
Printed by Jouve, 75001 PARIS (FR)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(19)

E
P

1
26

5
22

1
A

1
EP001265221A1
(11) EP 1 265 221 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
11.12.2002 Bulletin 2002/50

(21) Application number: 01401485.6

(22) Date of filing: 08.06.2001

(51) Int Cl.7: G10H 1/00

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(71) Applicant: Sony France S.A.
92110 Clichy (FR)

(72) Inventor: Pachet, Francois
75010 Paris (FR)

(74) Representative: Bertrand, Didier et al
c/o S.A. FEDIT-LORIOT & AUTRES
CONSEILS EN PROPRIETE INDUSTRIELLE
38, Avenue Hoche
75008 Paris (FR)

(54) Automatic music improvisation method and device

(57) The invention provides a method for automati-
cally generating music that constitutes an improvisation,
characterised in that it comprises the steps of:

- establishing a data base of music patterns (42),
- detecting current music data (12),
- generating with reference to said music patterns an

improvisation as a continuation in real time of said

current music data (4).

In this way, an improvisation is performed in a seam-
less manner as continuation of a musical piece played
by an instrument.

The invention also provides the possibility of con-
trolling the direction of improvisation through control da-
ta, e.g. in the form of notes.

EP 1 265 221 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

[0001] The invention relates to a device and process
for automatically improvising music such that it follows
on seamlessly and in real time from music produced
from an external source, e.g. a musical instrument being
played live.
[0002] It can serve to simulate an improvising per-
forming musician, capable for instance of completing a
musical phrase started by a human musician, taking up
instantly with an improvisation that takes into account
the immediate musical context, style and other charac-
teristics.
[0003] In this respect, the invention contrasts with pri-
or computerised music composing systems, which can
be classed into two types:

i) systems which compose on demand autonomous
musical pieces in the manner of a certain composer,
performing artist or musical genre, but which do not
adapt coherently to a live musical environment; and
ii) "question-answer" type systems, i.e. in which a
player inputs a music sequence and the systems
replies with a complementary music sequence. The
latter is influenced by the player input, but forms an
independent musical item with a clear break point
marking the switch from the player input (question)
to the artificially generated response (answer).

[0004] Musical improvisation, especially in Jazz, is
both a fascinating activity and a very frustrating one. Im-
provisation by a human musician requires an intimate
relationship between musical thought and sensory-mo-
tor processes: the musician must listen, think, develop
ideas and move his/her fingers very quickly. Speed and
lack of time are crucial ingredients of improvisation; it is
what makes it exciting. It is also what makes it frustrat-
ing: beginners as well as experienced improvisers are
by definition limited by their technical abilities, and by
the morphology of the instrument.
[0005] The invention can overcome this hurdle by cre-
ating meta instruments which address this issue explic-
itly: providing fast, efficient and enhanced means of gen-
erating interesting improvisation, in a real-world, real-
time context.
[0006] Music improvisation has long been an object
of study for computer scientists. Various systems and
models of improvisation have been designed, using a
wide variety of techniques. Most of the approaches have
consisted in either building partial or fully-fledged im-
provisation systems (Biles, "Interactive GenJam; Inte-
grating Real-Time Performance with a Genetic Algo-
rithm, Proc. IMC 98, Ann Arbor, Michigan; Ramalho, et
al, Simulating Creativity in Jazz Performance. Proc. of
the National Conference in Artificial Intelligence, pp.
108-113, AAAI-94, Seattle, AAAI Press) or in proposing
cognitive models of improvisation (Johnson-Laird, "Jazz
Improvisation: A Theory at the Computational Level",

Representing Musical Structures, P. Howell, R. West
and I. Cross, eds, Academic Press, 291-325).
[0007] In all cases, no system has so far succeeded
in creating fully convincing improvisations: the feeling of
automation is never avoided. Moreover, most of the ex-
isting systems require a considerable amount of explicit,
symbolic information to be given by a human to the sys-
tem, such as human input for supervising learning, the
underlying chord sequence, the tempo, the song struc-
ture, etc.
[0008] In view of the foregoing, the invention departs
from these known approaches in several fundamental
ways.
[0009] First, it provides for seamless integration in the
playing mode of the musician, as opposed to traditional
question/answer or fully automatic systems.
[0010] Second, it is based on agnostic learning, which
does not require any a priori knowledge of the musi-
cian's style, harmonic grid, or tempo.
[0011] Third, it adapts quickly and without human in-
tervention to unexpected changes in rhythm, harmony
or style.
[0012] Finally, it can be made easily and intimately
controllable by the musician - an extension of a musical
instrument - rather than as an actual intelligent and au-
tonomous musical agent. The resulting system
achieves very good performance by basically replacing
explicit, symbolic knowledge and autonomy by intimate
control.
[0013] More particularly, a first object of the invention
is to provide a method of automatically generating music
that constitutes an improvisation, characterised in that
it comprises the steps of:

- establishing a data base of music patterns,
- detecting current music data,
- generating with reference to the music patterns an

improvisation as a continuation in real time of the
current music data.

[0014] The music patterns can be musical phrases
extracted from a stream of music data, each phrase con-
stituting a respective music pattern.
[0015] In the preferred embodiment, the continuation
is determined from potential root nodes of a tree struc-
ture expressing music patterns.
[0016] To this end, the embodiment can comprise the
steps of:

- mapping in a hash table predetermined data, such
as pitch, against a set of tree nodes containing the
data,

- using the hash table to obtain a list of potential root
nodes to start from for generating the continuation,
and

- updating the hash table as a function of the creation
of new nodes in the tree structure.

