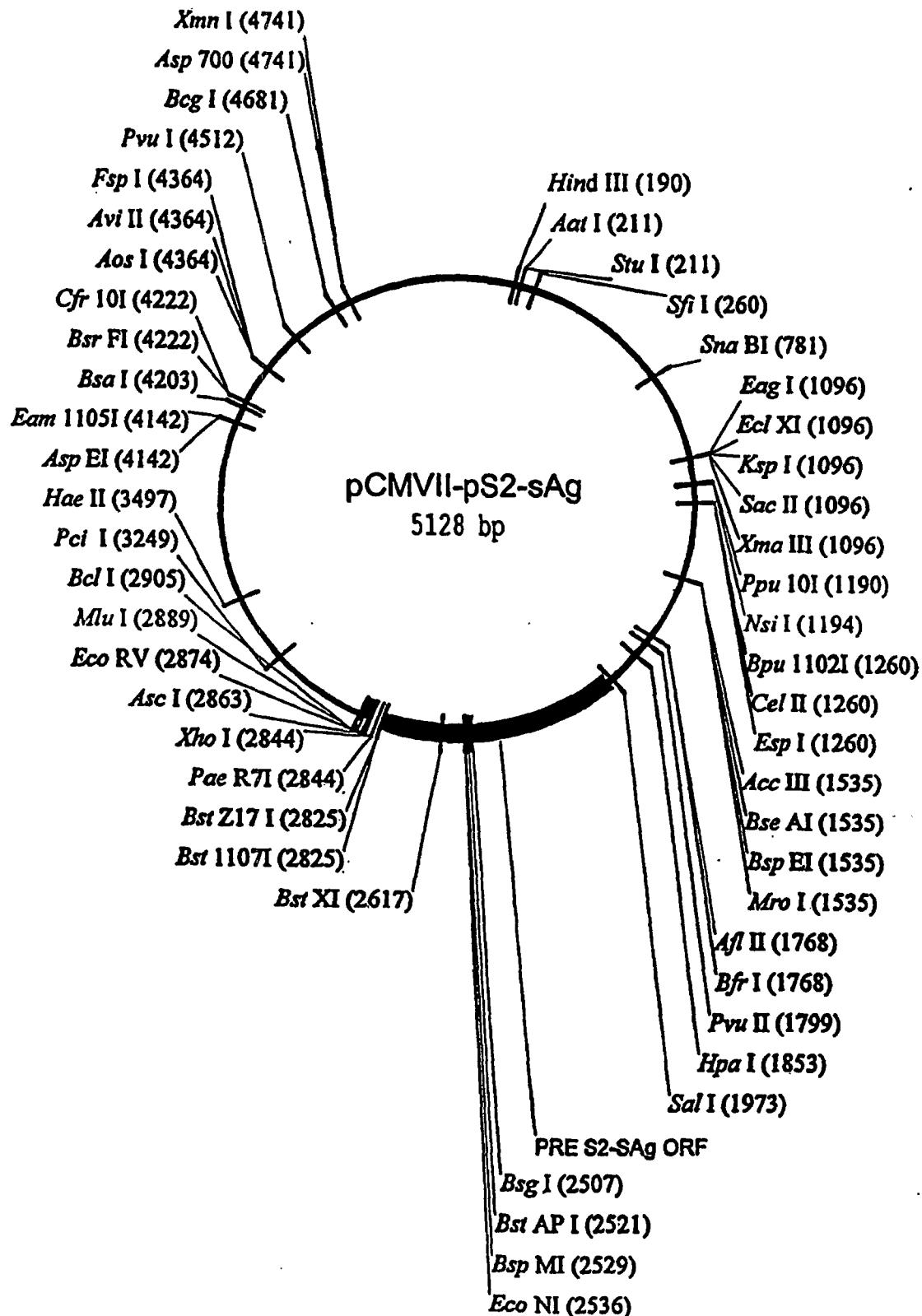


FIG. 2A

EP 1 233 783 B9 (W1B1)
 [drawing(s) replaced or added]

SEQ ID NO: 2 1 TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG
 AGCGCGAAA GCCACTACTG CCACCTTTGG AGACTGTGTA CGTCGAGGGC

51 GAGACGGTCA CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG
 CTCTGCCAGT GTCGAACAGA CATTCGCCTA CGGCCCTCGT CTGTTCGGGC

101 TCAGGGCGCG TCAGCGGGTG TTGGCGGGTG TCGGGGCTGG CTTAACTATG
 AGTCCCGCGC AGTCGCCCAC AACCGCCCAC AGCCCCGACC GAATTGATAC

HindIII

151 CGGCATCAGA GCAGATTGTA CTGAGAGTGC ACCATATGAA GCTTTTGCA
 GCCGTAGTCT CGTCTAACAT GACTCTCACG TGGTATACTT CGAAAAACGT

StuI

AatI

201 AAAGCCTAGG CCTCCAAAAA AGCCTCCTCA CTACTTCTGG AATAGCTCAG
 TTTCGGATCC GGAGGTTTT TCAGGAGGT GATGAAGACC TTATCGAGTC

SfiI

251 AGGCCGAGGC GGCCTCGGCC TCTGCATAAA TAAAAAAAAT TAGTCAGCCA
 TCCGGCTCCG CGGAGCCGG AGACGTATTT ATTTTTTTTA ATCAGTCGGT

301 TGGGGCGGAG AATGGGGCGGA ACTGGGCGGG GAGGGAAATTA TTGGCTATTG
 ACCCCGCCTC TTACCCGCCT TGACCCGCC CTCCTTAAT AACCGATAAAC

351 GCCATTGCAT ACGTTGTATC TATATCATAA TATGTACATT TATATTGGCT
 CGGTAAACGTA TGCAACATAG ATATAGTATT ATACATGTAA ATATAACCGA

401 CATGTCCAAT ATGACGCCA TGTTGACATT GATTATTGAC TAGTTATTAA
 GTACAGGTTA TACTGGCGGT ACAACTGTAA CTAATAACTG ATCAATAATT

451 TAGTAATCAA TTACGGGTC ATTAGTTCAT AGCCCATATA TGAGGTTCCG
 ATCATTAGTT AATGCCAG TAATCAAGTA TCGGGTATAT ACCTCAAGGC

501 CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC
 GCAATGTATT GAATGCCATT TACCGGGCGG ACCGACTGGC GGGTTGCTGG

551 CCCGCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA
 GGCGGGTAA CTGCAGTTAT TACTGCATAC AAGGGTATCA TTGCGGTTAT

601 GGGACTTTCC ATTGACGTCA ATGGGTGGAG TATTTACGGT AACTGCCA
 CCCTGAAAGG TAACTGCAGT TACCCACCTC ATAAATGCCA TTTGACGGGT

651 CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTCCGCC CCTATTGACG
 GAACCGTCAT GTAGTTACACA TAGTATACGG TTCAGGCGGG GGATAACTGC

701 TCAATGACGG TAAATGCC CCGTGGCATT ATGCCAGTA CATGACCTTA
 AGTTACTGCC ATTTACCGGG CGGACCGTAA TACGGGTAT GTACTGGAAT

SnaBI

751 CGGGACTTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA TCGCTATTAC
 GCCCTGAAAG GATGAACCGT CATGTAGATG CATAATCAGT AGCGATAATG

FIG. 2B

EP 1 233 783 B9 (W1B1)
 [drawing(s) replaced or added]

801 CATGGTGATG CGGTTTGGC AGTACACCAA TGGCGTGGA TAGCGGTTG
 GTACCACTAC GCCAAAACCG TCATGTGGTT ACCCGCACCT ATGCCAAC

851 ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTG
 TGAGTCCCC TAAAGGTTCA GAGGTGGGGT AACTGCAGTT ACCCTCAAAC

901 TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGA ATAACCCGC
 AAAACCGTGG TTTAGTTGC CCTGAAAGGT TTTACAGCAT TATTGGGCG

951 CCCGTTGACG CAAATGGCG GTAGGCGTGT ACGGTGGGAG GTCTATATAA
 GGGCAACTGC GTTTACCCGC CATCCGCACA TGCCACCCCTC CAGATATATT

1001 GCAGAGCTCG TTTAGTGAAC CGTCAGATCG CCTGGAGACG CCATCCACGC
 CGTCTCGAGC AAATCACTTG GCAGTCTAGC GGACCTCTGC GGTAGGTGCG

XmaIII

SacII

KspI

Ec1XI

EagI

1051 TGTTTGACC TCCATAGAAG ACACCGGGAC CGATCCAGCC TCCGCGGGCG
 ACAAAACCTGG AGGTATCTTC TGTGGCCCTG GCTAGGTGG AGGCGCCGGC

1101 GGAACGGTGC ATTGGAACGC GGATTCCCCG TGCCAAGAGT GACGTAAGTA
 CCTTGCCACG TAACCTTGCG CCTAAGGGGC ACGGTTCTCA CTGCATTCA

Ppu10I

NsiI

1151 CCGCCTATAG ACTCTATAGG CACACCCCTT TGGCTCTTAT GCATGCTATA
 GGCGGATATC TGAGATATCC GTGTGGGAA ACCGAGAATA CGTACGATAT

1201 CTGTTTTGG CTTGGGGCCT ATACACCCCC GCTCCTTATG CTATAGGTGA
 GACAAAAAAC GAACCCCGGA TATGTGGGG CGAGGAATAC GATATCCACT

EspI

CelII

Bpu1102I

1251 TGGTATAGCT TAGCCTATAG GTGTGGGTTA TTGACCATT TTGACCACTC
 ACCATATCGA ATCGGATATC CACACCAAT AACTGGTAAT AACTGGTGG

1301 CCCTATTGGT GACGATACTT TCCATTACTA ATCCATAACA TGGCTCTTG
 GGGATAACCA CTGCTATGAA AGGTAATGAT TAGGTATTGT ACCGAGAAC

1351 CCACAACTAT CTCTATTGGC TATATGCCAA TACTCTGTCC TTCAGAGACT
 GGTGTTGATA GAGATAACCG ATATACGTT ATGAGACAGG AAGTCTCTGA

1401 GACACGGACT CTGTATTTT ACAGGATGGG GTCCATTAT TATTTACAAA
 CTGTGCCTGA GACATAAAA TGCCCTACCC CAGGTAATAA ATAAATGTTT

FIG. 2C

EP 1 233 783 B9 (W1B1)
 [drawing(s) replaced or added]

1451 TTCACATATA CAACAAACGCC GTCCCCCGTG CCCGCAGTTT TTATTAAACA
 AAGTGTATAT GTTGTGCGG CAGGGGGCAC GGGCGTAAA AATAATTGT

 MroI

 BspEI

 BseAI

 AccIII

1501 TAGCGTGGGA TCTCCGACAT CTCGGGTACG TGTTCCGGAC ATGGGCTCTT
 ATCGCACCT AGAGGCTGTA GAGCCCATGC ACAAGGCCTG TACCCGAGAA

1551 CTCCGGTAGC GGCAGGAGCTT CCACATCCGA GCCCTGGTCC CATCCGTCCA
 GAGGCCATCG CGCCTCGAA GGTGTAGGCT CGGGACCAGG GTAGGCAGGT

1601 GCGGCTCATG GTCGCTCGGC AGCTCCTTGC TCCTAACAGT GGAGGCCAGA
 CGCCGAGTAC CAGCGAGCCG TCGAGGAACG AGGATTGTCA CCTCCGGTCT

1651 CTTAGGCACA GCACAATGCC CACCACCACG AGTGTGCCGC ACAAGGCCGT
 GAATCCGTGT CGTGTACGG GTGGTGGTGG TCACACGGCG TGTTCCGGCA

1701 GGCGGTAGGG TATGTGTCTG AAAATGAGCT CGGAGATTGG GCTCGCACCT
 CCGCCATCCC ATACACAGAC TTTTACTCGA GCCTCTAACCG CGAGCGTGGAA

 BfrI

 AfI

 PvuII

1751 GGACGCAGAT GGAAGACTTA AGGCAGCGGC AGAAGAAGAT GCAGGCAGCT
 CCTGCGTCTA CCTTCTGAAT TCCGTCGCCG TCTTCTTCTA CGTCCGTGCA

 PvuII

 HpaI

1801 GAGTTGTTGT ATTCTGATAA GAGTCAGAGG TAACTCCCGT TGCGGTGCTG
 CTCAACAACA TAAGACTATT CTCAGTCTCC ATTGAGGGCA ACGCCACGAC

 HpaI

1851 TTAACGGTGG AGGGCAGTGT AGTCTGAGCA GTACTCGTTG CTGCCGCCGC
 ATTGCCACC TCCCGTCACA TCAGACTCGT CATGAGCAAC GACGGCCGCG

1901 CGCCACCAGA CATAATAGCT GACAGACTAA CAGACTGTTG CTTTCCATGG
 GCGGTGGTCT GTATTATCGA CTGTCTGATT GTCTGACAAG GAAAGGTACC

 +2

SEQ ID NO:3 M Q W N

 SalI

1951 GTCTTTCTG CAGTCACCGT CGTCGACCTA AGAATTCTATG CAGTGGAACT
 CAGAAAAGAC GTCAGTGGCA GCAGCTGGAT TCTTAAGTAC GTCACCTTGA

 +2 S T A F H Q T L Q D P R V R G L Y

2001 CCACTGCCTT CCACCAAACG CTGCAGGATC CCAGAGTCAG GGGTCTGTAT
 GGTGACGGAA GGTGGTTGA GACGTCTAG GGTCTCAGTC CCCAGACATA

FIG. 2D

EP 1 233 783 B9 (W1B1)
 [drawing(s) replaced or added]

+2 L P A G G S S S G T V N P A P N I
 2051 CTTCTGCTG GTGGCTCCAG TTCAGGAACA GTAAACCTG CTCCGAATAT
 GAAGGACGAC CACCGAGGTC AAGTCCTTGT CATTGGGAC GAGGCTTATA

+2 A S H I S S I S A R T G D P V T
 2101 TGCCTCTCAC ATCTCGTCAA TCTCCGAG GACTGGGAC CCTGTGACGA
 ACGGAGAGTG TAGAGCAGTT AGAGGCCTC CTGACCCCTG GGACACTGCT

+2 N M E N I T S G F L G P L L V L Q
 2151 ACATGGAGAA CATCACATCA GGATTCTAG GACCCCTGCT CGTGTACAG
 TGTACCTCTT GTAGTGTAGT CCTAAGGATC CTGGGACGA GCACAATGTC

+2 A G F F L L T R I L T I P Q S L D
 2201 GCGGGGTTT TCTTGTGAC AAGAATCCCT ACAATACCGC AGAGTCTAGA
 CGCCCCAAAA AGAACAACTG TTCTTAGGAG TGTTATGGCG TCTCAGATCT

+2 S W W T S L N F L G G S P V C L
 2251 CTCGTGGTGG ACTTCTCTCA ATTTCTAGG GGGATCTCC GTGTGTCTTG
 GAGCACCACC TGAAGAGAGT TAAAGATCC CCCTAGAGGG CACACAGAAC

+2 G Q N S Q S P T S N H S P T S C P
 2301 GCCAAAATTC GCAGTCCCCA ACCTCCAATC ACTCACCAAC CTCCTGTCCT
 CGGTTTTAAG CGTCAGGGT TGGAGGTTAG TGAGTGGTTG GAGGACAGGA

+2 P I C P G Y R W M C L R R F I I F
 2351 CCAATTGTC CTGGTTATCG CTGGATGTGT CTGCGCGTT TTATCATATT
 GGTTAACAG GACCAATAGC GACCTACACA GACGCCGAA AATAGTATAA

