(19)
(11) EP 1 246 294 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
02.10.2002  Patentblatt  2002/40

(21) Anmeldenummer: 02004597.7

(22) Anmeldetag:  28.02.2002
(51) Internationale Patentklassifikation (IPC)7H01Q 1/12
(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 26.03.2001 DE 10114769

(71) Anmelder: FUBA Automotive GmbH & Co. KG
31162 Bad Salzdetfurth (DE)

(72) Erfinder:
  • Lindenmeier, Heinz
    82152 Planegg (DE)
  • Hopf, Jochen
    85540 Haar (DE)
  • Reiter, Leopold
    82205 Gilching (DE)

   


(54) Aktive Breitband-Empfangsantenne


(57) Die Erfindung betrifft eine aktive Breitbandempfangsantenne, bestehend aus einem passiven Antennenteil (1) mit einer frequenzabhängigen effektiven Länge 1e, dessen Ausgangsanschlüsse mit den Eingangsanschlüssen einer Verstärkerschaltung (21) verbunden sind. Die Verstärkerschaltung (21) besteht aus einem Feldeffekttransistor (2) und einer verlustarmen Filterschaltung (3) mit einer Eingangsadmittanz (7). Die verlustarme Filterschaltung (3) ist an ihrem Eingang (6) an den Source-Anschluß des Feldeffekttransistors (2) angeschlossen. An ihrem Ausgang (4) ist das hochfrequente Empfangssignal (8) ausgekoppelt, und die verlustarme Filterschaltung (3) ist mit einem an ihrem Ausgang (4) wirksamen Wirkwiderstand (5) belastet und die Blindelemente der verlustarmen Filterschaltung (3) sind derart gewählt, dass die Frequenzabhängigkeit des Realteils G der am Eingang (6) der verlustarmen Filterschaltüng (3) wirksamen Eingangsadmittanz (7) derart eingestellt ist, dass bei geforderter Empfangsleistung der durch die frequenzabhängige effektive Länge 1e des passiven Antennenteils (1) bedingte Frequenzgang im hochfrequenten Empfangssignal (8) innerhalb eines breiten Frequenzbandes nach frei gewählten Gesichtspunkten gestaltet ist und der Betrag der am Eingang (6) der verlustarmen Filterschaltung (3) wirksamen Eingangsadmittanz (7) außerhalb dieses Frequenzbandes zur Vermeidung von nichtlinearen Effekten im Sperrfrequenzbereich hinreichend klein ist (Fig. 1).




Beschreibung


[0001] Die Erfindung betrifft eine aktive Breitbandempfangsantenne, bestehend aus einem passiven Antennenteil 1 mit einer frequenzabhängigen effektiven Länge le, dessen Ausgangsanschlüsse mit den Eingangsanschlüssen einer Verstärkerschaltung 21 verbunden sind. Elektrisch lange Antennen oder Antennen, die sich in direkter Kopplung mit elektrisch großen Körpern befinden, besitzen bei Erregung mit einer über der Frequenz konstant gehaltenen elektrischen Feldstärke eine frequenzabhängige Leerlaufspannung, die sich durch die effektive Länge le(f) ausdrückt. Insbesondere im Frequenzbereich oberhalb 30 MHz ist die Antennenrauschtemperatur TA bei terrestrischer Umgebung - von tiefen Frequenzen kommend - soweit abgesunken, dass für Bipolartransistoren von Seiten des passiven Antennenteils eine Quellimpedanz in der Nähe der für den Transistor optimalen Impedanz Zopt für Rauschanpassung zu fordern ist, um keinen wesentlichen Empfindlichkeitsverlust durch das Transistorrauschen zu erleiden. Die Grundform einer aktiven Antenne dieser Art ist in Fig. 2a dargestellt und ist bekannt z.B. aus der DT-AS 23 10 616, der DT-AS xx xx 300. Bei aktiven Breitbandantennen, welche nicht kanalselektiv, sondern auf ein Frequenzband, wie z.B. dem UKW-Rundfunkfrequenzbereich breitbandig abgestimmt sind, ist es notwendig, die Antennenimpedanz Zs(f) eines kurzen Strahlers in ZA(f) in die Nähe von Zopt zu transformieren. Dies führt sowohl bei elektrisch großen als auch bei elektrisch kleinen Antennen zu einer frequenzabhängigen Leerlaufspannung am Transistoreingang, welche sich als stark frequenzabhängige effektive Länge le(f) des passiven Antennenteils ausdrückt, woraus sich in Verbindung mit der Frequenzabhängigkeit des Spannungsteilungsfaktors zwischen Zopt und dem davon abweichenden Eingangswiderstand des Transistors die Notwendigkeit ergibt, den daraus resultierenden Frequenzgang des Empfangssignals am Lastwiderstand ZL mit Hilfe einer Anpassungsschaltung am Ausgang der aktiven Schaltung zu glätten. Dies ist auch zum Schutz der nachfolgenden Empfangsanlage gegen nichtlineare Effekte durch Pegelüberlastung notwendig.

[0002] Die Grundform einer aktiven Antenne dieser Art ist in Fig. 2a dargestellt und ist bekannt z.B. aus der DT-AS 23 10 616, der DT-AS xx xx 300. Aktive Antennen nach diesem Stand der Technik werden z.B. in großem Umfang oberhalb des Hochfrequenzbereichs mit Antennenanordnungen in einer Kraftfahrzeugfensterscheibe zusammen mit einem Heizfeld für die Scheibenheizung angebracht, wie z.B. in EP 0 396 033, EP 0 346 591 und in EP 0 269 723 beschrieben. Bei den als passiver Antennenteil 1 verwendeten Strukturen der Heizfelder handelt es sich um ursprünglich nicht für die Nutzung als Antenne vorgesehene Fahrzeugteile, welche aufgrund ihrer Funktion zur Heizung nur wenig veränderbar sind. Wird an einem derartigen Antennenelement eine aktive Antenne nach dem Stande der Technik wie in Fig. 2a realisiert, so ist die am Heizfeld vorliegende Impedanz mit Hilfe einer primären Anpassschaltung in die Nähe der Impedanz Zopt für Rauschanpassung zu transformieren und der Frequenzgang der aktiven Antenne mit Hilfe eines ausgangsseitigen Anpassungsnetzwerks zu glätten. Dieses Vorgehen bedingt die relativ umständliche Dimensionierung zweier Filterschaltungen, welche für ein vorteilhaftes Gesamtverhalten der aktiven Antenne aufgrund der gegenseitigen Abhängigkeit voneinander nicht für jedes Filter getrennt erfolgen kann. Hinzu kommt, dass die Verstärkerschaltung zur Erzielung hinreichender Linearitätseigenschaften nicht als einfaches verstärkendes Element wie in Fig. 2a gestaltet werden kann, wodurch die gestalterische Freiheit der beiden Anpassnetzwerke nennenswert eingeengt ist. Zusätzlich ist mit der Gestaltung von zwei Filtern ein erhöhter Aufwand verbunden. Als weiterer nennenswerter Nachteil einer aktiven Antenne dieser Art zeigt sich die Belastung der an das Heizfeld angeschlossenen Anpassschaltung mit nachgeschaltetem Verstärker, wenn aus demselben Heizfeld mehrere aktive Antennen zur Bildung eines Antennendiversitysystems bzw. einer Gruppenantenne mit besonderen Richteigenschaften oder anderen Zwecken gestaltet sind. Dieser nachteilige Sachverhalt liegt bei allen Antennenanordnungen vor, deren passive Antennenteile in nennenswerter elektromagnetischer Strahlungskopplung zueinander stehen. Beispielsweise werden nach dem Stand der Technik bei einem aus dem Heizfeld gebildeten Mehrantennen-Scanning-Diversitysystem an den am Heizfeld gebildeten Anschlussstellen für die Antennenverstärker Schaltdioden angebracht, welche jeweils nur diejenige Anpassungsschaltung mit Verstärker anschaltet, deren Signal zum Empfänger durchgeschaltet wird und welche die übrigen Anschlussstellen freischalten. Dies führt in solchen Systemen zu einem erheblichen Aufwand und zu der zusätzlichen Forderung der genau mit der Antennenauswahl synchronen Umschaltung der Dioden.

