Technical Field
[0001] The present invention relates to a decoding apparatus and decoding method, specially
relates to a decoding apparatus and decoding method that perform decoding of data
based on transmission format information transmitted from a communication partner
and on a determination result of transmission format information.
Background Art
[0002] In third generation mobile communication system using a CDMA technology, the execution
of variable rate transmission by which the data rate is changed for every TTI (Transmission
Time Interval) unit is proposed. The determination of data rate in the receiving side
by a TFCI (Transport Format Combination Indicator) which includes the transmission
format information is also proposed. Moreover, TTI is a data transmission length specified
for every channel, and such a length is either 1, 2, 4 or 8 frame(s).
[0003] Moreover, the transmission format of data (namely, block size of data and the number
of blocks of data) are specified by a TFCI number. In other words, the data rate is
specified by the TFCI number. According to the specification of the third generation
mobile communication system specified by 3GPP, the TFCI is shown by one number from
among 1024 numbers from the 0th through 1023rd, converted into a codeword corresponding
to each number (hereinafter, a codeword corresponding to each number is referred to
as "TFCI coding sequence") and then transmitted.
[0004] In the receiving side which receives the TFCI, the correlation values between each
of the 1024 TFCI coding sequences which are specified beforehand and the actually
received TFCI are calculated by the decoding apparatus, and the number corresponding
to the correlation value which is maximum among the 1024 calculated correlation values
is determined as the received TFCI number. Then, decoding apparatus performs decoding
of data based on transmission format specified by the determined TFCI number.
[0005] Among the 1024 TFCI numbers, normally about 10 numbers or at most 100 numbers are
actually used in mobile communication system. Consequently, because the correlation
values corresponding to all 1024 TFCI coding sequences are calculated in the aforementioned
conventional decoding apparatus even it is not important to calculate the correlation
values corresponding to all 1024 TFCI coding sequences, there is a problem that the
processing amount and power consumption which are required to determine the TFCI number
become large. Thus, when the aforementioned conventional decoding apparatus is built
in a communication terminal which is driven by a battery, there is a problem that
the using time of a communication terminal becomes short.
[0006] Moreover, when an error occurrs with TFCI due to the influence of noise and such
in the propagation path, a case might result in the decoding apparatus where the correlation
value calculated using a TFCI coding sequence having a close inter-code distance to
a transmitted TFCI coding sequence becomes maximum. In the case when the TFCI number
corresponding to TFCI coding sequence with a near inter-code distance is the TFCI
number which is not actually used, there is a problem that this TFCI number which
is not actually used is erroneously determined as the received TFCI number.
[0007] Because the data will be decoded by an erroneous transmission format when the TFCI
number is erroneously determined, all the data of TTI in respect to which the transmission
format is erroneously determined might be erroneously decoded, and hence, the error
rate characteristics of the received data will be remarkably deteriorated.
Disclosure of Invention
[0008] It is an object of the present invention to provide a decoding apparatus and a decoding
method that are capable to improve the TFCI determining precision while reducing the
amount of processing and power consumption which are required to determine the TFCI.
[0009] In order to achieve such an object, in the present invention, TFCI is determined
using only those actually used TFCI numbers as candidates from among a plurality of
TFCI numbers. Therefore, it is possible to improve the TFCI determining precision
while reducing the processing amount and power consumption that are required to determine
the TFCI.
Brief Description of Drawings
[0010]
FIG. 1 is a block diagram showing a configuration of a decoding apparatus according
to Embodiment 1 of the present invention.
FIG. 2 is a block diagram showing a configuration of a decoding apparatus according
to Embodiment 2 of the present invention.
FIG. 3 is a flowchart showing an operation of a decoding apparatus according to Embodiment
2 of the present invention.
FIG. 4 is a block diagram showing a configuration of a decoding apparatus according
to Embodiment 3 of the present invention.
FIG. 5 is a flowchart showing an operation of a decoding apparatus according to Embodiment
3 of the present invention.
Best Mode for Carrying out the Invention
[0011] Embodiments of the present invention will be specifically described hereinafter with
reference to the accompanying drawings.