+2 L F I L L L C L I F L L V L L D
 2401 CCTCTTCATC CTGCTGCTAT GCCTCATCTT CTTATTGGTT CTTCTGGATT
 GGAGAAGTAG GACGACGATA CGGAGTAGAA GAATAACCA AAGACCTAA

+2 Y Q G M L P V C P L I P G S T T T
 2451 ATCAAGGTAT GTGCCCGTT TGTCTCTAA TTCCAGGATC AACAAACACC
 TAGTTCCATA CAACGGCAA ACAGGAGATT AAGGTCTAG TTGTTGTTGG

+2 S T G P C K T C T T P A Q G N S M

BstAP I

BspMI EcoNI

2501 AGTACGGGAC CATGAAAAC CTGCACGACT CCTGCTCAAG GCAACTCTAT
 TCATGCCCTG GTACGTTTG GACGTGCTGA GGACGAGTTC CGTTGAGATA

BsgI

+2 F P S C C C T K P T D G N C T C
 2551 GTTCCCTCA TGTTGCTGTA CAAAACCTAC GGATGGAAAT TGCACCTGTA
 CAAAGGGAGT ACAACGACAT GTTTGGATG CCTACCTTA ACGTGGACAT

+2 I P I P S S W A F A K Y L W E W A

BstXI

2601 TTCCCATCCC ATCGTCTGG GCTTTCGCAA AATACTATG GGAGTGGGCC
 AAGGGTAGGG TAGCAGGACC CGAAAGCGTT TTATGGATAC CCTCACCCGG

FIG. 2E

EP 1 233 783 B9 (W1B1)
 [drawing(s) replaced or added]

+2 S V R F S W L S L L V P F V Q W F
 2651 TCAGTCCGTT TCTCTGGCT CAGTTTACTA GTGCCATTG TTCAGTGGTT
 AGTCAGGCAA AGAGAACCGA GTCAAATGAT CACGGTAAAC AAGTCACCAA

+2 V G L S P T V W L S A I W M M W
 2701 CGTAGGGCTT TCCCCACTG TTTGGCTTC AGCTATATGG ATGATGTGGT
 GCATCCGAA AGGGGTGAC AAACCGAAAG TCGATATAACC TACTACACCA

+2 Y W G P S L Y S I V S P F I P L L
 2751 ATTGGGGGCC AAGTCTGTAC AGCATCGTGA GTCCCTTAT ACCGCTGTTA
 TAACCCCCGG TTCAGACATG TCGTAGCACT CAGGGAAATA TGGCGACAAT

+2 P I F F C L W V Y I *
 BstZ17 I XbaI

 Bst1107I PaeR7I

2801 CCAATTTCT TTTGTCCTG GGTATACATT TAAGAATTCA GACTCGAGCA
 GGTAAAAGA AAACAGAGAC CCATATGTAA ATTCTTAAGT CTGAGCTCGT

Asci EcoRV MluI
 ----- ----- -----

2851 AGTCTAGAAA GGCGCGCCAA GATATCAAGG ATCCACTACG CGTTAGAGCT
 TCAGATCTT CCGCGCGGT CTATAGTCC TAGGTGATGC GCAATCTCGA

BclI

2901 CGCTGATCAG CCTCGACTGT GCCTTCTAGT TGCCAGCCAT CTGTTGTTG
 GCGACTAGTC GGAGCTGACA CGGAAGATCA ACGTCGGTA GACAACAAAC

2951 CCCCTCCCCC GTGCCTTCCT TGACCCTGGA AGGTGCCACT CCCACTGTCC
 GGGGAGGGGG CACGGAAGGA ACTGGGACCT TCCACGGTGA GGGTGACAGG

3001 TTTCTTAATA AAATGAGGAA ATTGCATCGC ATTGTCTGAG TAGGTGTCAT
 AAAGGATTAT TTTACTCCCT TAACGTAGCG TAACAGACTC ATCCACAGTA

3051 TCTATTCTGG GGGGTGGGGT GGGGCAGGAC AGCAAGGGGG AGGATTGGGA
 AGATAAGACC CCCCCACCCCA CCCCCTCCTG TCGTTCCCCC TCCTAACCCCT

3101 AGACAATAGC AGGCATGCTG GGGAGCTTT CCGCTTCCTC GCTCACTGAC
 TCTGTTATCG TCCGTACGAC CCCTCGAGAA GGCGAAGGAG CGAGTGACTG

3151 TCGCTGCGCT CGGTGTTCG GCTGCGGGCA GCGGTATCAG CTCACTCAA
 AGCGACCGA GCCAGCAAGC CGACGCCGT CGCCATAGTC GAGTGAGTTT

Pci I

3201 GGCGGTAATA CGGTTATCCA CAGAATCAGG GGATAACGCA GGAAAGAAC
 CCGCCATTAT GCCAATAGGT GTCTTAGTCC CCTATTGCGT CCTTTCTTGT

Pci I

3251 TGTGAGCAAA AGGCCAGCAA AAGGCCAGGA ACCGTAAAAA GGCCGCGTTG
 ACACTCGTT TCCGGTCGTT TTCCGGTCCCT TGGCATTTC CCGGCGCAAC

3301 CTGGCGTTTT TCCATAGGCT CCGCCCCCT GACGGAGCATC ACAAAATCG
 GACCGCAAAA AGGTATCCGA GGCGGGGGGA CTGCTCGTAG TGTTTTAGC

FIG. 2F

EP 1 233 783 B9 (W1B1)
 [drawing(s) replaced or added]

