(19)
(11) EP 1 247 880 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
09.10.2002  Patentblatt  2002/41

(21) Anmeldenummer: 02006731.0

(22) Anmeldetag:  23.03.2002
(51) Internationale Patentklassifikation (IPC)7C25B 3/02, A61K 7/50
(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 06.04.2001 DE 10117222

(71) Anmelder: Goldschmidt AG
45127 Essen (DE)

(72) Erfinder:
  • Thurmüller, Oliver, Dr.
    40225 Düsseldorf (DE)
  • Thomuschat, Philipp, Dr.
    45128 Essen (DE)

   


(54) Verfahren zur Herstellung von Glycinderivaten und deren Verwendung


(57) Verfahren zur Herstellung von Glycinderivaten, welches dadurch gekennzeichnet ist, dass β-Hydroxyethylammonium-Verbindungen elektrochemisch zu den entsprechenden Säuren oxidiert werden.


Beschreibung


[0001] Gegenstand der Erfindung ist ein neues Verfahren zur Herstellung von Glycinderivaten. Glycinderivate wie Betaine sind als milde und verträgliche Substanzen bekannt und werden in großen Mengen zur Herstellung von kosmetischen Präparaten zur Reinigung und Pflege von Haut und Haaren mitverwendet.

[0002] Glycinderivate werden nach den Verfahren gemäß bekanntem Stand der Technik hergestellt durch Umsetzung tertiärer Amine mit zum Teil überschüssiger Monochloressigsäure in basischer wässriger Lösung bei erhöhter Temperatur.

[0003] Es wurden in der Vergangenheit große Anstrengungen unternommen, Glycinderivate herzustellen, die frei sind von Verunreinigungen, welche Hautreizungen verursachen können oder in sonstiger Weise aus toxikologischen und physiologischen Gründen unerwünscht sind.

[0004] Hierzu zählen insbesondere die verfahrensbedingten Restmengen an Verbindungen mit organisch gebundenem Chlor, wie Monochloressigsäure (MCA) und insbesondere Dichloressigsäure (DCA) oder deren Salze, welche mit der eingesetzten Chloressigsäure in das Endprodukt eingebracht werden.

[0005] Versuche, den Gehalt an diesen Verbindungen durch verlängerte Reaktionszeiten oder Erhöhung der pH-Werte zu reduzieren, führten zu keiner wesentlichen Verringerung. Die Anwendung von pH-Werten oberhalb ca. 10 bringt insbesondere bei erhöhten Temperaturen um oder oberhalb 100 °C das Risiko einer zunehmenden Zersetzung mit sich (DE-B-29 26 479, EP-B-0 557 835).

[0006] Die DE-A-39 39 264 betrifft ein Verfahren zur Erniedrigung des Restgehaltes an freiem Alkylierungsmittel in wässrigen Lösungen amphoterer oder zwitterionischer Tenside mit dem Kennzeichen, dass man die Lösungen mit Ammoniak, einer Aminosäure mit 2 bis 8 C-Atomen oder einem Oligopeptid nachbehandelt. Auch durch diese Nachbehandlung verbleibt ein Restgehalt an MCA und/oder DCA im Reaktionsprodukt. Zusätzlich werden durch die Umsetzungsprodukte aus Ammoniak und Alkylierungsmittel oder Peptid und Alkylierungsmittel aber Reaktionsprodukte erzeugt, welche als Verunreinigungen im Verfahrensprodukt verbleiben.

[0007] Weiterhin enthalten die Reaktionsmischungen große Mengen an Chloridionen in Form ihrer Alkali- oder Ammoniumsalze. Daher weisen sie weitere Nachteile auf, wie Erhöhung der Viskosität des Endproduktes, Beeinträchtigung der Tieftemperaturstabilität von Formulierungen und sie können nicht mit einer Anzahl weiterer aktiver Ingredienzien formuliert werden.

[0008] Weiterhin sind sie aufgrund des Chloridionen-Gehaltes zu aggressiv für die Reinigung korrosionsempfindlicher metallischer Untergründe wie sie insbesondere in der elektronischen Industrie eingesetzt werden.

[0009] Es gab daher eine Reihe von Versuchen, diese Salze zu entfernen wie beispielsweise durch Lösungsmittelextraktion wie in der JP-A-759981984 beschrieben oder durch Elektrodialyse gemäß EP-A-0 269 940. Abgesehen davon, dass keine vollständige Entfernung der Chloridionen erreicht werden kann, sind diese Verfahren durch die erforderlichen zusätzlichen Stufen aufwendig und ökonomisch unvorteilhaft.