(Embodiment 1)
[0012] FIG. 1 is a block diagram showing a configuration of a decoding apparatus according
to Embodiment 1 of the present invention. The decoding apparatus shown in FIG. 1 is
built in, for instance, a communication terminal apparatus such as, a cellular phone
and such used in a mobile communication system. For example, such a communication
terminal apparatus carries out radio communication based on CDMA technology. Moreover,
in the following description it is assumed that the TFCI transmitted from a communication
partner is shown by one TFCI number from among the 1024 TFCI numbers from the 0th
through 1023rd using 10 bits and transmitted after being converted into TFCI coding
sequence of 32 bits.
[0013] In the decoding apparatus shown in FIG. 1, demodulation section 101 demodulates the
received signal including TFCI, and outputs the TFCI portion in the demodulated received
signal to TFCI memory 102 while outputting the data portion to data memory 103. In
addition, each bit of TFCI is distributed into a predetermined position of each slot
of the received signal and it is difficult to carry out TFCI determination until TFCI
of one frame is received in the decoding apparatus. Accordingly, TFCI memory 102 accumulates
TFCI of one frame. Moreover, data memory 103 accumulates data of one frame.
[0014] Since the group of TFCI numbers that may actually be used (hereinafter, the group
of TFCI numbers that may actually be used is referred to as "the group of TFCI numbers
in use") for every communication channel is specified by a layer which is upper than
the physical layer (hereinafter, simply it is referred to as "upper layer") in the
mobile communication system, candidate limiting section 104 is notified from upper
layer with the group of TFCI numbers in use.
[0015] Candidate limiting section 104 has a table that shows the correspondence relation
between the TFCI number and TFCI coding sequence. Further, candidate limiting section
104 outputs to correlation value calculating section 105 only the TFCI coding sequences
corresponding to TFCI numbers that are actually used among the 1024 TFCI numbers from
the 0th through 1023rd referring to the table based on each TFCI number that is included
in the group of TFCI numbers notified from upper layer. That is to say, candidate
limiting section 104 limits the candidates for TFCI to an actually used N TFCIs among
the 1024 TFCIs.
[0016] Correlation value calculating section 105, by way of calculating the correlation
values between the coding sequences outputted from candidate limiting section 104
and the received TFCI, calculates correlation values using only those actually used
TFCI numbers as candidates from among the 1024 TFCI numbers from the 0th through 1023rd.
That is, correlation value calculating section 105 calculates correlation values between
each of TFCI coding sequences corresponding to the actually used TFCI numbers and
the received TFCI. Correlation value calculating section 105 outputs each of the calculated
correlation values along with the TFCI number to correlation value memory 106. Moreover,
it is possible to perform a high speed calculation of the correlation value by using,
for instance, a high speed Hadamard transform for correlation value calculation.
[0017] Correlation value memory 106 stores correlation values outputted from correlation
value calculating section 105 in correspondence with the TFCI numbers.
[0018] Maximum value detecting section 107 detects the maximum correlation value among correlation
values stored in correlation value memory 106. Then, maximum value detecting section
107 notifies error correction decoding section 108 of the TFCI number corresponding
to the maximum correlation value.
[0019] Error correction decoding section 108 specifies the transmission format of the data
accumulated in data memory 103 based on TFCI number notified from maximum value detecting
section 107, and performs error correction decoding on the data accumulated in data
memory 103 based on the specified transmission format. In addition, the error correction
decoding is performed based on, for instance, Viterbi algorithm.
[0020] Operation of the decoding apparatus which has the aforementioned configuration will
be explained below.
[0021] Only the TFCI coding sequences corresponding to TFCI numbers included in the group
of TFCI numbersin use notified by the upper layer is outputted to correlation value
calculating section 105 from candidate limiting section 104.
[0022] Correlation values between the TFCI coding sequences outputted from candidate limiting
section 104 and TFCI of one frame accumulated in TFCI memory 102 are calculated in
correlation value calculating section 105. In other words, only the correlation values
corresponding to the actually used N TFCI numbers among the 1024 TFCI numbers are
calculated in correlation value calculating section 105.