3351 ACGCTCAAGT CAGAGGTGGC GAAACCCGAC AGGACTATAA AGATACCAGG
 TGCGAGTTCA GTCTCCACCG CTTTGGGCTG TCCTGATATT TCTATGGTCC

3401 CGTTTCCCCC TGGAAGCTCC CTCGTGCGCT CTCCTGTTCC GACCCTGCCG
 GCAAAGGGGG ACCTTCGAGG GAGCACCGA GAGGACAAGG CTGGGACGGC

HaeII

3451 CTTACCGGAT ACCTGTCCGC CTTTCTCCCT TCGGGAAGCG TGGCGCTTC
 GAATGGCCTA TGGACAGGCG GAAAGAGGGA AGCCCTTCGC ACCGCGAAAG

3501 TCAATGCTCA CGCTGTAGGT ATCTCAGTTC GGTGTAGGTC GTTCGCTCCA
 AGTTACGAGT GCGACATCCA TAGAGTCAAG CCACATCCAG CAAGCGAGGT

3551 AGCTGGGCTG TGTGCACGAA CCCCCCGTTC AGCCCGACCG CTGCGCCCTA
 TCGACCCGAC ACACGTGCTT GGGGGGCAAG TCGGGCTGGC GACGCGGAAT

3601 TCCGGTAAC ATCGTCTTGA GTCCAACCCG GTAAGACACG ACTTATCGCC
 AGGCCATTGA TAGCAGAACT CAGGTTGGC CATTCTGTGC TGAATAGCGG

3651 ACTGGCAGCA GCCACTGGTA ACAGGATTAG CAGAGCGAGG TATGTAGGCG
 TGACCGTCGT CGGTGACCAT TGTCTTAATC GTCTCGCTCC ATACATCCGC

3701 GTGCTACAGA GTTCTTGAAG TGGTGGCCTA ACTACGGCTA CACTAGAAGG
 CACGATGTCT CAAGAACTTC ACCACCGGAT TGATGCCGAT GTGATCTTCC

3751 ACAGTATTTG GTATCTGCGC TCTGCTGAAG CCAGTTACCT TCGGAAAAAG
 TGTCTAAAC CATAGACCGC AGACGACTTC GGTCAATGGA AGCCTTTTC

3801 AGTTGGTAGC TCTTGATCCG GCAAACAAAC CACCGCTGGT AGCGGTGGTT
 TCAACCATCG AGAACTAGGC CGTTGTTTG GTGGCGACCA TCGCCACCAA

3851 TTTTGTTTG CAAGCAGCAG ATTACGCCA GAAAAAAAGG ATCTCAAGAA
 AAAAACAAAC GTTCGTCGTC TAATGCGCGT CTTTTTTTCC TAGAGTTCTT

3901 GATCCTTTGA TCTTTCTAC GGGGTCTGAC GCTCAGTGGA ACGAAAAC
 CTAGGAAACT AGAAAAGATG CCCCAGACTG CGAGTCACCT TGCTTTGAG

3951 ACGTTAAGGG ATTTGGTCA TGAGATTATC AAAAAGGATC TTCACCTAGA
 TGCAATTCCC TAAAACCGT ACTCTAATAG TTTTCCTAG AAGTGGATCT

4001 TCCTTTAAA TTAAAAATGA AGTTTTAAAT CAATCTAAAG TATATATGAG
 AGGAAAATTT AATTTTACT TCAAAATTG GTTAGATTTC ATATATACTC

4051 TAAACTTGGT CTGACAGTTA CCAATGCTTA ATCACTGAGG CACCTATCTC
 ATTTGAACCA GACTGTCAAT GGTTACGAAT TAGTCACTCC GTGGATAGAG

Eam1105I

AspEI

4101 AGCGATCTGT CTATTTGTT CATCCATAGT TGCCTGACTC CCCGTCGTGT
 TCGCTAGACA GATAAGCAA GTAGGTATCA ACGGACTGAG GGGCAGCACA

4151 AGATAACTAC GATACTGGAG GGCTTACCAT CTGGCCCCAG TGCTGCAATG
 TCTATTGATG CTATGCCCTC CCGAATGGTA GACCAGGGTC ACGACGTTAC

FIG. 2G

Cfr10I

BsrFI

4201 ATACCGCGAG ACCCACGCTC ACCGGCTCCA GATTTATCAG CAATAAACCA
 TATGGCGCTC TGGGTGCGAG TGGCCGAGGT CTAATAGTC GTTATTTGGT
 BsaI

4251 GCCAGCCGGA AGGGCCGAGC GCAGAAAGTGG TCCTGCAACT TTATCCGCC
 CGGTGGCCT TCCCGGCTCG CGTCTTCACC AGGACGTTGA AATAGGCGGA

4301 CCATCCAGTC TATTAATTGT TGCCGGGAAG CTAGAGTAAG TAGTCGCCA
 GGTAGGTCAAG ATAATTAACA ACGGCCCTTC GATCTCATTC ATCAAGCGGT

FspI

AvIII

AosI

4351 GTTAATAGTT TGCGCAACGT TGTTGCCATT GCTACAGGCA TCGTGGTGT
 CAATTATCAA ACGCGTTGCA ACAACGGTAA CGATGTCCGT AGCACCCACAG

4401 ACGCTCGTCG TTTGGTATGG CTTCAATTCAAG CTCCGGTTCC CAACGATCAA
 TGCGAGCAGC AAACCATACC GAAGTAAGTC GAGGCCAAGG GTTGCTAGTT

4451 GGCGAGTTAC ATGATCCCCC ATGTTGTGCA AAAAAGCGGT TAGTCCTTC
 CCGCTCAATG TACTAGGGGG TACAACACGT TTTTCGCCA ATCGAGGAAG

PvuI

4501 GGTCCTCCGA TCGTTGTCAG AAGTAAGTTG GCCCGAGTGT TATCACTCAT
 CCAGGAGGCT AGCAACAGTC TTCATTCAAC CGCGTCACA ATAGTGAGTA

4551 GGTTATGGCA GCACTGCATA ATTCTCTTAC TGTCATGCCA TCCGTAAGAT
 CCAATACCGT CGTGACGTAT TAAGAGAATG ACAGTACGGT AGGCATTCTA

4601 GCTTTCTGT GACTGGTGAG TACTCAACCA AGTCATTCTG AGAATAGTGT
 CGAAAAGACA CTGACCAACTC ATGAGTTGGT TCAGTAAGAC TCTTATCACA

BcgI

4651 ATGCGGGGAC CGAGTTGCTC TTGCCCCGGCG TCAATACGGG ATAATACCGC
 TACGCCGCTG GCTCAACGAG AACGGGCCGC AGTTATGCC TATTATGGCG

XmnI

Asp700

4701 GCCACATAGC AGAACTTTAA AAGTGCTCAT CATTGGAAAA CGTTCTTCGG
 CGGTGTATCG TCTTGAAATT TTCACGAGTA GTAACCTTT GCAAGAACCC

4751 GGCAGAAACT CTCAAGGATC TTACCGCTGT TGAGATCCAG TTCGATGTAA
 CCGCTTTGA GAGTTCCCTAG AATGGCGACA ACTCTAGGTC AAGCTACATT

4801 CCCACTCGTG CACCCAAGTG ATCTTCAGCA TCTTTACTT TCACCAGCGT
 GGGTGAGCAC GTGGGTTGAC TAGAAGTCGT AGAAAATGAA AGTGGTCGCA

FIG. 2H

4851 TTCTGGGTGA GCAAAACAG GAAGGCAAAA TGCGCAAAA AAGGGAATAA
AAGACCCACT CGTTTTGTC CTTCCGTTTT ACGCGTTTT TTCCCTTATT

4901 GGGCGACACG GAAATGTTGA ATACTCATAC TCTTCCTTTT TCAATATTAT
CCCGCTGTGC CTTTACAAC TATGAGTATG AGAAGGAAAA AGTTATAATA

4951 TGAAGCATTG ATCAGGGTTA TTGTCTCATG AGCGGATACA TATTTGAATG
ACTTCGTAAA TAGTCCCAAT AACAGAGTAC TCGCCTATGT ATAAACTTAC

5001 TATTTAGAAA AATAAACAAA TAGGGGTCC GCGCACATT CCCCGAAAAG
ATAAAATCTTT TTATTTGTTT ATCCCCAAGG CGCGTGTAAA GGGGCTTTTC

5051 TGCCACCTGA CGTCTAAGAA ACCATTATTA TCATGACATT AACCTATAAA
ACGGTGGACT GCAGATTCTT TGGTAATAAT AGTACTGTAA TTGGATATTT

5101 AATAGGCGTA TCACGGAGGCC CTTTCGTC
TTATCCGCAT AGTGCCTCCGG GAAAGCAG

FIG. 2I

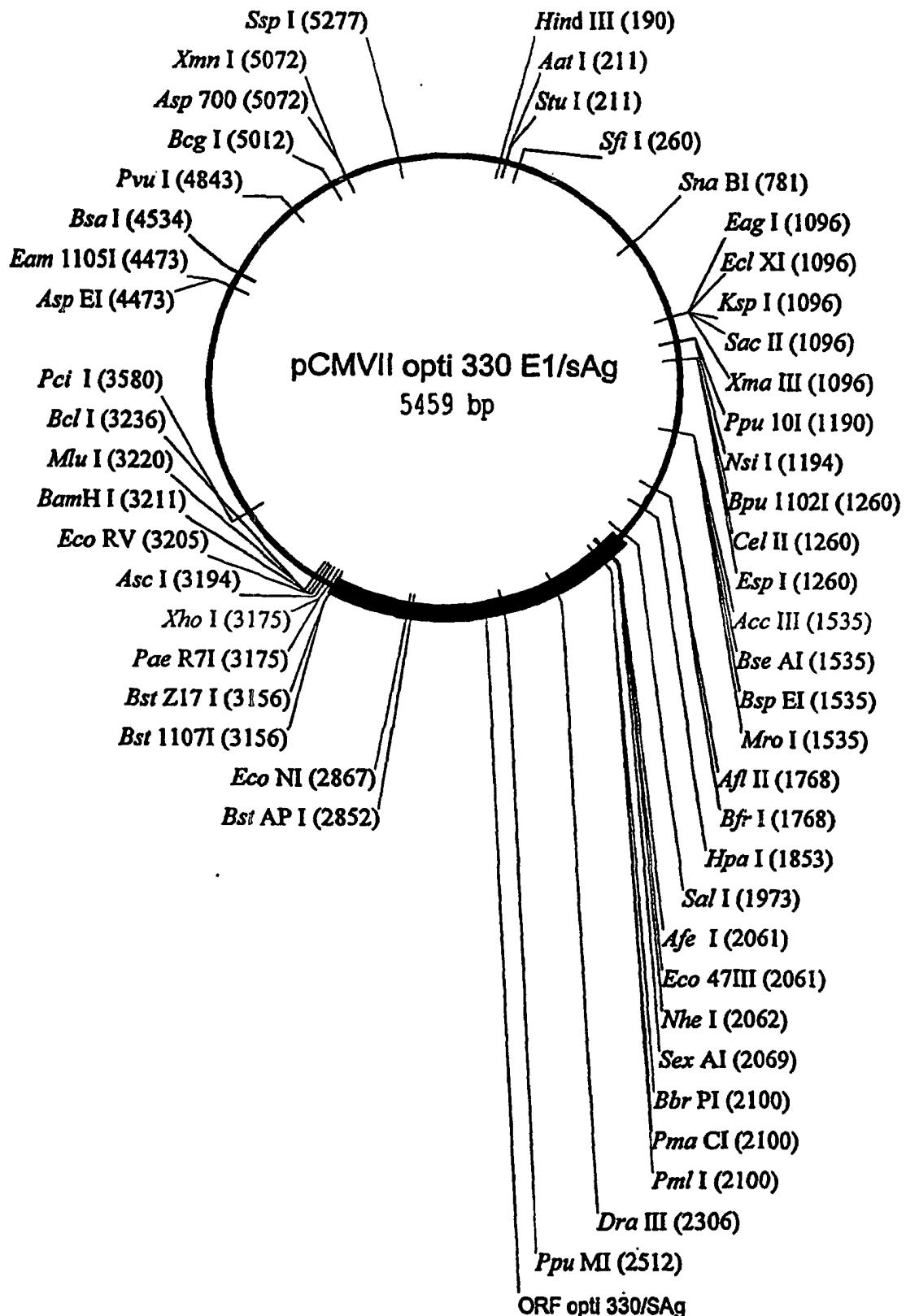


FIG. 3A

EP 1 233 783 B9 (W1B1)
 [drawing(s) replaced or added]

SEQ ID NO:4 1 TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG
 AGCGCGAAA GCCACTACTG CCACCTTTGG AGACTGTGTA CGTCGAGGGC

51 GAGACGGTCA CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG
 CTCTGCCAGT GTCGAACAGA CATTGGCCTA CGGCCCTCGT CTGTTGGGC

101 TCAGGGCGCG TCAGCGGGTG TTGGCGGGTG TCGGGGCTGG CTTAACTATG
 AGTCCCGCGC AGTCGCCAC AACCGCCCAC AGCCCCGACC GAATTGATAC

HindIII

151 CGGCATCAGA GCAGATTGTA CTGAGAGTGC ACCATATGAA GCTTTTGCA
 GCCGTAGTCT CGTCTAACAT GACTCTCACG TGGTATACTT CGAAAAACGT

StuI

AatI

201 AAAGCCTAGG CCTCCAAAAA AGCCTCCTCA CTACTCTGG AATAGCTCAG
 TTTGGATCC GGAGGTTTT TCAGGAGAGT GATGAAGACC TTATCGAGTC

SfiI

251 AGGCGGAGGC GGCCTCGGCC TCTGCATAAA TAAAAAAAAT TAGTCAGCCA
 TCCGGCTCCG CGGAGCCGG AGACGTATT ATTTCCTTTA ATCAGTCGGT

301 TGGGGCGGAG AATGGGCGGA ACTGGGCGGG GAGGGAAATTA TTGGCTATTG
 ACCCCGCCTC TTACCCGCCT TGACCCGCC CTCCTTAAT AACCGATAAAC

351 GCCATTGCAT ACGTTGTATC TATATCATAA TATGTACATT TATATTGGCT
 CGGTAACGTA TGCAACATAG ATATAGTATT ATACATGTAA ATATAACCGA

401 CATGTCCAAT ATGACGCCA TGTGACATT GATTATTGAC TAGTTATTAA
 GTACAGGTTA TACTGGCGGT ACAACTGTAA CTAATAACTG ATCAATAATT

451 TAGTAATCAA TTACGGGTC ATTAGTTCAT AGCCCATATA TGGAGTTCCG
 ATCATTAGTT AATGCCCAAG TAATCAAGTA TCGGGTATAT ACCTCAAGGC

501 CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC
 GCAATGTATT GAATGCCATT TACGGGCGG ACCGACTGGC GGTTGCTGG

551 CCCGCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA
 GGGCGGGTAA CTGCAGTTAT TACTGCATAC AAGGGTATCA TTGCGGTTAT

601 GGGACTTTCC ATTGACGTCA ATGGGTGGAG TATTTACGGT AACTGCCA
 CCCTGAAAGG TAACTGCAGT TACCCACCTC ATAAATGCCA TTTGACGGGT

651 CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTCCGCC CCTATTGACG
 GAACCGTCAT GTAGTTACA TAGTATACGG TTCAGGGCGGG GGATAACTGC

701 TCAATGACGG TAAATGCCGC CCGTGGCATT ATGCCAGTA CATGACCTTA
 AGTTACTGCC ATTTACCGGG CGGACCGTAA TACGGGTATC GTACTGGAAT

SnaBI

751 CGGGACTTTTC CTACTGGCA GTACATCTAC GTATTAGTCA TCGCTATTAC
 GCCCTGAAAG GATGAACCGT CATGTAGATG CATAATCAGT AGCGATAATG

FIG. 3B

801 CATGGTGATG CGGTTTGGC AGTACACCAA TGGGCGTGGA TAGCGGTTG
GTACCACTAC GCCAAAACCG TCATGTGGTT ACCCGCACCT ATCGCAAAC

851 ACTCACGGGG ATTCCAAGT CTCCACCCA TTGACGTCAA TGGGAGTTG
TGAGTCCCC TAAAGGTTCA GAGGTGGGT AACTGCAGTT ACCCTCAAAC

901 TTTGGCACC AAAATCAACG GGACTTCCA AAATGTCGTA ATAACCCCG
AAAACCGTGG TTTAGTTGC CCTGAAAGGT TTTACAGCAT TATTGGGCG

951 CCCGTTGACG CAAATGGGCG GTAGGCGTGT ACGGTGGGAG GTCTATATAA
GGGCAACTGC GTTTACCCGC CATCCGCACA TGCCACCCCTC CAGATATATT

1001 GCAGAGCTCG TTTAGTGAAC CGTCAGATCG CCTGGAGACG CCATCCACGC
CGTCTCGAGC AAATCACTTG GCAGTCTAGC GGACCTCTGC GGTAGGTGCG

XmaIII

SacII

KspI

EclXI

EagI

1051 TGTTTGACC TCCATAGAAG ACACCGGGAC CGATCCAGCC TCCGCGCCG
ACAAAACCTGG AGGTATCTTC TGTGGCCCTG GCTAGGTGG AGGCGCCGGC

1101 GGAACGGTGC ATTGGAACGC GGATTCCCCG TGCCAAGAGT GACGTAAGTA
CCTTGCCACG TAACTTGCG CCTAAGGGC ACCGTTCTCA CTGCATTCT

Ppu10I

NsiI

1151 CCGCCTATAG ACTCTATAGG CACACCCCTT TGGCTCTTAT GCATGCTATA
GGCGGATATC TGAGATATCC GTGTGGGAA ACCGAGAATA CGTACGATAT

1201 CTGTTTTGG CTTGGGGCCT ATACACCCCC GCTCCTTATG CTATAGGTGA
GACAAAAAACC GAACCCCGGA TATGTGGGG CGAGGAATAC GATATCCACT

EspI

CeuII

Bpu1102I

1251 TGGTATAGCT TAGCCTATAG GTGTGGGTTA TTGACCATTA TTGACCACTC
ACCATATCGA ATCGGATATC CACACCAAT AACTGGTAAT AACTGGTGAG

1301 CCCTATTGGT GACGATACTT TCCATTACTA ATCCATAACA TGGCTCTTG
GGGATAACCA CTGCTATGAA AGGTAATGAT TAGGTATTGT ACCGAGAAC

1351 CCACAACTAT CTCTATTGGC TATATGCCAA TACTCTGTCC TTCAGAGACT
GGTGTGATA GAGATAACCG ATATACGGTT ATGAGACAGG AAGTCTCTGA

1401 GACACGGACT CTGTATTTT ACAGGATGGG GTCCATTAT TATTTACAAA
CTGTGCCTGA GACATAAAAA TGTCCCTACCC CAGGTAAATA ATAATGTTT

FIG. 3C

1451 TTCACATATA CAACAAACGCC GTCCCCCGTG CCCGCAGTTT TTATTAACAA
 AAGTGTATAT GTTGTGCGG CAGGGGGCAC GGGCGTCAAA AATAATTGTT

MroI

 BspEI

 BseAI

 AccIII

1501 TAGCGTGGGA TCTCCGACAT CTCGGGTACG TGTTCCGGAC ATGGGCTCTT
 ATCGCACCCCT AGAGGCTGTA GAGCCCATGC ACAAGGCCTG TACCCGAGAA

1551 CTCCGGTAGC GGC GGAGCTT CCACATCCGA GCCCTGGTCC CATCCGTCCA
 GAGGCCATCG CCGCCTCGAA GGTGTAGGCT CGGGACCAGG GTAGGCAGGT

1601 GCGGCTCATG GTCGCTCGGC AGCTCCTTGC TCCTAACAGT GGAGGCCAGA
 CGCCGAGTAC CAGCGAGCCG TCGAGGAACG AGGATTGTCA CCTCCGGTCT

1651 CTTAGGCACA GCACAATGCC CACCACCAGC AGTGTGCCGC ACAAGGCCGT
 GAATCCGTGT CGTGTACGG GTGGTGGTGG TCACACGGCG TGTTCCGGCA

1701 GGC GGTTAGGG TATGTGTCTG AAAATGAGCT CGGAGATTGG GCTCGCACCT
 CCGCCATCCC ATACACAGAC TTTTACTCGA GCCTCTAACCGAGCGTGGAA

BfrI

Af1III

1751 GGACGCAGAT GGAAGACTTA AGGCAGCGGC AGAAGAAGAT GCAGGCAGCT
 CCTCGTCTA CCTTCTGAAT TCCGTCGCCG TCTTCTTCTA CGTCCGTGCA

HpaI

1801 GAGTTGTTGT ATTCTGATAA GAGTCAGAGG TAACTCCCGT TGCGGTGCTG
 CTCAACAACA TAAGACTATT CTCAGTCTCC ATTGAGGGCA ACGCCACGAC

HpaI

1851 TTAACGGTGG AGGGCAGTGT AGTCTGAGCA GTACTCGTTG CTGCCGCGCG
 AATTGCCACC TCCCGTCACA TCAGACTCGT CATGAGCAAC GACGGCGCGC

1901 CGCCACCAGA CATAATAGCT GACAGACTAA CAGACTGTTG CTTTCCATGG
 GCGGTGGTCT GTATTATCGA CTGTCTGATT GTCTGACAAG GAAAGGTACC

+3

SEQ ID NO:5

M D A

SalI

1951 GTCTTTCTG CAGTCACCGT CGTCGACGAA TTCAAGCAAT CATGGATGCA
 CAGAAAAGAC GTCAGTGGCA GCAGCTGCTT AAGTCGTTA GTACCTACGT

+3 M K R G L C C V L L L C G A V F V

2001 ATGAAGAGAG GGCTCTGCTG TGTGCTGCTG CTGTGTGGAG CAGTCTTCGT
 TACTTCTCTC CCGAGACGAC ACACGACGAC GACACACCTC GTCAGAAGCA

FIG. 3D

+3 S P S A S Y Q V R N S T G
NheI

Eco47III PmaCI

Afe I SexAI BbrPI

2051 TTGCCCCAGC GCTAGCTACC AGGTGCGCAA CAGCACCGGC CTGTACCAAG
AAGCGGGTGC CGATCGATGG TCCACCGCGT GTCTGGCCG GACATGGTGC

+3 V T N D C P N S S I V Y E A A D A
PmlI
--
PmaCI
--
BbrPI
--
2101 TGACCAACGA CTGCCCCAAC AGCAGCATCG TGTACGAGGC CGCCGACGCC
ACTGGTTGCT GACGGGGTTG TCGTCGTAGC ACATGCTCCG GCGGCTGCGG

+3 I L H T P G C V P C V R E G N A S
2151 ATCCTGCACA CCCCCGGCTG CGTGCCTGC GTGCGCGAGG GCAACGCCAG
TAGGACGTGT GGGGGCCGAC GCACGGGACG CACCGCTCC CGTTGCGGGTC

+3 R C W V A M T P T V A T R D G K
2201 CCGCTGCTGG GTGGCCATGA CCCCCACCGT GGCCACCCGC GACGGCAAGC
GGCGACGACC CACCGGTACT GGGGGTGGCA CCGGTGGCG CTGCCGTTCG

+3 L P A T Q L R R H I D L L V G S A
DraIII
-
2251 TGCCCGCCAC CCAGCTGCGC CGCCACATCG ACCTGCTGGT GGGCAGCGCC
ACGGGGCGGTG GGTGACGCG GCGGTGTAGC TGGACGACCA CCCGTCGCGG

+3 T L C S A L Y V G D L C G S V F L
DraIII

2301 ACCCTGTGCA GCGCCCTGTA CGTGGCGAC CTGTGCGCA GCGTGTTCCT
TGGGACACGT CGCGGGACAT GCACCCGCTG GACACGCCGT CGCACAAAGGA

+3 V G Q L F T F S P R R H W T T Q
2351 GGTGGGCCAG CTGTTCACCT TCAGCCCCCG CGCCACTGG ACCACCCAGG
CCACCCGGTC GACAAGTGGA AGTCGGGGGC GGCGGTGACC TGGTGGGTCC

+3 G C N C S I Y P G H I T G H R M A
2401 GCTGCAACTG CAGCATCTAC CCCGGCCACA TCACCGGCCA CGCATGGCC
CGACGTTGAC GTCTGAGATG GGGCCGGTGT AGTGGCCGGT GGCCTACCGG

340 — SAg
+3 W D M M M N W S P T T M E N I T S
2451 TGGGACATGA TGATGAACTG GAGCCCCACC ACCATGGAGA ACATCACATC
ACCCTGTACT ACTACTTGAC CTCGGGGTGG TGGTACCTCT TGTAGTGTAG

+3 G F L G P L L V L Q A G F F L L
PpuMI

2501 AGGATTCTTA GGACCCCTGC TCGTGTACCA GGCGGGGTT TTCTTGTGA
TCCTAAGGAT CCTGGGGACG AGCACAATGT CCGCCCCAAA AAGAACAACT

FIG. 3E

+3 T R I L T I P Q S L D S W W T S L
 2551 CAAGAATCCT CACAATACCG CAGAGTCTAG ACTCGTGGTG GACTTCTCTC
 GTTCTTAGGA GTGTTATGGC GTCTCAGATC TGAGCACCAC CTGAAGAGAG

