

Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 258 468 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

20.11.2002 Bulletin 2002/47

(51) Int CI.⁷: **C07C 29/147**, C07C 31/20, C07C 33/26

(21) Application number: 02253047.1

(22) Date of filing: 30.04.2002

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 11.05.2001 US 290434 P

(71) Applicant: ROHM AND HAAS COMPANY Philadelphia, Pennsylvania 19106-2399 (US)

(72) Inventors:

 Park, Won Suh North Andover, Massachusetts 01845 (US)

 Yamamoto, John Hiroshi Haverhill, Massachusetts 01832 (US)

(74) Representative: Kent, Venetia Katherine Rohm and Haas (UK) Ltd European Operations Patent Dept.

> Lennig House 2 Mason's Avenue Croydon, CR9 3NB (GB)

(54) Methods for reduction of substituted malonates to diols

(57) A method for reducing a malonate having the formula $R^1R^2C(CO_2R^3)(CO_2R^4)$ to a diol having the formula $R^1R^2C(CH_2OH)_2$ comprising treating said malonate with sodium aluminum hydride.

EP 1 258 468 A1

Description

Background

[0001] This invention relates generally to a method for reducing substituted malonates to diols using sodium aluminum hydride.

[0002] Substituted malonates have been reduced to the corresponding diols with lithium aluminum hydride or with lithium borohydride, as described in U.S. Patent No. 4,982,016. However, reduction of substituted malonates with sodium aluminum hydride has not been reported.

[0003] Sodium aluminum hydride typically is available commercially as a slurry in toluene at a lower cost than lithium aluminum hydride or lithium borohydride. A method for reducing substituted malonates to diols, without using lithium aluminum hydride or lithium borohydride would be more economical and would be commercially valuable.

Statement of Invention

[0004] The present invention is directed to a method for reducing a malonate of formula $R^1R^2C(CO_2R^3)(CO_2R^4)$ to a diol of formula $R^1R^2C(CH_2OH)_2$ comprising treating said malonate with sodium aluminum hydride; wherein R^1 is aryl, alkyl, aralkyl, alkenyl, or alkynyl; R^2 is hydrogen, aryl, alkyl, alkenyl, or alkynyl; and R^3 and R^4 are independently alkyl or aralkyl.

Detailed Description

[0005] Unless otherwise specified, all percentages herein are stated as weight percentages, temperatures are in °C, and volumes in mL.

[0006] An "alkyl" group is a saturated hydrocarbyl group having from one to twenty carbon atoms in a linear, branched or cyclic arrangement. Preferably, alkyl groups have from one to twelve carbon atoms, and most preferably, from one to six carbon atoms. An "alkenyl" group is an "alkyl" group in which at least one carbon-carbon single bond has been replaced with a double bond. An "alkynyl" group is an "alkyl" group in which at least one carbon-carbon single bond has been replaced with a triple bond. Preferably, alkyl, alkenyl and alkynyl groups are acyclic and unsubstituted. Alkyl, alkenyl and alkynyl groups optionally are substituted with one or more hydroxy, halo, alkyl, alkenyl, alkoxy, amino or alkylamino groups, with substitution by one or more halo groups being possible on alkyl or alkoxy groups. An "aryl" group is a substituent derived from an aromatic compound, including heterocyclic aromatic compounds having at least one nitrogen, oxygen or sulfur atom in the ring. An aryl group has a total of from five to twenty ring atoms, and has one or more rings which are separate or fused. Preferably, aryl groups have from five to ten ring atoms. Substitution on aryl groups of one or more hydroxy, halo, alkoxy, alkyl, alkenyl or alkynyl groups is permitted, with substitution by one or more halo groups being possible on alkyl, alkenyl or alkoxy groups. An "aralkyl" group is an "alkyl" group substituted by an "aryl" group.