[0003] Aufgabe der Erfindung ist es deshalb, eine aktive Breitband-Empfangsantenne nach dem Oberbegriff des Anspruchs 1 so zu gestalten, dass bei vorgegebenem passiven Antennenteil unter Sicherstellung einer hohen Rauschempfindlichkeit eine weitgehend unabhängig von der Frequenzabhängigkeit der effektiven Länge und der Impedanz des passiven Antennenteils frei wählbare Frequenzabhängigkeit der Empfangsleistung erreicht wird und, dass für Mehrantennenanordnungen die mehrfache Auskopplung von Empfangssignalen aus einer passiven Antennenanordnung mit mehreren Anschlussstellen, welche in elektromagnetischer Strahlungskopplung zueinander stehen, durch die Bildung der aktiven Antennen keine merkliche gegenseitige Beeinflussung der Empfangssignale gegeben ist.

[0004] Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.

[0005] Die mit der Erfindung erzielbaren Vorteile bestehen im Besonderen in der Reduzierung des Aufwands und in der Einfachheit zur Erzielung eines hinsichtlich des Signalrauschverhältnisses und hinsichtlich der Gefährdung durch nichtlineare Effekte optimalen Empfangssignals. Aufgrund des Wegfallens eines primären Anpassnetzwerkes in Verbindung mit der eingangsseitigen Hochohmigkeit der Verstärkerschaltung ergibt sich eine äußerst vorteilhafte Freiheit bei der Gestaltung komplizierter Mehrantennensysteme, deren passive Antennenteile in Strahlungskopplung zueinander stehen. Die im Zusammenhang mit der Diversityanordnung oben erwähnten Schaltdioden zur Freischaltung von Anschlussstellen, an denen jeweils kein Signal zur Durchschaltung zum Empfänger verwendet ist, sind demnach vorteilhaft nicht notwendig.

[0006] Ausführungsbeispiele erfindungsgemäßer aktiver Breitbandempfangsantennen und Antennensysteme sind in den Zeichnungen dargestellt und werden im folgenden näher beschrieben. Im einzelnen zeigt:

Fig. 1:

Aktive Breitbandempfangsantenne nach der Erfindung mit einer direkt an den passiven Antennenteil 1 angeschlossenen Verstärkerschaltung 21 mit einem Feldeffekttransistor 2, mit in der Sourceleitung befindlicher Eingangsadmittanz 7 der verlustarmen Filterschaltung 3 und ausgangsseitig wirksamem Wirkwiderstand 5.

Fig. 2:

a) Elektrisches Ersatzschaltbild einer aktiven Breitbandempfangsantenne nach der Erfindung mit Serienrauschspannungsquelle ur und in ihrer Wirkung vernachlässigbarer Parallelrauschstromquelle ir des Feldeffekttransistors 2 mit einer außerhalb des Übertragungsbereichs eingangsseitig hochohmigen verlustarmen Filterschaltung 3.

b) Elektrisches Ersatzschaltbild einer aktiven Breitbandempfangsantenne nach dem Stand der Technik mit Rauschanpassungsnetzwerk und frequenzabhängiger effektiver Länge des passiven Antennenteils 1 am Anschlusspunkt des Transistors und ausgangsseitigem Anpassungsnetzwerk zur Glättung des Frequenzgangs.

Fig. 3

a) Elektrisches Ersatzschaltbild wie in Fig. 2a, jedoch mit ausgangsseitigem Abschluß der verlustarmen Filterschaltung 3 mit einer Hochfrequenzleitung 10 und einer daran angeschlossenen Verstärkereinheit 11 mit Beitrag des Eigenrauschens der Verstärkereinheit 11 zum Gesamtrauschen.

b) Elektrisches Ersatzschaltbild wie in Fig. 3a mit einer Verstärkereinheit 11 am Ausgang der verlustarmen Filterschaltung 3 mit einer Hochfrequenzleitung 10 und einer weiterführenden Verstärkerschaltung.

Fig. 4
Gestaltung eines erweiterten Feldeffekttransistors 2 mit Hilfe eines Eingangs-Feldeffekttransistors 13 und eines durch die Source angesteuerten Bipolartransistors 14 in Emitterfolgerschaltung

Fig: 5
Beispiel einer aktiven Breitbandempfangsantenne nach der Erfindung mit einem miniaturisiert ausgeführten Frontend der aktiven Antenne, einer Hochfrequenzleitung 10 und einer ergänzenden Filterschaltung 3 zur Anbringung auf der Heckfensterscheibe eines Kraftfahrzeugs.

Fig. 6

a) Verlauf der seriellen Blindwiderstände X1 und X3 sowie des parallelen Blindleitwerts B2 der erfindungsgemäßen T-Filteranordnung in Fig. 6b über der Frequenz am Beispiel der breitbandigen Abdeckung der Rundfunkbereiche UKW-Hörrundfunk sowie VHF- und UHF-Fernsehrundfunk.

b) Elektrisches Ersatzschaltbild einer Antenne nach der Erfindung für die unter a) genannten Frequenzbereiche.

Fig. 7
Aktive Antenne nach der Erfindung mit zwei Übertragungswegen für unterschiedliche Übertragungsfrequenzbereiche und Aufspaltung der Signalwege am Ausgang des Eingangs-Feldeffekttransistors 13 mit jeweils einem Bipolartransistor 14 und nachgeschalteter verlustarmer Filterschaltung 3 für den betreffenden Übertragungsfrequenzbereich und Zusammenschaltung der Ausgangssignale am gemeinsam wirksamen Wirkwiderstand 5 .

Fig. 8
Aktive Antenne nach der Erfindung mit einem weiteren Feldeffekttransistor 17 zur Kompensation von Effekten der Nichtlinearität geradzahliger Ordnung und einem ausgangsseitigen Umsymmetrierglied 20.

Fig. 9
Aktive Antenne wie in Fig. 8, jedoch mit einer Signalverzweigung entsprechend der Antenne in Fig. 7 mit jeweils einem Umsymmetrierglied 20 am Eingang der verlustarmen Filterschaltung 3.

Fig. 10
Aktive Antenne nach der Erfindung mit einem Übertrager 24 zur Schaffung günstiger Übertragungsverhältnisse und einem Linearisierungswiderstand 30 zur weiteren Erhöhung der Linearität.

Fig. 11
Aktive Antenne nach der Erfindung, jedoch mit einem Übertrager 24 mit hinreichend hochohmiger Primärinduktivität und hinreichend großem Übersetzungsverhältnis zur breitbandigen Erhöhung der effektiven Länge le.

Fig. 12
Aktive Antenne nach der Erfindung mit einer in der verlustarmen Filterschaltung 3 gestalteten frequenzselektiven Signalverzweigung.

Fig. 13
Gruppenantenne zur Gestaltung von Richtwirkungen mit einer passiven Antennenanordnung 27 mit elektrischer Strahlungskopplung zwischen den Anschlussstellen 18, welche jeweils mit einer Verstärkerschaltung 21 und einer Hochfrequenzleitung 10 beschaltet sind und deren Signale im Antennencombiner 22 zusammengefasst sind.

Fig. 14
Scanningdiversity-Antennenanlage mit einer Anordnung wie in Fig. 13, jedoch mit elektronischen Umschalter 25 an Stelle des Antennencombiners 22 und jeweils einem Ersatzlastwiderstand 26 zur Belastung der nicht durchgeschalteten Antennenzweige.

Fig. 15

a) Scanningdiversity-Antennenanlage gebildet aus auf die Fensterscheibe gedruckten Heizfeldern mit diversitätsmäßig geeignet positionierten Anschlussstellen 18 zur Erreichung diversitätsmäßig unabhängiger Empfangssignale 8.

b) Scanningdiversity-Antennenanlage wie unter a), jedoch mit einer auf die Fensterscheibe angebrachten leitenden Fläche mit hinreichend kleinem Oberflächenwiderstand und Gestaltung von Anschlussstellen 18 mit Hilfe galvanisch oder kapazitiv angekoppelter Sammelelektroden.

Fig. 16
Scanningdiversity-Antennenanlage gebildet aus auf die Fensterscheibe gedruckten Heizfeldern mit diversitätsmäßig geeigneten Anschlussstellen 18 und gesondert ermittelten Blindleitwerten 23 zur Erhöhung der diversitätsmäßigen Unabhängigkeit der Empfangssignale.

Fig. 17
Passiver Antennenteil 1 mit einer Anschlussstelle 18, deren beide Anschlüsse gegenüber dem Masseanschluß hochliegen, mit einem Feldeffekttransistor 2 und einem weiteren Feldeffekttransistor 17 und einer massesymmetrisch ausgeführten verlustarmen Filterschaltung 3 und einem ausgangsseitigen Umsymmetrierglied 20 zur Erzeugung unsymmetrisch vorliegender Empfangssignale am wirksamen Wirkwiderstand 5.