[0010] Es gibt zahlreiche Verfahren, die die Oxidation von Alkoholen zu Carbonsäuren gestatten. Neben den klassischen Verfahren der Oxidation im Labormaßstab mittels Schwermetalloxiden (z.B. KMnO4) existieren auch Verfahren, die im technischen Maßstab durchgeführt werden können, wie die Oxidation durch NO2 (US-A-5 856 470), durch Nitriloxide (US-A-5 179 218), durch O2 unter Edelmetallkatalyse (DE-39 29 063) oder auch elektrochemisch (EP-A-0 199 413, DE-A-34 43 303).

[0011] Aus Arbeiten von H.-J. Schäfer ist es bekannt (Übersicht: Topics in Current Chemistry, 1987, 142, 102 bis 129), dass primäre Alkohole durch Elektrolyse in alkalischer Lösung unter Verwendung von mit Nickeloxidhydroxid NiO(OH) beschichteten Anoden und von Stahl-Kathoden mit Ausbeuten zwischen 46 und 99 % der Theorie (d. Th.) zu den entsprechenden Carbonsäuren oxidiert werden können. Die Oxidation erfolgt dabei hauptsächlich nach einem indirekten Anodenprozess, bei dem der Alkohol durch das Nickeloxidhydroxid mit 3wertigem Nickel zur Carbonsäure oxidiert wird, wobei das NiO(OH) zu Nickeloxid oder Nickelhydroxid mit 2wertigem Nickel reduziert wird. Durch Elektronenentzug an der Anode geht das 2wertige Nickel anschließend wieder in das 3wertige Nickel über.

[0012] Über die elektrochemische Oxidation von Alkoholen, die über eine Ethylengruppe an einen quartären positiv geladenen Stickstoff gebunden sind, wird in der genannten Arbeit nicht berichtet.

[0013] In dem Bestreben, die Nachteile des Standes der Technik zu überwinden und ein Verfahren bereitzustellen, welches die Herstellung von Glycinderivaten ermöglicht, wurde nun gefunden, dass dieses Ziel durch die Oxidation quartärer Aminoalkohole erreicht wird. Überraschenderweise stört der quartäre, positiv geladene Stickstoff den Oxidationsprozess nicht, und es können weder Oxidationsprodukte des Stickstoffs, wie N-Oxide, noch Abbauprodukte nach Hoffmann nachgewiesen werden. Glycinderivate, die auf diese Weise hergestellt werden, sind frei von anorganischem Chlor und organisch gebundenem Chlor, wie insbesondere Monochloressigsäure, Dichloressigsäure und deren Salzen.

[0014] Die Oxidation des quartären Aminoalkohols zum entsprechenden Glycinderivat kann dabei durch elektrochemische Oxidation in wässriger alkalischer Lösung unter Verwendung beschichteter Nickelelektroden erfolgen.

[0015] Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung von Glycinderivaten durch Oxidation von β-Hydroxyethylammonium-Verbindungen durch Elektrolyse einer wässrigen alkalischen Lösung, das dadurch gekennzeichnet ist, dass die Oxidation unter Verwendung von mit Nickeloxidhydroxid beschichteten Anoden durchgeführt wird.

[0016] Das Verfahren zeichnet sich durch außerordentliche Umweltfreundlichkeit aus, da zum einen keine umweltbelastenden Nebenprodukte anfallen und zum anderen auf den Einsatz der hochtoxischen Chloressigsäure verzichtet werden kann. Daneben wird direkt ein Produkt frei von anorganischem Chlor erhalten, so dass auf eine technisch aufwendige Abtrennung der Chloridionen verzichtet werden kann.

[0017] Nach dem elektrochemischen Verfahren werden Ausbeuten durchweg größer 80 % d. Th. erhalten. Die Elektrolyse wird im Prinzip so durchgeführt, dass der wässrige Elektrolyt an mit Nickeloxidhydroxid beschichteten Elektroden elektrolysiert wird. Die Beschichtung der Elektroden kann dabei nach üblichen wie z.B. nach dem von H.J. Schäfer vorgeschlagenen Verfahren erfolgen. Im Prinzip wird dabei aus einer Ni-Salzlösung zunächst kathodisch eine Ni(OH)2-Schicht auf der späteren Anode abgeschieden und dann anodisch in alkalischer Lösung in NiO(OH) überführt (J. Kaulen, H.J. Schäfer, Tetrahedron, 1982, 38, 3299).