1 2

EP 1 265 221 A1

3

5

10

15

20

25

30

35

40

45

50

55

[0017] The tree structure can be constructed in ac-
cordance the Lempel-Ziv algorithm using a data com-
pression scheme.
[0018] The generating step may comprise the steps
of:

- extracting at least one traversal of the tree structure
to obtain a set of possible continuations following
on from the current music data, and

- choosing a music sequence continuation from the
set by performing a random draw.

[0019] The above procedure can preferably also in-
clude the step of applying a weighting to nodes of the
tree.
[0020] Advantageously, the invention can provide an
improvisation control mode, comprising the steps of:

- receiving music control data, typically (although not
necessarily) during the improvisation construction
step, and

- selecting at least one pattern for the improvisation
on the basis of the music control data.

[0021] The music control data can comprise a se-
quence of n notes, where n is an arbitrarily chosen
number.
[0022] The continuation can be determined from po-
tential root nodes of a tree structure expressing music
patterns, wherein the selecting step comprises the step
of attributing, to each of one or more nodes of the tree
structure, a weight as a function of how a sequence as-
sociated to a given node matches with the control data.
[0023] The weight attributing step may comprise the
steps of:

- determining a harmonic weighting function
(Harmo_prob) expressed as:

where notes(X) designates a set of pitches repre-
sented by a node X, and Ctrl designates the last n
notes forming the control data, whereby:

- if X is a note, then |X| = 1 and Harmo_prob(x)
= 0 or 1, and

- if X is a chord, then Harmo_prob(x) belongs to
[0,1], and is maximal (1) when all the notes of
X are in the set of external notes,

- using the harmonic weighting as at least a compo-
nent of an overall weighting function (Weight(X)) to
apply to nodes of the tree.

[0024] The overall weighting function, for a possible
node X, can be defined as:

Harmo_prob ; (notes(X) ∩ Ctrl) / |notes(X)|

where LZ(prob(X) is the probability of X in the
Tree, and S is a tuning parameter.
[0025] The method can further comprise the step of
providing a jumping procedure comprising the steps of:

- determining whether, for a given input sub-se-
quence seq, none of the possible continuations
have a non-zero Harmo_prob value,

- if none of the possible continuations have a non-
zero Harmo_prob value, making a random draw
weighted by S, as follows:

If Weight(X) ≤ S, and
If the value of the random draw is less than S,
then

- effecting the jump by restarting the computation of
the next node by taking the whole set of notes of
the tree.

[0026] The step of establishing a data base can com-
prise the step of discriminating between chords and
non-chordal note successions, chords being identified
as notes separated from each other by a time interval
shorter than a predetermined threshold.
[0027] The improvisation generating step is prefera-
bly halted upon detecting current music data. Converse-
ly, the improvisation generating step is preferably start-
ed upon detecting an interruption in the current music
data.
[0028] The music patterns forming the data base can
originate from a source, e.g. music files, different from
the source producing the current music data, e.g. a mu-
sical instrument.
[0029] The music patterns can also be extracted from
the source producing the current music data, e.g. a mu-
sical instrument.
[0030] The music control data can be produced from
a source, e.g. a musical instrument, different from the
source, e.g. another musical instrument, producing the
current music data.
[0031] According to a second aspect, the invention
provides a device for automatically generating music
that constitutes an improvisation, characterised in that
it comprises:

- means for establishing a data base of music pat-
terns,

- means for detecting current music data, and
- means for generating with reference to said music

patterns an improvisation as a continuation in real
time of the current music data.

[0032] The optional features presented supra in the
context of the method according to the invention are ap-

Weight(X) ; (1 - S)*LZ_prob(X) + S*Harmo_prob(X),

3 4

EP 1 265 221 A1

4

5

10

15

20

25

30

35

40

45

50

55

plicable mutatis mutandis to the above device.
[0033] Namely, the above device may further com-
prise means for extracting musical phrases from a
stream of music data, each phrase constituting a re-
spective music pattern.
[0034] The improvisation generating means may
comprise selection means for selecting music patterns
from potential root nodes of a tree structure expressing
music patterns.
[0035] Preferably, the device further comprises:

- hash table means for mapping predetermined data,
such as pitch, in a hash table against a set of tree
nodes containing the data,

- means for obtaining from the hash table a list of po-
tential root nodes to start from for generating the
continuation, and

- means for updating the hash table as a function of
the creation of new nodes in the tree structure.

[0036] Further, the generating means may comprise:

- means for extracting at least one traversal of the
tree structure to obtain a set of possible continua-
tions following on from the current music data, and

- means for choosing a music sequence continuation
from the set by performing a random draw.

[0037] The above device may further comprise
means for applying a weighting to nodes of the tree.
[0038] The device may further be equipped with an
improvisation control mode, comprising:

- means for receiving music control data (Ctrl), typi-
cally (although not necessarily) during the improvi-
sation construction step, and

- means for selecting at least one pattern for the im-
provisation on the basis of the music control data.

[0039] The continuation may be determined from po-
tential root nodes of a tree structure expressing music
patterns, the selecting means preferably comprising
means for attributing, to each of one or more nodes of
the tree structure, a weight as a function of how a se-
quence associated to a given node matches with the
control data (Ctrl).
[0040] Suitably, the device further comprises at least
one of:

i) means for halting the improvisation generation
upon detecting current music data; and
ii) means for starting the improvisation generating
upon detecting an interruption in the current music
data.