Fig. 18

a) und b): Beispielhafte Antennenkonfigurationen möglicher passiver Antennenteile 1

c) Impedanzverläufe der Antennenstrukturen A1, A2 und A3 in der Imepanzebene im Frequenzbereich von 76 bis 108 MHz und schraffierte Bereiche für RA < RAmin und RA > RAmax

d) Realteile der Antennenimpedanzen nach c) mit zulässigem Wertebereich RAmin < RA < RAmax



[0007] In Fig. 1 ist eine Antenne nach der Grundform der Erfindung dargestellt. Am Beispiel des auf eine Fensterscheibe gedruckten Heizfeldes eines Kraftfahrzeugs ist ersichtlich, dass der passive Antennenteil 1 nicht in einer Form gestaltet werden kann, dass sie hinsichtlich der Verwendung als Antenne im Meter- und Dezimeterwellenbereich besondere gewünschte Eigenschaften besitzt und somit eine entsprechend ihrer geometrischen Struktur und der metallischen Umrandung des Fensters eine zufällige Frequenzabhängigkeit sowohl der effektiven Länge le als auch ihrer Impedanz besitzt. Das Wesen der vorliegenden Erfindung besteht nun darin, eine aktive Antenne zu realisieren, welche es erlaubt, diese Zufälligkeit der Frequenzabhängigkeit des vorgegebenen passiven Antennenteils 1 mit Hilfe einer wenig aufwändigen und einfach zu ermittelnden und einfach zu realisierenden aktiven Antenne aufzufangen und bezüglich Eigenrauschen, Linearität und Frequenzgang frei zu gestalten und zwischen der einfallenden Welle mit der elektrischen Feldstärke E und dem hochfrequenten Empfangssignal 8 einen vorgegebenen Frequenzgang zu erreichen. Erfindungsgemäß wird die an einer Anschlussstelle 18 vorliegende Empfangsspannung der Verstärkerschaltung 21 zugeführt, wobei diese aus einem Feldeffekttransistor 2, welcher in seiner Sourceleitung mit der Eingangsadmittanz 7 einer verlustarmen Filterschaltung 3 gegengekoppelt ist, welche an ihrem Ausgang mit einem wirksamen Wirkwiderstand 5 abgeschlossen ist. Bei einer Antenne dieser Art ist die Eingangsadmittanz 7 erfindungsgemäß z.B. derart zu gestalten, dass die starke Frequenzabhängigkeit, welche die Empfangsleerlaufspannung, ausgedrückt durch die wirksame Länge le des so gestalteten passiven Antennenteils 1 im hochfrequenten Empfangssignal 8 weitgehend ausgeglichen ist.

[0008] Die Funktionsweise und der Gestaltungsgrundsatz einer Antenne nach der Erfindung werden an Hand der elektrischen Ersatzschaltbilder der Figuren 2a und 3a erläutert:

Die Eignung eines vorgegebenen passiven Antennenteils 1 für die Gestaltung einer hinreichend rauschempfindlichen aktiven Antenne kann anhand der im Übertragungsfrequenzbereich herrschenden Antennentemperatur abgeschätzt werden. Feldeffekttransistoren besitzen in der Regel eine extrem kleine Parallelrauschstromquelle ir, so dass deren Beitrag ir*ZA bei vernachlassigbar kleinen Gate-Source- und Gate-Drain-Kapazitäten C2 und C1 und den in der Praxis auftretenden Antennenimpedanzen ZA im Vergleich zur Serienrauschspannungsquelle ur des Feldeffekttransistors, ausgedrückt durch seinen äquivalenten Rauschwiderstand RäF , stets vernachlässigbar klein ist. Die Empfindlichkeitsforderung reduziert sich somit darauf, dass die Rauschspannungsquelle ur2 = 4kToBRäF im Verhältnis zur empfangenen Rauschspannungsquelle urA2 = 4kTAB RA, welche durch die Antennentemperatur TA und dem Realteil RA der Antennenimpedanz ZA gegeben ist, kleiner oder höchstens gleich groß ist. Bei gleich großen Rauschbeiträgen ist somit als hinreichendes Empfindlichkeitskriterium bei vernachlassigbar kleinen Kapazitäten C1, C2 lediglich die einfach zu prüfende Forderung

zu erfüllen. Moderne Gallium-Arsenid-Transistoren besitzen im Vergleich zur übrigen Beschaltung vernachlässigbare Kapazitäten C1 und C2 und eine im Hinblick auf die vorgesehene Anwendung vernachlässigbare Wirkung von ir als Ursache für die bei Rauschanpassung solcher Transistoren extrem kleinen Rauschtemperatur TN0. Der äquivalente Rauschwiderstand ist vom Ruhestrom abhängig und kann oberhalb 30 MHz breitbandig mit 30 Ohm und weniger angesetzt werden. Für das Beispiel einer Antenne für den UKW-Frequenzbereich und einer dort vorherrschende Antennentemperatur von ca. 1000 K ist somit im Hinblick auf die Rauschempfindlichkeit für den Realteil der komplexen Antennenimpedanz, welcher bei verlustarmem Feldeffekttransistor 2 den Strahlungswiderstand darstellt, innerhalb des Übertragungsfrequenzbereichs ausschließlich RA(f) > ca. 10 Ohm als hinreichende Bedingung zu fordern.



[0009] In Fig. 3a wird der Rauschbeitrag einer Verstärkereinheit 11 am Ende der an die verlustarme Filterschaltung 3 ausgangsseitig angeschlossenen Hochfrequenzleitung 10 betrachtet. Bei hinreichender Verstärkung in der Verstärkerschaltung 21 wird dieser Beitrag entsprechend klein gehalten. Zum Schutz der nachgeschalteten Verstärkereinheit 11 vor nichtlinearen Effekten ist es häufig notwendig, diese Verstärkung innerhalb des Übertragungsfrequenzbereichs weitgehend frequenzunabhängig zu gestalten. Dies wird durch entsprechende vorzugsweise verlustfreie Transformation des wirksamen Wirkwiderstands 5 am Ausgang der verlustarmen Filterschaltung 3 in eine geeignet frequenzabhängige Eingangsadmittanz 7 erreicht. Ist die aufgrund der Frequenzabhängigkeit der effektiven Länge le(f) für die Eingangsadmittanz 7 geforderte Frequenzabhängigkeit bekannt, so kann eine Schaltung aus Blindwiderständen für die verlustarme Filterschaltung 3 gefunden werden, welche dieser Forderung weitgehend entspricht.

[0010] Das erfindungsgemäße Kriterium für die beispielhafte Gestaltung einer notwendigen und frequenzunabhängigen Empfangsleistung innerhalb des Übertragungsfrequenzbereichs wird für den terrestrischen Rundfunkempfang einer aktiven Fahrzeugantenne im Hinblick auf die Empfangsleistung in der nachgeschalteten Empfangsanordnung an Hand von Fig.3a erläutert. Das weitgehend frequenzunabhängige Empfangsverhalten ist zu fordern, um einerseits die Empfindlichkeit des Gesamtsystems durch den Rauschbeitrag des der aktiven Antenne nachgeschalteten Empfangssystems nicht nennenswert zu reduzieren und andererseits, um nichtlineare Effekte durch Verstärkungsüberhöhungen als Folge des frequenzabhängigen Empfangsverhalten innerhalb eines Übertragungsfrequenzbereichs zu vermeiden. Das der aktiven Antenne nachgeschaltete Empfangssystem wird Fig.3a durch die Verstärkereinheit 11 mit der Rauschzahl Fv repräsentiert. Sein Rauschbeitrag zum Gesamtrauschen ist in Fig.3b als äquivalenter Rauschwiderstand Räv am Eingang der Verstärkerschaltung 21 dargestellt, wobei gilt:



[0011] Hierin ist mit G(f) der frequenzabhängige Realteil der Eingangsadmittanz 7 der verlustarmen Filterschaltung 3 bezeichnet. Dieser Rauschbeitrag ist dann unwesentlich gegenüber dem unvermeidlichen empfangenen Rauschen des mit TA rauschenden RA, wenn gilt:



[0012] Um die Empfindlichkeitsbedingung zu erfüllen, ist in einer vorteilhaften Ausführungsform einer aktiven Antenne nach der Erfindung die Frequenzabhängigkeit des Realteils G(f) der Eingangsadmittanz 7 der verlustarmen Filterschaltung 3 reziprok zum Frequenzgang des Realteils RA(f) der komplexen Antennenimpedanz zu wählen. Für das Beispiel eines UKW-Rundfunkempfängers mit Fv ∼ 4 wäre demnach angenähert G(f) < 1/(3*RA(f)) zu wählen. Zum Schutz des Empfängers vor zu großen Empfangspegeln ist es andererseits zweckmäßig, die Leistungsverstärkung der aktiven Antenne nicht wesentlich größer als für optimale Empfindlichkeit des Gesamtsystems und somit G(f) etwa so groß zu wählen wie im rechten Teil der Gleichung (3) angegeben.