[0018] Als mit NiO(OH) zu beschichtende Anodenmaterialien können außer Nickelmetall auch andere Materialien verwendet werden, auf welchen die aktivierte Nickeloxidhydroxidschicht haftet, wie Monel, rostfreier Stahl, Graphit oder glasartiger Kohlenstoff.

[0019] Die Kathode kann aus einem beliebigen, üblicherweise in der Elektrochemie für die Herstellung von Kathoden verwendeten Material bestehen, wie etwa Edelmetallen, Edelstahl oder Nickel.

[0020] Die Elektrolysezelle kann aus beliebigem, gegen Elektrolyt und Reaktanden beständigem Material bestehen, wie alkalibeständiges Glas, Porzellan, Polyethylen, Kautschuk oder Edelstahl.

[0021] Der Zelltyp kann geteilt oder ungeteilt sein, wobei letzteres bevorzugt wird, da eine Reduktion des gewünschten Elektrolyseproduktes nicht befürchtet werden muß.

[0022] Das erfindungsgemäße Verfahren kann kontinuierlich oder diskontinuierlich durchgeführt werden, wobei bevorzugterweise diskontinuierlich gearbeitet wird. Bei dieser Arbeitsweise besteht das Elektrolysesystem aus einer wässrigen Lösung der β-Hydroxyethylammonium-Verbindung mit einem pH-Wert vorzugsweise von über 12. Die Alkalität der Lösungen wird in der Regel durch Alkalihydroxide (vorzugsweise NaOH und KOH) bewirkt. Die für die Neutralisation der entstehenden Säure notwendige Lauge wird nach und nach zugegeben, wobei etwas weniger als die theoretisch notwendige Menge zugesetzt wird, so dass der pH-Wert der nach Abschluss der Elektrolyse erhaltenen Lösung bei etwa 9 liegt.

[0023] Zweckmäßige Gehalte an β-Hydroxyethylammonium-Verbindung der alkalischen Lösung liegen zwischen 1 und 30 Gew.-%, vorzugsweise zwischen 20 und 30 Gew.-%.

[0024] Die Elektrolysetemperatur beträgt normalerweise 20 bis 80 °C, vorzugsweise etwa 70 °C.

[0025] Es ist weiterhin zweckmäßig, die Elektrolyse mit einer höheren als der theoretisch erforderlichen Strommenge durchzuführen, vorzugsweise der 1,5- bis 3fachen Strommenge.

[0026] Nach beendeter Elektrolyse wird die elektrolysierte Lösung beispielsweise mit Phosphorsäure auf pH 6 bis 7 gebracht, eingeengt und der Rückstand mit einem geeigneten Lösungsmittel extrahiert. Hierfür sind z.B. Alkohole (Ethanol, Isopropanol) geeignet. Der erhaltene Extrakt wird vom Lösungsmittel befreit und liefert die reinen Betaine.

[0027] Die Extraktion ist nur dann erforderlich, wenn die salzfreien Betaine erhalten werden sollen. Üblicherweise stören die bei der Synthese anfallenden Salze jedoch nicht, so dass auf eine Extraktion verzichtet werden kann.

[0028] Die erfindungsgemäß mitverwendeten β-Hydroxyethylammonium-Verbindungen können nach den auf diesem Gebiet bekannten Verfahren durch Umsetzung von Aminen mit Ethylenoxid in saurer Lösung hergestellt werden (EP-A-0 098 802).

[0029] Als β-Hydroxyethylammonium-Verbindungen sind alle Verbindungen verwendbar, welche mindestens eine quartäre Aminogruppe und mindestens eine OH-Gruppe, vorzugsweise der Formeln (I) und/oder (II) und/oder (III) enthalten



in welcher die Reste
R
unabhängig voneinander Alkylreste mit 1 bis 3 C-Atomen und/oder -CH2-CH2-OH sein kann und
n,m,o
Werte zwischen 1 bis 5, vorzugsweise 1 bis 3, insbesondere 1 sein können, und
R1
ein gegebenenfalls Heteroatome, inbesondere Sauerstoff- und/oder Stickstoffatome enthaltender Alkylrest oder der Rest Ra-[C(O)-NH-(CH2) q]r- mit q = 1 bis 6, vorzugsweise 2 oder 3, und r = 0 oder 1, ist.