[0041] According to a third aspect, the invention pro-
vides a music improvisation system, characterised in
that it comprises:

- a device as defined above,
- a first source of music data operatively connected

to supply data to the data base,
- a second source of music data producing the cur-

rent music data, e.g. a musical instrument.

[0042] The first source of audio data can be one of:

i) music file data, and ii) an output from a musical
instrument; and the second source of audio data
can be a musical instrument.

[0043] The first source and second source of audio
data can equally be a same musical instrument or re-
spective musical instruments.
[0044] According to a fourth aspect, the invention pro-
vides a music improvisation system, characterised in
that it comprises:

- a device as above, equipped with an input for han-
dling control data, and

- an improvisation control source operatively con-
nected to the device for delivering the music control
data during the improvisation.

[0045] The improvisation control source can be a mu-
sical instrument different from a musical instrument
forming the second source of audio data.
[0046] According to a fifth aspect, the invention pro-
vides a system comprising:

- at least first and second devices as defined above,
- a first musical instrument and a second musical in-

strument different from the first musical instrument,

wherein

- the first musical instrument is operatively connected
as a source of data for the data base of music pat-
terns of the first device and as a source of current
music data for the second device, whereby the sec-
ond device generates an improvisation with a sound
of the first musical instrument referring to a data
base produced from the second instrument, and

- the second musical instrument is operatively con-
nected as a source of data for the data base of mu-
sic patterns of the second device and as a source
of current music data for the first device, whereby
the first device generates an improvisation with a
sound of the second musical instrument referring to
a data base produced from the first instrument.

[0047] According to a sixth aspect, the invention pro-
vides a software package comprising functional units for
implementing the method according to the first object
with a computer.
[0048] The invention and its advantages shall be-
come more apparent from reading the following descrip-

5 6

EP 1 265 221 A1

5

5

10

15

20

25

30

35

40

45

50

55

tion of the preferred embodiments, given purely as non-
limiting examples, with reference to the appended draw-
ings in which:

- figure 1 is a general block diagram showing the
functional elements of an improvisation system in
accordance with a preferred embodiment of the in-
vention,

- figure 2 is a simplified example of an LZ Tree struc-
ture used in a traversal Tree algorithmic structure
within the system of figure 1,

- figure 3 is an example of different user controls of-
fered by the embodiment through its on-screen
graphic computer interface, and

- figure 4 is a diagram showing how several systems
of figure 1 can be interconnected to implement a
sharing mode.

[0049] A music improvisation system 1 according to
a preferred embodiment of the invention is based on a
combination of two modules: a learning module 2 and a
generator/continuation module 4, both working in real
time. The input 6 and the output 8 of the system are
streams of Midi information. The system 1 is able to an-
alyse and produce pitch, amplitude and rhythm informa-
tion (onsets and duration).
[0050] The system accommodates several playing
modes; it can adopt an arbitrary role and cooperate with
any number of musicians.
[0051] In the standard playing mode, the system 1 is
used by one musician, whose musical instrument, e.g.
an electric guitar 10, has a Midi-compatible output con-
nected to a Midi input interface 12 of the learning module
2 via a Midi connector box 14.
[0052] The output 8 of the system 1 is taken from a
Midi output interface 16 to a Midi synthesiser 18 and
then to a sound reproduction system 20. The latter plays
through loudspeakers 22 either the audio output of the
system 1 or the direct output from the instrument 10,
depending whether the system or the instrument is play-
ing.
[0053] The learning module 2 and the generator/con-
tinuation module 4 are under the overall control of a cen-
tral management and software interface unit 24 for the
system. This unit is functionally integrated with a per-
sonal computer (PC) comprising a main processing unit
(base station) 26 equipped with a mother board, mem-
ory, support boards, CDrom and/or DVDrom drive 28, a
diskette drive 30, as well as a hard disk, drivers and in-
terfaces. The software interface 24 is user accessible
via the PC's monitor 32, keyboard 34 and mouse 36.
Optionally, further control inputs to the system 1 can be
accessed from pedal switches and control buttons on
the Midi connector box 14, or Midi gloves.
[0054] In the standard situation, the system acts as a
"sequence continuator": the note stream of the musi-
cian's instrument 10 is systematically segmented into
phrases by a phrase extractor 38, using a temporal

threshold (200 milliseconds). Each phrase resulting
from that segmentation is sent asynchronously from the
phrase extractor 38 to a phrase analyser 40, which
builds up a model of recurring patterns. In reaction to
the played phrase, the system also generates a new
phrase, which is built as a continuation of the input
phrase, and not as an "answer" as in the case of the
Biles reference supra.
[0055] To build the continuation, the learning module
2 systematically learns all melodic phrases played by
the musician. The technique consists in building pro-
gressively a database of recurring patterns 42 detected
in the input sequences produced by the phrase analyser
40. For this purpose, the learning module 2 uses a data
compression scheme (implemented by module 44)
adapted from the scheme described by Lempel-Ziv in
the paper "Compression of individual sequences via a
variable rate coding, IEEE Trans. Int. Computer Music
Conf. (ICMC'91), pp.344-347. This scheme, referred to
hereafter as the LZ scheme, has been shown to be well
suited for capturing melodic patterns efficiently, as ex-
plained by Assayag & al. in the paper "Guessing the
composer's mind: applying universal prediction to mu-
sical style, Proc. ICMC 99, Beijing, China, I.C.M.A., San
Francisco, USA.
[0056] The technique consists in building a prefix Tree
by a simple, linear analysis of each input sequence.
Each time a sequence is input to the system 1, it is
parsed from left to right and new prefixes encountered
are systematically added to the Tree. The principle of
the LZ Tree is described in detail in the Assayag et al
paper.
[0057] The LZ scheme is itself well known in data
compression, the algorithm itself dating back from the
80's. The idea of applying LZ to musical modelling has
been proposed by various authors (Assayag, Dubnov,
Delerue and others), but only in the context of off-line
musical composition, or musical style classification.
[0058] By contrast, the present invention adapts this
scheme to the context of real-time (*real tim*) music im-
provisation. To this end, the embodiment provides an
efficient data structure based on 1) a standard Lempel
Ziv Tree structure and 2) a hash table (dictionary) 46
that allows to directly access the nodes in the structures
having a given data. This serves to ensure that learning
can be done in real time (less than a few milliseconds).
There is recorded in the Tree only information related to
pitch and velocity (Midi). Rhythmic information is dis-
carded in the present embodiment, although it can also
be accommodated if required.
[0059] Learning can be done on the fly with the user
playing from scratch. It can also be done from a library
of predefined musical styles (for instance in the style of
well known Jazz artists such as Pat Martino, John
McLaughlin, John Coltrane, Charlie Parker, etc.).
[0060] Note that it the embodiment, the handling of
the LZ algorithm is modified in several ways, covered in
sections 1 to 3 infra.