[0013] Mit der Erfindung ist der große Vorteil verbunden, dass der aus RA(f) vorgegebene Frequenzgang für G(f) deshalb leicht erfüllbar ist, weil weder die eingangsseitig ansteuernde Quellimpedanz der verlustarmen Filterschaltung 3, welche mit 1/gm des Feldeffekttransistors 2 gegeben ist, noch der wirksame Wirkwiderstand 5 am Ausgang der verlustarmen Filterschaltung 3 nicht vermeidbare wesentliche Blindkomponenten besitzen. Hieraus resultiert die vorteilhaft freie Gestaltbarkeit des Frequenzverhaltens der aktiven Antenne nach der vorliegenden Erfindung. Im Gegensatz hierzu ist bei einer aktiven Antenne nach dem Stand der Technik in Fig. 2b die frequenzabhängige Strahlerimpedanz Zs(f) zwangsweise und untrennbar als Quellimpedanz des primärseitigen Transformationsnetzwerks vorhanden. Ihr Frequenzverhalten begrenzt die erreichbare Bandbreite der in die Nähe von Zopt transformierten Impedanz und damit die Bandbreite des Signal-Rauschverhältnisses am Ausgang der aktiven Schaltung.

[0014] Im folgenden wird die beispielhafte Gestaltung des Frequenzverlaufs von G(f) einer aktiven Fahrzeugantenne nach der Erfindung beschrieben, wenn die Forderung besteht, dass die Empfangsleistung Pa am Eingang des der aktiven Antenne nachgeschalteten Empfangssystems um einen Faktor V größer ist als mit einer passiven Referenzantenne, z.B. einer passiven Stabantenne am Fahrzeug bei deren Resonanzlänge. Aufgrund der zwangsweise unterschiedlichen Richtdiagramme wird dieser Faktor bezogen auf die azimutalen Mittelwerte unter einem definierten konstanten Elevationswinkel θ des Welleneinfalls. Durch vergleichende azimutale Richtfaktormessungen mit Hilfe einer Antennenmessstrecke mit Fahrzeugdrehstand am passiven Antennenteil 1 und an der Vergleichsantenne ergeben sich bei N Winkelschritten für eine volle Umdrehung und mit dem Richtfaktor Dan, θ) des vorgegebenen passiven Antennenteils 1 und entsprechend dem Richtfaktor Dpn, θ) der passiven Referenzantenne jeweils für den n-ten Winkelschritt die folgende azimutalen Mittelwerte für die Richtfaktoren:

bzw. für die Referenzantenne bei der Bezugsfrequenz:



[0015] Das der aktiven Antenne nachgeschaltete Empfangssystem, welches in Fig.3a durch die Verstärkereinheit 11 repräsentiert wird, ist in der Regel auf den Leitungswellenwiderstand ZL des Hochfrequenz-Leitungssystem bezogen. Die mittlere azimutale Empfangsleistung im Lastwiderstand 9 ergibt sich bei hinreichend großer Steilheit gm der Eingangskennlinie des Feldeffekttransistors 2 zu:

wobei lem2(f) den bei jeder Frequenz auftretenden azimutalen Mittelwert der quadratischen effektiven Länge des passiven Antennenteils 1 unter Berücksichtigung der sich mit Dam(f) gem. Gleichung (2) ergebenden effektiven Fläche des passiven Antennenteils 1 wie folgt darstellt:



[0016] Die mittlere azimutale Empfangsleistung der passiven Referenzantenne beträgt mit Dpm aus Gleichung 5:



[0017] Unter Berücksichtigung der Verstärkungsforderung Pam/Ppm = V ergibt sich der erfindungsgemäß zu fordernde Frequenzverlauf für G(f) zu:



[0018] Für den Fall eines verlustbehafteten passiven Antennenteils 1 mit dem Wirkungsgrad η ist in Gleichung (8) der Richtfaktor Dam(f) durch Dam(f)* η zu ersetzen. Die übrigen Dimensionierungsregeln sind dadurch nicht geändert.

[0019] Für den Fall etwa gleicher azimutaler Mittelwerte Dpm und Dam(f) ist die Frequenzabhängigkeit von G(f) proportional zu 1/Ra(f) zu gestalten. Ist V so groß gewählt, dass

gilt, dann ist der Rauschbeitrag des der aktiven Antenne nachgeschalteten Empfangssystems zum Gesamtrauschen vernachlässigbar klein. Ist zusätzlich die in Gleichung (1) angegebene Bedingung erfüllt, dann ist die Empfindlichkeit ausschließlich durch die Richtwirkung des passiven Antennenteils 1 und von der herrschenden Störeinstrahlung abhängig. Die minimal notwendige mittlere azimutale Strahlungsdichte Sam für ein Signal-Störverhältnis = 1 lautet dann:

und steigt mit 1/η an, wenn Dam(f) durch Dam(f)* η zu ersetzen ist.

[0020] Unter Berücksichtigung der vom Fahrzeug selbst ausgehenden Störstrahlung kann die Auswahl einer für eine erfindungsgemäße Antenne geeigneten passiven Antennenteils 1 als am Fahrzeug befindliche Struktur in Verbindung mit der in Gleichung (1) angegebenen und im folgenden näher diskutierten Bedingung für RA(f) deshalb treffsicher dadurch erfolgen, dass das Verhältnis TA/Dam(f) für den Übertragungsfrequenzbereich als hinreichend groß festgestellt wird.

[0021] In Fig. 18a und 18b sind beispielhaft Antennenkonfigurationen möglicher passiver Antennenteile 1 aktiver Antennen nach der Erfindung angegeben. An den Anschlussstellen 18 liegen die in der komplexen Impedanzebene in Fig.18c dargestellten Impedanzverläufe ZA(f) in Abhängigkeit von der Frequenz vor. Der im linken Randbereich des Diagramms durch Schraffur gekennzeichnete Bereich ist einseitig durch den Wert RAmin=const. berandet. Impedanzverläufe, die außerhalb des so gekennzeichneten Bereich verlaufen, erfüllen somit die gemäß Gleichung (1) vorgegebene Bedingung des vernachlässigbaren Rauschens des Feldeffekttransistors 2 bei Vorliegen einer bestimmten Störeinstrahlung gemäß TA. Das Diagramm zeigt überzeugend den Vorteil einer erfindungsgemäßen aktiven Antenne gegenüber einer aktiven Antenne gemäß Fig. 2b nach dem Stand der Technik, der darin liegt, dass ohne eingangsseitige Anpassungsmittel sämtliche Antennenstrukturen diese Bedingung ohne eingangsseitige Transformationsmittel erfüllen. In der Fig.18c sind die Realteile der in Figuren 18a und b dargestellten passiven Antennenteile 1 über der Frequenz von 76 bis 108 MHz aufgetragen. Der Frequenzverlauf des Realteils der erfindungsgemäß zu gestaltenden Eingangsadmittanz 7 am Eingang der verlustarmen Filterschaltung 3 ist deshalb jeweils invertiert zu den in Fig. 18d dargestellten Kurvenverläufen nach Gesichtspunkten wie sie im Zusammenhang mit den Gleichungen (3) und (8) erörtert wurden, zu gestalten.

[0022] Bei der erfindungsgemäßen Verstärkerschaltung 21 besteht naturgemäß aufgrund möglicher nichtlinearer Effekte, wie Intermodulation, auch eine obere Grenze für die Größe der am Eingang wirksamen tolerierbaren Spannung, welche sich im Empfangsfeld über die wirksame Länge le ergibt. Die maximal tolerierbare Spannung kann durch Auswahl eines geeigneten Feldeffekttransistors 2 und durch Wahl eines geeigneten Arbeitspunkts sowie durch andere an sich bekannte Schaltungsmaßnahmen gesteigert werden. Gleichung (6) kann erfindungsgemäß einem maximal tolerierbaren azimutalen Mittelwert lem bei bekanntem azimutalen Richtfaktor Dam(f) ein maximal tolerierbarer Wirkanteil RAmax zugeordnet werden. Der für die Dimensionierung unzulässige Wertebereich mit RA>RAmax ist in den Figuren 18c und 18d ebenfalls schraffiert gekennzeichnet. Die Strahlungswiderstände RA der Impedanzwerte besonders günstiger Strukturen für die Verwendung als passiver Antennenteil 1 befinden sich demnach außerhalb des schraffierten Wertebereichs mit RAmin<RA<RAmax.