+3 N F L G G S P V C L G Q N S Q S P
 2601 AATTTCTAG GGGGATCTCC CGTGTGTCTT GGCCAAAATT CGCAGTCCCC
 TTAAAAGATC CCCCTAGAGG GCACACAGAA CCGGTTTAA GCGTCAGGGG

+3 T S N H S P T S C P P I C P G Y
 2651 AACCTCCAAT CACTCACCAA CCTCCTGTCC TCCAATTGT CCTGGTTATC
 TTGGAGGTTA GTGAGTGGTT GGAGGACAGG AGGTTAAACA GGACCAATAG

+3 R W M C L R R F I I F L F I L L L
 2701 GCTGGATGTG TCTGCCGCGT TTTATCATAT TCCTCTTCAT CCTGCTGCTA
 CGACCTACAC AGACGCCGA AAATAGTATA AGGAGAAGTA GGACGACGAT

+3 C L I F L L V L L D Y Q G M L P V
 2751 TGCCTCATCT TCTTATGGT TCTTCTGGAT TATCAAGGTA TGTGCCCCGT
 ACGGAGTAGA AGAATAACCA AGAAGACCTA ATAGTTCCAT ACAACGGGCA

+3 C P L I P G S T T T S T G P C K
 BstAP I

2801 TTGTCCTCTA ATTCCAGGAT CAACAACAAAC CAGTACGGGA CCATGCAAAA
 AACAGGAGAT TAAGGTCTA GTTGTGTTG GTCATGCCCT GGTACGTTT

+3 T C T T P A Q G N S M F P S C C C
 BstAP I EcoNI

2851 CCTGCACGAC CCCTGCTCAA GGCAACTCTA TGTTCCTCTC ATGTTGCTGT
 GGACGTGCTG AGGACGAGTT CCGTTGAGAT ACAAAGGGAG TACAACGACA

+3 T K P T D G N C T C I P I P S S W
 2901 ACAAAACCTA CGGATGGAAA TTGCACCTGT ATTCCCATCC CATCGCCTG
 TGTGTTGGAT GCCTACCTT AACGTGGACA TAAGGGTAGG GTAGCAGGAC

+3 A F A K Y L W D W A S V R F S W
 2951 GGCTTTCGCA AAATACCTAT GGGAGTGGGC CTCAGTCCGT TTCTCTGGC
 CCGAAAGCGT TTTATGGATA CCCTCACCCG GAGTCAGGCA AAGAGAACCG

+3 L S L L V P F V Q W F V G L S P T
 3001 TCAGTTTACT AGTGCCATTT GTTCAGTGGT TCGTAGGGCT TTCCCCCACT
 AGTCAAATGA TCACGGTAAA CAAGTCACCA AGCATCCGA AAGGGGTGA

+3 V W L S A I W M M W Y W G P S L Y
 3051 GTTTGGCTT CAGCTATATG GATGATGTGG TATTGGGGC CAAGTCTGTA
 CAAACCGAAA GTCGATATAC CTACTACACC ATAACCCCCG GTTCAGACAT

+3 S I V S P F I P L L P I F F C L
 3101 CAGCATCGTG AGTCCCTTA TACCGCTGTT ACCAATTTC TTTGTCTCT
 GTCGTAGCAC TCAGGGAAAT ATGGCGACAA TGGTTAAAAG AAAACAGAGA

FIG. 3F

+3 W V Y I *			
	BstZ17 I	XbaI	
	-----	-----	
	Bst1107I	PaeR7I	Ascl
	-----	-----	-----
3151	GGGTATACAT TAAAGAATTC AGACTCGAGC AAGTCTAGAA AGGCGCGCCA CCCATATGTA AATTCTTAAG TCTGAGCTCG TTCAGATCTT TCCGCGCGGT		
	-----	-----	-----
	EcoRV	BamHI	MluI
	-----	-----	-----
3201	AGATATCAAG GATCCACTAC GCGTTAGAGC TCGCTGATCA GCCTCGACTG TCTATAGTTC CTAGGTGATG CGCAATCTCG AGCGACTAGT CGGAGCTGAC		
	-----	-----	-----
3251	TGCCTTCTAG TTGCCAGCCA TCTGTTGTTT GCCCCTCCCC CGTGCCTTCC ACGGAAGATC AACGGTCGGT AGACAACAAA CGGGGAGGGG GCACGGAAGG		
	-----	-----	-----
3301	TTGACCCCTGG AAGGTGCCAC TCCCACGTGTC CTTCTCTAAT AAAATGAGGA AACTGGGACC TTCCACGGTG AGGGTACAG GAAAGGATTA TTTTACTCCT		
	-----	-----	-----
3351	AATTGCATCG CATTGTCTGA GTAGGTGTCA TTCTATTCTG GGGGGTGGGG TTAACGTAGC GTAACAGACT CATCCACAGT AAGATAAGAC CCCCCACCCC		
	-----	-----	-----
3401	TGGGGCAGGA CAGCAAGGGG GAGGATTGGG AAGACAATAG CAGGCATGCT ACCCCGTCT GTCGTTCCCC CTCTAACCC TTCTGTTATC GTCCGTACGA		
	-----	-----	-----
3451	GGGGAGCTCT TCCGCTTCCT CGCTCACTGA CTCGCTGCGC TCGGTGTTTC CCCCCTCGAGA AGGCGAAGGA GCGAGTGACT GAGCGACGCG AGCCAGCAAG		
	-----	-----	-----
3501	GGCTGCGCG AGCGGTATCA GCTCACTCAA AGGCGGTAAT ACGGTTATCC CCGACGCGC TCGCCATAGT CGAGTGAGTT TCCGCCATTA TGCCAATAGG		
	-----	-----	-----
	Pci I		
	-----	-----	-----
3551	ACAGAATCAG GGGATAACGC AGGAAAGAAC ATGTGAGCAA AAGGCCAGCA TGTCTTAGTC CCCTATTGCG TCCTTTCTTG TACACTCGTT TTCCGGTCGT		
	-----	-----	-----
3601	AAAGGCCAGG AACCGTAAAA AGGCCGCGTT GCTGGCGTTT TTCCCATAGGC TTTCCGGTCC TTGGCATTTC TCCGGCGCAA CGACCGCAAA AAGGTATCCG		
	-----	-----	-----
3651	TCCGCCCCCCC TGACGAGCAT CACAAAAATC GACGCTCAAG TCAGAGGGGG AGGCAGGGGG ACTGCTCGTA GTGTTTTAG CTGCGAGTTC AGTCTCCACC		
	-----	-----	-----
3701	CGAAACCCGA CAGGACTATA AAGATACCAAG GCGTTTCCCC CTGGAAGCTC GCTTTGGGCT GTCCGTATAT TTCTATGGTC CGCAAAGGGG GACCTTCGAG		
	-----	-----	-----
3751	CCTCGTGCAG CGACCGTGC GCTTACCGGA TACCTGTCG GGAGCAGCG AGAGGACAAG GCTGGACGG CGAATGGCCT ATGGACAGGC		
	-----	-----	-----
3801	CCTTTCTCCC TTGGGAAGC GTGGCGCTTT CTCAATGCTC ACGCTGTAGG GGAAAGAGGG AAGCCCTTCG CACCGCGAAA GAGTTACGAG TGCGACATCC		
	-----	-----	-----
3851	TATCTCAGTT CGGTGTAGGT CGTTCGCTCC AAGCTGGCT GTGTGCACGA ATAGAGTCAA GCCACATCCA GCAAGCGAGG TTGACCCGA CACACGTGCT		
	-----	-----	-----
3901	ACCCCCCGTT CAGCCCGACC GCTGCGCCCTT ATCCGGTAAC TATCGTCTTG TGGGGGCAA GTCGGGCTGG CGACGCGGAA TAGGCCATTG ATAGCAGAAC		
	-----	-----	-----

FIG. 3G

EP 1 233 783 B9 (W1B1)
 [drawing(s) replaced or added]