7 8

EP 1 265 221 A1

6

5

10

15

20

25

30

35

40

45

50

55

1. Implementing an efficient Tree structure.

[0061] Because most usage of LZ for music is for
batch processing (e.g. composition or classification),
the present application calls for an efficient representa-
tion of the LZ Tree, both for Tree updating (learning) and
traversal (generation). The Assayag et al. paper propos-
es a dual representation of the LZ Tree which is sup-
posed to speed up the traversal, but which takes up
much more space, by basically doubling the size of the
Tree.
[0062] Very good results have been obtained by ex-
ploiting the basic Tree structure, augmented with a Hash
table 46 mapping each data (here Midi pitch) to the set
of Tree nodes containing this data. The Hash table 46
is updated each time a new node is created. When a
Tree traversal must be effected from an input sequence
starting with item i, the Hash table directly yields the list
of potential root nodes to start from.
[0063] The generator/continuation module 4 of the
system 1 is the real time continuation mechanism, which
generates the music in reaction to an input sequence.
The generation is performed using a traversal of Tree,
through a traversal Tree module 48, to obtain the set of
all possible continuations of the sequence. Then, the fol-
lowing item is chosen by a random draw, weighted by
the probabilities of each possible continuation. This
function is provided by a random draw and weighting
module 50.
[0064] Music input to the generator/continuation mod-
ule 4 is taken from the real time Midi source input inter-
face 12 via an internal connection L1. In this way, the
module 4 receives, at least, pitch and velocity informa-
tion from the instrument 10.
[0065] In operation, the system 1 automatically de-
tects musical phrases, by the means of a given time
threshold applied to the phrase extractor 38. When a
musical phrase is detected, it is sent to the phrase an-
alyser 40 of the learning module 2 AND, through internal
connection L1, to the generator/continuation module 4.
The latter computes a possible continuation for the input
phrase, of a given length (parameter), and outputs it to
the sound reproduction system 20 (e.g. through a Midi
scheduler). Usually, prefixes are only looked up from the
root node. In order to ensure completeness, the embod-
iment introduces a modification in the access method of
the Tree. Since a given prefix can be located arbitrarily
in the Tree structure, a check is made for all its possible
occurrences in any part of the Tree. The selection of the
"next" node to take is based on the reunion of all possi-
ble continuations thus found, associated with the corre-
sponding weights.
[0066] The Tree traversal is extended to ensure a
complete search. By definition, an LZ Tree usually con-
tains only partial information about patterns present in
the input sequence, and is not complete (as opposed to
classical Markov models). Consequently, a given pat-
tern can be present at several locations in the Tree. For

instance, in the Tree shown in figure 2, the pattern ABC
is present twice (at nodes with an asterix):
[0067] To detect these two occurrences, the usual
Tree traversal mechanism is augmented slightly by
computing all possible continuations for a given input
sequence. In the present case, with an input sequence
ABC, the hash table 46 yields three nodes having data
"A", so three "standard" traversals are performed, to get
eventually only two sets of possible continuations (here,
D, D and E). These continuations are aggregated and
the next item is drawn according to the respective
weights of each node. The system can handle over 35
000 LZ Tree nodes in real time (i.e. with a response time
of less than 200 milliseconds), with a Java implementa-
tion on a personal computer PC running with a Pentium
III microprocessor using a "MidiShare" (Pentium III is a
registered trademark of Intel. Inc.).
[0068] The preferred embodiment makes use of the
LZ (Lempel-Ziv) algorithm in its capacity to build a Tree
of recurring patterns in an efficient way, but not its com-
pressive capacity, as in usual implementations. More
particularly, there is provided a more efficient use of this
method, so that a real-time learning can be performed.
[0069] In data compression, the above-mentioned
Tree is built and eventually used to build a compressed
representation of a given sequence. The embodiment,
however, does not utilise this compression, but merely
uses the Tree of patterns for generating other sequenc-
es "in the style of" the previously inputted sequences.
[0070] The real-time learning can be performed by
any method, as long as it can be done quickly (as in the
case of Lempel-Ziv algorithm, which involves only one
traversal of the input sequence), and as long as it can
quickly produce a structure useable to complete the in-
put sequence.
[0071] It is recalled that Lempel-Ziv parsing consists
in building a Tree starting from the beginning of the se-
quence (root is on the left) to the right, and building each
time a prefix Tree.
[0072] For instance, the sequence A B C A B C D A
B C C D E produces a Tree as follows, where each prefix
is indicated successively between commas (,):

A, B, C, AB, CD, ABC, CDE
A-B-C
B
C-D-E

[0073] The Tree does not contain all the patterns in
the sequence. However, it does converge, for infinite se-
quences, to the entropy of the sequence, i.e. it has good
properties in the long term.
[0074] Now, the Tree can be used for generating a se-
quence by choosing each time a node among possible
continuations, according to its "weight", cf. unit 50. The
weight is in fact the size of its sub-Tree, and corre-
sponds, by construction, to its probability of occurrence.