[0023] In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird eine vorgegebene Antennenstruktur durch Verwendung eines verlustarmen Übertragers mit dem Übersetzungsverhältnis ü, wie in Fig. 11 angegeben, ergänzt, welcher zusammen mit der Antennenstruktur - z.B. einem Heizfeld auf der Fensterscheibe - den passiven Antennenteil 1 bildet. Das breitbandige Übersetzungsverhältnis wird vorteilhaft derart gewählt, dass die am Ausgang des Übertragers messbare Impedanz mit ihrem Realteil im Wertebereich mit RAmin<RA<RAmax platziert ist. Hierbei ist es günstig, die Primärinduktivität hinreichend hochohmig zu gestalten.

[0024] Die Linearitätsforderung wird durch eine hinreichend große Gegenkopplung, durch die in der Sourceleitung befindliche Eingangsadmittanz 7 erfüllt. Dies erfordert eine im Übertragungsbereich vergleichsweise niedrige Gegenkopplung, welche gemäß der Verstärkungsforderung z.B. entsprechend Gleichung (8) dimensioniert ist, die jedoch außerhalb des Übertragungsbereichs so groß wie möglich ist. In einer vorteilhaften Ausgestaltung der Erfindung werden zur Realisierung solcher verlustarmer Filterschaltungen 3 bevorzugt T-Halbfilter oder T-Filter bzw.

[0025] Kettenschaltungen solcher Filter eingesetzt. Solche Filter sind in ihrer Grundstruktur in den Figuren dargestellt. Zur Entsprechung eines komplizierteren Frequenzverlaufs des G(f) können die Einzelelemente durch weitere Blindelemente ergänzt werden. Im Interesse der eingangsseitigen Hochohmigkeit und der Sperrwirkung im Sperrbereich ist es zweckmäßig, Serien- bzw. Parallelzweig jeweils aus einer Kombination von Blindwiderständen derart zu bilden, dass sowohl der Absolutwert eines Blindwiderstands im Serienzweig 28 als auch der Absolutwert eines Blindleitwerts im Parallelzweig 29 jeweils innerhalb eines Übertragungsfrequenzbereichs hinreichend klein und außerhalb eines solchen hinreichend groß ist (Fig. 6b).

[0026] In einer weiteren vorteilhaften Anwendung der Erfindung wird vorgeschlagen, für verschiedene charakteristische Verläufe von G(f) entsprechende Grundstrukturen für verlustarme Filterschaltungen 3 mit zunächst unbekannten Werten für die Blindelemente in einem modernen Digitalrechner abzulegen und sowohl die Impedanz ZA des passiven Antennenteils 1 messtechnisch als auch den azimutalen Mittelwert Dam des Richtfaktors messtechnisch oder rechnerisch zu ermitteln und ebenfalls im Digitalrechner abzulegen. Der somit anhand von Gleichung (8) ermittelte Frequenzverlauf von G(f) ermöglicht die anschließende konkrete Ermittlung der Blindelemente der verlustarmen Filterschaltung 3 für eine geeignet ausgewählte Filtergrundstruktur mit Hilfe bekannter Strategien der Variationsrechnung für die vorgegebene Verstärkung V der aktiven Antenne.

[0027] Insbesondere bei solchen Antennensystemen, bei denen mehrere Antennen gebildet sind, wie z.B. bei Antennendiversitysystemen, Gruppenantennenanlagen oder Mehrbereichsantennenanlagen, ist es in einer vorteihaften Weiterbildung der Erfindung hilfreich, wie in Fig. 3b angegeben, die Verstärkereinheit 11 als aktive Ausgangsstufe der Verstärkerschaltung 21 zu gestalten. Diese kann mit einem Ausgangswiderstand gleich dem Wellenwiderstand ZL üblicher Koaxialleitungen versehen werden. Der wirksame Wirkwiderstand 5 wird dabei durch die Eingangsimpedanz der Verstärkereinheit 11 gebildet. G(f) ist sinngemäß nach den o.g. Ausführungen mit Hilfe einer mit dieser Impedanz abgeschlossenen verlustarmen Filterschaltung 3 zu gestalten.

[0028] Um eine Vergrösserung der inneren Steilheit und damit besondere Linearitätseigenschaften des Feldeffekttransistors 2 zu erreichen, kann in einer weiteren vorteilhaften Ausgestaltung der Erfindung, wie in Fig. 4 gezeigt, ein erweiterter Feldeffekttransistor 2 mit Hilfe eines Eingangs-Feldeffekttransistors 13 und eines von dessen Source angesteuerten Bipolartransistor 14 in Emitterfolgerschaltung gestaltet werden.

[0029] Bei der Verwendung einer Antenne nach der Erfindung als eine aktive Fensterscheibenantenne ist es auf vorteilhafte Weise möglich, wie in Fig. 5 gezeigt, die Verstärkerschaltung 21 im sehr schmalen Randbereich des Fahrzeugfensters unsichtbar unterzubringen. Deshalb ist es wünschenswert, den an der Anschlussstelle 18 anzubringenden Teil miniaturisiert auszuführen und nur die dort funktionell notwendigen Teile der Verstärkerschaltung 21 anzubringen. Die weiteren Teile der verlustarmen Filterschaltung 3 sind abgesetzt platziert und über die Hochfrequenzleitung 10 angeschaltet.

[0030] In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird die aktive Antenne als Mehrbereichsantenne für mehrere Frequenzbereiche ausgerührt. Hierfür sind in Fig. 6a für die Frequenzbereiche UKW-Hörrundfunk sowie VHF- und UHF-Fernsehrundfunk die prinzipiellen Frequenzverläufe von Blindwiderständen X1, X3 bzw. des Blindleitwerts B2 einer T-Filteranordnung der in Fig. 6b angegebenen verlustarmen Filterschaltung 3 beispielhaft angegeben. Die T-Filterkonfiguration stellt hierbei die eingangsseitige Hochohmigkeit der verlustarmen Filterschaltung 3 zur Erreichung einer hinreichend großen Gegenkopplung des Feldeffekttransistors 2 in den Sperrbereichen sicher.

[0031] Die Schaffung mehrerer Frequenzbereiche kann in einer weiteren vorteilhaften Ausgestaltung der Erfindung anhand getrennter Übertragungswege für die betreffenden Übertragungsfrequenzbändern erfolgen. Hierbei werden, wie in Fig. 7 gezeigt, zur Gestaltung von mehreren Übertragungsfrequenzbändern mehrere Bipolartransistoren 14 zur Erweiterung des Feldeffekttransistors 2 eingesetzt, deren Basiselektroden an die Source-Elektrode des Eingangs-Feldeffekttransistors 13 angeschlossen sind und welche jeweils in Emitterfolger-Schaltung mit dem Eingang einer getrennten verlustarmen Filterschaltung 3 zur Bildung getrennter Übertragungswege für die betreffenden Frequenzbänder verbunden sind.

[0032] Zur Kompensation von Effekten der Nichtlinearität geradzahliger Ordnung und der daraus resultierenden Interband-Frequenzkonversionen in der Verstärkerschaltung 21 wird in einer weiteren vorteilhaften Ausgestaltung der Erfindung gemäß Fig. 8 neben dem Feldeffekttransistor 2 ein weiterer Feldeffekttransistor 17 mit gleichen elektrischen Eigenschaften eingesetzt. Hierbei werden die Eingangsanschlüsse der Verstärkerschaltung 21 durch die beiden Steueranschlüsse der Feldeffekttransistoren 15 und 16 gebildet und der Eingang der verlustarmen Filterschaltung 3 mit den Source-Anschlüssen 19a und 19b verbunden. Ein Umsymmetrierglied 20 in der verlustarmen Filterschaltung 3 dient zur Umsymmetrierung der hochfrequenten Empfangssignale 8. Eine solche Schaltung kann, wie in Fig. 17, vorteilhaft ebenso an eine Anschlussstelle 18 mit zwei gegen Masse Spannung führenden Anschlüssen angeschlossen werden.

[0033] In einer weiteren vorteilhaften Ausgestaltung der Erfindung werden die Maßnahmen zur Unterdrückung der nichtlinearen Effekte gemäß der für Fig. 8 gegebenen Erläuterungen und der Schaffung getrennter Übertragungswege gemäß der für Fig. 7 gegebenen Erläuterungen wie in Fig. 9 kombiniert. Die Gestaltung getrennter frequenzselektiver Übertragungswege kann vorteilhaft, wie in Fig.12 angedeutet, auch anhand von Signalverzweigungen in der verlustarmen Filterschaltung 3 zur frequenzselektiven Auskopplung von hochfrequenten Empfangssignalen 8 für unterschiedliche Übertragungsfrequenzbänder an mehreren Ausgängen gestaltet werden.