[0030] Erfindungsgemäß bevorzugt sind Verbindungen, in denen die freien Valenzen der allgemeinen Formel (I) gebunden sind an den Rest Ra-C(O)-NH, wobei Ra ein gegebenenfalls substituierter Alkyl- oder Alkenylrest mit 7 bis 21 C-Atomen oder ein gegebenenfalls substituierter Alkyl- oder Alkenylrest mit 1 bis 22 C-Atomen, vorzugsweise mit 7 bis 17 C-Atomen, sein kann und die Reste R unabhängig voneinander Alkylreste mit 1 bis 3 C-Atomen sein können; oder, wenn r = 0 ist, Ra ein Alkyl- oder Alkenylrest mit 8 bis 22 C-Atomen sein kann; Valenzen der allgemeinen Formeln (I) bis (III) gebunden sind an einen gegebenenfalls substituierten Alkyl- oder Alkenylrest mit 1 bis 22 C-Atomen, vorzugsweise mit 8 bis 18 C-Atomen oder an den Rest Ra-C(O)-[NH-(CH2)z]y- in dem Ra die oben angegebene Bedeutung hat, und z,y unabhängig voneinander Zahlen von 1 bis 3 sein können; in denen die freien Valenzen der allgemeinen Formel (IV) gebunden sind an den Rest Ra, mit der oben angegebenen Bedeutung.

[0031] Der Rest Ra leitet sich bevorzugt von natürlichen Fettsäuren ab, wie Caprylsäure, Caprinsäure, 2-Ethylhexansäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Isostearinsäure, Stearinsäure, Hydroxystearinsäure (Ricinolsäure), Dihydroxystearinsäure, Ölsäure, Linolsäure, Petroselinsäure, Elaidinsäure, Arachinsäure, Behensäure und Erucasäure, Gadoleinsäure sowie die bei der Druckspaltung natürlicher Fette und Öle anfallenden technischen Mischungen, wie Ölsäure, Linolsäure, Linolensäure und insbesondere Rapsölfettsäure, Sojaölfettsäure, Sonnenblumenölfettsäure, Tallölfettsäure. Geeignet sind prinzipiell alle Fettsäuren mit ähnlicher Kettenverteilung.

[0032] Der Gehalt dieser Fettsäuren bzw. Fettsäureester an ungesättigten Anteilen wird - soweit dies erforderlich ist - durch die bekannten katalytischen Hydrierverfahren auf eine gewünschte Jodzahl eingestellt oder durch Abmischung von vollhydrierten mit nichthydrierten Fettkomponenten erzielt.

[0033] Die Jodzahl, als Maßzahl für den durchschnittlichen Sättigungsgrad einer Fettsäure, ist die Jodmenge, welche von 100 g der Verbindung zur Absättigung der Doppelbindungen aufgenommen wird.

[0034] Vorzugsweise werden teilgehärtete C8/18-Kokos- bzw. Palmfettsäuren, Rapsölfettsäuren, Sonnenblumenölfettsäuren, Sojaölfettsäuren und Tallölfettsäuren, mit Jodzahlen im Bereich von ca. 80 bis 150 und insbesondere technische C8/18-Kokosfettsäuren eingesetzt, wobei gegebenenfalls eine Auswahl von cis/trans-Isomeren, wie elaidinsäurereiche C16/18-Fettsäureschnitte von Vorteil sein können. Sie sind handelsübliche Produkte und werden von verschiedenen Firmen unter deren jeweiligen Handelsnamen angeboten.

[0035] Die Verbindungen der allgemeinen Formeln (I) bis (III) werden wie nachfolgend beschrieben elektrochemisch zu den entsprechenden Säuren oxidiert.

Beispiel 1:



[0036] An einer Netzelektrode (60,5 cm2, Nickelnetz mit NiO(OH) beschichtet) und einer Kathode (Zylinder, Ø 1,7 cm, 7 cm hoch, rostfreier Edelstahl) wurden in einer 150-ml-Becherglaszelle mit Rückflusskühler 105 ml einer 27 %igen Lösung von 2-Hydroxyethyl(dimethyl)3-undecylcarboxamidopropylammonium x 0,5 H2PO4-, die 4,2 g NaOH enthielt, für 7 h bei einer Stromstärke von 2,0 A elektrolysiert. Dabei stieg der pH-Wert binnen 5 h auf 8 bis 9 an, und es wurden 4 ml gesättigte NaOH-Lösung zugesetzt. Anschließend wurde die Stromstärke auf 1,0 A eingestellt und für weitere 7 h elektrolysiert. Nach dieser Zeit weist die Lösung wiederum einen pH-Wert von 8 bis 9 auf, und es werden erneut 4 ml gesättigte NaOH-Lösung zugesetzt. Anschließend wird eine Stromstärke von 0,5 A eingestellt und für weitere 7,5 h elektrolysiert. Die erhaltene Lösung weist einen pH-Wert von 8 bis 9 auf. Die Reaktionskontrolle erfolgte mittels DC-Chromatographie und ESI-Massenspektrometrie.