[0023] For example, when the actually used TFCI numbers is limited to 30, each correlation
value between the TFCI coding sequence corresponding to each number of those 30 and
the TFCI of one frame accumulated in TFCI memory 102 is calculated. According to this
example, since 30 correlation values are calculated in comparison with the 1024 correlation
values having been conventionally calculated, it is possible to reduce remarkably
the processing amount and power consumption required for the correlation value calculation
processing which is one process of determining processes of TFCI.
[0024] The calculated N correlation values along with the corresponding TFCI numbers are
outputted to correlation value memory 106. N correlation values and the corresponding
TFCI numbers are stored in correlation value memory 106.
[0025] The maximum correlation value among the correlation values stored in correlation
value memory 106 is detected in maximum value detecting section 107. Then, the TFCI
number corresponding to the maximum correlation value is determined as a number of
TFCI that is accumulated in TFCI memory 102 (i.e., the received TFCI). The determined
TFCI number is notified to error correction decoding section 108.
[0026] As described above, when an error is occurred in the TFCI due to the influence of
noise and such in the propagation path, there is a case in the aforementioned conventional
decoding apparatus that the correlation value corresponding to the TFCI number which
is not actually used becomes the maximum, and the number of the received TFCI is erroneously
determined.
[0027] On the other hand, in the decoding apparatus according to the present embodiment,
the correlation values subject to determination in maximum value detecting section
107 are limited to the N correlation values corresponding to the actually used TFCI
numbers. That is to say, it is possible to prevent the correlation value corresponding
to the TFCI number which is not actually used to be detected as the maximum in maximum
value detecting section 107.
[0028] Thus, in the decoding apparatus according to the present embodiment, the probability
that TFCI is erroneously determined is minimized and the determination accuracy of
TFCI is improved comparing to the aforementioned conventional decoding apparatus.
Hence, it is possible to prevent the deterioration of error rate characteristics of
the received data.
[0029] In error correction decoding section 108, the transmission format of the data accumulated
in data memory 103 is specified based on TFCI number notified from maximum value detecting
section 107. Then, the data accumulated in data memory 103 is subjected to error correction
decoding based on the specified transmission format. Accordingly, a data of one frame
subjected to error correction decoding processing is obtained.
[0030] Therefore, according to the present embodiment, it is possible to improve the TFCI
determination precision while reducing the amount of processing and power consumption
required to determine the TFCI by performing TFCI determination by using only those
actually used TFCI numbers as candidates from among a plurality of TFCI numbers.
(Embodiment 2)
[0031] FIG. 2 is a block diagram showing a configuration of a decoding apparatus according
to Embodiment 2 of the present invention. As shown in this figure, in addition to
the decoding apparatus shown in FIG. 1, the decoding apparatus according to the present
embodiment is further provided with threshold value deciding section 201, controlling
section 202, memory updating section 203 and CRC section 204. In Fig. 2, however,
the corresponding similar sections shown in FIG. 1 are assigned the same reference
numerals and explanations thereof are omitted.
[0032] In the decoding apparatus shown in FIG. 2, threshold value deciding section 201 decides
whether the maximum correlation value detected by maximum value detecting section
107 is above a predetermined threshold. Threshold value deciding section 201 notifies
error correction decoding section 108 of TFCI number corresponding to the correlation
value when such a correlation value is above a predetermined threshold, and when the
correlation value is below the predetermined threshold, it notifies controlling section
202 of such a result along with TFCI number. Controlling section 202 controls the
operation of maximum value detecting section 107 and memory updating section 203 based
on a instruction from threshold value deciding section 201 and CRC section 204.
[0033] Memory updating section 203 updates a correlation value that is determined to be
below the predetermined threshold value in threshold value determining section 201
and a correlation value that corresponds to a TFCI number that is used upon error
correction decoding of the data with which an error is detected in CRC section 204
into a value that cannot be detected as a maximum value (for instance, 0 value) from
the correlation values stored in correlation value memory 106 based on a instruction
from controlling section 202. In addition, the explanation of how the correlation
value is updated as "0" by memory updating section 203 will be given below.