9 10

EP 1 265 221 A1

7

5

10

15

20

25

30

35

40

45

50

55

2. Handling of chords.

[0075] The embodiment introduces a representation
of chords so that the LZ Tree can handle single notes
or chords indifferently. Chords are abstract entities: a
Midi stream is by definition a stream of single notes, so
chords as such do not exist in reality for a Midi stream.
What shall be termed a chord in the present context is
any stream of n notes whose tonal duration is less than
a given threshold, e.g. 40 milliseconds. When such a
stream is detected, a single chord object aggregating all
the notes in the stream is created, instead of n single
note objects.
[0076] To allow comparison of this chord object with
other chord objects, each chord has a canonical repre-
sentation that takes into account basic facts about tonal
harmony:

- pitches are considered only modulo 12 to allow oc-
tave equivalence,

- pitches are sorted to consider streams of similar
pitches with different ordering as similar.

3. Implicit management of harmony.

[0077] Harmony is a fundamental notion in most
forms of music, Jazz being a particularly good example
in this respect. Chord changes play an important role in
deciding whether notes are "right" or not. It is important
to note that while harmony detection is extremely simple
to perform for a normally trained musician, it is extremely
difficult for a system to express and represent explicitly
harmony information, especially in real time. According-
ly, a design choice of the system according to the
present embodiment is not to manage harmony explic-
itly. This choice is justified on three considerations :

i) because of the intimate control of the system, it is
easy for the musician to correct the system in case
it really goes too far out of tune, by simply playing
a few notes (e.g. the third and fifth) and relaunching
the system 1 in a new, correct, direction. To this end,
the generator/continuation module 4 has a module
52 for external harmonic control, which cooperates
with the random draw/weighting module 50. The ex-
ternal harmonic control module 52 presents an ex-
ternal input connector 54 for receiving the above
mentioned notes. These "steering notes" effectively
redirect the improvisation towards a chosen direc-
tion;
ii) because the system continuously learns, it even-
tually also learns the chord changes in the pattern
base. For instance, playing tunes such as "So
What" by Miles Davis (alternation of D minor and
D# minor) creates in the long run patterns with this
chord change;
iii) finally, and perhaps most importantly, the embod-
iment is designed to have a control mode through

module 52 supra that actually allows the system to
take into account external harmonic information
without unduly complicating the data representation
scheme.

[0078] The idea is to introduce a constraint facility in
the generation phase. External information may be sent
as additional input to the system via the harmonic mode
control input 54. This information can be typically the
last n notes (pitches) played by any external source (e.
g. a piano with Midi interface 56) in a piano-guitar en-
semble, where the guitar 10 is connected to Midi input
interface 12, for instance. The value of n can be set ar-
bitrarily to 8, to provide steering on the basis of the last
eight notes. External input 54 is thus used to influence
the generation process as follows. When a set of pos-
sible continuation nodes is computed with the LZ Tree,
as described above, instead of choosing a node accord-
ing to its weight (probability), the random draw and
weighting module 50 is set to weight the nodes accord-
ing to how they match the notes presented at the exter-
nal input 54. For instance, it can be decided to give pref-
erence to nodes whose pitch is included in the set of
external pitches, to favour branches of the Tree having
common notes with the piano comping (?). In this case,
the harmonic information is provided in real time by one
of the musicians (in this case the pianist), without inter-
vention of the user, and without having to explicitly enter
the harmonic grid in the system. The system then effec-
tively matches its improvisation to the thus-entered
steering notes.
[0079] This matching is achieved by a harmonic
weighting function designated "Harmo_prob" and de-
fined as follows.
[0080] Consider a set of external notes, designated
Ctrl, entered into the harmonic control module 52
through input 54. These notes Ctrl are taken to corre-
spond to the last n notes entered at input 54, coming e.
g. from a piano 56, while Midi input interface 12 is con-
nected to a guitar 10 and the synthesiser 18 that is con-
nected to the Midi output interface 16 is a guitar synthe-
siser.
[0081] Consider now the set of pitches represented
by node X, designated notes(X). The harmonic weight-
ing function for notes(X) can then be expressed as:

[0082] If X is a note (and not a chord), then |X| = 1 and
Harmo_prob(x) = 0 or 1.
[0083] If X is a chord, then Harmo_prob(x) belongs to
[0,1], and is maximal (1) when all the notes of X are in
the set of external notes.
[0084] There is then defined a new function for choos-
ing the next node in the LZ Tree. Consider 1) LZ_prob
(X), the probability of X in the LZ Tree, and 2)
Harmo_prob (X), the harmonic weighting function,

