| (19) |
 |
|
(11) |
EP 1 257 299 B9 |
| (12) |
CORRECTED EUROPEAN PATENT SPECIFICATION |
|
Note: Bibliography reflects the latest situation |
| (15) |
Correction information: |
|
Corrected version no 1 (W1 B1) |
|
Corrections, see
|
| (48) |
Corrigendum issued on: |
|
30.11.2005 Bulletin 2005/48 |
| (45) |
Mention of the grant of the patent: |
|
27.07.2005 Bulletin 2005/30 |
| (22) |
Date of filing: 21.02.2001 |
|
| (86) |
International application number: |
|
PCT/NO2001/000065 |
| (87) |
International publication number: |
|
WO 2001/060417 (23.08.2001 Gazette 2001/34) |
|
| (54) |
RADIOACTIVE THERAPEUTIC LIPOSOMES
RADIOAKTIVE THERAPEUTISCHE LIPOSOMEN
LIPOSOMES THERAPEUTIQUES RADIOACTIFS
|
| (84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
Designated Extension States: |
|
AL LT LV MK RO SI |
| (30) |
Priority: |
21.02.2000 NO 20000855
|
| (43) |
Date of publication of application: |
|
20.11.2002 Bulletin 2002/47 |
| (73) |
Proprietor: Algeta AS |
|
0884 Oslo (NO) |
|
| (72) |
Inventors: |
|
- LARSEN, Roy, H.
N-1356 Bekkestua (NO)
- HENRIKSEN, Gjermund
N-3050 Mj ndalen (NO)
|
| (74) |
Representative: Cockbain, Julian et al |
|
Frank B. Dehn & Co.,
European Patent Attorneys,
179 Queen Victoria Street London EC4V 4EL London EC4V 4EL (GB) |
| (56) |
References cited: :
EP-A- 0 179 444 WO-A-94/22429
|
EP-B- 0 386 146 WO-A-96/11023
|
|
| |
|
|
- DEEPANK UTKHEDE ET AL: "Uptake of yttrium-90 into lipid vesicles" JOURNAL OF LIPOSOME
RESEARCH, vol. 4, no. 2, 1994, pages 1049-1061, XP002901892
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to a conjugator system comprising liposornes with ionophores
and with chelator located inside of the liposomes, wherein the liposomes are stably
labeled with heavy radionuclides emitting α particles. The present invention further
relates to a method to prepare the conjugator system, as well as a kit for preparing
the conjugator system.
[0002] Biomedical applications of radionuclides in anticancer therapy have so far focused
on the use of cationic or anionic species, e.g., [
131I]iodide against thyroid cancer and
89Sr for palliation of pain from skeletal cancer metastases, and the use of mostly beta-emitting
radionuclides attached to monoclonal antibodies (DeVita et al., 1996).
[0003] The use of targeted radionuclide therapy against cancer rest upon the ability to
find ways to attach radionuclides to tumor specific carrier compounds (Gaze, 1996).
Today, some of the radionuclides with useful radiation characteristics cannot be used
in tumor targeting because of the problem of providing a chemically stable link between
the radionuclide and the carrier compound. New carrier systems may, however, broaden
both the use of radioisotopes, as well as the arsenal of radionuclides considered
useful for therapy (Gaze, 1996).
[0004] Liposomes, with or without receptor affinic groups attached to the surface, have
been evaluated for drug delivery, and is currently used clinically for the delivery
of chemotherapeutics in some cancer forms. Recently, developments in liposome research
have led to new versions with a pharmacokinetics which could make these compounds
useful as carriers for radionuclide for internal radiotherapy against cancer (Gabizon,
1995). These recent developments in the formulation and manufacturing of liposomes
have resulted in small vesicles of less than 100 nm with prolonged circulation time,
as the size of the liposomes can be better confined to small diameters by using extrusion
through membranes. Furthermore, the introduction of poly ethylene glycol (PEG) grafted
liposomes has reduced the interference from plasma proteins, and thus reduced the
recognition and clearance affected by the macrophages of the reticuloendothelial system
(Maruyama, et al., 1997). Increased levels of tumor uptake due to sustained blood
concentration have thereby been achieved. Even further tumor uptake has been achieved
by conjugating molecules with receptor affinity, e.g., monoclonal antibodies or folate,
to the surface of the liposomes. In addition, several studies have indicated the advantage
of applying PEG as a linker between the lipsome and the targeting ligand, since this
also can improve the receptor accessibility (e.g. Maruyama et al, 1997: Gabison et
al, 1999: Lee et al, 1994).
[0005] Liposomes have previously been studied as carriers for radioisotopes (Goins et al,
1998; Turner et al, 1988). Pikul, et al (1987) reported a study based on
212Pb-dextran incorporated passively (i.e.. the
212Pb-dextran was added during the generation of the liposome, and a fraction of the
212 Pb-dextran was incorporated together with the aqueous phase representing the interior
of the liposome). The authors did not suggest that these liposomes were suitable for
cancer therapy, but was using it primarily for studying intracellular cell killing
in vitro with radioisotope. No data of the fate of
212Bi generated from the
212Pb decay was presented, and the size of the liposomes were in the order of 350-500
nm which is very large compared to the size (approx.100 nm) currently considered optimal
for in vivo tumor therapy (Forssen, 1997). Also, the liposomes did not contain PEG
in the membrane.
[0006] Ogihar-Umeda et al. (1996) used liposomes as carrier for the gamma emitting radionuclides
67Ga,
111In and
99mTc, and suggested the use of radiolabeled liposomes for imaging.
[0007] In a theoretical study, Kostarelos et al. (1999) suggested the use of liposomes labeled
with the potentially therapeutically radionucides
131I,
67Cu,
188Re and
211At, but chemical procedures for the preparation of the radiolabeled liposomes were
not suggested.
[0008] EP386 146 B1 describes a composition and method of use for liposome encapsulated
compounds for neutron capture tumor therapy. However, these liposomes were loaded
with stabel elements (e.g. boron), that become radioactive only after activation,
and the liposomes contain neither ionophores nor chelator.
[0009] Utkhede et al., (1994) describes liposomes loaded with
90Y and the chelator DTPA, which is a different chelator compared to the chelators described
in the present invention.Furthermore, retention of mother/daughternuclide(s) is not
described and in addition,
90Y is not a heavy element as the elements described in the present application.
[0010] Achieving sufficiently stable radiolabeling of carriers with heavy alpha-emitting
radionuclides usually requires specific chemical procedures tailored to suit the chemistry
of each element, and such methods are not known. Procedures used to radiolabel e.g.
Ga, In. Tc. Cu or Re cannot be expected to be compatible with heavy radionuclide (atomic
weight over 150) cationic alpha emitters like e.g.
212/213Bi,
212Pb,
223/224Ra,
227Th or
225Ac.
[0011] It is therefore an object of the present invention to provide a radionuclide-liposome
conjugator system, with or without receptor affinic groups, that (1) encapsulates
chelator and heavy radionuclide(s) that emit alpha particle radiation, (2) can retain
daughter nuclide(s) when the mother nuclide(s) is incorporated in the liposome and
(3) can be prepared by an active incorporation procedure useful for a panel of radionuclides,
as well as use of the system and a kit for preparing the system. These objects have
been obtained by the present invention, characterized by the enclosed claims.
[0012] The present invention relates to a conjugator system comprising liposomes with ionophores,
i.e., a metal extracting agent for liposomes, and with chelator and heavy radionuclide(s)
(atomic weight over 150) located inside the liposome. The liposomes are prepared using
active incorporation of the radionuclide, i.e., via ionophores, and prepared according
to procedures yielding liposomes of size of typically 100 nm. The resulting product
shows good chemical stability over several days, and may also retain daughter nuclide(s)
inside the liposome, e.g. from the transformation of
212Pb to
212Bi. The liposomes can be prepared with or without modifying groups like polyalkylene
oxides, e.g., PEG, attached to the membrane. Herein we also describe a method to link
such radiolabeled liposomes to tumor seeking proteins, such as e.g. folate conjugated
monoclonal antibodies.
[0013] The present invention will now be described in more detail, with reference to figures
and examples.
Figure 1 Binding of PEGylated liposomes, containing either Fab' or folate-labeled
Fab' antibody conjugated to the liposome membrane, to OVCAR 3 cells.
Figure 2 Binding of folated versus non-folated PEG liposomes to OVCAR 3 cells.
[0014] In order to develop radiolabeled liposomes that are suitable for cancer therapy,
the present inventors have studied the preparation and use of liposomes loaded with
heavy radionuclides (i.e., atomic weight over 150) emitting alpha particles, based
on the radionuclides
212Bi,
213Bi,
223 Ra,
224Ra,
225Ac,
212Pb and
227Th. Using liposomes (vesicles) with ionophores, radiolabeled liposomes with preferably
a chelator (i.e., the liposomes are encapsulating radionuclide and chelator) were
prepared by use of active incorporation of the radionuclide, and prepared according
to procedures yielding liposomes of a typical size of 100 nm.
[0015] Unilamellar vesicles were prepared by thin lipid film hydration and extrusion (Olson
et al. 1979, Mac Donald et al. 1991) in the following manner: DSPC (distearoyl phosphatidyl
choline) and cholesterol in a 2:1 molar ratio, typically 10 and 5 µmol, respectively,
were dissolved in chloroform in a round bottom flask. The solvent was removed by rotary
evaporation using reduced pressure. The dry lipid film was then hydrated in 0.5-1
ml of 150 mM citric acid, 30 mM DOTA (1,4,7,10 tetraazacyclododecane 1,4,7,10 N, N',
N'', N '''tetraacetic acid), pH 4. The resulting suspension was subjected to five
cycles of freezing and thawing followed by repeated extrusion through polycarbonate
filters of 100 nm pore size 5 times and of 50 nm pore size 5 times employing a manual
extruding device (Avestin. Ottawa. Canada). The product had a lipid concentration
of ~ 30 mM. Prior to radionuclide loading of the liposomes, the external solution
was exchanged by elution on a PD-10 column for 250 mM sucrose, 20 mM HEPES (N-2-hydroxyethylpiperazine-N'-2
ethanesulphonic acid), pH 7.4.