[0034] CRC section 204 uses an error detecting code such as CRC which is included in the
data subjected to error correction decoding (hereinafter, simply referred to as "decoded
data") to perform an error detection processing on the decoded data. Then, CRC section
204 outputs only the decoded data of which an error is not detected along with CRC
result. Further, when an error is detected in the decoded data, CRC section 204 notifies
controlling section 202 of an error-detected command along with TFCI number while
discarding the decoded data.
[0035] Operation of the decoding apparatus which has the aforementioned configuration will
be explained below. FIG. 3 is a flowchart showing an operation of a decoding apparatus
according to Embodiment 2 of the present invention.
[0036] First, in step (hereinafter, it is referred to as "ST") 301, similar to the aforementioned
Embodiment 1, a correlation value is calculated from the candidates of actually used
TFCI numbers in correlation value calculating section 105, and the calculated correlation
value along with the TFCI number is outputted to correlation value memory 106.
[0037] Next, in ST302, the maximum correlation value among correlation values stored in
correlation value memory 106 is detected by maximum value detecting section 107. Then,
maximum value detecting section 107 outputs the maximum correlation value along with
its corresponding TFCI number to threshold value deciding section 201.
[0038] Moreover, maximum value detecting section 107 outputs a signal that indicates the
execution of maximum value detection to controlling section 202. Controlling section
202 is provided with a counter for counting the number of times of maximum value detection,
and controlling section 202 increments the counter by 1 whenever the signal which
indicates the execution of maximum value detection is outputted from maximum value
detecting section 107. Further, it is assumed that the initial value of the counter
is "1".
[0039] Then, in ST303, threshold value deciding section 201 decides whether the maximum
value detected by maximum value detecting section 107 is above the predetermined threshold.
When that maximum value is below the predetermined threshold, threshold deciding section
201 notifies controlling section 202 of such a result along with the TFCI number.
Further, when the maximum value is below the predetermined threshold in ST303 then
proceed to ST304.
[0040] Next, in ST304, the controlling section 202 decides whether the number of times of
the maximum value detection has reached the number N of the actually used TFCI numbers
(hereinafter, it is referred to as "number of TFCI numbers in use") with reference
to the counter value. In the mobile communication system as described above, because
the group of TFCI numbers in use is specified for every communication channel by an
upper layer, controlling section 202 is notified of the number of TFCI numbers in
use:N from the upper layer.
[0041] When the number of times of the maximum value detection does not reach the number
of TFCI numbers in use:N, in ST305, controlling section 202 notifies memory updating
section 203 of the TFCI number notified from threshold value deciding section 201
and, furthermore, instructs memory updating section 203 to update the correlation
value corresponding to the TFCI number notified from threshold value deciding section
201 to "0".
[0042] Following the instruction, the correlation value that has been decided to be below
the predetermined threshold in threshold value deciding section 201 among correlation
values stored in correlation value memory 106 is updated as "0" by memory updating
section 203. After updating processing, memory updating section 203 outputs a signal
that indicates the completion of updating processing to controlling section 202. Based
on such a signal, controlling section 202 instructs maximum value detecting section
107 to re-execute maximum value detection processing in ST302. Since the maximum value
last detected in ST302 is already updated as "0", with the processing of ST 302 of
this time, a correlation value that is next large to the maximum value last detected
in ST 302 is detected as the maximum value. Moreover, when the number of times of
maximum value detection reaches the number of TFCI numbers in use:N in ST304, controlling
section 202 stops the maximum value detection operation until next decoding timing
while resetting the counter to "1".
[0043] On the other hand, when the maximum value of the correlation value detected by maximum
value detecting section 107 is above the predetermined threshold in ST303, the TFCI
number corresponding to such a correlation value is notified to error correction decoding
section 108 by threshold value deciding section 201.
[0044] Then, error correction decoding section 108 specifies the transmission format of
the data accumulated in data memory 103 based on TFCI number notified from threshold
value deciding section 201 in ST306. After this, the data accumulated in data memory
103 is subjected to error correction decoding based on the specified transmission
format. The decoded data is outputted to CRC section 204.