Harmo_prob ; (notes(X) ∩ Ctrl) / |notes(X)|

11 12

EP 1 265 221 A1

8

5

10

15

20

25

30

35

40

45

50

55

which assigns a weight to node X in the Tree, represent-
ing how close the node matches an external input. Both
LZ_prob and Harmo_prob assign values in [0,1]. The
aim is to achieve a compromise between these two
weighting schemes. To introduce some flexibility, the
system 1 adds a parameter S that allows tuning the total
weighting scheme, so that the weight can take on a
range of intermediate values between two extremes.
When S = 0, the weighting scheme is equal to the stand-
ard probability-based weighting scheme. When S = 1,
the weighting scheme is equivalent to the harmonic
function.
[0085] The weight function is therefore defined as fol-
lows, where X is a possible node:

[0086] Finally, the system 1 introduces a "jumping
procedure", which allows to avoid a drawback of the
general approach. Indeed, it may be the case that for a
given input sub-sequence seq, none of the possible con-
tinuations have a non-zero Harmo_prob value. In such
a case, the system 1 introduces the possibility to "jump"
back to the root of the LZ Tree, to allow the generated
sequence to be closer to the external input. Of course,
this jump should not be made too often, because the
stylistic consistency represented by the LZ Tree would
otherwise be broken. The system 1 therefore performs
this jump by making a random draw weighted by S, as
follows:

If Weight(X) ≤ S, and
If the value of the random draw is less than S

[0087] Then make a jump, that is restart the compu-
tation of the next node by taking the whole set of notes
of the LZ Tree, rather than the natural continuation of
seq.
[0088] The system 1 does not learn nor produce
rhythmic information. In the context of Jazz improvisa-
tion, for instance, it was found that letting the continua-
tion system produce rhythm by combining patterns is
very awkward, and in fact limits its usability. Instead, the
preferred embodiment generates phrases of eight
notes. Velocity is enough to produce phrases that sound
human to the point of being indistinguishable. The sys-
tem 1 can actually also generate non-linear streams of
notes by simply using the rhythmic pattern of the input
sequence, and mapping it to the output sequence. In
any case, no rhythmic information is learned.
[0089] In the embodiment, Midi files for improvisation
are used as input sequences. To this purpose, there can
be used known improvisers, which are long enough to
let the system actually capture the recurring patterns.
[0090] Further, the learning scheme can be carried
out several times to accelerate the learning process.
[0091] The embodiment described is limited, inten-

Weight(X) ; (1 - S)*LZ_prob(X) + S*Harmo_prob(X).

tionally, in its musical knowledge. The limitations are of
three kinds: 1) rhythmic, 2) harmonic, and 3) polyphonic.
Interestingly, it has turned out that these limitations are
actually strengths, because of the control mode. In
some way, these limitations are compensated by con-
trol.
[0092] The system leads to several control issues.
First, in view of providing an intimate control by the mu-
sician, the embodiment implements a set of basic con-
trollers that are easy to trigger in real time. These are
accessible through the software interface 24 in the form
of on-screen pushbuttons and pull-down menus on the
PC monitor 32, which can be activated through the com-
puter keyboard 34 and/or mouse 36.
[0093] An example of a typical screen page graphic
of the computer interface displayed on the monitor 32 is
shown in figure 3.
[0094] Among the different controllable parameters
are the following basic controls:

- "learn on/off" (tick box 60), to set the learning proc-
ess on or off

- "continuation on/off" (tick box 62) to tell the system
to produce continuations of input sequences or not,
and

- "superposition on/off" (tick box 64), to tell the sys-
tem whether it should stop its generation when a
new phrase is detected, or not.

[0095] The last control is particularly useful. By de-
fault, the system stops playing when the user starts to
play or resumes, to avoid superposition of improvisa-
tions. With a little bit of training, this mode can be used
to produce a unified stream of notes, thereby producing
an impression of seamlessness. In other words, the sys-
tem 1 takes over with its improvisation immediately from
the point where the musician (guitar 10) stops playing,
and ceases instantly when the musician starts to play
again. These controls are implemented with a foot con-
troller of the Midi connector box 14 when enabled by the
basic controls on screen (tick boxes). They can also be
implemented with "Midi" gloves.
[0096] When the system 1 is silent owing to the pres-
ence of music output from the instrument 10, it continues
to analyse that output as part of its continuing learning
process, as explained above. An internal link L2 is active
in this case to also send the music output of the instru-
ment from the Midi input interface 12 to the Midi output
interface 16, so as to allow the instrument to be heard
through the Midi synthesiser 18, sound reproduction
system 20 and speakers 22.
[0097] Additionally the software interface allows a set
of parameters to be adjusted from the screen 32, such
as:

- the number of notes to be generated by the system
(as a multiplicative factor of the number of notes in
the input sequence) (box 66), and

13 14

EP 1 265 221 A1

9

5

10

15

20

25

30

35

40

45

50

55

- the tempo of the generated sequence (as a multi-
plicative factor of the tempo of the incoming se-
quence) (box 68).

[0098] An interesting consequence of the design of
the system 1 is that it leads to several remarkable new
playing modes, including:

- Single autarcy. One musician plays with the system
1 after having fed the system with a database of im-
provisations by a famous musician, as Midi files.
Successful results have been achieved in this way
with a database of Midi choruses from Pat Martino;

- Multiple autarcy: each musician has his/her own
system 1, with its own datatbase;

- Master/Slave: one musician (e.g. guitarist) uses the
system in its basic form, another (e.g. pianist) pro-
vides the external data (steering notes) at the har-
monic control mode input 54 to influence the gen-
eration of the music improvisation;

- Cumulative: all musicians share the same pattern
database.

- Sharing: each musician plays with the pattern data-
base of the other (e.g.; piano with guitar, etc.). This
creates exciting new possibilities as a musician can
experience playing with unusual patterns.