[0007] In one embodiment of the invention, R^1 is aryl and R^2 is hydrogen. Preferably, R^1 is phenyl and R^3 and R^4 are alkyl, i.e., the substituted malonate is a dialkyl phenylmalonate. R^3 and R^4 represent the same alkyl group or different alkyl groups. The 2-phenyl-1,3-propanediol product obtained in this embodiment is useful as an intermediate for the corresponding diol dicarbamate compound, an important intermediate in the dye industry and in pharmaceutical applications. In another embodiment of the invention, R^1 and R^2 are alkyl, wherein R^1 and R^2 are the same or different alkyl groups. Preferably, R^1 and R^2 are n-butyl and R^3 and R^4 are alkyl, wherein R^3 and R^4 are the same or different alkyl groups.

[0008] Typically, the method of this invention is performed in an ethereal solvent in which sodium aluminum hydride is soluble, for example, tetrahydrofuran ("THF") or glymes. Suitable glymes include, for example, monoglyme (dimethoxyethane), diglyme (2-methoxyethyl ether), triglyme (triethylene glycol dimethyl ether), and tetraglyme (tetraethylene glycol dimethyl ether). The preferred solvent is THF. The preferred temperature range for the reduction is from -90°C to 150°C, more preferably from 25°C to 90°C, and most preferably from 40°C to 75°C. The reduction reaction is continued until the substituted malonate starting material has been substantially consumed. The preferred reaction time is from 0.1 hours to 48 hours, more preferably from 6 hours to 40 hours, and most preferably from 8 hours to 30 hours. Preferably, the amount of SAH, relative to the amount of malonate, is from 1 to 10 equivalents, more preferably from 1 to 5 equivalents, and most preferably from 1 to 2 equivalents. In one embodiment of the invention, sodium aluminum hydride ("SAH") is introduced in the form of a slurry comprising SAH and toluene. Preferably, the slurry has from 1% to 75% SAH and from 25% to 99% toluene, more preferably from 10% to 60% SAH and from 40% to 90% toluene, and most preferably from 30% to 50% SAH and from 50% to 70% toluene.

2

15

20

35

30

40

45

50

55

Example

Conversion of Diethyl 2,2-Dibutylmalonate to 2,2-Dibutyl-1,3-propanediol

[0009] An oven-dried 1000 mL three-neck flask containing a magnetic stir bar was purged with nitrogen gas and charged with 30 g of sodium aluminum hydride and 250 mL of anhydrous tetrahydrofuran ("THF"). To this solution was added drop-wise, so that the reaction temperature remained below 60°C, a solution of 100 g diethyl 2,2-dibutylmalonate in 150 mL of THF. After completion of the addition (3-4 hours), the reaction mixture was heated to 50°C and maintained at that temperature for 24 hours, after which the solution was cooled to room temperature. Methanol was added drop-wise until all of the excess aluminum hydride had been consumed, followed by 350 mL of saturated aqueous sodium chloride solution. The resulting mixture was separated and extracted three times with 250 mL portions of THF, and the combined THF layers were dried over anhydrous magnesium sulfate for five hours. The solvent was removed in vacuo, resulting in a slightly yellow syrupy sample. To this sample was added 100 g hexane, followed by removal of the solvent in vacuo. The residue was placed in a freezer at -22°C, where after a few hours, the sample solidified. Hexane (5 g) was added to the solid, which was then collected on a glass frit filter and washed with two ten-gram portions of hexane. The crystals were dried in air. Subsequent freezing of the filtrate produced two more crops of crystals, and addition of small amounts of hexane to the filtrate followed by freezing produced another two crops.