3951 AGTCCAACCC GGTAAGACAC GACTTATCGC CACTGGCAGC AGCCACTGGT
 TCAGGTTGGG CCATTCTGTG CTGAATAGCG GTGACCGTCG TCGGTGACCA

4001 AACAGGATTA GCAGAGCGAG GTATGTAGGC GGTGCTACAG AGTTCTGAA
 TTGTCTTAAT CGTCTCGCTC CATAACATCCG CCACCGATGTC TCAAGAACCTT

4051 GTGGTGGCCT AACTACGGCT AACTAGAAAG GACAGTATTT GGTATCTGCG
 CACCACCGGA TTGATGCCGA TGTGATCTTC CTGTCATAAA CCATAGACGC

4101 CTCTGCTGAA GCCAGTTACC TTGGAAAAA GAGTTGGTAG CTCTTGATCC
 GAGACGACTT CGGTCAATGG AAGCCTTTT CTCAACCATC GAGAACTAGG

4151 GGCAAACAAA CCACCGCTGG TAGCGGTGGT TTTTTGTTT GCAAGCAGCA
 CCGTTGTTT GGTGGCACC ATGCCACCA AAAAAACAAA CGTTCGTCGT

4201 GATTACGCGC AGAAAAAAAG GATCTCAAGA AGATCCTTG ATCTTTCTA
 CTAATGCGCG TCTTTTTTC CTAGAGTTCT TCTAGGAAAC TAGAAAAGAT

4251 CGGGGTCTGA CGCTCAGTGG AACGAAAAT CACGTTAAGG GATTTGGTC
 GCCCCAGACT GCGAGTCACC TTGCTTTGA GTGCAATTCC CTAAAACCAG

4301 ATGAGATTAT CAAAAAGGAT CTTCACCTAG ATCCCTTTAA ATTAAAAATG
 TACTCTAATA GTTTTCCTA GAAGTGGATC TAGGAAAATT TAATTTTAC

4351 AAGTTTAAA TCAATCTAAA GTATATATGA GTAAACATTGG TCTGACAGTT
 TTCAAAATT AGTTAGATT CATATATACT CATTGAACC AGACTGTCAA

4401 ACCAATGCTT AATCAGTGAG GCACCTATCT CAGCGATCTG TCTATTCGT
 TGGTTACGAA TTAGTCACTC CGTGGATAGA GTCGCTAGAC AGATAAAAGCA

Eam1105I

 AspEI

4451 TCATCCATAG TTGCCTGACT CCCCCTCGTG TAGATAACTA CGATACGGGA
 AGTAGGTATC AACGGACTGA GGGGCAGCAC ATCTATTGAT GCTATGCCCT

4501 GGGCTTACCA TCTGGCCCCA GTGCTGCAAT GATAACCGCA GACCCACGCT
 CCCGAATGGT AGACCGGGGT CACGACGTTA CTATGGCGCT CTGGGTGCGA

BsaI

4551 CACCGGCTCC AGATTTATCA GCAATAAACC AGCCAGCCGG AAGGGCCGAG
 GTGGCCGAGG TCTAAATAGT CGTTATTGG TCGTCGGCC TTCCCGGCTC

4601 CGCAGAAGTG GTCCTGCAAC TTTATCCGCC TCCATCCAGT CTATTAATTG
 GCGTCTTCAC CAGGACGTTG AAATAGGGGG AGGTAGGTCA GATAATTAAC

4651 TTGCCGGAA GCTAGAGTAA GTAGTTCGCC AGTTAATAGT TTGCGCAACG
 AACGGCCCTT CGATCTCATT CATCAAGCGG TCAATTATCA AACGCGTTGC

4701 TTGTTGCCAT TGCTACAGGC ATCGTGGTGT CACGCTCGTC GTTTGGTATG
 AACAAACGGTA ACGATGTCCG TAGCACCACA GTGCGAGCAG CAAACCATAAC

4751 GCTTCATTCA GCTCCGGTTC CCAACGATCA AGCCGAGTTA CATGATCCCC
 CGAAGTAAGT CGAGGCCAAG GGTTGCTAGT TCCGCTCAAT GTACTAGGGG

FIG. 3H

PvuI

4801 CATGTTGTGC AAAAAAGCGG TTAGCTCCTT CGGTCTCCG ATCGTTGTCA
 GTACAACACG TTTTTCGCC AATCGAGGAA GCCAGGAGGC TAGCAACAGT

4851 GAAGTAAGTT GGCGCAGTG TTATCACTCA TGGTTATGGC AGCACTGCAT
 CTTCATTCAA CCGCGTCAC AATAGTGAGT ACCAATACCG TCGTGACGTA

4901 AATTCTCTTA CTGTCATGCC ATCCGTAAGA TGCTTTCTG TGACTGGTGA
 TTAAGAGAAT GACAGTACGG TAGGCATTCT ACGAAAAGAC ACTGACCACT

BcgI

4951 GTACTCAACC AAGTCATTCT GAGAATAGTG TATGCGGCAG CCGAGTTGCT
 CATGAGTTGG TTCAGTAAGA CTCTTATCAC ATACGCCGCT GGCTCAACGA

5001 CTTGCCCGGC GTCAATACGG GATAATACCG CGCCACATAG CAGAACTTTA
 GAACGGGCCG CAGTTATGCC CTATTATGGC GCGGTGTATC GTCTTGAAT

XmnI

Asp700

5051 AAAGTGCTCA TCATTGGAAA ACGTTCTTCG GGGCGAAAAC TCTCAAGGAT
 TTTCACGAGT AGTAACCTT TGCAAGAACG CCCGCTTTG AGAGTTCCCTA

5101 CTTACCGCTG TTGAGATCCA GTTCGATGTA ACCCACTCGT GCACCCAACT
 GAATGGCGAC AACTCTAGGT CAAGCTACAT TGGGTGAGCA CGTGGGTTGA

5151 GATCTTCAGC ATCTTTACT TTCACCAAGCG TTTCTGGGTG AGCAAAAACA
 CTAGAAGTCG TAGAAAATGA AAGTGGTCGC AAAGACCCAC TCGTTTTGT

5201 GGAAGGCAAA ATGCCGCAAA AAAGGGATAA AGGGCGACAC GGAAATGTTG
 CCTTCCGTTT TACGGCGTTT TTTCCCTTAT TCCCGCTGTG CCTTTACAAC

SepI

5251 AATACTCATA CTCTCCTTT TTCAATATTA TTGAAGCATT TATCAGGGTT
 TTATGAGTAT GAGAAGGAAA AAGTTATAAT AACTCGTAA ATAGTCCAA

5301 ATTGTCTCAT GAGCGGATAC ATATTTGAAT GTATTTAGAA AAATAAACAA
 TAACAGAGTA CTCGCCTATG TATAAACTTA CATAAATCTT TTTATTGTT

5351 ATAGGGGTTTC CGCGCACATT TCCCCGAAAA GTGCCACCTG ACGTCTAAGA
 TATCCCCAAG GCGCGTGTAA AGGGGCTTTT CACGGTGGAC TGCAGATTCT

5401 AACCAATTATT ATCATGACAT TAACCTATAA AAATAGGCAT ATCACGAGGC
 TTGGTAATAA TAGTACTGTA ATTGGATATT TTTATCCGCA TAGTGCTCCG

5451 CCTTTCGTC
 GGAAAGCAG

FIG. 3I

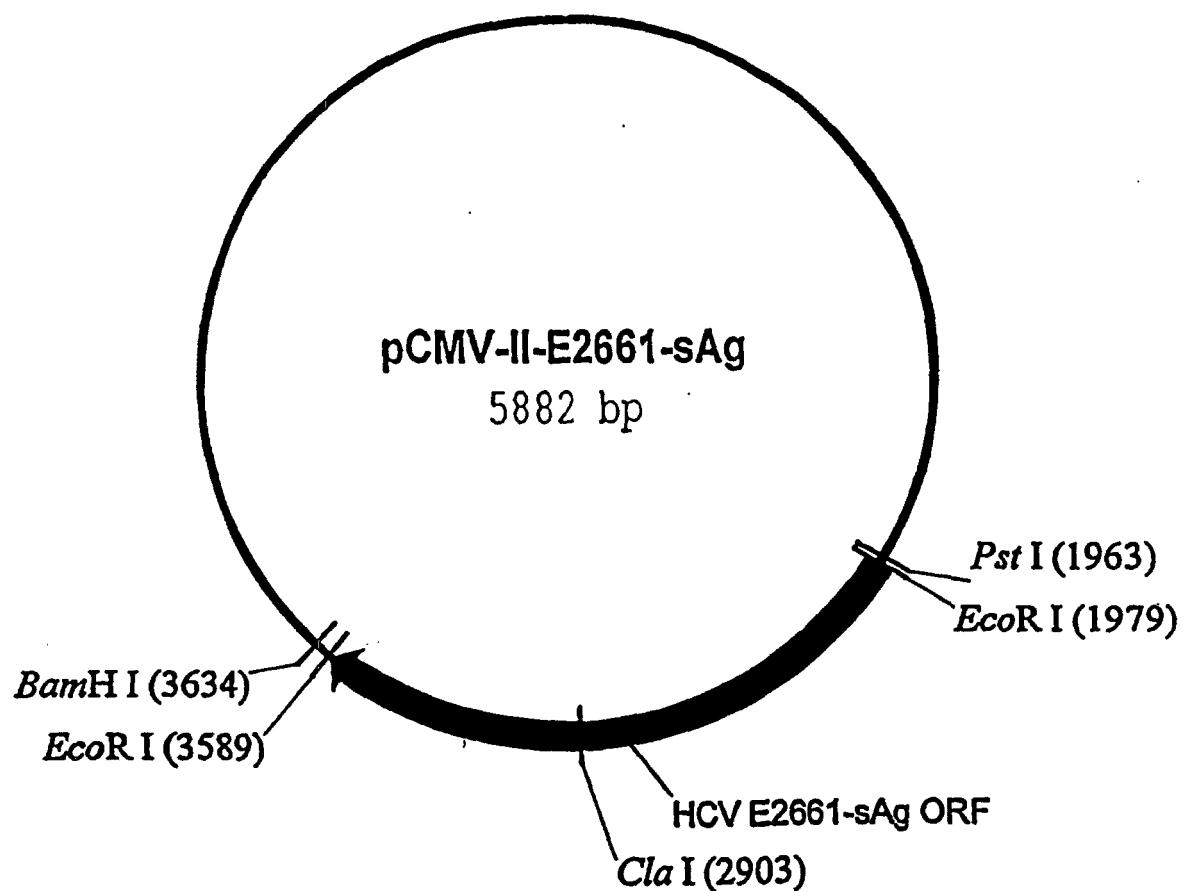


FIG. 4A

SEQ ID NO:6	1	TCGGGGCTT CGGTGATGAC GGTGAAAC TCTGACACAT GCAGCTCCCG GAGACGGTCA CAGCTGCT GTAGCCGAT AGCGGCAA GCCACTACTG CCACTTTGAGA AGACTGTGA CGTGGGGC CTCTGCAGT GTGAAACAGA CATTGCCATA
	81	GCGGGGAGCA GACAGCCCG TCAAGGGCGC TCAGGGGCTG TGGGGCTGG CCTAACTATG CGGCATCAGA CGGCCCTCGT CTGGTGGGC AGTCCCGC AGTCGCCAC AACCGGCCAC AGCCGCCAC GAATTGATAC GCCGTAGTCT
	161	GCGAGATTGTA CTGAGAGTC ACCATATGAA GCTTTTGCA AAAGCTTAGG CCTCCAAAAA AGCCTCCTCA CTACTCTGG CGTCATAACAT GACTCTCACG TGGTATACTT CGAAAACGT TTTCGGATC GGAGGTTTT TCGGAGGAGT GATGAGACC
	241	ATAGAGTCAG AGGGCGGG GGCCTCGGCC TCTGCACTAAA TAAAGAAAT TAGTCAGCCA TGGGGCGGAG AATGGGGGA TTATCGAGTC TCCGGTCCG CCGGAGCCGG AGACGTATT ATTTCCTTAA ATCAGTCGGT ACCCGCCCT TTACCCGCT
	321	ACTGGGGGG GAGGGAAATA TTGGCTATTG GCCATTGCT ACGTTGTTAC TATATCTAA TAGTACAT TATATGGCT TGACCCGCC CTCCCTTAAT AACCGATAAC CGGTAACTA TGCAACATAG ATATAGTATT ATACATGAA ATATAACCGA
	401	CATGTCCAAAT ATGACGCCA TGTGACAT GATTATTGAC TGTCTTAAAT TACATATCAA TTAACGGGGTC ATTAGTTCAT GTACAGGTTA TACTGGGGT ACAACTGTA CTAAATACTG ATCAATAATT ATCATTAGTT AATGCCCCAG TAATCAAGTA
	481	AGCCCATATA TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGC TGGCTGACCG CCCAACGAC TCGGGTATAT ACCTCAAGGC CGAATGTTATT GAATGCCATT TACCGGGGG ACCGACTGGC GGTGTGCTGG GGGGGGTA
	561	GACGTCATAA ATGACGTATG TTCCCATAGT AACGCCAATA GGGACTTTC ATTGACGTCA ATGGGTGGAG TATTACGGT CTGCGATTAT TACTGATAC AGGGTATCA TTGGGGTTAT CCCTGAAAAG TAACTGCAGT TACCCACCTC ATAAATGCCA
	641	AAACTGCCA CTGGCAGTA CATCAAGTGT ATCATATGCC AACTCCGCC CCTATGACG TCAATGACG TAAATGCC CTGACCGTT GAAACGTCAT GTAGTCACA TAGTATACGG TCGGGGGGG GGATAACTGC AGTAACTGC ATTACCGGG
	721	GCCTGGCATT ATGCCAGTA CATGACCTTA CGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTC TCGCTATTAC CGGACCGTA TACGGTCAT GTACTGGAAAT GCGCTGAAAG GTGAACCGT CATGTAGATG CATAATCAGT AGCGATAATG
	801	CATGGTGTG CGGTTGGC AGTACACCA TGGGGTGGAA TAGGGTTTG ACTCAGGGG ATTCCAAAGT CTCCACCCCA GTACCAACTAC GCCAAACCG TCAATGTTT ACCCGACCT ATGCCAAAC TGAGTCCCC TAAAGGTCTCA GAGGTGGGT
	881	TTGACGTCAA TGGGAGTTG TTTGGCACC AAAATCAACG GGAATTCGA AAATGTCGTA ATAACCCCGC CCCGTGACG AACTGCAATT ACCCTAAAC AAAACCGTGG TTTAGTTGC CTCGAAAGGT TTACAGCAT TATTGGGGGG GGGCAACTGC
	961	AAATGGGG GTAGGGGTG AGGGGGGG GTCTATATAA GCAGAGGCTG TTAGTGAAC CGTCAGATCG CCTGGAGAGC GTTTACCCGC CATCCGACA TGCCACCCCTC CAGATATATT CGTCTCGAGC AAATCACTTG GCAGTCTAGC GGACCTCTGC

FIG. 4B

1041	CCATCCACGC	TGTTTGACC	TCCATAGAAG	ACACCGGAC	CGATCCAGCC	TCCGGGCCG	GGAACGGTGC	ATTGGAACGCC
	GGTAGGTGG	ACAAAATCTG	GGGTATCTC	TGTTGCCCTG	GCTAGGTGG	GGGGGCCGGC	CCCTGCCACG	TAACCTTGCC
1121	GGATTCCCCG	TGCCAAGAGT	GAACGTAAGTA	CCGCCTATAG	ACTCTATAGG	CACZCCCCTT	TGGCTCTTAT	GCATGCTATA
	CCTAAGGGGC	ACGGTCTCA	CTGCAATTAT	GGCGGATATC	TGAGATATCC	GTGTGGGAA	ACCGAGATA	CGTAGCATAT
1201	CTGTTTTGG	CTTGGGGCCT	ATACACCCC	GCTCCTTATG	CTATAGTGA	TGGTATAGCT	TAGCCTATAG	GTGTGGGTTA
	GACAAAAAAC	GAACCCGGGA	TATGTTGGG	CGAGGAATAC	GATATCCACT	ACCATATGA	ATCGGATATC	CACACCCAAAT
1281	TGACCAATT	TGACCAACTC	CCCTATTGGT	GACGATACCTT	TCCATTACTA	ATCCATAACA	TGGCTCTTGT	CCACAACATAT
	AACTGGTAAT	AACTGGTGA	GGGATAACCA	CTGCTATGAA	AGGTAATGAT	TAGGTATTGT	ACCGGAAAC	GGTGTGATA
1361	CTCTATGGC	TATATGCCA	TACTCTGTCC	TTCAAGAGACT	GACACGGACT	CTGTATTTTT	ACAGGATGGG	GTICCAATTAT
	GAGATAACCG	ATATACGGT	ATGAGACAGG	AAAGTCTCTGA	CTGTGCCTGA	GACATAAAA	TGTCTTACCC	CAGGTAATAAA
1441	TATTTACAA	TTCACATATA	CAACPAACGCC	GTCCCCCGTG	CCCGCAGTT	TTATTAACAA	TAGCGTGGGA	TCTCGGACAT
	ATAAATGGTT	AAAGTGTATAT	GTGTTGGCGG	CAGGGGCAC	GGGGGTCAAA	AATZATTGT	ATCGGACCT	AGAGGCTGTA
1521	CTCGGGTAGC	TGTTCCGGAC	ATGGGCTCTT	CTCCGGTAGC	GGGGAGCTT	CCACATCCGA	GCCCTGGTCC	CATCCGTCCA
	GAGGCCCATGC	ACAAGGCCTG	TACCCCGAGAA	GAGGCCATCG	CCGCCTCGAA	GGTGTAGGT	CGGGACOAGG	GTAGGGCAGGT
1601	GGGGCTCATG	GTGCGCTGGG	AGCTCCCTTGC	TCCTAACAGT	GGAGGCCAGA	CTTAAAGCACA	GCACAATGCC	CACCAACCAC
	CGCCGAGTAC	TGTTCGGGCA	CGGGAGCCG	AGGATGTCA	CCTCCGGTCT	GAATCCGTGT	CGTGTACGG	GTGGTGGTGG
1681	AGTGTGCCGT	ACAAGGCCGT	GGGGTAGGG	TATGTGTCTG	AAATGAGCT	GGGAGATGG	GCTCGCACCT	GGACGGAGAT
	TCACACGGG	TGTTCGGGCA	CGGCCATCCC	ATACACAGAC	TTTTACTCGA	GCCTTAACC	CGAGCGTGG	CCTGCGTCTA
1761	GGAAAGACTA	AGGGAGGGC	AGAAGAAGAT	GCAGGGAGCT	GAGTTGTGT	ATTCTGATAA	GAGTCAGAGG	TAACCTCCGT
	CCCTCTGAAT	TCCGTCGCCG	TCTTCTTCTA	CGTCGTCGA	CTCAACAAACA	TAAGACTATT	CTCAGTCTCC	ATTGAGGGCA
1841	TGCGGTGCTG	TAAACGGTGG	AGGGCAGTGT	AGTGTGAGCA	GTACTCGTGT	CTGCGGGGCC	CGCCACCCAGA	CATAATAGCT
	ACGCCACGAC	AATTGCCACC	TCCCAGTCACA	TCAGACTCGT	CATGAGCAAC	GACGGCGGCC	GGGGTGGTCT	GTATTATCGA

FIG. 4C

					SEQ ID NO: 7	M	D	A
					PstI			
					ECORI			
1921	GACAGACTAA	CAGACTGTT	CTTCCATGG	GTCTTCTG	CAGTCACCGT	CGTCGACGAA	TTCAAGCAAT	CATGGATGCA
	CTGTCGATT	GTCTGACAAG	GAAGGTAC	GTCACTGGCA	GCAGCTGCTT	AAAGTCGTTA	GTACCTACGT	
+3	M	K	R	G	L	C	V	L
2001	ATGAAGGAG	GGCTCTGCTG	TGTGCTGCTG	CTGTGTGGAG	CAGTCCTGCG	TTCGCCCAAGC	GCTAGCGAAA	CCCACGTAC
	TACTCTCTC	CCGAGACGAC	ACACGACGAC	GACACACCTC	GTCAAGAGCA	AAGGGGTG	CGATCGCTT	GGGTGCACTG
+3	G	G	S	A	G	H	T	V
2081	GGGGGAAGT	GCCCCCACA	CTGTGTCTGG	ATTGTGTTAGC	CTCCTCGCAC	CAGGGCCCAA	GCAGAACGTC	CAGCTGATCA
	GCCCCCTCTCA	CGCCCGGTGT	GACACAGACC	TAACAATCG	GAGGAGCGTG	GTCCGGGGTT	CGTCTTGCG	GTCCGACTAGT
+3	N	T	N	G	S	W	H	L
2161	ACACCAACGG	CAGTGGCAC	CTCAATAGCA	CGGGCCCTGAA	CTGCAATGAT	AGCCTCAACA	CGGGCTGTT	GGCAAGGGCTT
	TGTGGTNGCC	GTCAACCGTG	GAGTTATCGT	GCCGGGACTT	GACGTTACTA	TCGGAGTTGT	GGCCGACCAA	CGGTCCCGGAA
+3	F	Y	H	H	K	F	N	S
2241	TTCTATCACCA	ACAAGTCAA	CTCTTCAGGC	TGTCCTGAGA	GGCTAGGCAG	CTGCGGACCC	CTTACCGATT	TTCGACAGGG
	AAGATAGTGG	TGTTCAGTT	GAGAAGTCCG	ACAGGACTCT	CCGATCGTC	GACGGCTGGG	GAATGGCTAA	AACTGGTCCC
+3	W	W	G	P	I	S	Y	A
2321	CTGGGGCCCT	ATCAGTTATG	CCAACGGAAAG	CGGGCCCGAC	CAGCGCCCT	CTTACCCCCA	AAACCTTGCG	
	GACCCCGGGGA	TAGTCATAAC	GGTTGCCCTC	GGCGGGCTG	GTGCGGGGAA	TGACGACCGT	GATGGGGGT	TTTGGAAACGCG
+3	G	I	V	P	A	K	S	V
2401	GTATTGTGCC	CGCGAAGAGT	GTGTGTGGTC	CGGTATATTG	CTTCACCCC	AGCCCCGTGG	TGGTGGAAAC	GACCGACAGG
	CATAACACGG	GGCTCTCTCA	CACACACAG	GCCATAAAC	GAAGTGGGG	TGEGGGCACC	ACCACCTTG	CTGGCTGTCC
+3	S	G	A	P	T	Y	S	W
2481	TCGGGGCGGC	CCACCTACAG	CTGGGGTGA	AATGATACGG	ACGTCTCGT	CCTTAACAAT	ACCAAGCCAC	CGCTGGGCAA
	AGCCCGGGCG	GGTGGATGTC	GACCCCACTT	TTACTATGCC	TGCAAGAGCA	GGAAATTGTTA	TGGTCCGGTG	GGCAGCCCGTT
+3	W	F	G	C	T	W	M	N
2561	TGGGTTGGT	TGTACCTGGA	TGAACACTAAC	TGGATTCAAC	AAAGTGTGCG	GAGCGCCCTCC	TGGTGTATC	GGAGGGGGGG
	AACCAAGCCA	ACATGGACCT	ACTTGAAGTTG	ACCTAAAGTGG	TTTCACAGCG	CTCGCGGAGG	AACACAGTAG	CCTCCCCGCC