[0045] Next, CRC section 204 performs error detection on the decoded data in ST307. When
an error was not detected, CRC section 204 outputs the decoded data along with the
CRC result, thereby, the decoding processing is finished. In this case, CRC section
204, further, notifies the controlling section 202 of an error-undetected command.
According to such a notification command, controlling section 202 stops the maximum
value detection operation until the next decoding timing while resetting the counter
to "1".
[0046] On the other hand, when an error was detected, CRC section 204 notifies controlling
section 202 of an error-detected command along with TFCI number while discarding the
decoded data. In this case, progressing to ST304.
[0047] In ST305 after the processing of ST304, controlling section 202 notifies memory updating
section 203 of the TFCI number notified from CRC section 204 and, furthermore, instructs
memory updating section 203 to update the correlation value corresponding to the TFCI
number notified from CRC section 204 to "0". Following the instruction, memory updating
section 203 updates the correlation value corresponding to the TFCI number used at
the time of error correction decoding of the data with an error detected in CRC section
204 among correlation values stored in correlation value memory 106 to "0". After
updating processing, memory updating section 203 outputs a signal that indicates the
completion of updating processing to controlling section 202. Based on such a signal,
controlling section 202 instructs maximum value detecting section 107 to re-execute
maximum value detection processing in ST302.
[0048] Hereafter, the correlation values stored in correlation value memory 106 are detected
by maximum value detecting section in order from larger ones, and until such detected
correlation value becomes above a predetermined threshold and until no error is detected
with the decoded data decoded based on the TFCI number that corresponds to the detected
correlation value, above the aforementioned processing are repeated maximum of N times.
[0049] Therefore, according to the present embodiment, because only the TFCI number corresponding
to the correlation value that becomes above a predetermined threshold value is determined
as the received TFCI number, it is possible to improve the determination reliability
of the TFCI.
[0050] Moreover, because the TFCI determination and data decoding are carried out repeatedly
until an error is no longer detected in the decoded data that is decoded based on
the TFCI number corresponding to the correlation value which becomes above the predetermined
threshold, it is also possible to improve the decoding reliability of data.
(Embodiment 3)
[0051] FIG. 4 is a block diagram showing a configuration of a decoding apparatus according
to Embodiment 3 of the present invention. As shown in this figure, the decoding apparatus
according to the present embodiment is provided with transmission power control information
generating section 401 in addition to the decoding apparatus shown in FIG. 2. Further,
the corresponding similar sections shown in FIG. 2 are assigned the same reference
numerals in FIG. 4 and explanations thereof are omitted.
[0052] In the decoding apparatus shown in FIG. 4, transmission power control information
generating section 401 generates transmission power control information to instruct
the communication partner to increase the signal transmission power based on a instruction
from controlling section 202.
[0053] Operation of the decoding apparatus which has the aforementioned configuration will
be explained below. FIG. 5 is a flowchart showing an operation of a decoding apparatus
according to Embodiment 3 of the present invention. Moreover, the corresponding similar
operational steps shown in FIG. 3 are assigned the same reference numerals in FIG.
5 and explanations thereof are omitted.
[0054] When in ST304 the counter provided in controlling section 202 reaches the number
of TFCI numbers in use:N, in ST501, controlling section 202 instructs transmission
power control information generating section 401 to generate transmission power control
information to instruct the communication partner to increase signal transmission
power. Transmission power control information generating section 401 generates transmission
power control information such as TPC (Transmission Power Control) bit to instruct
the communication partner to increase signal transmission power based on a instruction
from controlling section 202, and outputs this transmission power control information
to the transmission part inside a communication terminal apparatus. In this transmission
part, the transmission power control information is mapped into a transmission signal
and transmitted to the communication partner (base station). The communication partner
increases the transmission power of the signal including TFCI based on the received
transmission power control information.