[0034] In einer besonders vorteilhaften Ausgestaltung der Erfindung ist die vorliegende aktive Antenne in einer Antennenanlage mehrfach verwendet, deren passive Antennenteile 1 mit frequenzabhängigen und in Bezug auf einfallende Wellen nach Betrag und oder nur in Phase unterschiedlichen Richtdiagrammen der effektiven Längen le besitzen, welche jedoch in elektromagnetischer Strahlungskopplung zueinander stehen und zusammen eine passive Antennenanordnung 27 mit mehreren Anschlussstellen 18 bilden. Erfindungsgemäß ist dabei jede jeweils mit einer erfindungsgemäßen Verstärkerschaltung 21 beschaltet, so dass durch die Auskopplung der hochfrequenten Empfangssignale 8 an den passiven Antennenteilen 1 keine merkliche gegenseitige Beeinflussung der Empfangsspannungen gegeben ist. Eine solche Antennenanordnung ist ganz allgemein in Fig. 13 dargestellt. Die am Ausgang der Verstärkerschaltung 21 vorliegenden Empfangssignale 8 werden z.B. zur Gestaltung einer Gruppenantennenanordnung mit vorgegebenen Empfangseigenschaften hinsichtlich Richtwirkung und Antennengewinn ohne Rückwirkung auf die an den passiven Antennenteilen 1 anliegenden hochfrequenten Empfangssignale 8 in einem hierfür vorhandenen Antennencombiner 22 nach Betrag und Phase überlagert.

[0035] Die Effizienz von Antennendiversitysystemen wird von der Anzahl der verfügbaren, voneinander diversitätsmäßig unabhängiger Antennensignale geprägt. Diese Unabhängigkeit drückt sich im Korrelationsfaktor zwischen den in einem Rayleigh-Wellenfeld während der Fahrt auftretenden Empfangsspannungen auf. In einer besonders vorteilhaften Weiterbildung der Erfindung sind mehrere aktive Empfangsantennen nach der Erfindung in einer Antennendiversityanlage für Fahrzeuge verwendet, wobei die passiven Antennenteile 1 derart gewählt sind, dass ihre in einem Rayleigh-Empfangsfeld im Leerlauf an den Anschlussstellen 18 vorliegenden Empfangssignale E*le diversitätsmäßig möglichst unabhängig voneinander sind. Solche Systeme, bei denen die Anschlussstellen 18 unter diesem Gesichtspunkt und unter Berücksichtigung von fahrzeugtechnischen Aspekten gewählt sind, sind beispielhaft in den Figuren 15a und 15b dargestellt. Aufgrund der zwischen den Anschlussstellen 18 bestehenden elektromagnetischen Strahlungskopplungen trifft diese Unabhängikeit dann nur für die im Leerlauf betriebenen Anschlussstellen 18 zu. Durch Beschaltung der Anschlussstellen 18 mit den erfindungsgemäßen Verstärkerschaltungen 21 werden aufgrund von deren vernachlässigbar kleinen kapazitivem Eingangsleitwert die hochfrequenten Empfangssignale 8 rückwirkungsfrei an den Antennenausgängen abgegriffen. Die diversitätsmäßige Unabhängigkeit der Empfangssignale an den Anschlussstellen 18 wird somit durch diese Maßnahme in vorteilhafter Weise nicht beeinflusst und diese Unabhängigkeit besteht folglich in gleicher Weise für die Empfangssignale 8 an den Antennenausgängen. Somit stehen an den Antennenausgängen voneinander unabhängige Empfangssignale 8 zur Auswahl in einem Scanningdiversity-System bzw. zur Weiterverarbeitung in einem der weiteren bekannten Diversityverfahren zur Verfügung.

[0036] Im Gegensatz hierzu würde die Beschaltung der Anschlussstelle 18 mit einer Transformationsschaltung nach dem Stand der Technik gemaß Fig. 2b über die an der Anschlussstelle 18 fließenden Ströme eine Abhängigkeit der Antennensignale am Antennenausgang verursachen. Dieser Zusammenhang wird im folgenden für einen passiven Antennenteil 1 mit zwei Anschlussstellen 18 näher erläutert:

[0037] Sind U01 und U02 die Leerlaufspannungsamplituden an den Anschlussstellen 18 einer passiven Antennenanordnung 27 im Empfangsfeld und Z11, Z22 die dort gemessenen Antennenimpedanzen und ist ferner Z12 die Wechselwirkungsimpedanz aufgrund der Verkopplung der Anschlussstelle 18 und sind Y1 und Y2 die Eingangsadmittanzen der Verstärker, mit denen die Anschlussstelle 18 belastet sind, so ergibt sich für die unter dieser Belastung auftretenden Spannungsamplituden an den Anschlussstellen 18 folgende Beziehung:

mit



[0038] Der Korrelationsfaktor zwischen den Spannungsamplituden U1 und U2 und somit auch zwischen den Antennenausgangsspannungen ergibt sich mit Hilfe der zeitlichen Mittelwerte der Spannungen U1 und U2 zu:



[0039] Für den hier vorausgesetzten Fall ergeben sich bei einer Fahrt im Rayleigh-Empfangsfeld voneinander unabhängige Leerlauf-Empfangsspannungsamplituden U10 und U20. Dies drückt sich durch einen verschwindenden Korrelationsfaktor aus, d.h.:



[0040] Sind die Eingangsadmittanzen der Verstärker, mit denen die Anschlussstellen 18 belastet sind erfindungsgemäß vernachlässigbar klein, d.h. Y1=0 und Y2=0, dann ergeben sich die Spannungen U1 und U2 aus Gleichung (11) wie folgt:



[0041] Die mit der Zahl 0 besetzten Wechselwirkungen in der Einheitsmatrix in Gleichung (13) zeigen, dass die in Gleichung (13) beschriebene verschwindende Dekorrelation in den Spannungen U1 und U2 bei einer Verstärkerschaltung 21 nach der Erfindung erhalten bleibt. Die Auswertung von Gleichung (11) dagegen ergibt eine Verknüpfung der beiden Leerlaufspannungen über die Wechselwirkungsparameter Z12*Y2 bzw. Z12*Y1 mit den jeweiligen Spannungen bei Belastung, denn es gilt dann:

bzw.



[0042] Es ist offensichtlich, dass bei nicht verschwindender Verkopplung der Anschlussstellen 18, d.h. nicht verschwindendem Z12, der Korrelationsfaktor nur dann verschwindet, wenn Y1 = Y2 = 0 beträgt.

[0043] Andererseits zeigen die vorangegangenen Betrachtungen, dass bei bestehender gegenseitiger Abhängigkeit der Leerlaufspannungen U10 und U20, dass spezielle Werte für Y1 und Y2 gefunden werden können, welche über die in Gleichung (15) beschriebene Transformation die gegenseitige Abhängigkeit in den Verstärkereingangsspannungen U1 und U2 reduzieren oder verschwinden lassen. In einer vorteilhaften Weiterbildung der Erfindung ist es deshalb; wie in Fig. 15 angedeutet, vorgesehen, die passive Antennenanordnung 27 an ihren Anschlussstellen 18 durch hierfür geeignete Leitwerte - vorzugsweise aus Gründen der Empfindlichkeit - Blindleitwerte 23 derart zu beschalten, dass die Korrelation zwischen den Spannungen an den Anschlussstellen 18 im Interesse einer größeren Diversityeffizienz kleiner wird. Aktive Antennen nach der Erfindung besitzen dabei den entscheidenden Vorteil, dass die Festlegung solcher geeigneter Blindelemente weitgehend unabhängig von Empfindlichkeitsbetrachtungen getroffen werden kann. Denn für die sich dabei an den verschiedenen Anschlussstellen 18 ergebenden Strahlungswiderstände RA(f) ist jeweils kein genauer Abgleich erforderlich, sondern es ist lediglich zu fordern, dass sie dem in Fig. 18 beschriebenen zulässigen Wertebereich angehören.

