

(12)

CORRECTED EUROPEAN PATENT APPLICATION

Note: Bibliography reflects the latest situation

EP 1 262 631 A8

(15) Correction information:

Corrected version no 1 (W1 A2)
INID code(s) 22

(51) Int Cl.:

F01D 5/18 (1968.09)

(48) Corrigendum issued on:

21.02.2007 Bulletin 2007/08

(43) Date of publication:

04.12.2002 Bulletin 2002/49

(21) Application number: **02253563.7**

(22) Date of filing: **21.05.2002**

(84) Designated Contracting States:

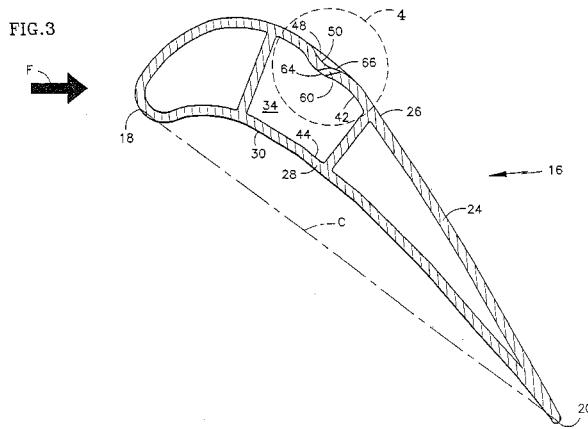
DE FR GB

- Wagner, Joel H.**
Wethersfield, CT 06109 (US)
- Aggarwala, Andrew S.**
East Hartford, CT 06118 (US)

(30) Priority: **21.05.2001 US 861753**

(74) Representative: **Leckey, David Herbert**
Frank B. Dehn & Co.
St Bride's House
10 Salisbury Square
London EC4Y 8JD (GB)

(71) Applicant: **UNITED TECHNOLOGIES**
CORPORATION
Hartford, CT 06101 (US)


(72) Inventors:

- Kohli, Atul**
Tolland, CT 06084 (US)

(54) Film cooled blade or vane

(57) The invention resides in a film cooled article such as a turbine engine blade or vane, having a wall with a hot surface (26) to be film cooled. The hot surface (26) includes a depression (48) featuring a descending flank (52) and an ascending flank (54). Coolant holes (60), which penetrate through the wall, have discharge openings residing on the ascending flank (54). During operation, the depression locally over-accelerates a pri-

mary fluid stream **F** flowing over the ascending flank while coolant jets (70) concurrently issue from the discharge openings. The local over-acceleration of the primary fluid deflects the jets onto the hot surface and spatially constrains the jets thus encouraging them to spread out laterally and coalesce into a laterally continuous, protective coolant film. In one embodiment, the depression (48) is a trough (50). In another embodiment, the depression is a dimple (72).

EP 1 262 631 A8