[0016] Liposome constituents: a) Internal aqueous medium: pH 1-14, preferably 2-9, more
preferably 4-5. Constituents: Water; agents capable of maintaining the desired pH
in the internal aqueous medium for the desired time interval. i.e., until ionophore-mediated
incorporation of radiometal(s) is initiated. Preferably, the constituents of the internal
aqueous medium also leads to a comnplexing function of the radiometal(s). This can
be brought to effect by i) e.g. electrostatic donor functions of the agents used for
adjustment pH, e.g. the oxygen atom(s) in acetate, citrate and related compounds;
ii) in addition, having a complexing agent in the internal aqueous medium, e.g. EDTA,
DTPA, DOTA, DOTMP and related compounds.
b) lonophore: e.g. agent capable of transporting, essentially irreversible, a radio
metal across the lipid bilayer from the extraliposomal phase to the liposome interior.
Examples: Ionophores showed to function in the desired manner: Calcium ionophore A
23187, Dicyclohexyl 18-C6, Bibenzo-18-C6, 2,3,-dimercapto-1-propanol, Pb-ionophore.
c) Constituents of the lipid bilayer: Constituents of the lipid bilayer preferably
result in a mixture capable of forming vesicles, and for which the liquid-to-solid
transition temperature is above the physiological temperature; e.g., i) phospholipids.
Examples: Long-chained, alkyl-phosphatidylcholines e.g. 1,2-dilauroyl-sn-glycero-3-phosphocholine
(DLPC), 1,2-dinlyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC); ii) sterols or compounds
possessing similar properties in that they stiffens (decrease the fluidity of) the
lipid bilayer. Examples: Compounds of the sterol class : Cholesterol and cholesterol
3-sulfate, and iii) (sterically) in vivo stabilizer(s) for increasing tumor-cell targeting
properties of the construct and increasing the blood residence time, e.g. polyethers,
polyethylene glycols. Inclusion of PEG and/or PEG derivatives in liposome formulations
will offer advantages in terms of reduced clearance of injected liposomes from the
circulatory system by the reticulo-endothelial system. Normally included in the preparation
at 3-10 mol % relative to phospholipid. The amount of stabilizer necessary for obtaining
the desired stabilizing effect is, however, dependent of the monomer (electrostatic
and polar properties) and the number of repeating units i.e.. the chain length. Examples
(PEG and/or PEG derivatives): 1,2-dinlyristoyl-sn-glycero-3-phosphoethano lamine-N-[poly(ethylene
glycol) 2000] (PEG2000 DJ\1PE), 1,2-dipalmitoyl-sn-glycero-3-phosphoethano lamine-N-[poly(ethylene
glycol)2000 ] (PEG2000 DPPE), 1,2-distearoyl-sn-glycero-3-phosphoethano lamine-N-[poly(ethylene
glycol)2000] (PEG2000 DSPE).
d) Constituents facilitating modification of constucts to possess tumor cell targeting
properties: The choice of appropriate activated lipid will be determined by the nature
of the hapten, as well as the requirements of the investigation. The efficiency of
the reaction will be governed by the leaving group, hydrophilic spacer, material properties
of the liposome, and the concentration of reactants. For in vivo investigations, in
which the hapten is required to remain associated with the liposome, distinct advantages
will be gained by choosing longer acyl chain lipid anchors which exchange more slowly
between membranes. Further, the covalent bond between hapten and lipid anchor should
be stable to both chemical and enzymatic cleavage. The activated lipids can function
to form e.g. amine, amide, thioeter, or disulphide bonds between the lipid and modificator.
If sterically stabilizers are included in the preparation, e.g. PEG and/or PEG derivatives,
the group functioning for coupling is preferably present on the end of a compound
equal or similar to the stabilizer and with an effective chain length equal to or
longer of than that of the stabilizer. Examples: Vesicle constituents facilitating
modification of constructs to possess tumor cell targeting properties from the PEG
and/or PEG derivatives: N-[w-(2-pyridyldithiopropionylamino) poly(ethyleneglycol)
2000] 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (PDP-PEG2000-DSPE), N-{w-[4-(p-maleimidophenyl)butanoyl]amino}
poly(ethylene glycol) 2000] 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (MpB-
PEG2000- DSPE).
[0017] Separation of liposome associated radionuclide from non-associated radionuclide was
achieved by the use of size-exclusion chromatography (Mauk and Gamble 1979. Tilcock
et al. 1991). For the separations following liposome loading procedures. PD-10 size
exclusion columns were employed. From applied volumes of 1 ml or less on the PD-1
0 columns, the liposomes eluted in the first 4.5 ml. Radionuclides not associated
with liposomes eluted in the fraction corresponding to low molecular weight species.
PD-10 columns were also used in the study of the stability (with respect to radionuclide
retention) of the loaded liposomes in
PBS.
[0018] The separation of liposome associated radionuclides from free radionuclides in the
serum was performed by size exclusion chromatography on a Sepharose CL-4B column (Hwang
and Mauk, 1977). Thereby solutions containing radioactive liposomes dispersed in a
liquid carrier substancially free from unbound radionuclides could be prepared.
[0019] EDTA (ethylene diamine N, N' tetra acetic acid) was added prior to the chromatographic
procedures to stabilize the free radionuclide in a state that could easily be separated
from the liposome associated fraction.
[0020] The radionuclide loading yield for, and the latency of, the liposome associated radionuclides
was established by gamma-spectroscopy for
228Ac,
223Ra,
212Pb,
212Bi,
205Bi and
207Bi,
228Ac and
205/207Bi were used as a tracer for the potentially therapeutically useful radionuclides
225Ac,
212Bi and
213Bi, respectively.
[0021] The present inventors made the significant and unexpected discovery that
212Bi did not translocate significantly after the decay of
212Pb incorporated in this type of liposomes. Current status for the use of
212Pb as a molecularly linked generator for
212Bi, indicates that a significant release (≥ 30%) usually occurs from a chelator (McClure
and Feinendegen, 1998; Mirzadeh et al., 1993). However, by trapping of the
212Pb in a high concentration of chelator, such as for example inside of the liposome,
release of daughter product could be avoided providing a conjugator system that could
be used to trap the daughter nuclide after nuclear transformation. This is the first
time a conjugator system for
212Pb that could retain the
212Bi daughter nuclide almost quantitatively is reported. Thus, the present invention
relates to liposomes with ionophores that comprises radionuclide and chelator located
inside the liposome (conjugator system), and wherein this conjugator system can or
cannot retain the daughter nuclide.
[0022] A chelator according to the present invention, can be selected from the group comprising
1,4,7.10 tetraazacyclododecane-1,4,7,10 N, N', N", N"'-tetraacetic acid (DOTA),
1,4,7,10 tetraazacyclotridecane-1,4,7,10 N, N', N", N"'-tetraacetic acid (TRITA),
1,4,7,10 tetraazacyclotetradecane-1,4,7,10 N, N', N", N"'-tetraacetic acid (TETA),
1,4,7,10 tetraazacyclododecane-1,4,7,10 N, N', N", N"'-tetra(methylene) phosphonic
acid (DOTMP),
1,4,7,10 tetraazacyclotridecane-1,4,7,10 N, N', N", N'''-tetra(methylene) phosphonic
acid,
1,4,7,10 tetraazacyclotetradecane-1,4,7,10 N. N', N", N'''-tetra(methylene) phosphonic
acid,
diethylene triamine N. N'. N" pentaacetic acid and isomeric derivatives thereof, cryptate[2,2,2],
cryptate[3,2,2], cryptate[2,2,1] and mono and di-benzo derivatives thereof.
bridged calix[4]arenes containing electron rich (donor) groups (hydroxyl, carboxyl,
ester, amid, amine),
1.10 diaza-4,7,13,16-tetraoxacyclooctadecane-1,10 N, N' bis-acetic acid, and
1.10 diaza-4,7,13,16-tetraoxacyclooctadecane-1,10 N, N' bis-malonate.
[0023] Another important and surprising discovery was that liposomes according to the present
invention could incorporate and retain
223Ra efficiently. This is the first time that a conjugator system potentially useful
for tumor targeting with radium-223 is described. In addition, we show that also bismuth
and actinium can be incorporated and strongly retained in the presently described
type of liposomes, indicating that conjugator systems based on
212Bi,
213Bi and
225Ac also can be prepared.
[0024] The conjugator system according to the present invention can be made with or without
modifying surface groups. e.g.. PEG, in the liposome membrane (PEG grafted/PEGylated
liposomes). The advantage of applying PEG in the membrane is that it provides some
PEG-reactive groups that allows conjugation of proteins such as e.g. antibodies, antibody
fragments or constructs or folate, or other receptor affinic (receptor binding) proteins/molecules.
[0025] The present application further relates to a new type of liposomes with receptor
binding proteins attached to the liposome membrane. Herein we describe radiolabeled
PEG grafted liposomes conjugated to folate labeled antibodies. The use of folate and
folate derivatives to target tumors expressing folate binding proteins (FBP), a glycosyl-phosphatidyl-inositol-linked
cell membrane protein involved in cellular uptake of oxidized folates via endocytosis,
has attracted attention among researchers (Kranz et al., 1996; Reddy et al., 1998;
Shinoda et al., 1998: Trippet et al., 1999). As several types of human cancer cells
have been shown to overexpress FBP, this receptor may be a possible target for delivery
of therapeutic radioisotopes conjugated with folate. Thus, by using antibodies conjugated
to folate, a targeted radionuclide therapy against cancer could be obtained. Furthermore,
if the folate labeled antibody's antigen combining site is directed against a tumor
associated antigen different from FBP, dual binding ability is achieved (i.e.. affinity
for both the antibody-antigen and FBP receptor is achieved). To our knowledge, this
is the first time conjugation of folate-labeled antibodies is described.
[0026] The folate-labeled antibodies conjugated to the liposomes according to the present
invention could further be labeled with a radionuclide or a mixture of different radionuclides
in order to increase the radiotherapy.