[0099] Figure 4 shows an example of a set-up for the
sharing mode in the case of a guitar and piano duo (of
course, other instruments outside this sharing mode can
be present in the music ensemble). Here, each instru-
ment in the sharing mode is non acoustic and composed
a two functional parts : the played portion and a respec-
tive synthesiser. For the guitar, these portions are re-
spectively the main guitar body 10 with its Midi output
and a guitar synthesiser 18b. For the piano, they are
respectively the main keyboard unit with its Midi output
56 and a piano synthesiser 18a.
[0100] Two improvisation systems 1a and 1b as de-
scribed above are used. The elements shown in figure
4 in connection with these systems are designated with
the same reference numerals as in figure 1, followed by
an "a" or "b" depending on whether they depend from
improvisation system 1a or 1b respectively.
[0101] One of the improvisation systems 1a has its
Midi input interface 12a connected to the Midi output of
the main guitar body 10 and its Midi output interface 16a
connected to the input of the piano synthesiser 18a. The
latter thus plays the improvisation of system 1a, through
the sound reproduction system 20a and speakers 22a,
based on the phrases taken from the guitar input.
[0102] The other improvisation system 1b has its Midi
input interface 12b connected to the Midi output of the
main keyboard unit 56 and its Midi output interface 16b
connected to the Midi input of the guitar synthesiser 18b.
The latter thus plays the improvisation of system 1b,
through the sound reproduction system 20b and speak-
ers 22b, based on the phrases taken from the piano in-

put.
[0103] This inversion of synthesisers 18a and 18b is
operative all while the improvisation is active. When a
musician starts playing, the improvisation is automati-
cally interrupted so that his/her instrument 10 or 56
takes over through its normally attributed synthesiser
18b or 18a respectively. This taking over is accom-
plished by adapting link L2 mentioned supra so that a
first link L2a is established between Midi input interface
12a and Midi output interface 16b when the guitar 10
starts to play, and a second link L2b is established be-
tween Midi interface 12b and Midi output interface 16a
when the piano 56 starts playing.
[0104] Naturally, this concept of connecting the inputs
6 and outputs 8 of the system to different instruments
can extrapolated to any number n of improvisation sys-
tems, the choice of instruments involved being arbitrary.
[0105] From the foregoing, it is apparent that the em-
bodiment allows to generate automatically musical mel-
odies in a given style. It automatically learns the style
from various sorts of musical inputs (real time, Midi
files). The invention allows to generate musical melo-
dies in a reactive way, according to musical stimulus,
coming, e.g. from real time Midi signals. Several modes
of control are proposed, to make the invention actually
useable in a real live performance context.
[0106] The invention can be embodied in wide variety
of forms with a large range of optional features. The im-
plementation described is based largely on existing
hardware elements (computer, Midi interfaces, etc.),
with the main aspects contained in software based mod-
ules. These can be integrated in a complete or partial
software package in the form of a suitable data carrier,
such as DVD or CD disks, or diskettes that can be load-
ed through the appropriate drives 28, 30 of the PC.
[0107] Alternatively, the invention can be implement-
ed as a complete stand-alone unit integrating all the nec-
essary hardware and software to implement a complete
system connectable to one or several instruments and
having its own audio outputs, interfaces, controls etc.
[0108] Between these two extremes, a large number
of software, firmware and hardware embodiments can
be envisaged.
[0109] Finally, it is clear that music data protocols oth-
er than Midi can be envisaged. Likewise, the teachings
of the invention accommodate for all sorts of music
styles, categories, and all sorts of musical instruments,
those mentioned with reference to the figures being
mere examples.

Claims

1. A method of automatically generating music that
constitutes an improvisation, characterised in that
it comprises the steps of:

- establishing a data base of music patterns (42),

15 16

EP 1 265 221 A1

10

5

10

15

20

25

30

35

40

45

50

55

- detecting current music data (12),
- generating with reference to said music pat-

terns an improvisation as a continuation in real
time of said current music data (4).

2. Method according to claim 1, further comprising the
step of extracting musical phrases from a stream of
music data (38, 40), each phrase constituting a re-
spective music pattern.

3. Method according to claim 1 or 2, wherein said con-
tinuation is determined from potential root nodes of
a Tree structure expressing music patterns.

4. Method according to claims 3, further comprising
the steps of:

- mapping in a hash table (46) predetermined da-
ta, such as pitch, against a set of tree nodes
containing said data,

- using said hash table to obtain a list of potential
root nodes to start from for generating said con-
tinuation, and

- updating said hash table as a function of the
creation of new nodes in said tree structure.

5. Method according to claim 3 or 4, wherein said tree
structure is constructed in accordance the Lempel-
Ziv algorithm using a data compression scheme
(44).

6. Method according to any one of claims 3 to 5,
wherein said generating step comprises the steps
of:

- extracting at least one traversal of said tree
structure (48) to obtain a set of possible contin-
uations following on from said current music da-
ta, and

- choosing a music sequence continuation from
said set by performing a random draw (50).

7. Method according to claim 6, further comprising the
step of applying a weighting (52) to nodes of said
tree.

8. Method according to any one of claims 1 to 7, further
comprising the provision of an improvisation control
mode (54, 52), comprising the steps of:

- receiving music control data during said im-
provisation construction step, and

- selecting at least one pattern for said improvi-
sation on the basis of said music control data
(Ctrl).

9. Method according to claim 8, wherein said music
control data (Ctrl) comprise a sequence of n notes,

where n is an arbitrarily chosen number.

