[0001] This invention relates to a method of controlling the soot induced viscosity of diesel
engine lubricant compositions.
[0002] Internal combustion engines usually function by the combustion of fuels which in
turn generate the power needed to propel vehicles. In the case of a diesel engine,
the fuel is a diesel fuel and the combustion thereof generally results in emissions
from the exhausts of such vehicles which comprise three main components. These are:
soot, particulate matter and nitrogen oxides (the latter will hereafter be abbreviated
as NOx for convenience). Of these, soot is generally formed as a result of incomplete
combustion of the fuel. Soot adversely affects the performance of lubricants by increasing
their viscosity (by accumulation of soot in the lubricant) and by causing wear. Moreover,
it is important that the presence of soot does not increase the viscosity of the lubricant
to undesirably high levels for it is also important to maintain the viscosity within
the normal grades in order to enable quick and clean drainage of the engine during
servicing. The formation of soot may be alleviated to a significant extent by operating
the diesel engine at relatively higher temperatures. However, the higher temperatures
whilst mitigating the formation of soot also result in the formation of increased
amounts of NOx. If, however, the engine temperature is lowered, incomplete combustion
ensues and whilst this reduces the amount of NOx formed in the emissions, it also
substantially increases the amount of soot generated. The soot so formed can manifest
itself in two ways. It can either appear as a thick black smoke emitted from the exhaust
of the vehicle or can be accumulated in the engine lubricant. As the soot builds up
in the lubricant, the latter becomes more and more viscous and upon reaching a critical
value can cause gelation of the lubricant and may eventually cause seizure of the
engine. Several methods have been tried to alleviate this problem including the use
of one or more of dispersants, metal salts and solvents which may be ethers, esters
and the like. The dispersants function by forming a coating of the dispersant on the
surface of soot particles and thereby minimising the tendency of the soot particles
to agglomerate. However, the potency of the dispersants to perform this function,
in turn, declines with time and thus, one of the methods of improving the useful life
of lubricants, particularly crankcase lubricants, would be to improve the dispersancy
retention capability of crankcase lubricants. This may be achieved, eg by minimising
the risk of oxidation of the dispersants under the conditions prevalent in the engines
during use.
[0003] Recently published US-A-5,837,657 describes a method for improving the performance
of a sooted diesel oil and controlling soot induced viscosity increase by adding to
the diesel oil a minor amount of a trinuclear molydenum compound of the structure,
Mo
3S
kL
nQ
z. The ability of this compound to bind with soot is compared with conventional antioxidants
such as eg diphenylamine, hindered phenols and zinc dithiodiphosphates (ZDDP). The
conclusion is that the trinuclear molybdenum compounds are far superior in controlling
the soot induced viscosity increase than the other compounds tested.
[0004] The object of the present invention is to devise a method of mitigating the problem
of soot induced viscosity increase in diesel lubricants by maximising the period for
which the soot remains in the lubricant in a well dispersed state thereby controlling
the rise in the absolute viscosity of the lubricant within the desired ranges for
as long as is possible, ie minimising the increase in soot induced viscosity of the
lubricant for longer than has been possible hitherto. At the same time, the object
of the present invention is to improve the dispersancy retention capability of such
lubricants.
[0005] It has now been found, however, that the performance of these trinuclear molybdenum
compounds can be further improved by using these in combination with amines and/or
phenolic compounds for the purpose of controlling soot induced viscosity increase
especially in aged oils.
[0006] Accordingly, the present invention comprises diesel engine lubricant composition
comprising a base stock, a dispersant and an antioxidant comprising an oil soluble
trinuclear organomolybdenum compound of the generic formula:
Mo
3S
x-(Q) (I)
wherein x is from 4 to 10, preferably 7, and Q is a core group, which may be a ligand,
and at least one other compound selected from a phenolic and an aminic compound.
[0007] The compositions of the present invention are those that comprise a major amount
of a lubricating oil as base stock suitable for use in an engine crankcase, particularly
a diesel engine crankcase. Thus, natural or synthetic lubricating oils having a kinematic
viscosity of 3.5 to 25 mm
2/s (cSt) at 100°C comprise a major portion of the lubricating compositions.
[0008] The dispersancy retention properties of such lubricant compositions is improved in
accord with this invention by including in the crankcase lubricant an added oil soluble
organomolybdenum compound and at least one other compound selected from a phenolic
and an aminic compound.