[0027] The present invention shows that this new combination of folate labeled antibodies
conjugated to liposomes can be used to target radionuclide(s) to cells expressing
folate receptors. This is especially useful with alpha particle emitters, which are
high linear energy transfer (high-LET) radiation emitters that are extremely cytotoxic
to mammalian cells (Hall, 1994; Larsen et al., 1998; Ritter et al.. 1977). However,
an alpha radiation source can deliver radiation to a particularly small area compared
to other types of radiation. Thus, if an alpha radiation source can be directed to
a target tissue, tissue exposure to normal tissue can be reduced.
[0028] A conjugator system according to the present invention could also be used to target
cells expressing e.g. estrogen receptor or testosterone receptor, by conjugating antibodies
to estrogen or testosterone.
[0029] The labeled antibodies used according to the present invention are preferably of
IgG or IgM class, and/or fragments and/or constructs (e.g. minibody) thereof. Furthermore,
these antibodies and/or fragments and/or constructs could be murine, chimeric or fully
humanized, polyclonal or monoclonal.
[0030] The present invention also relates to use of the conjugator system according to the
present invention, to prepare a pharmaceutical solution suitable for injection or
infusion into mammals, including humans, by intravenous and/or regional, and/or intratumoral
route of administration. The pharmaceutical solution can be used in combination with
a radioimmunoconjugate or several radioimmunoconjugates, and/or other forms of radiopharmaceutical
therapy, chemotherapy, external beam therapy or surgery, to treat malignancies.
[0031] The present invention also relates to manufacture the conjugator system according
to the present invention to treat malignancies such as e.g. brain-, lung-, cervix-,
ovary- or breast cancer, or leukemia, lymphoma or malignant melanoma.
[0032] The present invention also relates to a kit for the preparation of the conjugator
system according to the present invention, comprising a vial containing a liposome
solution and a second vial containing radionuclide in a solution, that can be mixed
to facilitate radiolabeling. In addition, this could be mixed with a third vial containing
a proteins and/or molecules with receptor affinity to obtain a receptor affinic conjugator
system.
Reagents and equipment
[0033] Gamma-spectroscopy was performed using a germanium detector (Canberra, Meriden, CT,
USA) coupled to a multichannel analyzer (EG&G ORTEC. Oak Ridge, TN, USA). A Beckmann
LS 6500 (Beckmann, Fullerton, CA. USA) was used for liquid scintillation counting.
DSPC and cholesterol purchased from Northern Lipids (Vancouver. Canada). Sephadex
G-25 PD-10 columns (Amersham Pharmacia Biotech AB, Uppsala, Sweden) was used for the
purification of radiolabeled liposomes. The macrocyclic chelator DOTA was used as
intra-liposomal chelator and was purchased from Macrocyclics (Richardson, TX. USA).
Ultrex grade HNO
3 (J.T. Baker, Phillipsburg. NJ, USA) and 6M HCl (Fisher Scientific. Pittsburgh. PA.
USA) and bis(2-ethyl hexyl) phosphoric acid (HDEHP) from Fluka (via Sigma-Aldrich
AS, Norway) was used in the study.
[0034] All buffers used for the ionophore mediated cation loading of liposomes were adjusted
to the desired pH using arginine (free base). All water used was obtained from a Milli-Q
water purification system (Millipore, Bedford, MA. USA).
[0035] Ion exchange resins were supplied by Bio-Rad (Hercules, CA, USA).
[0036] The resins was preconditioned by washing with water, then 6 M HCl followed by acetone
and finally with water. The resins were stored in water prior to column packing.
[0037] The DMSO used was stored with 4 Å sieves.
[0038] The
232Th(NO
3)
4 used in this work had been stored for more than 20 y. The sample was provided by
Nuclear Chemistry Group, Department of Chemistry University of Oslo, Oslo, Norway.
[0039] 3H-folic acid was purchased from Amersham Pharmacia Biotech (Buckinghamshire, UK).
[0040] All other chemicals were purchased from Sigma-Aldrich, Norway.
[0041] Table 1 shows some physical properties of radionuclides used in experiments with
liposomes.
Table 1
| Nuclide |
t1/2 |
gamma-ray(s) |
% probability* |
| 228Ac |
6.13h |
911.2 (26.6) |
26.6 |
| 223Ra |
11.43d |
269.4 (13.7)
271.2 (0.108) (219Rn)2 |
13.7
10.8 |
| 212Pb |
10.6h |
238.6 (43.6) |
43.6 |
| 208Tl |
3.05m |
583.1 (32.5) |
35.2 |
| 207Bi |
31.55y |
569.7 (97.7) |
97.7 |
| 205Bi |
15.31d |
703.4 (31.1) |
31.1 |
| *Only the most abundant gamma-ray is listed for each radionuclide. Data from Nuclear
Data Sheets, Academic Press INC. |
Best mode
[0042] Liposomes prepared according to the described procedures were loaded with radium-223
or lead-212. Thereafter, antibodies were reacted with liposomes to achieve antibody
molecules on the surface of the liposomes. Lipsome size of about 100 µm will be appropriate
for systemic delivery, but typical sizes of 200-1000 µm can be used when intracavitary
delivery, e.g., for the treatment of intracranial brain tumor, or for the treatment
of intraperitoneal ovarian cancer, is to be achieved. (The larger liposome size could
slow down clearance rate from the cavity where the preparation is injected, thereby
maintaining a high concentration in the tumor region.)
EXAMPLES
Example 1. Loading of 212Pb/212Bi in liposomes
[0043] Methods: 212Pb/
212Bi was produced via emanation of
220Rn from a
228Th source as described by Hassfjell and Hoff (1994). No carrier added
212Pb/
212Bi was leached from the collection vessel using 0.1 M HNO
3, and the solution applied to a 2x20 mm column of AG 50W-X4 cation exchange resin.
212Pb/
212Bi was then eluted in 2 M HCl and the solution evaporated to dryness. The
212Pb/
212Bi was then dissolved in 200 µl 10 mM acetate solution, pH 5.
212Pb was quantified by measurement of its 238.6 keV gamma-ray (Table 1).
212Bi was quantified by measuring the 583.1 keV gamma-ray of its daughter
208Tl at radioactive equilibrium.
[0044] Results: Less than 0.2% of the added activity was found to be associated with the liposomes
for incubation times up to 3 days.
[0045] Liposomes corresponding to a lipid concentration of 30-60 mM was vigorously mixed
with a film of the ionophore A23187 (10-13 nM). Approximately 1 MBq of
212Pb/
212Bi was then added and the mixture was incubated at 75 °C for 30 min, followed by elution
on a PD-10 column. The fraction containing more than 95% of the loaded vesicles was
then eluted on a second PD-10 column. The latency of the liposome associated
212Pb/
212Bi was investigated by incubating the vesicles at 37 °C in human serum or PBS. The
activity distribution was followed over a 24 h period.
Results: Loading efficacy of 212Pb: 34.8 % (n=3).
[0046] Retention was measured by gamma spectroscopy, and more than 99% of the
212Pb was associated with the liposomes for incubation times up to 24h.
Example 2: Retention of 212Bi formed from the decay of liposome-associated 212Pb
[0047] Methods: Liposomes were loaded with
212Pb as described above. The liposome associated radioactivity was isolated by eluting
the reaction mixture with 10 mM EDTA in PBS on a PD-10 column pre-equilibrated with
10 mM EDTA in PBS.
[0048] After 3 hours, in order to ensure that transient equilibrium between
212Pb and
212Bi was established, aliquots of the solution were applied to PD-10 columns pre-equilibrated
with 10mM EDTA in PBS for separation of free radionuclides from liposome-associated
radionuclides. The activity distribution was followed over a 24 h period.
[0049] A separate aliquot of the labeled liposomes that did not undergo the separation procedure
(of identical geometry to that obtained from chromatographical procedures) was measured
for use as a standard. This was performed to establish the activity ratio of
212Bi/
212Pb at radioactive equilibrium.
[0050] Results: By comparing the ratio of
212Bi/
212Pb obtained for the chromatographically separated liposomes with that of the equilibrium
mixture, it was estimated that more than 95% of the
212Bi was shown to be retained in the liposomes after the decay of liposome associated
212Pb.
[0051] Additionally, measurements of the
212Bi activity in the two chromatographically obtained fractions were compared. More
than 99% of the total
212Bi activity eluted in the fractions corresponding to the liposomes.
Example 3: Investigating possible Pb and Bi reloading in liposomes
[0052] Methods: Liposomes corresponding to 30-60 mM lipid, entrapping 150 mM citric acid. 30 mM DOTA.
and using an external solution containing 10 mM EDTA in PBS were added to a film of
the ionophore A23187 (20-26 nmol on the inside surface of a glass vial).
212Pb and
212Bi in PBS was then added followed by incubation at 37 °C. Aliquots of the solution
were eluted through PD-10 columns and the chromatographically obtained fractions corresponding
to the liposome-eluate was assayed by the intrinsic Ge-detector.
Results: No detectable loading (< 1%) of 212Pb and 212Bi was observed over a 24 h time period.
Example 4: Loading of 223Ra in liposomes
[0053] 223Ra was produced from a generator based on
227Ac as described (Larsen and Henriksen, 1999). Briefly,
227Ac and its daughter nuclide
227Th are retained in a column of an extraction chromatographic resin facilitating elution
of
223Ra using a mineral acid. For incorporating radium into liposomes, the eluted solution
from the generator was evaporated to dryness and
223Ra was then dissolved in 5 mM citrate, pH 7.4.
[0054] Liposomes corresponding to a lipid concentration of 30-60 mM was vigorously mixed
with a film of the ionophore A23187 (10-13 nmol on the inner surface of a glass vial).
Thereafter, approximately 50 kBq of
223Ra was added and the mixture incubated at 75 °C for 20 min. The reaction mixture was
then added to 100 µl of 10 mM EDTA, and eluted on a PD-10 column for isolating the
radioactivity associated with the lipid vesicles.
[0055] The retention of the liposome associated
223Ra was investigated by incubating the vesicles at 37 °C in human serum (Sigma) or
5 mM EDTA in human serum at a liposome concentration of 0.3mg total lipid/ml serum.
The results are exhibited in the Table 2. and demonstrate that
223Ra is very stably retained in the liposomes.