10. Method according to any one of claims 8 or 9, with
said continuation determined from potential root
nodes of a Tree structure expressing music pat-
terns, wherein said selecting step comprises the
step (50) of attributing, to each of one or more nodes
of said tree structure, a weight as a function of how
a sequence associated to a given node matches
with said control data (Ctrl).

11. Method according to claim 10, wherein said weight
attributing step comprises the steps of:

- determining a harmonic weighting function
(Harmo_prob) expressed as:

where notes(X) designates a set of pitches rep-
resented by a node X, and Ctrl designates the
last n notes forming said control data, whereby:

- if X is a note, then |X| = 1 and Harmo_prob
(x) = 0 or 1, and

- if X is a chord, then Harmo_prob(x) be-
longs to [0,1], and is maximal (1) when all
the notes of X are in the set of external
notes,

- using said harmonic weighting as at least a
component of an overall weighting function
(Weight(X)) to apply to nodes of said Tree.

12. Method according to claim 11, wherein said overall
weighting function, for a possible node X, is defined
as:

where LZ(prob(X) is the probability of X in said
Tree, and S is a tuning parameter.

13. Method according to claim 11 or 12, further com-
prising the step of providing a jumping procedure
comprising the steps of :

- determining whether, for a given input sub-se-
quence seq, none of the possible continuations
have a non-zero Harmo_prob value,

- if none of the possible continuations have a
non-zero Harmo_prob value, making a random
draw weighted by S, as follows:

If Weight(X) ≤ S, and
If the value of the random draw is less than

Harmo_prob ; (notes(X) ∩ Ctrl) / |notes(X)|

Weight(X) ; (1 - S)*LZ_prob(X) + S*Harmo_prob(X),

17 18

EP 1 265 221 A1

11

5

10

15

20

25

30

35

40

45

50

55

S, then

- effecting said jump by restarting the computa-
tion of the next node by taking the whole set of
notes of said Tree.

14. Method according to any one of claims 1 to 13,
wherein said step of establishing a data base com-
prises the step of discriminating between chords
and non-chordal note successions, chords being
identified as notes separated from each other by a
time interval shorter than a predetermined thresh-
old.

15. Method according to any one of claims 1 to 14,
wherein said improvisation generating step is halt-
ed upon detecting current music data.

16. Method according to any one of claims 1 to 15,
wherein said improvisation generating step is start-
ed upon detecting an interruption in said current
music data.

17. Method according to any one of claims 1 to 16,
wherein said music patterns forming said data base
originate from a source, e.g. music files, different
from the source producing said current music data,
e.g. a musical instrument (10).

18. Method according to any one of claims 1 to 17,
wherein said music patterns are extracted from the
source producing said current music data, e.g. a
musical instrument.

19. Method according to any one of claims 8 to 18,
wherein said music control data is produced from a
source, e.g. a musical instrument (56), different
from the source, e.g. another musical instrument,
producing said current music data.

20. A Device for automatically generating music that
constitutes an improvisation, characterised in that
it comprises:

- means (2) for establishing a data base of music
patterns,

- means (12)) for detecting current music data,
and

- means (4) for generating with reference to said
music patterns an improvisation as a continua-
tion in real time of said current music data.

21. Device according to claim 20, further equipped with
an improvisation control mode, comprising:

- means (54) for receiving music control data
(Ctrl) during said improvisation construction
step, and

- means (50) for selecting at least one pattern for
said improvisation on the basis of said music
control data.

22. A music improvisation system, characterised in
that it comprises:

- a device according to claim 20 or 21,
- a first source of music data operatively connect-

ed to supply data to said data base, and
- a second source of music data (10) producing

said current music data, e.g. a musical instru-
ment.

23. System according to claim 22, wherein said first
source of audio data is one of:

i) music file data, and ii) an output from a mu-
sical instrument (10); and wherein said second
source of audio data is a musical instrument
(10; 56).

24. System according to claim 23, wherein said first
source and second source of audio data are a same
musical instrument (10).

25. System according to claim 23, wherein said first
source and said second source are respective mu-
sical instruments (10 and 56).

26. A music improvisation system, characterised in
that it comprises:

- a device according to claim 21,
- an improvisation control source (56) operative-

ly connected to said device for delivering said
music control data (Ctrl) during said improvisa-
tion.

27. System according to claim 26, wherein said improv-
isation control source is a musical instrument (56)
different from a musical instrument (10) forming
said second source of audio data.

28. A system comprising:

- at least first and second devices (1a, 1b accord-
ing to claim 20 or 21,

- a first musical instrument (10) and a second
musical instrument (56) different from said first
musical instrument,

wherein

- said first musical instrument is operatively con-
nected as a source of data for said data base
of music patterns of said first device and as a
source of current music data for said second

19 20

EP 1 265 221 A1

12

5

10

15

20

25

30

35

40

45

50

55

device, whereby said second device generates
an improvisation with a sound of said first mu-
sical instrument referring to a data base pro-
duced from said second instrument, and

- said second musical instrument is operatively
connected as a source of data for said data
base of music patterns of said second device
and as a source of current music data for said
first device, whereby said first device generates
an improvisation with a sound of said second
musical instrument referring to a data base pro-
duced from said first instrument.

29. A software package comprising functional units for
implementing the method according to any one of
claims 1 to 19 with a computer.

21 22

EP 1 265 221 A1

13

EP 1 265 221 A1

14

EP 1 265 221 A1

15

EP 1 265 221 A1

16

EP 1 265 221 A1

17

EP 1 265 221 A1

18

	bibliography
	description
	claims
	drawings
	search report