FIG. 4D

+3	G	N	N	T	L	H	C	P	T	D	C	F	R	K	H	P	D	A	T	Y	S	R	C	G	S	G	P
2641	GCAACAAAC	CCTGCAC	TGC	CCC	ACT	GT	AT	G	C	AA	GC	AT	TC	T	CC	GG	GG	CT	CG	GT	GG	CT	CC	GG	CC	CT	CC
	CGTTGTTG	TG	GG	AC	GT	GA	CT	AA	CG	GT	GG	CT	AA	GG	CT	GG	GG	CT	GG	GT	GG	CT	GG	GG	CT	GG	GG
+3	W	I	T	P	R	C	L	V	D	Y	P	Y	R	L	W	H	Y	P	C	T	I	N	Y	T	I	F	K
2721	TGGATCAC	AC	CC	AG	GT	GC	CT	GG	TG	AC	TC	GT	CA	TT	GG	CA	TT	CT	GT	TAC	CA	CT	AT	TT	AA	TT	AA
	ACCTAGTGT	G	GT																								
+3	I	R	M	Y	V	G	G	V	E	H	R	L	E	A	A	C	N	W	T	R	G	E	R	C	D	L	
2801	AATCAGGATG	TAC	GT	GG																							
	TTAGTCCTAC	ATG	CAC	CC	TC	CC	AC	CT	GT																		
+3	E	D	R	D	R	S	E	I	D	M	E	N	I	T	S	G	F	L	G	P	L	L	V	L	Q	A	G
	Clai	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
2881	AAGATAGGGA	CAG	GT	CC	GG	AG	GA	CA	AT	CA	AT	CA	AT	CA	AT	GG	AA	CC									
	TTCTATCCT	G	T	C	AG	GG	GT	CT	TG																		
+3	F	F	F	L	L	T	R	I	L	T	I	P	Q	S	L	D	S	W	W	T	S	L	N	F	L	G	G
2961	TTTTCTCTGT	TG	AC	AA	GA	AT	C	T	C	A	A	TA	CC	GG	CA	AG	TC	TA	CT	GT							
	AAA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA
+3	P	V	C	L	G	Q	N	S	Q	S	P	T	S	N	H	S	P	T	S	C	P	P	I	C	P	G	
3041	TCCC	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT
	CTTGG	CC	AA																								
+3	Y	R	W	M	C	L	R	R	F	I	I	F	L	F	I	L	L	C	L	I	F	L	L	V	L	L	
3121	ATCG	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT	GT
	CTA	AT	AG	CT	AC	TA	TC																				
+3	D	Y	Q	G	M	L	P	V	C	P	L	I	P	G	S	T	T	S	T	G	P	C	K	T	C	T	
3201	GATT	AT	CA	AG	GG	CA	AC	T	CT	AT	TT	CC	AG	GT													
	CTA	AT	AG	TT	C	AT	AC	AA	GG	G	C	AA	AC	GG	GT												
+3	T	P	A	Q	G	N	S	M	F	P	S	C	C	C	T	K	P	T	D	G	N	C	T	C	I	P	
3281	GACT	CT	GT																								
	CTG	AG	GG	AC	GA	GT																					

FIG. 4E

4161	CCCTGGAAAG CTCCCTCGTG CGCTCTCTCG TTCCGACCCCT GCGGCTTACCGGATACCTG CGGATACCTGT CGGCCCTTCTTCT CCCCTTCGGGA
	GGGGACCTTC GAGGAGGCAC GCGAGGGAC AAGGCTGGGA CGGCGAATGG CCTATGGACA GGGGAAAGA GGGAGCCCT
4241	AGGGTGGCGC TTTCTCAATG CTCACGGCTGT AGGTATCTCA GTTGGGTGTA GGTCGGTTCGC TCCAAAGCTGG GCTGTGTGCA
	TCGCACCGCG AAAGAGTTAC GAGTGGACA TCCATAGAGT CAAGCCACAT CCAGCAAGCG AGGTTCGACC CGACACACGT
4321	CGAACCCCCC GTTCAAGCCCC ACCGCTGGCG CTTATCCGGT AACTATCGTC TTGAGTCCA CCCGGTAAGA CACGACTTAT
	GCTGGGGGGG CAAGTGGGGG TGGCGACGCG GAATAGGCCA TTGATAGCG AACTCAGGT GGGCCATCT GTGCTGAATA
4401	CGCCCACTGGC AGCAGCCACT GGTAACAGGA TTAGCAGAGC GAGGTATGTA GGGCGGTGCTA CAGAGTCTT GAAGTGGTGG
	GCGGTGACCG TCGTCGGTGA CCATGTCTCT AATGTCCTCG CTCCATACAT CGGCCACGAT GTCTCAAGAA CTTCACCAAC
4481	CCTAACTTACG GCTACACTAG AAGGACAGTA TTGGTATCT GCGCTCTGCT GAAGCCAGTT ACCTTCGGAA AAAGAGTTGG
	GGATTGATGCG CGATGTTGATC TTCCCTGTCAT AAACCATAGA CGCGAGACGA CTTGGTCTAA TGGAAAGCTT TTCTCAACC
4561	TAGCTCTGA TCCGGCAAAC AAACCCACCGC TGGTAGGGGT GGTTTTTGT TTGGCAAGCA GCAGATTACG CGCAGAAAAA
	ATCGAGAACT AGGGCGTTTG TTGGTGGCG ACCATGCCA CCAAAAAAAC AAACGTTCTGT CGTCTAATGC CGCTCTTTT
4641	AAGGATCTCA AGAAAGATCTT TGATCTTT CTACGGGGTC TGACGCTCAG TGGAACGAAA ACTCACGTT AGGGATTTG
	TTCCCTAGAGT TCCTCTAGGA AACTAGAAAA GATGCCCGAG ACTGCGAGTC ACCTTGCTTT TGAGTGCAT TCCCTAAAC
4721	GTCATGAGAT TATCAAAGG GATCTTCAAC TAGATCCTTT TAAATTAAAA ATGAAAGTTT AAATCAATCT AAAGTATAAA
	CAGTACTCTA ATAGTTTTC CTAGAAGTGG ATCTAGAAA ATTTAATTT TACTTCAAA TTAGTITAGA TTTCATATAT
4801	TGAGTAAACT TGGTCTGACA GTTACCAATG CTTAATCAGT GAGGCACCTA TCTCAGGGAT AGACTGCTA GACAGATAAA GCAAGTAGGT
	ACTCATTGCA ACCAGACTGT CAATGGTAC GAAATTAGTC CTCCGTGAT AGACTGCTA GACAGATAAA GCAAGTAGGT
4881	TAGTTGCTG ACTCCCGTC GTGTTAGATAA CTACGATACT GGAGGGCTTA CCATCTGGCC CCAAGTACCG
	ATCAACGGAC TGAGGGCAG CACATCTATT GATGCTATGC CCTCCCGAAT GTAGACCGG GTTACGACG TTACTATGGC
4961	CGAGACCCAC GCTCACCGGC TCCAGATTAA TCAGCAATAA ACCAGCCAGC CGGAAGGGCC GAGGGCAGAA GTGGTCTG
	GCTCTGGGTG CGAGTGGCCG AGGTCTAAAT AGTCGTATT TGTTGGTGC GCCTTCCGG CTGGGTCTT CACCAAGGACG
5041	AACTTTATCC GCCTCCATCC AGCTTATAA TTGTGGCGG GAAGCTAGAG TAAGTAGTTC GCCAGTTAAT AGTTGGCGCA
	TGAAATAGG CGAGGTAGG TCAGATAATT AACLAACGGCC CTTCGATCTC ATTACATCAAG CGGTCAATTAA TCAAACGGGT
5121	ACGTTGTTGC CATTGCTACA GGCTATGGGG TGTCACGCTC GTGCTTGGT ATGGCTTCAT TCAGCTCGG TTCCCAACGA
	TGCAACAAAG GTAACGATGT CGCTAGGACCC ACAGTGGAG CAGCAAACCA TACCGAAAGTA AGTCGAGGCC AAGGGTGTGT

FIG. 4G

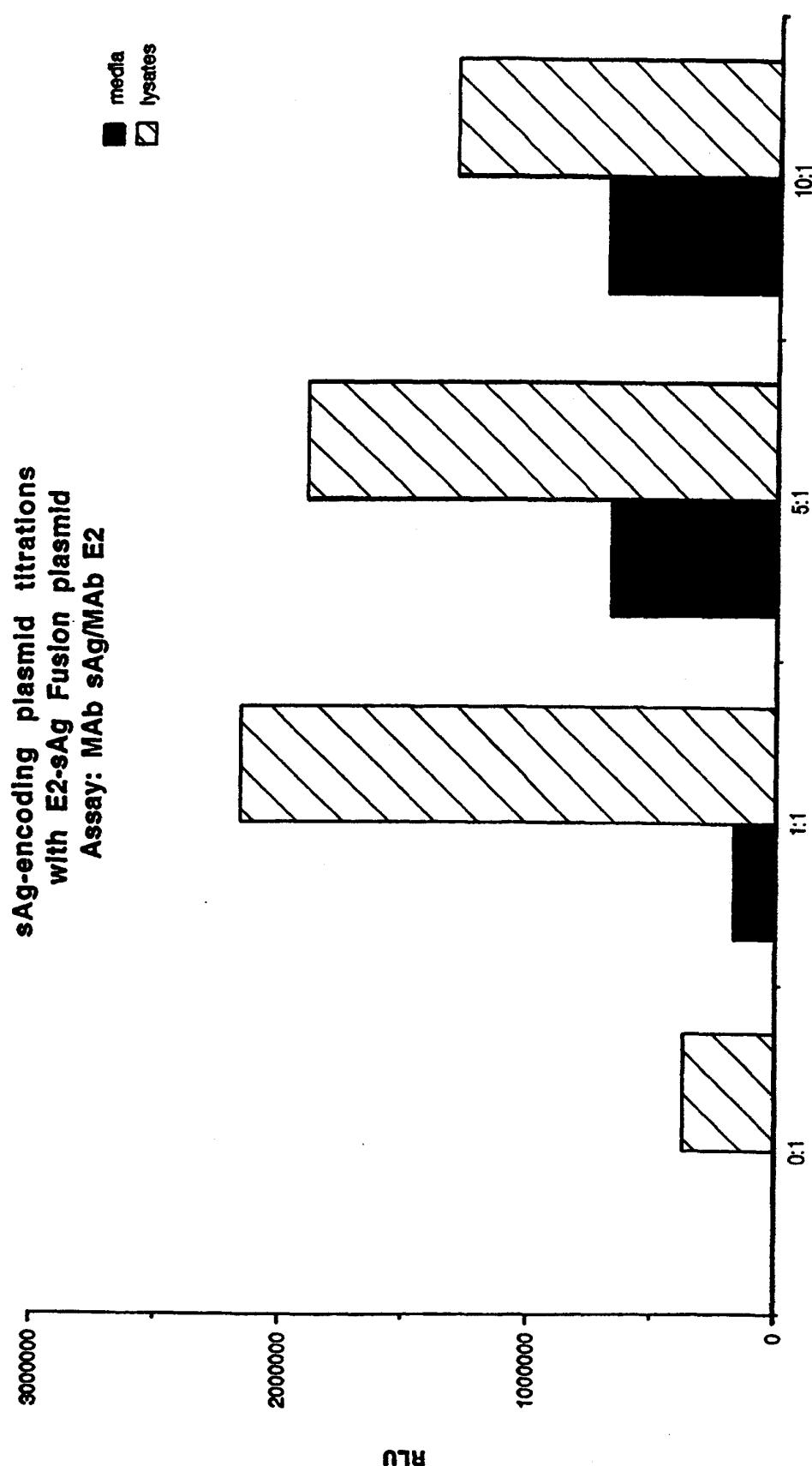

5201	TCAAGGGAG TTACATGATC CCCCATGTTG TGCAAAAAAG CGGTTAGCTC CTTCGGTCTT CCGATCGTGC TCAGAAGTAA
	AGTTCCGGCTC AATGTAATAG GGGTACAAAC ACGGTTTTTC GCCAATCGAG GAGGCCAGGA GGCTAGCAAC AGTCCTTCATT
5281	GTTGGCCGCA GTGTATCAC TCATGGTAT GGCAGGCACTG CATAATTCTC TTACTGTCTA GCCATCGGTAA AGATGCTTTT
	CAACCGGGGT CACATAAGTG AGTACCAATA CGGTGTGAC GTATTAAGAG AATGACAGTA CGGTAGGCAT TCTACGAAA
5361	CTGTGACTGG TGAGTACTCA ACCAAGTCAT TCTGAGAATA GTGTATGGG CGAACCGAGTT GCTCTGGCC GGGGTCAATA
	GACACTGACC ACTCATGAGT TGGTTCAGTA AGACTCTTAT CACATACGCC GCTGGCTCAA CGAGAACGGG CGGCAGTTAT
5441	CGGGATAATA CGGGCCACA TAGCGAGACT TAAAGTGC TCATCATTTG AAAACGTTCT TCGGGGGGAA AACITCTAAG
	GCCCTTATTAT GGCGGGTGT ATCGTCTGA AATTTCACG AGTAGTAAACC TTTGCAAGA AGCCCCGCTT TTGAGAGTTC
5521	GATCTTACCG CTGTGAGAT CCAGTTGAT GTAAACCCACT CGTGCACCCA ACTGATCTTC AGCATCTTTT ACTTTCACCA
	CTAGAATGGC GACAACCTTA GGTCAAGCTA CATGGGTGA GCACGTGGGT TAACTAGAAG TCGTAGAAAAA TCGAAAGTGT
5601	CGGTTCTGG GTGAGCAAA ACAGGAAGGC AAAATGCCG AAAAAGGGA ATAAGGGGA CACGGAAATG TGAATATCTC
	CGCAAAAGACC CACTCGTTT TGTCCTTCGG TTTCACGGCG TTTCACGGCG TTTCACGGCT TATTCGGCT GTGCCTTTAC AACTTATGAG
5681	ATACTCTCC TTTTCATAA TTATTGAAAGC ATTATCAGG GTTATTTCT CATTGAGGGAA TACATATTG ATGTATTAA
	TATGAGAAGG AAAAAGTTT AATAACTCG TAAATAGTCC CAAATAACAGA GAACTCGCCT ATGATAAAC TTACATAAAT
5761	GAAAAATAAA CAAATAGGGG TTCCGGCAC ATTCCCGA AAAGTGCCAC CTGACGTCTA AGAAACCATT ATTATCATGA
	CTTTTTATT GTTATCCCC AAGGGCGGTG TAAAGGGCT TTTCACGGGT GACTGCGAGAT TCTTGGTAA TAATAGTACT
5841	CATTAACCTA TAAATAAGG CGTATCGA GGCCTTTCG TC
	GTAATTGGAT ATTTCATCC GCATAGTGTCT CCGGAAAGC AG