Table 2
| Incubation time (days) |
% of total 223Ra in liposome fraction |
| 1 |
94.6 ± 1 |
| 3 |
94 ± 2.5 |
| 4 |
94.7 ± 0,5 |
| Mean s.d. , n=4 |
Example 5. Determining if reloading would contribute in the 223Ra retention experiment.
[0056] Methods: Liposomes corresponding to 30-60 mM of lipid, formed by hydration of lipid films
with 150 mM citric acid, 30 mM DOTA. external solution PBS or serum were added to
a film of the ionophore A23187 (10-13 nmol distributed on the inside surface of a
glass vial).
223Ra in 5 mM citrate pH 7.4 was then added followed by incubation at 37 °C. Aliquots
of the solution were applied to PD-10 columns and the chromatographically obtained
fraction corresponding to the liposomes was assayed by the intrinsic Ge-detector.
Example 6: Loading of 207Bi in liposomes
[0057] Methods: 203-207Bi was produced by (p. xn) reactions on natural lead targets and purified by using
a lead selective extraction chromatographic resin (Henriksen and Hoff, 1998).
[0058] An isotopic Bi-mixture consisting mainly of
205Bi and
207Bi, hereafter denoted as
207Bi, was used in this study. 50 µl of a solution of
207Bi in 10
-4 M HCl was added to the liposomes, corresponding to 30-60 mM of lipid, which in advance
had been mixed with a film of the ionophore A23187 (10-13 nmol on the inner surface
of a glas vial) and incubated for 30 min at 75 °C. The reaction mixture was then added
100 µl of 10 mM EDTA, and eluted on a PD-10 column to isolate the radioactivity associated
with the lipid vesicles.
[0059] Results: 32% of the total
207Bi was found to be associated with the liposomes.
Example 7. Loading of 228Ac in liposomes
[0060] Methods:
228Ac was isolated from a
232Th(NO
3)
4 preparation by a combination of solvent extraction and ion exchange.
232Th(NO
3)
4 (4H
2O originally) was dissolved in 20 ml 0.1 M HNO
3 and added to a 500 ml separation funnel and contacted with 5x100 ml of a 2 M solution
of HDEHP in heptane. The aqueous phase was then washed three times with heptane and
thereafter applied to a 3x40 mm column of AG50W-X12 cation exchange resin for isolation
of
228Ac as described (Cabell, 1959). From the column,
212Pb,
212Bi,
224Ra and
228Ra was eluted in 3 M HNO
3 and the solution was left for >20 h. The solution was then evaporated to dryness
followed by leaching the radionuclides from the vessel with 1 ml 1 M HNO
3. This solution was applied to a 3x40 mm column of AG50W-X12. Again.
212Pb,
212Bi,
224Ra and
228Ra was eluted in 3 M HNO
3.
228Ac was eluted in 6 M HNO
3 and the eluate evaporated to dryness.
228Ac was then leached form the vessel using 200 µl 5 mM HNO
3. Approximately 6 kBq of
228Ac was added to the liposomes containing the ionophore A23187 as described above,
and incubated for 60 min at 75 °C. The reaction mixture was then added to 100 µl of
10 mM EDTA. and eluted on a PD-10 column to isolate the radioactivity associated with
the lipid vesicles. Fractions corresponding to more than 95% of the loaded vesicles
were pooled and then eluted on a second PD-10 column. The liposomal retention of
228Ac was investigated by incubating the radiolabeled vesicles at 37 °C in human serum
or PBS. The activity distribution was followed over a 24 h period.
[0061] Results: In the loading experiment 90-95% of the added
228Ac (corrected for decay during labeling and purification) was associated with the
liposomes after the loading procedure. In the retention experiment more than 98% of
the
228Ac was found to be associated with the liposomes for incubation times up to 24 h.
Example 8: Loading of 90Y
[0062] Methods: 90Y was used as a tracer in this example to study the behavior of radiolabeled liposomes.
90Y and
90Sr was measured by liquid scintillation counting in this study.
[0063] 90Y was isolated from
90Sr by means of a strontium selective extraction chromatographic resin as described
by Dietz and Horwitz (1992). Here,
90Sr (Amersham, Buckinghamshire, England) in 0.1 M HNO
3 was evaporated to dryness and residue added 3 M HNO
3. The solution was loaded onto a 3x20 mm column of Sr-resin (EiChroM. Darien. IL,
USA) and the column washed with 5 ml 3 M HNO
3.
[0064] This procedure selectively elutes
90Y while Sr is sufficiently retained on the column to lower the
90Sr content of a
90Sr/
90Y mixture by a factor of approximately 10
3 (Dietz and Horwitz, 1992). After this,
90Sr was stripped from the column using 0.05 M HNO
3 and this solution was left for one week in order to allow
90Y to grow in. Then, the solution was evaporated to dryness and the residue added 3
M HNO
3 before separating the radionuclides on a second column of Sr-Resin. The eluate containing
90Y was evaporated to dryness and the radionuclide leached form the vessel using 200
µl 5 mM HNO
3. This solution was added to liposomes containing the ionophore A23187 (as described
previously) and incubated for 60 min at 75 °C. The reaction mixture was then added
50 µl 10 mM EDTA, and eluted on a PD-10 column for isolating the radioactivity associated
with the lipid vesicles. The fraction corresponding to more than 95% of the vesicles
was then eluted on a second PD-10 column. The liposome retention of the liposome associated
90Y was investigated by incubating the vesicles at 37 °C in human serum or PBS. The
activity distribution was followed over a 4 day-period.
[0065] Results: More than 95 % of the added
90Y was associated with the liposomes after 1 hour of loading and purification on gel
exclusion column.
[0066] In the study of the liposomal retention the following results were obtained: after
5h and 1 day more than 99% was liposome associated. After 4 days the liposome associated
fraction was determined to be 98 ±1 %.
[0067] As shown in these experiments liposomes can be radiolabeled with alpha-particle and/or
beta-particle emitting radionuclides and retain these nuclides well at physiological
temperature.
Example 9: Preparation of Yttrium-90/Radium-223 PEGylated liposome-folate-Fab'
[0068] F(ab')
2 RØ myeloma (Subclass IgG
1) 14mg/ml in PBS was used for this experiment (Michalsen. Norwegian Institute of Public
Health. Oslo, Norway).
Conjugation of folic acid to antibodies
[0069] Folic acid ●2H
2O was firstly dissolved in dimethyl sulfoxide (Fluka, H
2O content less than 0.05%). The solution was then cannulated onto activated 4 Å sieves
(Fluka) and stored under an argon atmosphere in the dark for 6-10 hours. Tritium labeled
folate (
3H-folate) was added as an aqueous solution of the potassium salt of
3H-folate (1% with respect to citric acid). The specific activity of the
3H-folate used for conjugation to protein was 7-7.5 GBq/mol.
[0070] The
3H-folate was activated for coupling to F(ab')
2 myeloma antibody by adding 10 mol equivalents of 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide to the folate solution and incubating for 30 min at ambient temperature.
Thereafter, a 30-40-fold molar excess of the activated folate was added to protein,
14 mg/ml in PBS, and allowed to react for 30-60 min. The reaction was quenched by
adding 0.2 ml of 0.3 M glycine in PBS/borate, pH 8.5. The folate F(ab')
2 conjugate (folate-F(ab')
2) was separated from unreacted material using a PD-10 column preequillibrated in PBS.
In order to form folate-Fab', folate-F(ab')
2 was incubated in 1 mM Dithiotreitol (DTT) at ambient temperature for 2 h followed
by elution on a NAP-5 size exclusion column. The fraction containing folate-Fab' was
deoxygenated by bubbling Argon through the solution where after the solution was immediately
mixed with the liposome solution.
[0071] The extent of folic acid conjugation was determined by the
3H-content of the purified protein as measured by liquid scintillation counting (Beckmann
LS6500) combined with spectrophotometrical readings at 280nm.
[0072] For quantification of the liposome bound fraction of folate-Fab'. a trace amount
of iodinated F(ab')
2 was added prior to the reaction with DTT (the protein was iodinated via IodoGen according
to standard procedures).
Conjugation of labeled antibodies to liposomes
[0073] DSPE-PEG2000-MPB (Northern Lipids. VA. Canada), sodium salt was included at 5 mol
% of total phospolipid. Liposomes were otherwise constituted and were also prepared
for the ionophore mediated cation loading step in an identical manner to that described
for the non-PEGylated liposomes.
[0074] After allowing the reaction mixture after the loading step to reach room temperature
the liposome suspension was deoxygenated prior to adding folate-Fab' to obtain a protein
concentration of 0.3-0.5 mg/ml. Lipid concentration was 1-3 mM as determined by the
Bartlett phosphorous assay (Bartlett, 1958). The folate-Fab' and liposomes were allowed
to react for 2 h at ambient temperature. The reaction mixture was then applied using
a PD-10 column equilibrated in PBS. folate-Fab' conjugated PEG-liposomes were stored
at 4 °C for 12-15 h prior to use in the folate-receptor binding assays .
[0075] Liposome-bound radioactivity was measured by a NaI well type detector correcting
for the spillover in the respective channels from the doubly labeled samples. Samples
of single nuclide and a mixtures of the nuclides were used as reference.
[0076] From the radioactivity measurements, the protein concentration was converted to the
number of Fab' per liposome assuming a liposome size of 100 nm and 8●10
4 phospholipids/vesicles (Kirpotin et al. 1997) and a molecular weight of the Fab'
Myeloma antibody equal to 52 000.
[0077] The cell bound radioactivity was measured by the NaI-detector (3 higher concentrations
for Y-90) and liquid scintillation counting after adding Insta-Gel plus (Packard)
(Table 3).
| Table 3. Binding of 90Y-liposomes conjugated with antibodies with or without folate, to OVCAR cells. |
| Added liposome/cell |
% cell bound folat-negative liposomes |
% cell bound folat-positive liposomes |
| 1●105 |
<0,5 |
10 ± 3 |
| 1●104 |
1 ± 0.5 |
9 ± 3 |
| 1●103 |
4 ± 2 |
11 ± 2 |
| 1●102 |
5 ± 1 |
16 ± 2 |
| 10 |
8 ± 3 |
46 ± 8 |
Detection of 3H-folate on liposomes
[0078] PEG liposomes (2.5 mM lipid conc.) in 20 mM HEPES/300 mM sucrose was reacted with
3H-folate conjugated Fab' (0.5mg/ml in PBS. folate/Fab ratio of 2 ± 0.2). After 2 h
at room temperature, the folate-Fab' coupled liposomes were isolated by elution on
a column of Sepharose CL-4B. The amount of
3H-folate-Fab' on the liposomes was quantified by liquid scintillation counting of
the chromatographically obtained fractions, and the folate-Fab'/liposome ratio was
determined to be approximately 110 .