[0037] Der Elektrolyseaustrag wird mit Phosphorsäure auf einen pH-Wert von 6 bis 7 eingestellt und eingeengt. Der Rückstand wird mit Isopropanol extrahiert und der erhaltene Extrakt vom Lösungsmittel befreit. Als Produkt erhält man einen gelb-braunen Feststoff.

Analytik



[0038] Ausbeute: 23,3 g (91 % d. Th.)
13C-NMR (100 MHz, CDCl3): δ = 13,67 (CH3), 22,24 bis 31,48 (CH2), 35,86 und 35,87 (CH2CONH und CONHCH2), 50,32 (N+(CH3)2), 62,12 (CH2N+), 63,98 (N+CH2COO-), 167,09 (COO-), 174,06 (CONH) ppm.

Beispiel 2:



[0039] Der Versuch wurde analog zu Beispiel 1 durchgeführt. Im Unterschied zu Beispiel 1 wurde 2-Hydroxyethyl(dimethyl)3-undecylcarboxamidopropylammonium x 0,5 C2O4H- als Edukt verwendet. Während der Oxidation wird zunächst Oxalat zu CO2 oxidiert, das unter den alkalischen Bedingungen zu Carbonat reagiert und erst anschließend der Ammoniumalkohol zum entsprechenden Glycinderivat oxidiert. Die entsprechend größere notwendige Menge an NaOH wurde der Lösung von Anfang an zugesetzt.

Analytik



[0040] Ausbeute: 20,28 g (82 % d. Th.)
13C-NMR (100 MHz, CDCl3) : δ = 13,39 (CH3), 21,95 bis 31,18 (CH2), 35,55 (br, CH2CONH und CONHCH2), 50,15 (N+(CH3)2), 61,77 (CH2N+), 63,73 (N+CH2COO-), 165,81 (COO-), 173,65 (CONH) ppm.

Beispiel 3:



[0041] Der Versuch wurde analog zu Beispiel 1 durchgeführt. Im Unterschied zu Beispiel 1 wurden 105 ml einer 2,7 %igen Lösung eines Ammoniumgemisches (zugrunde liegt der Kokosfettsäureschnitt), das als Hauptkomponente das 2-Hydroxyethyl(dimethyl)3-undecylcarboxamidopropylammonium x 0,5 H2PO4- enthielt, für 3 h bei 2,0 A elektrolysiert.

Analytik



[0042] Ausbeute: 2,35 g (96 % d. Th.)
13C-NMR (100 MHz, CDCl3) : δ = 13,69 (CH3), 22,24 bis 31,48 (CH2), 35,84 und 35,87 (CH2CONH und CONHCH2), 50,41 (N+(CH3)2), 62,23 (CH2N+), 64,31 (N+CH2COO-), 166,14 (COO-), 173,93 (CONH) ppm.
MS (ESI) : m/z = 365 (M+ +Na, 100 %).


Ansprüche

1. Verfahren zur Herstellung von Glycinderivaten, dadurch gekennzeichnet, dass die Hydroxylgruppen von β-Hydroxyethylammonium-Verbindungen elektrochemisch zu den entsprechenden Säuren oxidiert werden.
 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die wässrigen Lösungen von β-Hydroxyethylammonium-Verbindungen elektrochemisch unter Verwendung von mit Nickeloxidhydroxid beschichteten Elektroden zu den entsprechenden Säuren oxidiert werden.
 
3. Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, dass die β-Hydroxyethylammoniumverbindungen bei pH-Werten im Bereich von 8 bis 14 oxidiert werden.
 
4. Glycinverbindungen, frei von organisch gebundenem Halogen und/oder Halogenidionen, dadurch hergestellt, dass die Hydroxylgruppen von β-Hydroxyethylammonium-Verbindungen elektrochemisch zu den entsprechenden Säuren oxidiert werden.
 
5. Glycinverbindungen, frei von organisch gebundenem Halogen und/oder Halogenidionen, hergestellt gemäß den Ansprüchen 2 bis 3.
 
6. Verwendung der gemäß Ansprüche 1 bis 3 hergestellten Glycinverbindungen zur Herstellung von tensidischen Zubereitungen.