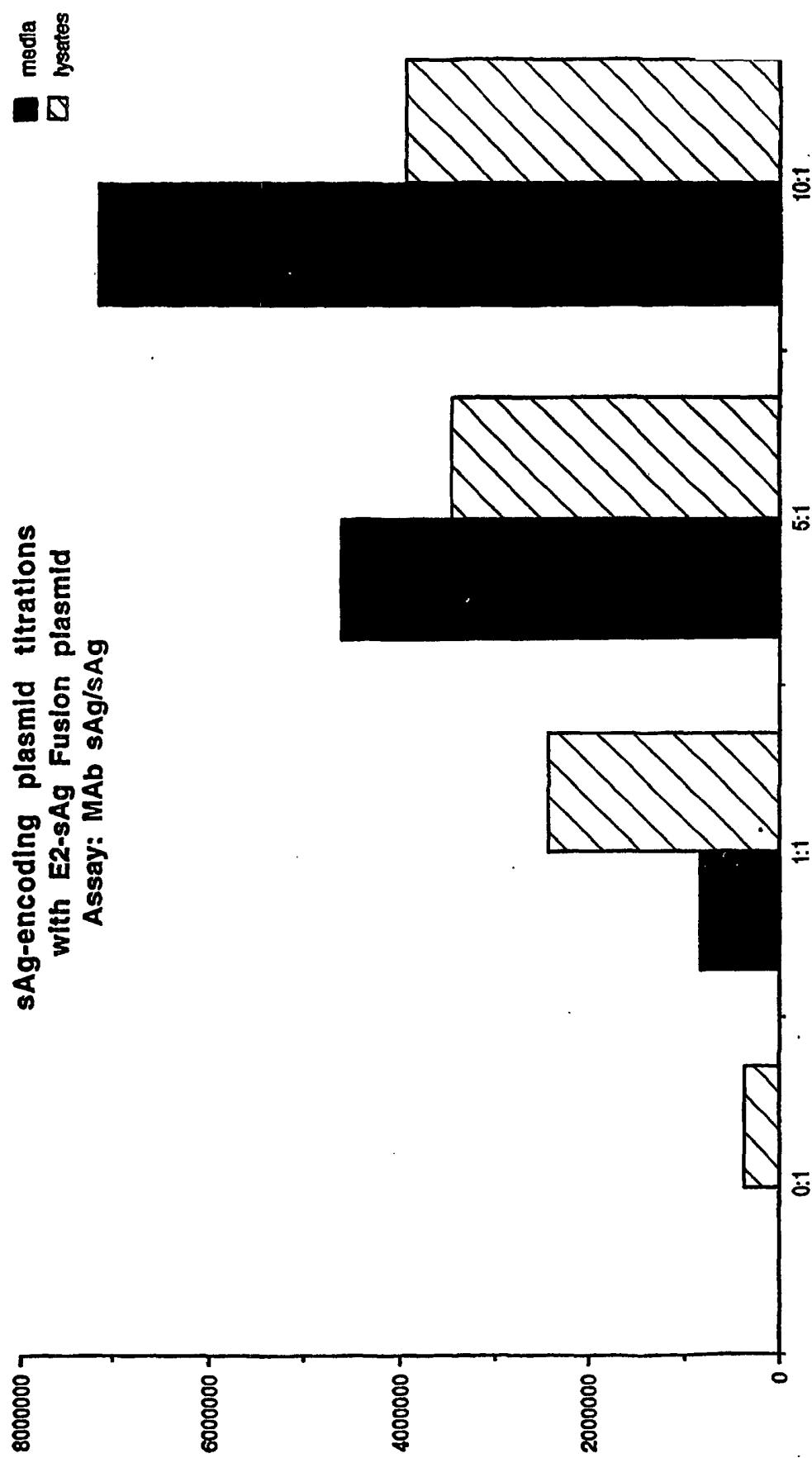
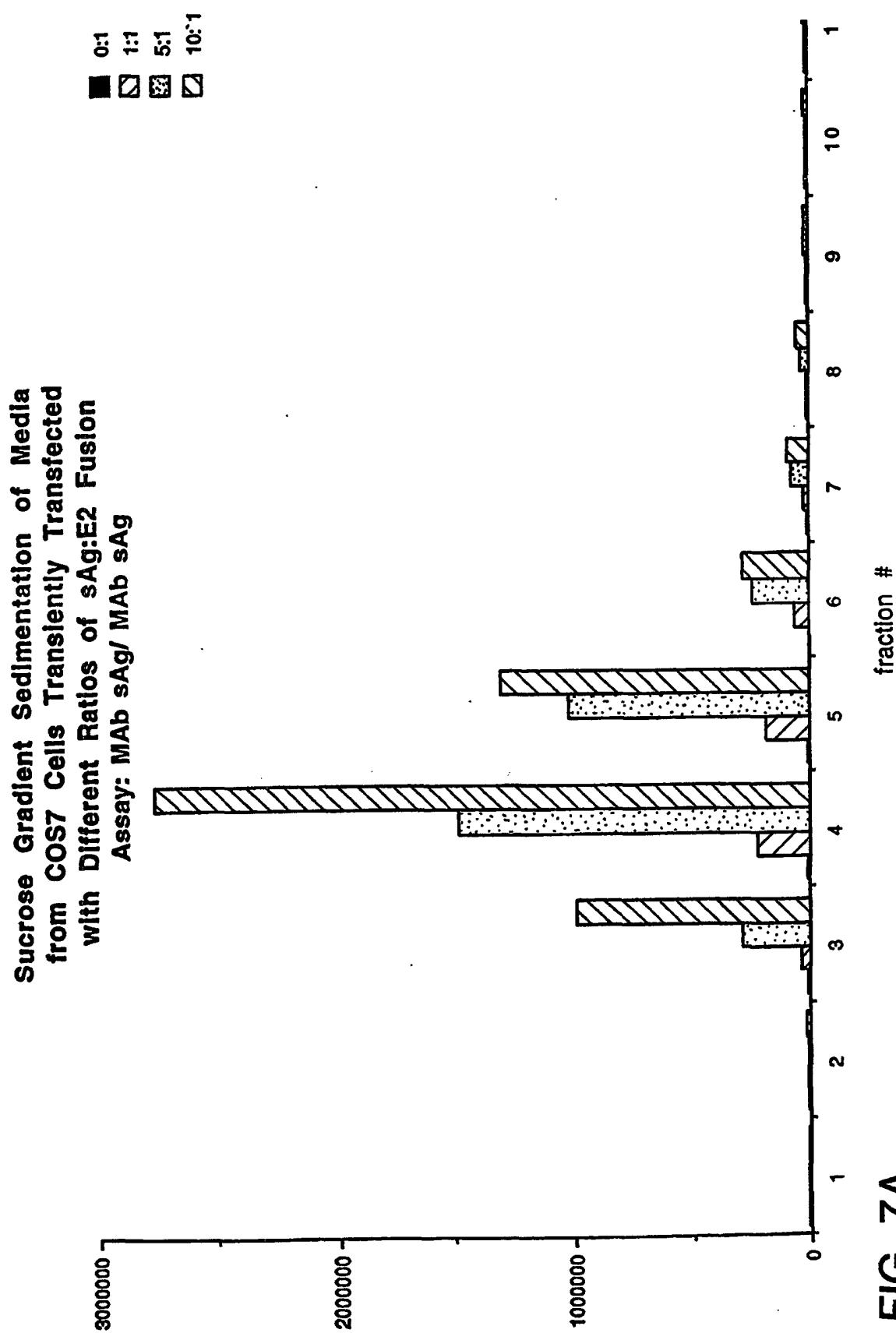
FIG. 4H

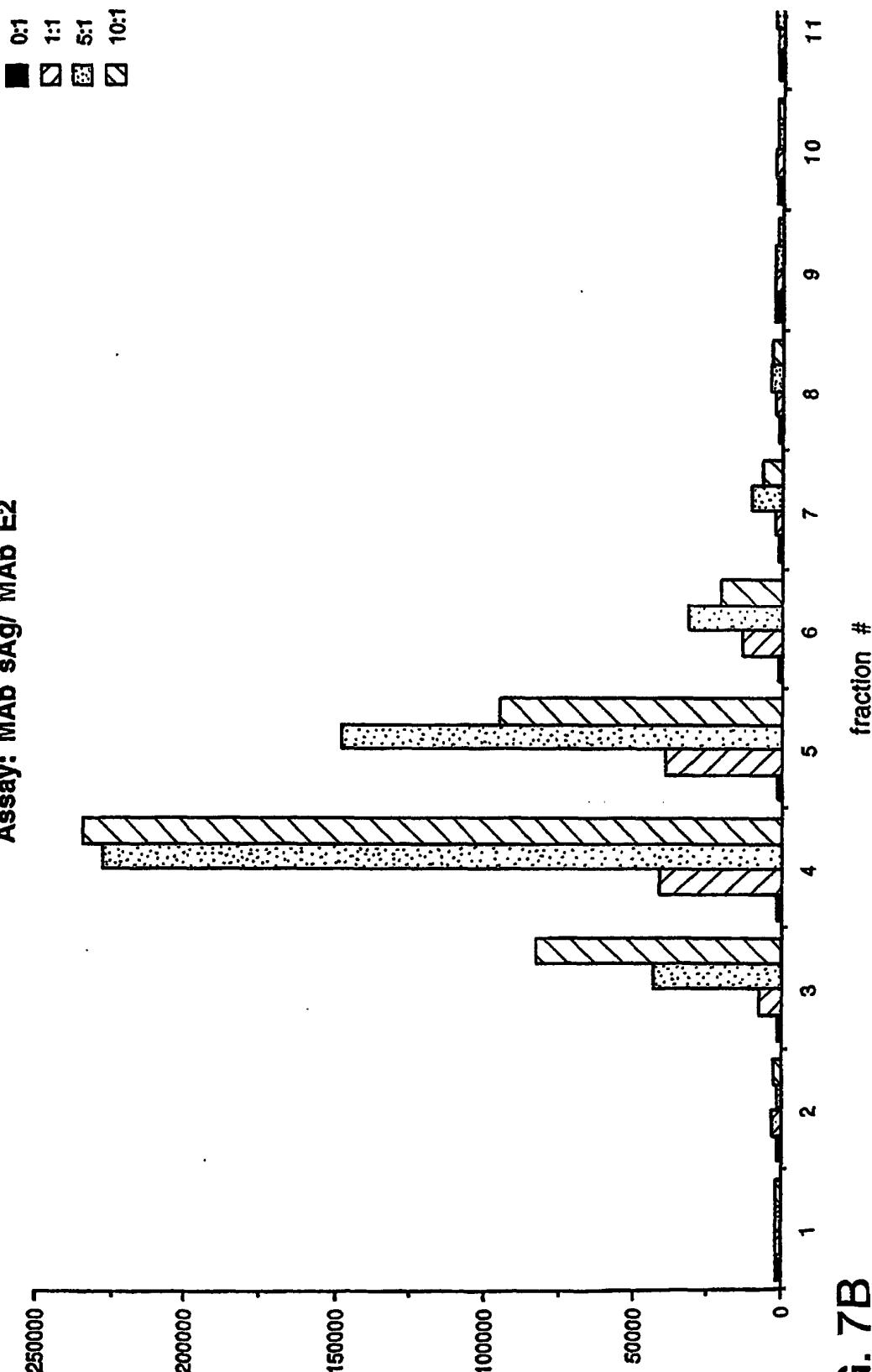
Sucrose Gradient Centrifugation of Purified r-sAg Particles

FIG. 5

FIG. 6A

Ratio of pCMV-II-HBV-press2S: pCMV-II-E2661-sAg Fusion


FIG. 6B

Ratio of pCMV-II-HBV-press2S: pCMV-II-E2661-sAg Fusion

FIG. 7A

**Sucrose Gradient Sedimentation of Media
from COS7 Cells Transiently Transfected
with Different Ratios of sAg:E2 Fusion
Assay: MAb sAg/ MAb E2**