Abbreviations:
[0079]
- DSPC :
- distearoyl phosphatidyl choline
- DOTA :
- 1,4.7.10 tetraazacyclododecane 1.4,7,10 N, N', N'', N''' tetraacetic acid
- DSPE-PEG2000-MPB:
- N-(4-(p-Maleimidophenyl)butyryl)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (Northern Lipids. VA, Canada).
- HEPES :
- N-2-hydroxyethylpiperazine-N'-2 ethanesulphonic acid
- PBS
- : phosphate buffered saline
- EDTA :
- ethylene diamine N. N' tetra acetic acid
- HDEHP:
- bis(2-ethyl hexyl) phosphoric acid
- PEG
- : poly etylene glycol
- DTT :
- dithiotreitol
References:
[0080]
Bartlett GR. Phosphorus assay in column Chromatography. J. Biol. Chem. 234 (3), 466-468
(1958).
Cabell MJ. The purification, determination and neutron capture cross section of actinium-227.
Can. J. Chem. 37, 1094-1101, (1959).
DeVita Jr VT, Hellman S. Rosenberg SA. Cancer. Principles & practice of oncology.
5th edition Lippincot-Raven, Philadelphia. New York, USA (1997).
Dietz ML and Horwitz EP. Improved chemistry for the production of Y-90 for medical
applications. Appl. Radiat. Isot. 43, 1093-1101 (1992).
Forssen EA. The design and development of DaunoXome® for solid tumor targeting in
vivo. Adv. Drug Delivery Rev. 24. 133-150 (1997).
Gabizon R, Horowitz AT, Goren D, Tzemach D, Mandelbaum-Shavit F, Quasen MM, and Zalipsky
S. Targeting Folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted
liposomes: In vitro studies. Bioconjugate Chem. 10, 289-298 (1999).
Gabison A. Liposome circulation time and tumor targeting: Implication for cancer chemotherapy.
Adv. Drug Delivery Rev. 16, 285-294 (1995).
Gaze MN. The current status of targeted radiotherapy in clinical practice. Phys. Med.
Bol. 41, 1895-1903 (1996).
Goins B. Phillips WT. and Klipper R. Repeat injection studies of technetium-99m labeled
PEG-liposomes in the same animal. J. Liposome Res. 8(2), 265-281 (1998).
Hall E. Radiobiology for the radiologist. Fourth Edn. JB Lippincott Company, Philadelphia,
USA (1994).
Hassfjell SP and Hoff P. A generator for production of Pb-212 and Bi-212.
Appl. Radiat. Isot. 45. 1021-1025 (1994).
Henriksen G and Hoff P. Isolation of cyclotron produced Bi-205, Bi-206 and Pb-203
using a lead-selective extraction chromatographic resin. Appl. Radiat. Isot. 49, 357-359
(1998).
Hwang KJ and Mauk MR. Fate of lipid vesicles in vivo: A gamma-ray perturbed angular
correlation study. Proc. Nati. Acad. Sci. USA. 74, 4991-4995 (1977).
Kirpotin D, Park JW. Hong K. Zalipsky S. Wen-Lu L, Carter P, Benz CC and Papahadjopoulos
D. Sterically stabilised Anti-HER2 Immunoliposomes: Design and targeting to human
breast cancer cells in Vitro. Biochemistry. 36, 66-75, (1997).
Kostarelos K. Emfietzoglou D and Stamatelou M. Liposome-mediated delivery of radionuclides
to tumor models for cancer radiotherapy: A quantitative analysis. J. Liposome Res.
9 (3), 407-424 (1999).
Kranz. DM. Roy, EJ and Patrick. TA. Conjugates of folate anti-effector cell antibodies.
United States Patent number: 5 547 668 (20. Aug. 1996).
Larsen RH, Akabani G, Welsh P and Zalutsky MR. The cytotoxicity and microdosimetry
of astatine-211-labeled chimeric monoclonal antibodies in human glioma and melanoma
cells in vitro. Radiat. Res. 149, 155-162 (1998).
Larsen RH. Henriksen G. Norwegian Patent application No P990001 (1999).
Lee RJ and Low PS. Delivery of liposomes into cultured KB cells via folate receptor-mediated
endocytosis. J. Biol. Chem. 269, 3198-3204 (1994).
MacDonald RC. MacDonald RI, Menco BPhM., Takeshita K, Subbarao NK and Hu Lan-rong.
Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Bioch.
Biophys. Acta 1061, 297-303 (1991).
Maruyama K, Takizawa T, Takahashi N, Tagawa T, Nagaike K and Iwatsuru M. Targeting
efficiency of PEG-immunoliposorne-conjugated antibodies at PEG terminals. Adv. Drug
Delivery Rev. 24. 235-242 (1997).
Mauk MR and Gamble RC. Preparation of lipid vesicles containing high level of entrapped
radioactive cations. Anal. Biochem. 94, 302-307 (1979).
McClure JJ and Feinendegen, LE. Alpha-emitters for medical therapy: Second Biannual
Workshop, Toronto, Canada, June 4-5, (1998). Report from Department of Energy. Germantown,
MD, USA
Mirzadeh S, Kumar K, Ganzow. OA. The chemical fate of 212Bi-DOTA formed by b-decay
of 212Pb(DOTA)2-. Radiochimica Acta, 60, 1-10 (1993).
Ogihara-Umeda I, Sasaki T. Kojima S. Nishigori H. Optimal radiolabeled liposomes for
tumor imaging. J. Nucl. Med. 37 (2), 326-332 (1996).
Olson F, Hunt CA, Szoka F, Vail WJ and Papahadjopoulos D. Preparation of liposomes
of defined size distribution by extrusion through polycarbonate membranes. Bioch.
Biophys. Acta 557, 9-23 (1979).
Pikul II SS, Parks NJ. Schneider PD. In vitro killing of melanoma by liposome delivered
intracellular irradiation. Arch. Surg. 122, 1417-1420 (1987).
Reddy. JA and Low. PS. Folate-mediated targeting of therapeutic and imaging agents
to cancers. Critical Reviews in Therapeutic Drug Carrier Systems 15 (6): 587-627 (1998).
Ritter MA, Cleaver JE. and Tobias CA. High-LET radiations induce a large proportion
of non-rejoining DNA-breaks. Nature 266, 653-655 (1977).
Shinoda, T, Takagi, A, Maeda, A. Kagatani, S, Konno, Y and Hashida, M. In vivo fate
of folate-BSA in non-tumour- and tumour-bearing mice. J Pharm Sci 87 (12): 1521-1526, 1998.
Tilcock CP. Ahkong QF and Parr M. An improved method for the preparation of liposomal
gadolinium-DTPA- Ionophore-Mediated active entrapment of gadolinium. Invest. Radiol.
26. 242-247 (1991).
Trippett, TM and Bertino, JR. Therapeutic strategies targeting proteins that regulate
folate and reduced folate transport. J Chemotherapy 11: 3-10 (1999).
Turner AF, Presant CA, Proffitt RT, Wiliams LE, Winsor DW and Werner JL. In-111-labeled
liposomes: Dosimetry and tumor depiction. Radiology 166 (3), 761-765 (1988).
Utkhede D, Yeh V, Szucs M and Tilcock C. Uptake of Yttrium-90 into lipid vesicles.
Jour. Lip. Res. 4(2), 1049-1061 (1994).
1. Conjugator system, characterized in that it comprises liposomes with ionophores and with chelator located inside of the liposomes,
the liposomes further encapsulates heavy radionuclide(s) emitting α particles or 212Pb as a generator for the α-emitter 212Bi, wherein the heavy radionuclides has an atomic weight of greater than 150.
2. Conjugator system according to claim 1, characterised in that the concentration of chelator inside the liposomes is suitable.to retain daughter
nuclides.
3. Conjugator system according to any of the claims 1 to 2, characterised in that a chelator is selected from the group comprising 1,4,7,10 tetraazacyclododecane-1,4,7,10
N,N',N",N"'-tetraacetic acid (DOTA),
1,4,7,10 tetraazacyclotridecane-1,4,7,10 N,N',N",N'''-tetraacetic acid (TRITA)
1,4,7,10 tetraazacyclotetradecane-1,4,7,10 N,N',N",N"'-tetraacetic acid (TETA),
1,4,7,10 tetraazacyclododecane-1,4,7,10 N,N',N",N"'-tetra (methylene) phosphonic acid
(DOTMP),
1,4,7,10 tetraazacyclotridecane-1,4,7,10 N,N',N",N"'-tetra(methylene) phosphonic acid,
1,4,7,10 tetraazacyclotetradecane-1,4,7,10 N,N',N",N"'-tetra(methylene) phosphonic
acid, diethylene triamine N,N',N" pentaacetic acid and isomeric derivatives thereof
, cryptate[2,2,2], cryptate[3,2,2], cryptate[2.2,1] and mono and di-benzo derivatives
thereof, bridged calix[4]arenes containing electron rich (donor) groups (hydroxyl,
carboxyl, ester, amid, amine),
1,10 diaza-4,7,13,16-tetraoxacyclooctadecane 1,10 N,N' bis-acetic acid, and
1,10 diaza-4,7,13,16-tetraoxacyclooctadecane 1,10 N,N' bis-malonate.
4. Conjugator system according to any of the claims 1 to 3, characterised in that the liposomes contain activated groups in the membrane allowing conjugation of proteins
or other receptor affinic molecules to these activated groups.
5. Conjugator system according to claim 4, wherein said activated groups are poly ethylene
glycol.
6. Conjugator system according to any of the claims 1 to 5, characterised in that the liposomes are conjugated to receptor binding proteins.
7. Conjugator system as claimed in claim 6 wherein said receptor binding proteins are
monoclonal or polyclonal antibodies, or antibody fragments or constructs, or folate.