[0009] The trinuclear molybdenum compounds are of formula (I)
Mo
3S
x-(Q) (I)
wherein x is from 4 to 10, preferably 7, and Q is a core group are relatively new
and are claimed and described in our prior published US-A-5,906,968. The matter disclosed
in this prior US patent on the structure, preparation and properties of the trinuclear
molybdenum compounds is incorporated herein by reference. In these compounds the core
group (Q) may be a ligand capable of rendering the organomolybdenum compound of formula
(I) oil soluble and ensuring that said molybdenum compound is substantially charge
neutral. The core group (Q) is generally associated with suitable ligands such as
L
y wherein L is the ligand and y is of a sufficient number, type and charge to render
the compound of formula (I) oil soluble and to neutralise the charge on the compound
of formula (I) as a whole. Thus, more specifically, the trinuclear molybdenum compound
used in the compositions of the present invention may be represented by the formula
(II):
Mo
3S
xL
y (II)
The ligands "L" are suitably dihydrocarbyl dithiocarbamates of the structure (-S
2CNR
2) wherein the dihydrocarbyl groups, R
2 impart oil solubility to the molybdenum compound. In this instance, the term "hydrocarbyl"
denotes a substituent having carbon atoms directly attached to the remainder of the
ligand and is predominantly hydrocarbyl in character within the context of this invention.
Such substituents include the following:
(1) hydrocarbon substituents, ie, aliphatic (for example alkyl or alkenyl), alicyclic
(for example cycloalkyl or cycloalkenyl), aromatic-, aliphatic- and alicyclic-substituted
aromatic nuclei and the like, as well as cyclic substituents wherein the ring is completed
through another portion of the ligand (that is, any two indicated substituents may
together form an alicyclic group);
(2) substituted hydrocarbon substituents, ie, those containing nonhydrocarbon groups
which, in the context of this invention, do not alter the predominantly hydrocarbyl
character of the substituent. Those skilled in the art will be aware of suitable groups
(eg halo (especially chloro), amino, alkoxyl, mercapto, alkylmercapto, nitro, nitroso,
sulphoxy etc.); and
(3) hetero substituents, ie, substituents which, while predominantly hydrocarbon in
character within the context of this invention, contain atoms other than carbon present
in a chain or ring otherwise composed of carbon atoms.
[0010] The hydrocarbyl groups are preferably alkyl (e.g, in which the carbon atom attached
to the remainder of the ligand "L" is primary, secondary or tertiary), aryl, substituted
aryl and/or ether groups.
[0011] Importantly, the hydrocarbyl groups of the ligands should be such that they have
a sufficient number of carbon atoms to render the compound (I) soluble or dispersible
in the oil to which the trinuclear organomolybdenum compound containing the ligand
is added. The total number of carbon atoms present among all of the hydrocarbyl groups
of the organomolybdenum compounds' ligands is suitably at least 21, preferably at
least 25, more preferably at least 30 and even more preferably at least 35, typically
e.g., 21 to 800. For instance, the number of carbon atoms in each hydrocarbyl group
will generally range from 1 to 100, preferably from 1 to 40 and more preferably from
3 to 20.
[0012] The antioxidant in the compositions of the present invention include at least one
other compound selected from a phenolic compound and an aminic compound. Among the
phenolic compounds, hindered phenols are preferred.
[0013] Examples of such phenolic compounds include
inter alia:
4,4'-methylene bis(2,6-di-tert-butylphenol)
4,4'-bis(2,6-di-tert-butylphenol)
4,4'-bis(2-methyl-6-tert-butylphenol)
2,2'-methylene bis(4-ethyl-6-tert-butylphenol)
2,2'-methylene bis(4-methyl-6-tert-butylphenol)
4,4'-butylidene bis(3-methyl-6-tert-butylphenol)
4,4'-isopropylidene bis(2,6-di-tert-butylphenol)
2,2'-methylene bis(4-methyl-6-nonylphenol)
2,2'-isobutylidene bis(4,6-dimethyl phenol)
2,2'-methylene bis(4-methyl-6-cyclohexylphenol)
2,6-di-tert-butyl-4-methylphenol
2,6-di-tert-butyl-4-ethylphenol and
2,4-dimethyl-6-tert-butylphenol
Specific hindered phenols which are preferred as the antioxidants may be represented
by the generic formulae (III) - (IV) below in which R
1, R
2, and R
3 are the same or different alkyl groups from 3-9 carbon atoms and x and y are integers
from 1 to 4.

[0014] Suitable aminic compounds for use in the compositions of the present invention are
diaryl amines, aryl naphthyl amines and alkyl derivatives of diaryl amines and the
aryl naphthyl amines. Preferred aminic antioxidants are represented by the formulae
(VII) and (VIII) wherein each of R
4 and R
5 is a hydrogen atom or represents the same or different alkyl groups from 1-8 carbon
atoms.