Liste der Bezeichnungen



[0044] 

Masse 0

Passiver Antennenteil 1

Feldeffekttransistor 2

Verlustarme Filterschaltung 3

Ausgang 4

wirksame Wirkwiderstand 5

Eingang 6

Eingangsadmittanz 7

Hochfrequentes Empfangssignal 8

Lastwiderstand 9

Hochfrequenzleitung 10

Verstärkereinheit 11

Emitteranschluß 12

Eingangs-Feldeffekttransistor 13

Bipolartransistor 14

Steueranschluß 15,16

Weiterer Feldeffekttransistor 17

Anschlussstelle 18

Source-Anschluß 19

Umsymmetrierglied 20

Verstärkerschaltung 21

Antennencombiner 22

Blindleitwert 23

Übertrager 24

Elektronischer Umschalter 25

Ersatzlastwiderstand 26

passive Antennenanordnung 27

Serienzweig 28

Parallelzweig 29

Linearisierungswiderstand 30

Rauschzahl Fv

Wirkleitwert G

effektive Länge le

Wellenlänge λ

Boltzmannkonstante k

Wellenwiderstand des freien Raums Z0

Messbandbreite B




Ansprüche

1. Aktive Breitbandempfangsantenne, bestehend aus einem passiven Antennenteil (1) mit einer frequenzabhängigen effektive Länge le, dessen Ausgangsanschlüsse mit den Eingangsanschlüssen einer Verstärkerschaltung (21) verbunden sind,
dadurch gekennzeichnet, dass
die Verstärkerschaltung (21) aus einem Feldeffekttransistor (2) und einer verlustarmen Filterschaltung (3) mit einer Eingangsadmittanz (7) besteht und die verlustarme Filterschaltung (3) an ihrem Eingang (6) an den Source-Anschluß des Feldeffekttransistors (2) angeschlossen ist und an ihrem Ausgang (4) das hochfrequente Empfangssignal (8) ausgekoppelt ist, und die verlustarme Filterschaltung (3) mit einem an ihrem Ausgang (4) wirksamen Wirkwiderstand (5) belastet ist und die Blindelemente der verlustarmen Filterschaltung (3) derart gewählt sind, dass die Frequenzabhängigkeit des Realteils G der am Eingang (6) der verlustarmen Filterschaltung (3) wirksamen Eingangsadmittanz (7) derart eingestellt ist, dass bei geforderter Empfangsleistung der durch die frequenzabhängige effektive Länge le des passiven Antennenteils (1) bedingte Frequenzgang im hochfrequenten Empfangssignal (8) innerhalb eines breiten Frequenzbandes nach frei gewählten Gesichtspunkten gestaltet ist und der Betrag der am Eingang (6) der verlustarmen Filterschaltung (3) wirksamen Eingangsadmittanz (7) außerhalb dieses Frequenzbandes zur Vermeidung von nichtlinearen Effekten im Sperrfrequenzbereich hinreichend klein ist (Fig. 1).
 
2. Aktive Breitbandempfangsantenne für die Verwendung oberhalb 30 MHz nach Anspruch 1
dadurch gekennzeichnet, dass
der Feldeffekttransistor (2) eine in ihrer Wirkung vernachlässigbare Parallelrauschstromquelle ir, eine sehr kleine Gate-Drain-Kapazität C1 und eine sehr kleine Gate-Source-Kapazität C2 und ein vernachlässigbares 1/f-Rauschen aufweist und seine minimale Rauschtemperatur TN0 bei Rauschanpassung wesentlich kleiner ist als die Umgebungstemperatur T0 (Fig. 2).
 
3. Aktive Breitbandempfangsantenne nach Anspruch 2
dadurch gekennzeichnet, dass
der am Ausgang (4) der verlustarmen Filterschaltung (3) wirksame Wirkleitwert (5) durch den Eingangswiderstand einer an ihrem Ende mit dem Lastwiderstand (9) belasteten Hochfrequenzleitung (10) gestaltet ist und der Lastwiderstand (9) durch die Eingangsimpedanz einer weiterführenden Verstärkereinheit (11) mit der Rauschzahl Fv gebildet ist und der Realteil G der am Eingang (6) der verlustarmen Filterschaltung (3) wirksamen Admittanz (7) hinreichend groß gewählt ist, dass der Rauschbeitrag der Verstärkereinheit (11) kleiner ist als der Rauschbeitrag des Feldeffekttransistors (2) (Fig. 3a).
 
4. Aktive Breitbandempfangsantenne nach einem der Ansprüche 1 bis 3
dadurch gekennzeichnet, dass
der Feldeffekttransistor (2) als erweiterter Feldeffekttransistor gestaltet ist, bestehend aus einem Eingangs-Feldeffekttransistor (13), von dessen Source der Bipolartransistor (14) in Emitterfolgerschaltung angesteuert ist und durch dessen Emitteranschluß (12) die Sourceelektrode des erweiterten Feldeffekttransistors (2) gebildet ist (Fig. 4).
 
5. Aktive Breitbandempfangsantenne für den UKW-Rundfunkempfang im Auto nach einem der Ansprüche 1 bis 4
dadurch gekennzeichnet, dass
der passive Antennenteil (1) durch eine auf einen dielektrischen Träger, wie z.B. eine Fensterscheibe oder einen Kunststoffträger, gedruckte Leiterstruktur gestaltet und die verlustarme Filterschaltung (3) als Bandpaß mit Durchlaß im UKW-Frequenzbereich und hochohmiger Eingangsimpedanz außerhalb des UKW-Frequenzbereichs ausgeführt ist (Fig. 1).
 
6. Aktive Breitbandempfangsantenne nach einem der Ansprüche 1 bis 5
dadurch gekennzeichnet, dass
zum Zwecke der räumlichen Abtrennung eines miniaturisiert ausgeführten Frontends der aktiven Antenne in der verlustarmen Filterschaltung (3) eine Hochfrequenzleitung (10) als ein die wirksame Admittanz (7) frequenzabhängig transformierendes Element enthalten ist (Fig. 5).
 
7. Aktive Breitbandempfangsantenne nach einem der Ansprüche 1 bis 6
dadurch gekennzeichnet, dass
zur Gestaltung von mehreren Übertragungsfrequenzbändern die Frequenzabhängigkeit des Wirkleitwerts G der wirksamen Eingangsadmittanz (7) der verlustarmen Filterschaltung (3) derart gestaltet ist, dass der Frequenzgang im hochfrequenten Empfangssignal (8) innerhalb jedes der Frequenzbänder breitbandig weitgehend kompensiert ist und der Betrag der am Eingang (6) der verlustarmen Filterschaltung (3) wirksamen Eingangsadmittanz (7) außerhalb dieser Frequenzbänder hinreichend klein ist (Fig. 6a).
 
8. Aktive Breitbandempfangsantenne nach einem der Ansprüche 1 bis 6
dadurch gekennzeichnet, dass
zur Gestaltung von mehreren Übertragungsfrequenzbändern mehrere Bipolartransistoren (14) zur Erweiterung des Feldeffekttransistors (2) vorhanden sind, deren Basiselektroden an die Source-Elektrode des Eingangs-Feldeffekttransistors (13) angeschlossen sind und welche jeweils in Emitterfolger-Schaltung mit dem Eingang einer verlustarmen Filterschaltung (3) zur Bildung getrennter Übertragungswege für die betreffenden Frequenzbänder verbunden sind (Fig. 7).
 
9. Aktive Breitbandempfangsantenne nach einem der Ansprüche 1 bis 8
dadurch gekennzeichnet, dass
zur Kompensation von Effekten der Nichtlinearität geradzahliger Ordnung und der daraus resultierenden Interband-Frequenzkonversionen in der Verstärkerschaltung (21) neben dem Feldeffekttransistor (2) ein weiterer Feldeffekttransistor (17) mit gleichen elektrischen Eigenschaften vorhanden ist und die Eingangsanschlüsse der Verstärkerschaltung (21) durch die beiden Steueranschlüsse der Feldeffekttransistoren (15, 16) gebildet sind und der Eingang der verlustarmen Filterschaltung (3) mit den Source-Anschlüssen (19a und 19b) verbunden ist und in der verlustarmen Filterschaltung (3) ein Umsymmetrierglied (20) zur Umsymmetrierung der hochfrequenten Empfangssignale (8) vorhanden ist (Fig. (8).
 
10. Aktive Breitbandempfangsantenne nach Anspruch 8 in Kombination mit Anspruch 9
dadurch gekennzeichnet, dass
für die Verstärkerschaltung (21) in Anspruch 9 zur Gestaltung von mehreren Übertragungsfrequenzbändem für die betreffenden Frequenzbänder getrennte Übertragungswege gemäß Anspruch 8 gestaltet sind (Fig. 9).
 