8. Conjugator system according to claim 6, characterised in that the liposomes are conjugated with antibodies of IgM or IgG class, or fragments or
constructs from these classes of antibodies.
9. Conjugator system according to claim 6, characterised in that the liposomes are conjugated with antibodies of IgM or IgG class, or fragments or
constructs from these classes of antibodies, wherein the antibodies, fragments or
constructs are labelled with folate and a radionuclide or a mixture of different radionuclides.
10. Conjugator system according to any of the claims 1 to 9, characterized in that the antibodies or antibody fragments or constructs conjugated to the liposomes are
murine, chimeric or human, monoclonal or polyclonal.
11. Conjugator system according to claim 10, characterised in that the antibodies or antibody fragments or constructs are labelled with folate, wherein
the antigen binding site is directed towards folate binding protein (FBP).
12. Conjugator system according to claim 10, characterised in that the antibodies or antibody fragments or constructs are labelled with folate, wherein
the antigen binding site is directed towards an antigen different, from FBP.
13. Conjugator system according to any of the claims 1 to 12, characterised in that the radionuclide is a heavy alpha emitter and/or 212Pb as a generator for the α-emitter 212Bi, selected from 211At, 212Bi, 213Bi, 212Pb 225Ac, 223Ra, 224Ra and 227Th.
14. Conjugator system according to any of the claims 1 to 13, characterised in that the daughter nuclide and the mother nuclide are 212Bi and 212Pb, respectively.
15. Method to prepare a radiolabeled conjugator system, characterised in that liposomes with ionophores and chelator of a suitable concentration are stably radiolabeled
with heavy α- particle emitters, by mixing a solution containing radionuclide or a
mixture of radionuclides which emits α-particle radiation or 212Pb as a generator for the α-emitter 212Bi, wherein the heavy α- particle emitters have atomic weight greater than 150 with
a solution containing liposomes and incubate at elevated temperature compared to physiological
temperature to obtain transport of the radionuclide(s) into the liposomes.
16. Method according to claim 15, characterised in that the chelator is selected from the group comprising 1,4,7,10 tetraazacyclododecane-1,4,7,10
N,N',N",N"'-tetraacetic acid (DOTA),
1,4,7,10 tetraazacyclotridecane-1,4,7,10 N,N',N",N"'-tetraacetic acid (TRITA),
1,4,7,10 tetraazacyclotetradecane-1,4,7,10 N,N',N",N"'-tetraacetic acid (TETA),
1,4,7,10 tetraazacyclododecane-1,4,7,10 N,N',N",N"'-tetra(methylene) phosphonic acid
(DOTMP),
1,4,7,10 tetraazacyclotridecane-1,4,7,10 N,N',N",N"'-tetra(methylene) phosphonic acid,
1,4,7,10 tetraazacyclotetradecane-1,4,7,10 N,N',N",N"'-tetra(methylene) phosphonic
acid,
diethylene triamine N,N',N" pentaacetic acid and isomeric derivatives thereof, cryptate[2,2,2],
cryptate[3,2,2], cryptate[2,2,1] and mono and di-benzo derivatives thereof, bridged
calix[4]arenes containing electron rich (donor) groups (hydroxyl, carboxyl, ester,
amid, amine),
1,10 diaza-4,7,13,16-tetraoxacyclooctadecane-1,10 N,N' bis-acetic acid, and
1,10 diaza-4,7,13,16-tetraoxacyclooctadecane-1,10 N,N' bis-malonate.
17. Method according to any of the claims 15 to 16, characterised in that the liposomes contain activated groups in the membrane allowing conjugation of proteins
or other receptor affinic molecules.
18. Method according to claim 17, characterised in that the activated groups are poly ethylene glycol.
19. Method according to any of the claims 15 to 18, characterised in that the liposomes are conjugated to receptor binding proteins.
20. Method as claimed in claim 19 wherein said receptor binding proteins are monoclonal
or polyclonal antibodies or antibody fragments or constructs or folate.
21. Method according to claim 19, characterized in that the liposomes are conjugated with antibodies of IgM or IgG class, or fragments or
constructs from these classes of antibodies
22. Method according to claim 19, characterised in that the liposomes are conjugated with antibodies of IgM or IgG class, or fragments or
constructs from these classes of antibodies, wherein the antibodies are labelled with
folate and a radionuclide or a mixture of different radionuclides, using standard
procedures for folate and radionuclide labelling of the antibody.
23. Method according to any of the claims 15 to 22, characterised in that an antibody or antibody fragments or constructs conjugated to the liposomes are murine,
chimeric or human, monoclonal or polyclonal.
24. Method according to claim 23, characterised in that the antibody or antibody fragments or constructs are labelled with folate, wherein
the antigen binding site is directed towards FBP.
25. Method according to claim 23, characterised in that the antibodies or antibody fragments or constructs are labelled with folate, wherein
the antigen binding site is directed towards an antigen different from FBP.
26. Method according to any of the claims 15 to 25, characterised in that the radionuclide is a heavy alpha emitter or 212Pb as a generator for the α-emitter 212Bi, selected from 211At, 212Bi, 213Bi, 212Pb 225Ac, 223Ra, 224Ra and 227Th.
27. Method according to any of the claims 15 to 26, characterised in that the daughter nuclide and the mother nuclide are 212Bi and 212Pb, respectively.
28. Process for the manufacture of the conjugator system according to any of the claims
1 to 14, suitable for injection or infusion into mammals, including humans.
29. Process according to claim 28, to prepare a pharmaceutical solution suitable for injection
or infusion into mammals, including humans, by intravenous, and/or regional, and/or
intratumoral route of administration.
30. Use of the conjugator system according to any of the claims 1-to 14 to prepare a pharmaceutical
solution suitable for injection or infusion into mammals including humans in combination
with a radioimmunoconjugate or several radioimmunoconjugates and/or other forms of
radiopharmaceutical therapy, chemotherapy external beam therapy or surgery to treat
malignancies.
31. Use of a conjugator system as claimed in any one of claims 1 to 14 for the manufacture
of a medicament for injection into human subjects for the purpose of delivering potentially
therapeutic radiation to malignant cells expressing receptors selected from folate
binding protein, oestrogen receptor and testosterone receptor.
32. The use as claimed in claim 31 wherein said malignant cells are derived from malignant
tissue selected from brain cancer, lung cancer, cervical cancer, ovarian cancer, breast
cancer, leukaemia, lymphoma and malignant melanoma.
33. Kit for the preparation of the conjugator system according to any of the claims 1
to 14, characterised in comprising a vial containing a liposome solution and a vial containing radionuclide
in a solution that can be mixed to facilitate radiolabeling.
34. Kit for the preparation of the conjugator system according to any of the claims 1
to 14, characterised in comprising a vial containing a liposome solution and a second vial containing radionuclide
in a solution and a third vial containing a molecule with receptor affinity, that
can be mixed to facilitate radiolabeling and labelling with a receptor affinic molecule.
1. Konjugatorsystem, dadurch gekennzeichnet, dass es Liposomen mit lonophoren und mit im Inneren der Liposomen angeordnetem Chelator
umfasst und die Liposomen außerdem (ein) α-Teilchen emittierende(s) schwere(s) Radionuklid(e)
oder 212Pb als Generator des α-Emittors 212Bi umschließen, wobei das (die) schwere(n) Radionuklid(e) ein Atomgewicht von mehr
als 150 aufweist (aufweisen).
2. Konjugatorsystem nach Anspruch 1, dadurch gekennzeichnet, dass die Konzentration des Chelators im Inneren der Liposomen geeignet ist, Tochtemuklide
zu binden.
3. Konjugatorsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Chelator ausgewählt ist unter 1,4,7,10-Tetraazacyclododecan-1,4,7,10-N,N',N",N'''-tetraessigsäure
(DOTA),
1,4,7,10-Tetraazacyclotridecan-1,4,7,10-N,N',N",N'''-tetraessigsäure (TRITA), 1,4,7,10-Tetraazacyclotetradecan-1,4,7,10-N,N',N",N'''-tetraessigsäure
(TETA),
1,4,7,10-Tetraazacyclododecan-1,4,7,10-N,N',N",N'''-tetra(methylen)-phosphonsäure
(DOTMP)
1,4,7,10-Tetraazacyclotridecan-1,4,7,10-N,N',N",N'''-tetra(methylen)-phosphonsäure,
1,4,7,10-Tetraazacyclotetradecan-1,4,7,10-N,N',N",N'''-tetra(methylen)-phosphonsäure,
Diethylentriamin-N,N',N"-pentaessigsäure und isomere Derivative davon, Kryptat[2.2,2],
Kryptat[3,2,2], Kryptat[2,2,1] und Mono- und Dibenzoderivate davon, verbrückte Calix[4]arene
mit elektronenreichen (Donor-) Gruppen (Hydroxyl, Carboxyl, Ester, Amid, Amin), 1,10-Diaza-4,7,13,16-tetraoxacyclooctadecan-1,10-N,N'
bis-essigsäure und
1,10-Diaza-4,7,13,16-tetraoxacyclooctadecan-1,10-N,N'-bis-malonat.
4. Konjugatorsystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Liposomen aktivierte Gruppen in der Membran enthalten, die eine Konjugation von
Proteinen oder anderen rezeptoraffinen Molekülen an diese aktivierten Gruppen gestatten.
5. Konjugatorsystem nach Anspruch 4, wobei es sich bei den aktivierten Gruppen um Polyethylenglykol
handelt.
6. Konjugatorsystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Liposomen an Rezeptorbindungsproteine konjugiert sind.
7. Konjugatorsystem nach Anspruch 6, wobei die Rezeptorbindungsproteine monoklonale oder
polyklonale Antikörper oder Antikörperfragmente oder -konstrukte oder Folat sind.
8. Konjungatorsystem nach Anspruch 6, dadurch gekennzeichnet, dass die Liposomen mit Antikörpern der Klasse IgM oder IgG oder Fragmenten oder Konstrukten
dieser Antikörperklassen konjugiert sind.