Weight of product:			
Fraction 1 36.21 g			
Fraction 2	16.48 g		
Fraction 3	1.51 g		
Fraction 4	3.80 g		
Fraction 5	0.8 g		
Total (% yield)	58.8 g (85.2%)		

[0010] The results from the Example, and from additional reduction experiments are summarized in the following Table. Each experiment started with 100 g of diethyl 2,2-dibutylmalonate and used THF as a solvent, or a mixture of THF and toluene in cases where the metal hydride is used in the form of a toluene slurry. The metal hydrides used were sodium aluminum hydride ("SAH"), lithium aluminum hydride ("LAH"), sodium bis-(2-methoxyethoxy)aluminum hydride ("SDMA") or lithium borohydride ("LBH") with trimethoxyborate ("TMB"). Reaction times are given in hours, and reaction temperatures in °C, as "reflux" (reflux temperatures not measured), or as "r.t." (room temperature).

Table

Metal Hydride	Amount (equiv.)	Reaction Temp.	Reaction Time	Crude Weight	% Yield
SAH	1	50°C	8	36.1 g	58
SAH	1.5	50°C	12	51.75 g	75
SAH	2	50°C	24	58.8 g	85.2
45% SAH/toluene	1.5	50°C	24	61.42 g	89.00
LAH	1	50°C	24	22.65 g	32.82
45% LAH/toluene	1.5	50°C	24	28.49 g	41.28
LAH	2	50°C	24	50.66 g	73.40
SDMA	2	r.t.	22		25 ¹
SDMA/toluene	2	reflux	6		391
SDMA	2	reflux	9		32 ¹
LBH/0.2 TMB	2	60°C	18		0.00

^{1.} Yield determined by gas chromatography; product not isolated.

EP 1 258 468 A1

Claims

- 1. A method for reducing a malonate of formula R¹R²C(CO₂R³)(CO₂R⁴) to a diol of formula R¹R²C(CH₂OH)₂ comprising treating said malonate with sodium aluminum hydride; wherein R¹ is aryl, alkyl, aralkyl, alkenyl, or alkynyl; R² is hydrogen, aryl, alkyl, alkenyl, or alkynyl; and R³ and R⁴ are independently alkyl or aralkyl.
- 2. The method of claim 1 in which R¹ is aryl, alkyl, aralkyl, alkenyl or alkynyl; and R² is hydrogen or alkyl.
- 3. The method of claim 2 in which R¹ is aryl and R² is hydrogen.
- **4.** The method of claim 3 in which R¹ is phenyl and R³ and R⁴ are alkyl.
- **5.** The method of claim 4 in which R³ and R⁴ are ethyl.
- 6. A method for reducing a malonate of formula R¹R²C(CO₂R³)(CO₂R⁴) to a diol of formula R¹R²C(CH₂OH)₂ comprising treating said malonate with sodium aluminum hydride; wherein R¹ is alkyl; R² is alkyl; and R³ and R⁴ are independently alkyl or aralkyl.
 - 7. The method of claim 6 in which R¹ and R² are n-butyl and R³ and R⁴ are alkyl.
 - **8.** The method of claim 7 in which R³ and R⁴ are ethyl.
 - **9.** A method for reducing a malonate of formula R¹R²C(CO₂R³)(CO₂R⁴) to a diol of formula R¹R²C(CH₂OH)₂ comprising treating said malonate with sodium aluminum hydride; wherein R¹ is aryl, alkyl, aralkyl, alkenyl, or alkynyl; R² is hydrogen, aryl, alkyl, alkenyl, or alkynyl; and R³ and R⁴ are independently alkyl or aralkyl; wherein the sodium aluminum hydride is introduced as a slurry comprising sodium aluminum hydride and toluene.
 - **10.** The method of claim 9 in which R¹ is alkyl and R² is alkyl.