11. Aktive Breitbandempfangsantenne nach einem der Ansprüche 7 bis 10
dadurch gekennzeichnet, dass
die verlustarme Filterschaltung (3) als T-Halbfilter oder T-Filter bzw. als Kettenschaltung solcher Filter gestaltet ist, dessen bzw. deren Serien- bzw. Parallelzweig jeweils aus einer Kombination von Blindwiderständen derart gebildet ist, dass sowohl der Absolutwert eines Blindwiderstands im Serienzweig (28) als auch der Absolutwert eines Blindleitwerts im Parallelzweig (29) jeweils innerhalb eines Übertragungsfrequenzbereichs hinreichend klein und außerhalb eines solchen hinreichend groß ist (Fig. 6b).
 
12. Aktive Breitbandempfangsantenne nach einem der Ansprüche 1 bis 11
dadurch gekennzeichnet, dass
zwischen dem Source-Anschluß des Feldeffekttransistors (2) und dem Eingangsanschluß der Filterschaltung (3) ein ohmscher Linearisierungswiderstand (30), dessen Widerstandswert kleiner als der äquivalente Rauschwiderstand Rä des Feldeffekttransistors (2) ist, zur weiteren Erhöhung der Linearität geschaltet ist (Fig. 10).
 
13. Aktive Breitbandempfangsantenne nach einem der Ansprüche 1 bis 12
dadurch gekennzeichnet, dass
zur breitbandigen Schaffung günstiger Übertragungsverhältnisse in der Filterschaltung (3) ein Übertrager (24) mit geeignetem Übersetzungsverhältnis ü vorhanden ist (Fig. 10).
 
14. Aktive Breitbandempfangsantenne nach einem der Ansprüche 1 bis 3
dadurch gekennzeichnet, dass
zur breitbandigen Erhöhung der effektiven Länge le des passiven Antennenteils (1) zwischen dessen Anschlussstelle (18) und dem Eingang der Verstärkerschaltung (21) ein Übertrager (24) mit hinreichend hochohmiger Primärinduktivität und geeignet gewähltem Übersetzungsverhältnis vorhanden ist (Fig. 11).
 
15. Aktive Breitbandempfangsantenne nach einem der Ansprüche 1 bis 14
dadurch gekennzeichnet, dass
in der verlustarmen Filterschaltung (3) anhand von Signalverzweigungen frequenzselektive Übertragungswege zur frequenzselektiven Auskopplung von hochfrequenten Empfangssignalen (8) für unterschiedliche Übertragungsfrequenzbänder an mehreren Ausgängen gestaltet sind (Fig. 12).
 
16. Aktive Breitbandempfangsantenne nach einem der Ansprüche 1 bis 15
dadurch gekennzeichnet, dass
mehrere passive Antennenteile (1) mit frequenzabhängigen und in Bezug auf einfallende Wellen nach Betrag und Phase unterschiedlichen Richtdiagrammen der effektiven Längen le vorhanden sind, welche in elektromagnetischer Strahlungskopplung zueinander stehen und zusammen eine passive Antennenanordnung (27) mit mehreren Anschlussstellen (18) bilden, von denen jede jeweils mit einer Verstärkerschaltung (21) gemäß den Ansprüchen 1 bis 12 beschaltet ist, so dass durch die Auskopplung der hochfrequenten Empfangssignale (8) an den passiven Antennenteilen (1) keine merkliche gegenseitige Beeinflussung der Empfangsspannungen gegeben ist (Fig. 13).
 
17. Aktive Breitbandempfangsantenne nach einem der Ansprüche 1 bis 16
dadurch gekennzeichnet, dass
die am Ausgang der Verstärkerschaltung (21) vorliegenden Empfangssignale (8) zur Gestaltung einer Gruppenantennenanordnung mit vorgegebenen Empfangseigenschaften hinsichtlich Richtwirkung und Antennengewinn ohne Rückwirkung auf die an den passiven Antennenteilen (1) anliegenden hochfrequenten Empfangssignale (8) in einem hierfür vorhandenen Antennencombiner (22) nach Betrag und Phase überlagert sind (Fig. 13).
 
18. Aktive Breitbandempfangsantenne nach Anspruch 16
dadurch gekennzeichnet, dass
die aktiven Empfangsantennen in einer Antennendiversityanlage für Fahrzeuge verwendet sind und die passiven Antennenteile (1) derart gewählt sind, dass ihre in einem Rayleigh-Empfangsfeld vorliegenden Empfangssignale diversitätsmäßig möglichst unabhängig voneinander sind und die hochfrequenten Empfangssignale (8) rückwirkungsfrei, d.h. ohne die diversitätsmäßige Unabhängigkeit der Empfangssignale zu beeinflussen, zur Auswahl in einem Scanningdiversity-System bzw. zur Weiterverarbeitung in einem der weiteren bekannten Diversityverfahren zur Verfügung gestellt sind (Fig. 14).
 
19. Aktive Breitbandempfangsantenne nach Anspruch 18
dadurch gekennzeichnet, dass
zur Verbesserung der diversitätsmäßigen Unabhängigkeit der Empfangssignale der passiven Antennenteile (1) deren Anschlußstellen (18) mit hierfür gesondert ermittelten Blindleitwerten (23) parallel zum Eingang der Verstärkerschaltung (21) belastet sind (Fig. 16).
 
20. Aktive Breitbandempfangsantenne nach einem der Ansprüche 17 und 18
dadurch gekennzeichnet, dass
die passive Antennenanordnung (27) als Leiterstrukturen auf einem in die Aussparung einer leitenden Fahrzeugkarosserie eingebrachten Kunststoffträgers oder auf der Fensterscheibe eines Fahrzeugs z.B. in Form von einem oder mehreren Heizfeldern oder/und von der Heizung getrennte Leiterstrukturen vorhanden sind und an diesen Leiterstrukturen mehrere Anschlussstellen (18) zur Ausbildung passiver Antennenteile (1) zum Anschluss von Verstärkerschaltungen (21) vorhanden sind (Fig. 15a, b).
 
21. Aktive Breitbandempfangsantenne nach einem der Ansprüche 17 bis 20
dadurch gekennzeichnet, dass
die passive Antennenanordnung (27) als eine im wesentlichen zusammenhängende, zur Unterdrückung der Strahlungstransmission im Infrarotbereich aufgebrachte leitende Fläche mit hinreichend kleinem Oberflächenwiderstand auf der Fensterscheibe eines Autos gestaltet ist und zur Auskopplung von Empfangssignalen am nicht mit der leitenden Karosserie verbundenen Rand der leitenden Fläche geeignet positionierte Anschlussstellen (18) mit Verstärkerschaltungen (21) gebildet sind, deren hochfrequente Empfangssignale (8) über Hochfrequenzleitungen (10) zur Gestaltung einer Richtantenne einem Antennencombiner (22) bzw. zur Gestaltung einer Scanning-Diversity-Anlage einem elektronischen Umschalter (25), oder zur Gestaltung einer nach einem beliebigen anderen Verfahren arbeitenden Diversityanordnung zugeführt ist.
 
22. Aktive Breitbandempfangsantenne nach einem der Ansprüche 1 bis 21
dadurch gekennzeichnet, dass
der passive Antennenteil aus einem ursprünglich nicht für die Nutzung als Antenne vorgesehenem Fahrzeugteil abgeleitet ist und in seiner Gestaltung nur wenig veränderbar ist und an diesem Element eine Anschlußstelle (18) zur Bildung eines passiven Antennenteils (1) gebildet ist und für die im Nutzfrequenzbereich zutreffende Polarisation und Elevation einer einfallenden Welle ein bestimmter azimutaler Mittelwert Dm des Richtfaktors festgestellt ist und der Realteil RA der Impedanz ZA des passiven Antennenteils (1) im Übertragungsfrequenzbereich im Bereich zwischen RAmin und einem Maximalwert RAmax gegeben ist (Fig. 18).
 
23. Aktive Breitbandempfangsantenne nach einem der Ansprüche 1 bis 22
dadurch gekennzeichnet, dass
ein moderner Digitalrechner vorhanden ist und sowohl die Impedanz ZA des passiven Antennenteils (1) messtechnisch oder rechnerisch erfasst als auch der messtechnisch oder rechnerisch bestimmte azimutale Mittelwert Dm des Richtfaktors im Digitalrechner abgelegt sind und in welchem für verschiedene charakteristische mögliche Frequenzverläufe von Antennenimpedanzen hierfür geeignete Grundstrukturen für verlustarme Filterschaltungen (3) im Digitalrechner abgelegt sind und mit Hilfe bekannter Strategien der Variationsrechnung die Blindelemente der verlustarmen Filterschaltung (3) für einen vorgegebenen mittleren Gewinn der aktiven Antenne ermittelt sind.
 




Zeichnung