9. Konjugatorsystem nach Anspruch 6, dadurch gekennzeichnet, dass die Liposomen mit Antikörpern der Klasse IgM oder IgG oder Fragmenten oder Konstrukten
dieser Antikörperklassen konjugiert sind, wobei die Antikörper, Fragmente oder Konstrukte
mit Folat und einem Radionuklid oder einem Gemisch verschiedener Radionuklide markiert
sind.
10. Konjugatorsystem nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die an die Liposomen konjugierten Antikörper oder Antikörperfragmente oder -konstrukte
von der Maus stammend, chimärer Natur oder vom Menschen stammend, monoklonal oder
polyklonal sind.
11. Konjugatorsystem nach Anspruch 10, dadurch gekennzeichnet, dass die Antikörper oder Antikörperfragmente oder -konstrukte mit Folat markiert sind,
wobei die Antigenbindungsstelle gegen Folatbindungsprotein (FBP) gerichtet ist.
12. Konjugatorsystem nach Anspruch 10, dadurch gekennzeichnet, dass die Antikörper oder Antikörperfragmente oder -konstrukte mit Folat markiert sind,
wobei die Antigenbindungsstelle gegen ein von FBP verschiedenes Antigen gerichtet
ist.
13. Konjugatorsystem nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass es sich bei dem Radionuklid um einen schweren alpha-Emitter und/oder 212Pb als Generator des α-Emitters 212Si handelt, ausgewählt unter 211At, 212Bi, 213Bi, 212Pb, 225Ac, 223Ra, 224Ra und 227Th.
14. Konjugatorsystem nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das Tochtemuklid und das Muttemuklid 212Bi beziehungsweise 212Pb sind.
15. Verfahren zur Herstellung eines radiomarkierten Konjugatorsystems, dadurch gekennzeichnet, dass man Liposomen mit lonophoren und einem Chelator geeigneter Konzentration stabil mit
schweren α-Teilchen-Emittern radiomarkiert, indem man eine Lösung, die ein α-Teilchenstrahlung
emittierendes Radionuklid oder ein Gemisch von Radionukliden oder 212Pb als Generator des α-Emitters 212Bi enthält, wobei die schweren α-Teilchen-Emitter ein Atomgewicht von mehr als 150
aufweisen, mit einer Liposomen enthaltenden Lösung mischt und bei gegenüber physiologischer
Temperatur erhöhter Temperatur inkubiert, wobei man eine Wanderung des (der) Radionuklids
(der Radionuklide) in die Liposomen erhält.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass der Chelator ausgewählt ist unter 1,4,7,10-Tetraazacyclododecan-1,4,7,10-N,N',N",N'''-tetraessigsäure
(DOTA), 1,4,7,10-Tetraazacyclotridecan-1,4,7,10-N,N',N",N'''-tetraessigsäure (TRITA),
1,4,7,10-Tetraazacyclotetradecan-1,4,7,10-N,N',N",N'''-tetraessigsäure (TETA),
1,4,7,10-Tetraazacyclododecan-1,4,7,10-N,N',N",N'''-tetra(methylen)-phosphonsäure
(DOTMP)
1,4,7,10-Tetraazacyclotridecan-1,4,7,10-N,N',N",N'''-tetra(methylen)-phosphonsäure,
1,4,7,10-Tetraazacyclotetradecan-1,4,7,10-N,N',N",N'''-tetra(methylen)-phosphonsäure,
Diethylentriamin-N,N',N"-pentaessigsäure und isomere Derivative davon, Kryptat[2,2,2],
Kryptat[3,2,2], Kryptat[2,2,1] und Mono- und Dibenzoderivate davon, verbrückte Calix[4]arene
mit elektronenreichen (Donor-) Gruppen (Hydroxyl, Carboxyl, Ester, Amid, Amin), 1,10-Diaza-4,7,13,16-tetraoxacyclooctadecan-1,10-N,N'
bis-essigsäure und
1,10-Diaza-4,7,13,16-tetraoxacyclooctadecan-1,10-N,N'-bis-malonat.
17. Verfahren nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass die Liposomen aktivierte Gruppen in der Membran enthalten, die eine Konjugation von
Proteinen oder anderen rezeptoraffinen Molekülen gestatten.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass es sich bei den aktivierten Gruppen um Polyethylenglykol handelt.
19. Verfahren nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, dass die Liposomen an Rezeptorbindungsproteine konjugiert sind.
20. Verfahren nach Anspruch 19, wobei die Rezeptorbindungsproteine monoklonale oder polyklonale
Antikörper oder Antikörperfragmente oder -konstrukte oder Folat sind.
21. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die Liposomen mit Antikörpern der Klasse IgM oder IgG oder Fragmenten oder Konstrukten
dieser Antikörperklassen konjugiert sind.
22. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die Liposomen mit Antikörpern der Klasse IgM oder IgG oder Fragmenten oder Konstrukten
dieser Antikörperklassen konjugiert sind, wobei die Antikörper mit Folat und einem
Radionuklid oder einem Gemisch verschiedener Radionuklide mittels Standardverfahren
zur Folat- und Radionuklidmarkierung des Antikörpers markiert sind.
23. Verfahren nach einem der Ansprüche 15 bis 22, dadurch gekennzeichnet, dass die an die Liposomen konjugierten Antikörper oder Antikörperfragmente oder -konstrukte
von der Maus stammend, chimärer Natur oder vom Menschen stammend, monoklonal oder
polyklonal sind,
24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass die Antikörper oder Antikörperfragmente oder -konstrukte mit Folat markiert sind,
wobei die Antigenbindungsstelle gegen FBP gerichtet ist.
25. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass die Antikörper oder Antikörperfragmente oder -konstrukte mit Folat markiert sind,
wobei die Antigenbindungsstelle gegen ein von FBP verschiedenes Antigen gerichtet
ist.
26. Verfahren nach einem der Ansprüche 15 bis 25, dadurch gekennzeichnet, dass es sich bei dem Radionuklid um einen schweren alpha-Emitter und/oder 212Pb als Generator des α-Emitters 212Bi handelt, ausgewählt unter 211At, 212Bi, 213Bi, 212Pb, 225Ac, 223Ra, 224Ra und 227Th.
27. Verfahren nach einem der Ansprüche 15 bis 26, dadurch gekennzeichnet, dass das Tochternuklid und das Mutternuklid 212Bi beziehungsweise 212Pb sind.
28. Verfahren zur Herstellung des Konjugatorsystems nach einem der Ansprüche 1 bis 14,
geeignet zur Injektion oder Infusion in Säuger, einschließlich des Menschen.
29. Verfahren nach Anspruch 28, zur Herstellung einer pharmazeutischen Lösung, die zur
Injektion oder Infusion in Säuger, einschließlich des Menschens, durch intravenöse
und/oder regionale und/oder intratumorale Verabreichungsweise geeignet ist.
30. Verwendung des Konjugatorsystems nach einem der Ansprüche 1 bis 14 zur Herstellung
einer pharmazeutischen Lösung, die zur Injektion oder Infusion in Säuger, einschließlich
des Menschen geeignet ist, in Kombination mit einem Radioimmunkonjugat oder verschiedenen
Radioimmunkonjugaten und/oder anderen Formen der radiopharmazeutischen Therapie, Chemotherapie,
äußerlichen Strahlungsbehandlung oder Chirurgie zur Behandlung bösartiger Tumoren,
31. Verwendung eines Konjugatorsystems nach einem der Ansprüche 1 bis 14 zur Herstellung
eines Arzneimittels zur Injektion in menschliche Patienten zu dem Zweck, potentiell
therapeutische Strahlung an entartete Zellen abzugeben, die unter Folatbindungsprotein,
Östrogenrezeptor und Testosteronrezeptor ausgewählte Rezeptoren exprimieren.
32. Verwendung nach Anspruch 31, wobei die entarteten Zellen abgeleitet sind von bösartigem
Gewebe, das unter Gehimkrebs, Lungenkrebs, Gebärmutterhalskrebs, Eierstockkrebs, Brustkrebs,
Leukämie, Lymphomen und bösartigen Melanomen ausgewählt ist.
33. Kit zur Herstellung des Konjugatorsystems nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass es ein Behältnis mit einer Liposomenlösung und ein Behältnis mit einem Radionuklid
in einer Lösung, die zur erleichterten Radiomarkierung vermischt werden kann, umfasst.
34. Kit zur Herstellung des Konjugatorsystems nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass es ein Behältnis mit einer Liposomenlösung und ein zweites Behältnis mit einem Radionuklid
in einer Lösung und ein drittes Behältnis mit einem Molekül mit Rezeptoraffinität
enthält, die zur erleichterten Radiomarkierung und Markierung mit einem rezeptoraffinen
Molekül vermischt werden können.
1. Système de conjugaison, caractérisé en ce qu'il comprend des liposomes avec des ionophores et un chélateur situés à l'intérieur
des liposomes, les liposomes encapsulent en outre un ou des radionucléides lourds
émettant des particules α ou 212Pb en tant générateur pour l'émetteur α212Bi, dans lequel le ou les radionucléides lourds ont un poids atomique supérieur à
150.
2. Système de conjugaison selon la revendication 1. caractérisé en ce que la concentration de chélateur dans les liposomes est appropriée pour conserver des
nucléides filles.
3. Système de conjugaison selon l'une quelconque des revendications 1 à 2, caractérisé en ce qu'un chélateur est choisi parmi le groupe comprenant l'acide 1,4,7,10 tétraazacyclododécane-1,4,7,10
N,N',N",N'''-tétraacétique (DOTA),
l'acide 1.4.7.10 tétraazacyclotridécane-1,4,7,10 N,N',N",N'''-tétraacétique (TRITA)
l'acide 1,4,7,10 tétraazacyclotétradécane-1,4,7,10 N,N',N",N'''-tétraacétique (TETA),
l'acide 1,4,7,10 tétraazacyclododécane-1,4,7,10 N,N',N",N'''-tétra(méthylène)phosphonique
(DOTMP),
l'acide 1,4,7,10 tétraazacyclotridécane-1,4,7,10 N,N',N",N'''-tétra(méthylène)phosphonique,
l'acide 1,4,7,10 tétraazacyclotétradécane-1,4,7,10 N,N'.N",N"'-tétra(méthylène)phosphonique,
l'acide diéthylène triamine N,N',N" pentaacétique et des dérivés isomères de celui-ci,
le cryptate [2,2,2], le cryptate [3,2,2], le cryptate [2-2,1] et des dérivés mono
et di-benzo de ceux-ci, des calix[4]arènes pontées contenant des groupes (donneurs)
riches en électron (hydroxyle, carboxyle, ester, amide, amine),
l'acide 1,10 diaza-4,7,13,16-tétraoxacyclooctadécane 1,10,N,N' bis-acétique, et
le 1,10 diaza-4,7,13,16-tétraoxacyclooctadécane 1,10,N,N' bis-malonate.