[0055] That is, when the total of both, the number of correlation values which are below
the predetermined threshold value and the number of the decoded data in which the
error is detected, reaches the number of TFCI numbers in use:N, the decoding apparatus
according to the present embodiment decides that the channel environments are inferior,
and instructs the communication partner to increase the transmission power of the
signal including TFCI.
[0056] According to the present embodiment, because the transmission power of the signal
including the TFCI is increased in the communication partner side when the channel
environments are inferior, it is possible to improve the receiving quality of TFCI.
Thus, since it is possible to receive the TFCI with good receiving quality regardless
to the channel environment, even when the channel environments are inferior, the TFCI
can be determined correctly and it is possible also to prevent deterioration of the
decoding characteristics of data.
[0057] In addition, the decoding apparatus according to the aforementioned Embodiments 1-3
can be built in a communication terminal apparatus or base station apparatus that
carries out communication with this communication terminal apparatus employed in a
radio communication system. In such a case, because the error rate characteristics
are improved by improving the TFCI determination accuracy in both communication terminal
apparatus and base station apparatus, it is possible to enhance and improve the data
communication quality, speech quality, etc.
[0058] As described above and according to the present invention, while being able to improve
the determination accuracy of TFCI, the processing amount and power consumption required
for TFCI determination can be reduced.
[0059] The present application is based on the Japanese Patent Application No. 2000-362431
filed on Nov. 29, 2000, entire content of which is expressly incorporated by reference
herein.
1. A decoding apparatus comprising:
a receiver which receives a signal that shows a format of received data,
a determiner which determines the format of the received data from among format candidates
using the signal, after limiting the format candidates based on an information notified
from a layer which is upper than physical layer,
a decoder which decodes the received data based on the determined format.
2. The decoding apparatus according to claim 1, wherein said determiner comprising:
a limiting section which generates signal sequences corresponding to the format candidates
limited based on the information notified from the layer which is upper than physical
layer,
a correlation value calculating section which calculates correlation values between
a signal sequence received by said receiver and the signal sequences generated by
said limiting section,
a maximum value detecting section which detects a maximum value from among the correlation
values calculated by said correlation value calculating section and determines the
format corresponding to such a maximum value as the format of the received data.
3. The decoding apparatus according to claim 2, wherein said determiner further comprising
a threshold value deciding section which decides the format corresponding to a maximum
value that becomes above a predetermined threshold value as the format of the received
data, after comparing the maximum value detected by said maximum value detecting section
with the predetermined threshold value.
4. The decoding apparatus according to claim 1 further comprising an error detector which
discards erroneous decoded data while detecting whether there is an error in decoded
data that is decoded by said decoder,
wherein said determiner determines the format of the received data repeatedly until
an error is no longer detected in the decoded data.
5. The decoding apparatus according to claim 1 further comprising a transmission power
controller which instructs a communication partner to increase the transmission power
of the signal that shows the format of the received data when it is determined that
all of the format candidates are not the format of the received data.
6. The decoding apparatus according to claim 5, wherein said transmission power controller
instructs the communication partner to increase the transmission power when the total
of both, the number of maximum values which are below the predetermined threshold
value in said threshold value deciding section and the number of erroneous decoded
data in said error detector, reaches the number of the format candidates.
7. A communication terminal apparatus including a decoding apparatus, wherein said decoding
apparatus comprising:
a receiver which receives a signal that shows a format of received data,
a determiner which determines the format of the received data from among format candidates
using the signal, after limiting the format candidates based on an information notified
from a layer which is upper than physical layer,
a decoder which decodes the received data based on the determined format.
8. A base station apparatus including a decoding apparatus, wherein said decoding apparatus
comprising:
a receiver which receives a signal that shows a format of received data,
a determiner which determines the format of the received data from among format candidates
using the signal, after limiting the format candidates based on an information notified
from a layer which is upper than physical layer,
a decoder which decodes the received data based on the determined format.
9. A decoding method comprising steps of:
receiving a signal that shows a format of received data,
determining the format of the received data from among format candidates using the
signal, after limiting the format candidates based on an information notified from
a layer which is upper than physical layer,
decoding the received data based on the determined format.