4

5

10

25

20

30

35

40

45

50

55

EUROPEAN SEARCH REPORT

Application Number EP 02 25 3047

Category		dication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.7)
X	PROKHORENKO, O.A. Erreduction of some compounds with LiAll hydrocarbon medium additives" J. APPL. CHEM. USSR vol. 64, no. 4, 199 XP001096229	1,2,9	C07C29/147 C07C31/20 C07C33/26	
Υ	* page 852, paragra	ph 1; table 1 *	1-10	
D,Y	US 4 982 016 A (CHO 1 January 1991 (199 * abstract; claim 1	1-01-01)	1-10	
Υ	FINHOLT, A.E. ET AL by sodium aluminium J. AM. CHEM. SOC., vol. 77, no. 15, 19 XP002210529 * column 1, paragra * column 2, line 4- * column 2, paragra	55, page 4163 ph 1; table 1 * 7 *	1-10	TECHNICAL FIELDS SEARCHED (Int.Cl.7)
Υ	selected organic co representative func Comparison of the r of lithium and sodi J. ORG. CHEM.,	aluminum hydride with mpounds containing tional groups. educing characteristics um aluminium hydrides" 93, pages 4727-4731, 1, paragraph 1 * 2, paragraph 2 * I *	1-10	C07C
	The present search report has	been drawn up for all claims	<u> </u>	
	Place of search	Date of completion of the search		Examiner
	MUNICH	22 August 2002	Her	rzog, A
X : par Y : par doo A : tec O : nor	CATEGORY OF CITED DOCUMENTS ticularly relevant if taken alone ticularly relevant if combined with anot nument of the same category hnological background nawdisclosure ermediate document	T : theory or principle E : earlier patent doc after the filling dat her D : document cited ir L : document cited fo & : member of the sa document	sument, but pub e n the application or other reasons	lished on, or

EUROPEAN SEARCH REPORT

Application Number EP 02 25 3047

Category	Citation of document with in	ndication, where appropriate,	Relevant	CLASSIFICATION OF THE
ategory	of relevant pass		to claim	APPLICATION (Int.Cl.7)
Y	Carbonsäuren und ih Natriumaluminiumhyd COLLECT. CZECH. CHE	rid" M. COMMUN., s 736-742, XP001096236 I *	1-10	
Y	BOGATSKII, A.V. ET "Macroheterocycles. stereospecificity of ethyl isopropylacet hydrides in the predibenz-18-crown-6" J. ORG. CHEM. USSR vol. 17, no. 6, 198 XP001096233 * abstract * reaction scheme * page 1063; table	XI. The f the reduction of oacetate by complex sence of (ENGL. TRANSL.), 1, pages 1062-1064,	1-10	TECHNICAL FIELDS SEARCHED (Int.Ci.7)
A	US 3 660 416 A (VIT 2 May 1972 (1972-05 * claim 1 *		1-10	
	The present search report has	peen drawn up for all claims		
***************************************	Place of search	Date of completion of the search		Examiner
	MUNICH	22 August 2002	Her	zog, A
C	ATEGORY OF CITED DOCUMENTS	T : theory or principle E : earlier patent doc	underlying the in	nvention
Y : parti docu A : tech O : non-	cularly relevant if taken alone cularly relevant if combined with anot iment of the same category nological background -written disclosure mediate document	after the filing date	e n the application or other reasons	

EPO FORM 1503 03.82 (P04C01)

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 02 25 3047

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

22-08-2002

	Patent docume cited in search re	nt port	Publication date		Patent family member(s)		Publication date	
US	4982016	Α	01-01-1991	NONE	nggy place: Andre Nilli dage north citic street was: 3000 times	ndrid 1985s, paga maniri 80000 lilggo ppaar sprint l		
US	3660416	Α	02-05-1972	JP US	50028404 B 3839367 A		16-09-1975 01-10-1974	
	n array, gayer milita dalah sinak dajiji qayer make 1980 basa	- 2002 2004 - 1004 1004 2004 - 1004 -	Wag dags gen den 1900 age ann abh 1900 (Pa. 1910 bill 190	et many 1998E Blibil 4ries apply geffet	anne dalle MALE VIVII glave Males 3377 Males Miles 2002 Augus anne de	MANA GARRE SURVEY STUMM SAME STOPPS ARREST	and the page and som the test and the	
			Official Journal of the l					
For more	details about this	annex :see	Official Journal of the I	European P	atent Office, No. 12/	/82		_