4. Système de conjugaison selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les liposomes contiennent des groupes activés dans la membrane permettant la conjugaison
des protéines ou d'autres molécules ayant une affinité pour des récepteurs à ces groupes
actifs.
5. Système de conjugaison selon la revendication 4, dans lequel lesdits groupes activés
sont du polyéthylèneglycol.
6. Système de conjugaison selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les liposomes sont conjugués à des protéines se liant à des récepteurs.
7. Système de conjugaison selon la revendication 6 dans lequel lesdites protéines se
liant à des récepteurs sont des anticorps monoclonaux ou polyclonaux, ou des fragments
ou des hybrides d'anticorps, ou de l'acide folique.
8. Système de conjugaison selon la revendication 6, caractérisé en ce que les liposomes sont conjugués à des anticorps de classe IgM ou IgG. ou des fragments
ou des hybrides de ces classes d'anticorps.
9. Système de conjugaison selon la revendication 6, caractérisé en ce que les liposomes sont conjugués à des anticorps de classe IgM ou IgG. ou des fragments
ou des hybrides de ces classes d'anticorps, dans lequel les anticorps, fragments ou
hybrides sont marqués avec l'acide folique et un radionucléide ou un mélange de différents
radionucléides.
10. Système de conjugaison selon l'une quelconque des revendications 1 à 9, caractérisé en ce que les anticorps ou les fragments ou hybrides d'anticorps conjugués aux liposomes sont
murins, chimères ou humains, monoclonaux ou polyclonaux.
11. Système de conjugaison selon la revendication 10, caractérisé en ce que les anticorps ou fragments ou hybrides d'anticorps sont marqués avec de l'acide folique,
dans lequel le site anticorps est dirigé vers la protéine de liaison de l'acide folique
(FBP).
12. Système de conjugaison selon la revendication 10, caractérisé en ce que les anticorps ou fragments ou hybrides d'anticorps sont marqués avec de l'acide folique,
dans lequel le site anticorps est dirigé vers un antigène différent de FBP.
13. Système de conjugaison selon l'une quelconque des revendications 1 à 12, caractérisé en ce que le radionucléide est un émetteur alpha lourd et/ou 212Pb en tant générateur pour l'émetteur α212Bi, choisi parmi 211At, 212Bi, 213Bi, 212Pb 225Ac, 223Ra, 224Ra et 227Th.
14. Système de conjugaison selon l'une quelconque des revendications 1 à 13, caractérisé en ce que le nucléide fille et le nucléide mère sont 212Bi et 212Pb, respectivement.
15. Procédé pour préparer un système de conjugaison radiomarqué, caractérisé en ce que les liposomes avec des ionophores et un chélateur d'une concentration appropriée
sont radiomarqués de manière stable avec des émetteurs de particule α lourds, en mélangeant
une solution contenant un radionucléide ou un mélange de radionucléide qui émet un
rayonnement de particules α ou 212Pb en tant que générateur pour l'émetteur α212Bi, dans laquelle les émetteurs de particule a lourds ont un poids atomique supérieur
à 150, avec une solution contenant des liposomes et incubent à une température élevée
en comparaison à une température physiologique pour obtenir un transport du ou des
radionucléides dans les liposomes.
16. Procédé selon la revendication 15, caractérisé en ce que le chélateur est choisi parmi le groupe comprenant l'acide 1.4.7.1.0 tétraazacyclododécane-1,4,7,10
N,N',N',N'''-tétraacétique (DOTA),
l'acide 1,4,7,10 tétraazacyclotridécane-1,4,7,10 N,N',N",N'''-tétraacétique (TRITA)
l'acide 1,4,7,10 tétraazacyclotétradécane-1,4,7,10 N.N'.N",N"'-tétraacétique (TETA),
l'acide 1,4,7,10 tétraazacyclododécane-1,4,7,10 N,N',N",N'''-tétra(méthylène)phosphonique
(DOTMP),
l'acide 1,4,7,10 tétraazacyclotridécane-1,4,7,10 N,N',N",N'''-tétra(méthylène)phosphonique,
l'acide 1,4,7,10 tétraazacyclotétradécane-1,4,7,10 N,N',N",N'''-tétra(méthylène)phosphonique,
l'acide diéthylène triamine N,N',N" pentaacétique et des dérivés isomères de celui-ci,
le cryptate [2,2,2], le cryptate [3,2,2], le cryptate [2-2,1] et des dérivés mono
et di-benzo de ceux-ci, des calix[4]arènes pontées contenant des groupes (donneurs)
riches en électron (hydroxyle, carboxyle, ester, amide, amine),
l'acide 1,10 diaza-4,7,13,16-tétraoxacyclooctadécane 1,10,N,N' bis-acétique, et
le 1,10 diaza-4,7,13,16-tétraoxacyclooctadécane 1,10,N,N' bis-malonate.
17. Procédé selon l'une quelconque des revendications 15 à 16, caractérisé en ce que les liposomes contiennent des groupes activés dans la membrane permettant la conjugaison
des protéines ou d'autres molécules ayant une affinité pour des récepteurs.
18. Procédé selon la revendication 17, caractérisé en ce que les groupes activés sont du polyéthylèneglycol.
19. Procédé selon l'une quelconque des revendications 15 à 18, caractérisé en ce que les liposomes sont conjugués à des protéines se liant à des récepteurs.
20. Procédé selon la revendication 19 dans lequel lesdites protéines se liant à des récepteurs
ont des anticorps monoclonaux ou polyclonaux, ou des fragments ou des hybrides d'anticorps,
ou de l'acide folique.
21. Procédé selon la revendication 19, caractérisé en ce que les liposomes sont conjugués à des anticorps de classe IgM ou IgG, ou des fragments
ou des hybrides de ces classes d'anticorps.
22. Procédé selon la revendication 19, caractérisé en ce que les liposomes sont conjugués avec des anticorps de classe IgM ou IgG, ou des fragments
ou hybrides de ces classes d'anticorps, dans lequel les anticorps, sont marqués avec
l'acide folique et un radionucléide ou un mélange de différents radionucléides, en
utilisant des modes opératoires standard pour le marquage par acide folique et radionucléide
de l'anticorps.
23. Procédé selon l'une quelconque des revendications 15 à 22. caractérisé en ce qu'un anticorps ou des fragments ou hybrides d'anticorps conjugués aux liposomes sont
murins, chimères ou humains, monoclonaux ou polyclonaux.
24. Procédé selon la revendication 23, caractérisé en ce que l'anticorps ou les fragments ou hybrides d'anticorps sont marqués avec l'acide folique,
dans lequel le site de liaison de l'antigène est dirigé vers (FBP).
25. Procédé selon la revendication 23, caractérisé en ce que les anticorps ou fragments ou hybrides d'anticorps sont marqués avec l'acide folique,
dans lequel le site anticorps est dirigé vers un antigène différent de FBP.
26. Procédé selon l'une quelconque des revendications 15 à 25, caractérisé en ce que le radionucléide est un émetteur alpha lourd ou 212Pb en tant générateur pour l'émetteur α212Bi, choisi parmi 211At, 212Bi, 213Bi, 212Pb 225Ac, 223Ra, 224Ra et 227Th.
27. Procédé selon l'une quelconque des revendications 15 à 26, caractérisé en ce que le nucléide fille et le nucléide mère sont 212Bi et 212Pb, respectivement.
28. Procédé pour la fabrication du système de conjugaison selon l'une quelconque des revendications
1 à 14, approprié pour l'injection ou la perfusion à des mammifères, y compris des
humains.
29. Procédé selon la revendication 28, pour préparer une solution pharmaceutique appropriée
pour l'injection ou la perfusion à des mammifères, y compris des humains, par voie
intraveineuse et/ou régionale, et/ou intratumorale d'administration.
30. Utilisation du système de conjugaison selon l'une quelconque des revendications 1
à 14 pour préparer une solution pharmaceutique appropriée pour une injection ou un
perfusion à des mammifères y compris des humains en combinaison avec un radioimmunoconjugué
ou plusieurs radioimmunoconjugués et/ou d'autres formes de thérapie radiopharmaceutique,
chimiothérapie, radiothérapie externe ou chirurgie pour traiter des affections malignes.
31. Utilisation d'un système de conjugaison selon l'une quelconque des revendications
1 à 14 pour la fabrication d'un médicament pour l'injection à des sujets humains à
des fins de délivrance d'un rayonnement potentiellement thérapeutique à des cellules
malignes exprimant des récepteurs choisis parmi la protéine de liaison de l'acide
folique, un récepteur de l'oestrogène et un récepteur de la testostérone.
32. Utilisation selon la revendication 31 dans laquelle lesdites cellules malignes sont
dérivées de tissu malin choisi parmi le cancer du cerveau, le cancer du poumon, le
cancer cervical, le cancer des ovaires, le cancer du sein, une leucémie, un lymphome
et un mélanome malin.
33. Kit pour la préparation du système de conjugaison selon l'une quelconque des revendications
1 à 14, caractérisé en ce qu'il comprend un flacon contenant une solution de liposomes et un flacon contenant un
radionucléide dans une solution qui peuvent être mélangés pour faciliter le radiomarquage.
34. Kit pour la préparation du système de conjugaison selon l'une quelconque des revendications
1 à 14, caractérisé en ce qu'il comprend un flacon contenant une solution de liposomes et un second flacon contenant
un radionucléide dans une solution et un troisième flacon contenant une molécule avec
une affinité pour un récepteur, qui peuvent être mélangés pour faciliter le radiomarquage
et le marquage avec une molécule ayant une affinité pour un récepteur.