FIG. 7B

sAg-encoding plasmid titrations
with E1-sAg Fusion plasmid
Assay: MAb sAg/MAb E1

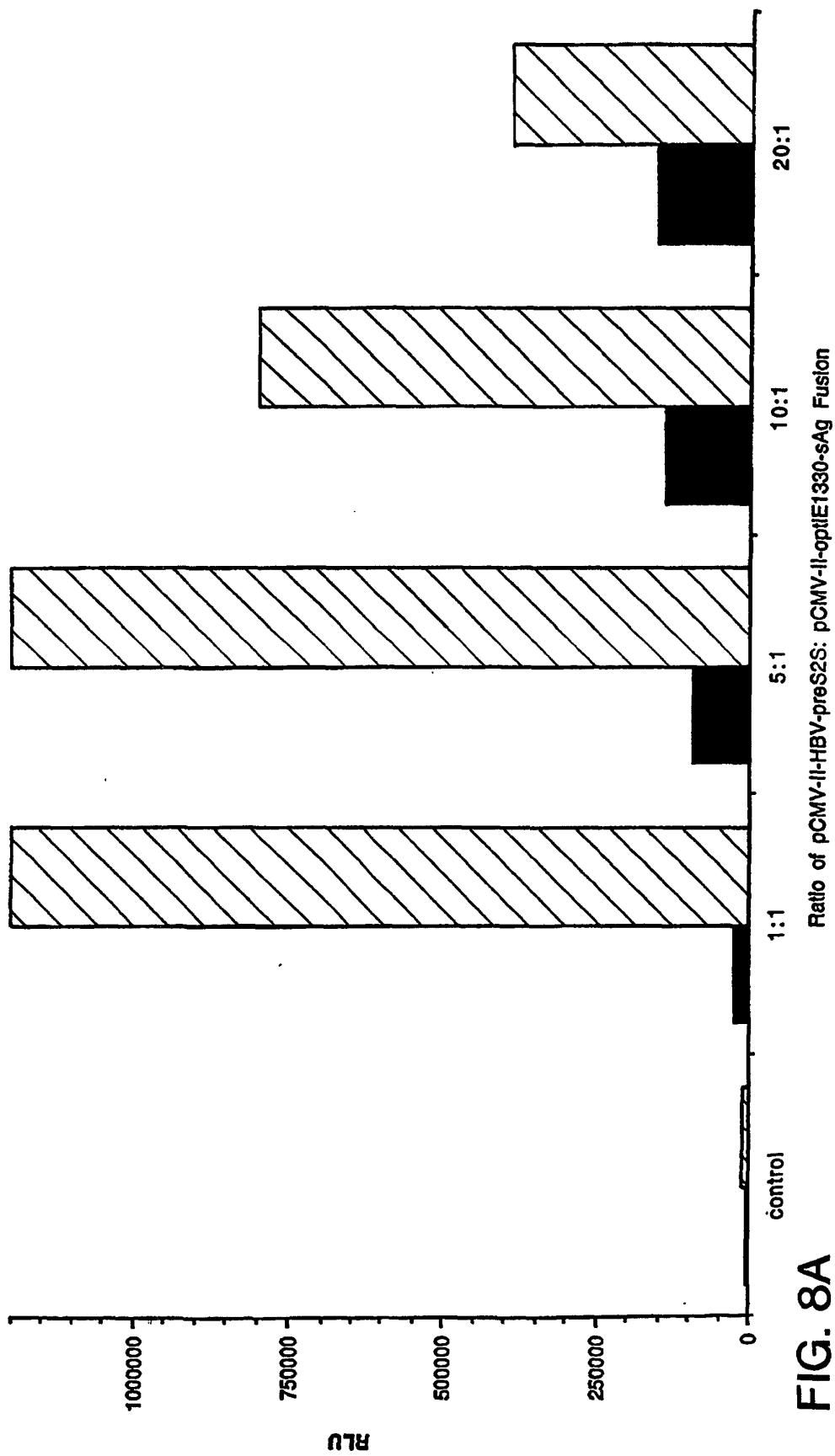


FIG. 8A

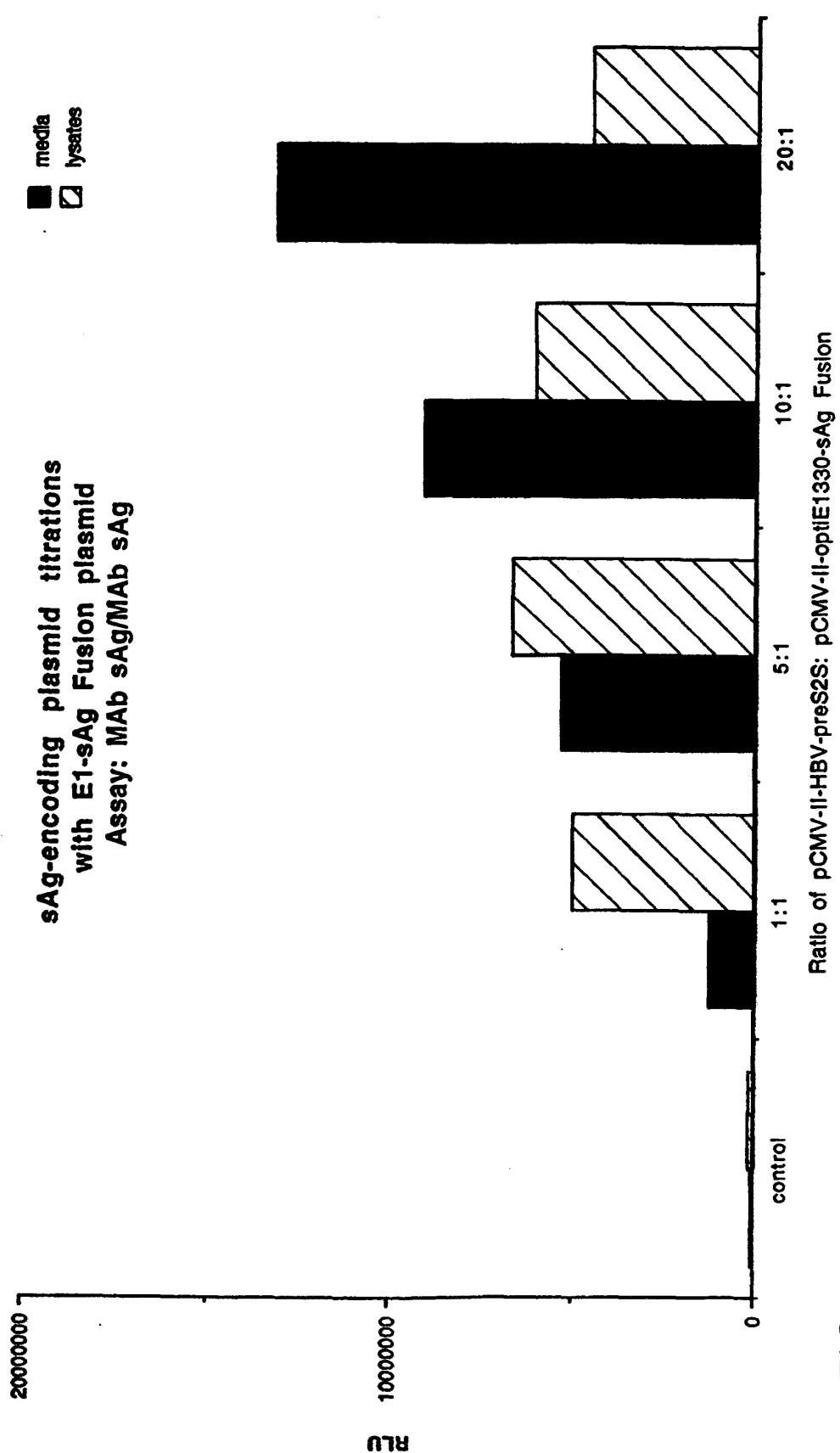
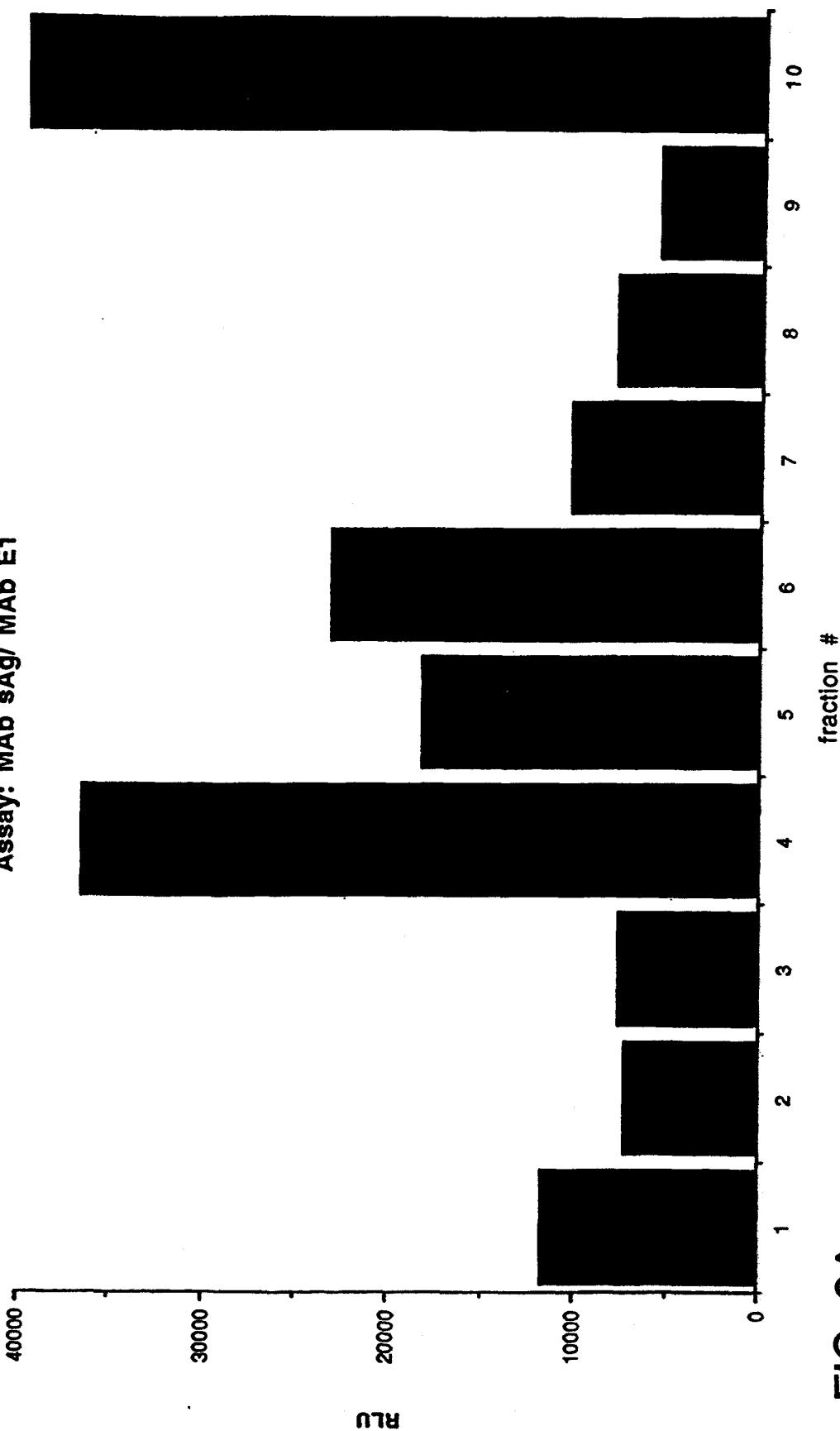
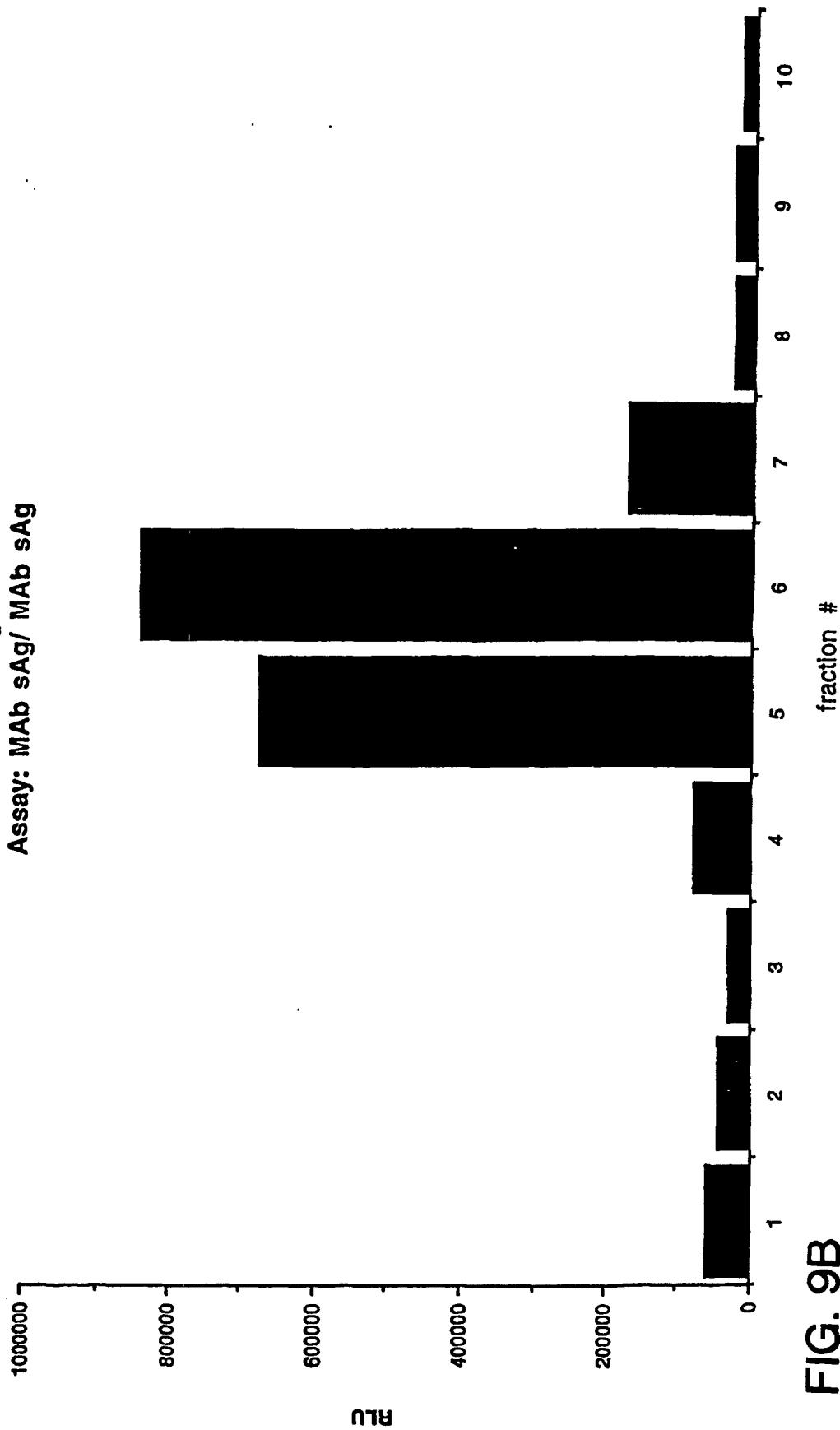
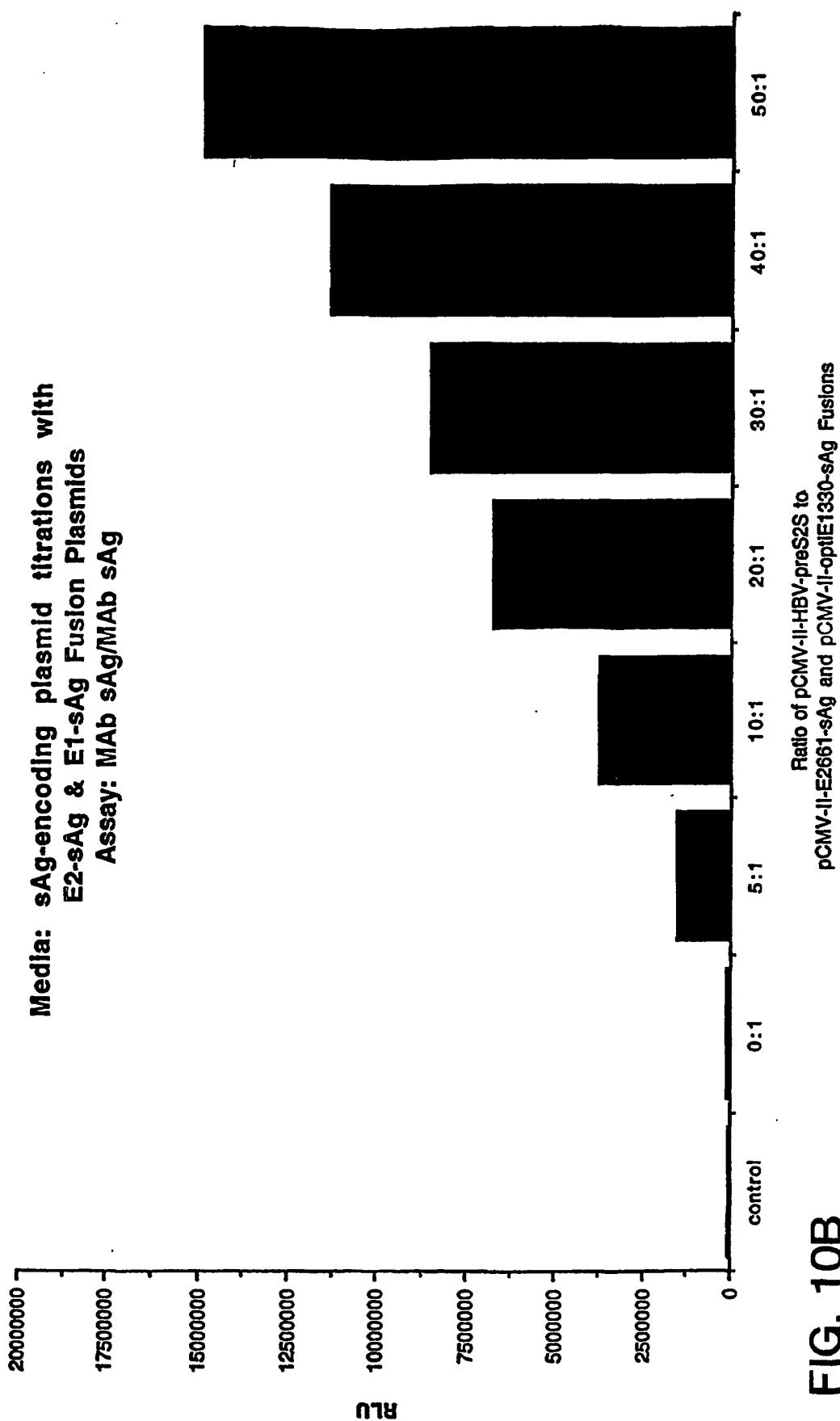


FIG. 8B

Sucrose Gradient Sedimentation of Media
from COS7 Cells Transiently Transfected
with 5x Excess of sAg to E1 Fusion
Assay: MAb sAg/ MAb E1



FIG. 9A

**Sucrose Gradient Sedimentation of Media
from COS7 Cells Transiently Transfected
with 5x Excess of sAg to E1 Fusion
Assay: MAb sAg/ MAb sAg**

FIG. 9B

FIG. 10B