[0015] Specific examples of the aminic compounds that may be used in the compositions of
the present invention include
inter alia:
[0016] Monoalkyldiphenyl amines such as eg monooctyldiphenyl amine and monononyl diphenyl
amine; dialkyldiphenyl amines such as eg 4,4'-dibutyldiphenyl amine, 4,4'-dipentyldiphenyl
amine, 4,4'-dihexyldiphenyl amine, 4,4'-diheptyldiphenyl amine, 4,4'-dioctyldiphenyl
amine and 4,4'-dinonyldiphenyl amine; polyalkyldiphenyl amines such as eg tetra-butyldiphenyl
amine, tetra-hexyldiphenyl amine, tetra-octyldiphenyl amine and tetranonyldiphenyl
amine; the naphthylamines such as eg α-naphthylamine and phenyl-α-naphthylamine; butylpheny-α-naphthylamine,
pentylphenyl-α-naphthylamine, hexylphenyl-α-naphthylamine, heptylphenyl-α-naphthylamine,
octylphenyl-α-naphthylamine and nonylphenyl-α-naphthylamine. Of these, dialkyldiphenyl
amine and naphthylamines are preferable.
[0017] In general, the antioxidant which comprises the organomolybdenum compound in combination
with a phenolic and/or an aminic compound will form a minor component of the total
lubricant composition. For example, the organomolybdenum compound typically will comprise
0.05 to 5.00 wt % of the total composition, preferably from 0.05 to 2.0 wt%, and more
preferably from 0.1 to 0.7 wt%, i.e., the molybdenum metal is suitably present in
an amount of from 25 to 2500 ppm, preferably from 50 to 1000 ppm, and more preferably
from 100 to 700 ppm, and the phenolic and/or aminic compounds 0.10 to 3.0 wt % of
the total composition.
[0018] It has also been found that if the weight ratio of organomolybdenum compound to the
phenolic and/or aminic compound in the antioxidant is in the range of 80:20 to 20:80,
optimum dispersancy retention can be achieved by these combined antioxidants of the
present invention.
[0019] It is particularly preferred that the antioxidant comprises in addition to the organo
molybdenum compound a mixture of the phenols (III) and (IV) above and the diaryl amine
(V) in a weight ratio ranging from 80:10:10 to 40:20:40 respectively, preferably typically
75:15:15 respectively.
[0020] Optionally, the antioxidants may be combined with a carrier liquid in the form of
a concentrate. The concentration of the combined antioxidants in the concentrate may
vary from 1 to 80% by weight, and will preferably be in the range of 5 to 10% by weight.
[0021] The antioxidant combination of the present invention can be used with any of the
conventional dispersants used hitherto in the lubricating compositions. Examples of
such dispersants include
inter alia the polyalkylene succinimides, Mannich condensation products of polylalkylphenol-formaldehyde
polyamine and boronated derivatives thereof. However, it is preferable to use ashless
dispersants such as the ashless succinimides, especially the polyisobutenyl succinimides
of a polyamine such as eg tetraethylenepentamine or its homologues, benzylamine ashless
dispersants, and ester ashless dispersants. The dispersants are generally used in
the compositions of the present invention in an amount ranging from 2-10% by weight
based on the total weight of the lubricant composition, preferably from 4-8% by weight.
[0022] In general, these lubricating compositions may include additives commonly used in
lubricating oils especially crankcase lubricants, such as antiwear agents, detergents,
rust inhibitors, viscosity index improvers, extreme-pressure agents, friction modifiers,
corrosion inhibitors, emulsifying aids, pour point depressants, anti-foams and the
like.
[0023] A feature of the lubricant compositions of the present invention is that the presence
therein of trinuclear organomolybdenum compounds in combination with a phenolic and/or
an aminic compound as antioxidant provides unexpected improvement in oxidation control,
viscosity increase control and dispersancy retention over compositions which contain
only one of these antioxidants used alone.
[0024] The present invention is further illustrated with reference to the following Examples:
EXAMPLES
General Procedure:
[0025] A series of Test oils were prepared. These oils were then tested in a bench oxidation
test which was conducted at 165°C under a mixed nitrogen/air flow, with 40 ppm iron
from added ferric acetylacetonate as catalyst. The flow rates of air and nitrogen
were controlled at 500 ml/min and 350ml/min respectively.
[0026] The remaining dispersancy of the Test oil after 32 hours in the bench oxidation test
was then determined by use of a GM 6.2L soot-laden basestock dispersancy test in which
the soot dispersancy of an used oil was determined by viscosity ratio of the diluted
Test oil in the presence and absence of soot; the lower the ratio, the better the
dispersancy. The Test oil was mixed with a soot-laden 600 SN basestock (3.5-4.5% by
weight soot) from the GM 6.2L engine at the ratio of 25:75 by weight and the kinematic
viscosity at 100°C of the Test oil and fresh base oil (soot-free 600SN) mixture at
the same ratio (25:75) was also measured. Fresh oil dispersancy was also determined
using the same method.
[0027] In these tests the following commercial materials have been used:
Irganox® L57 is an octylated/butylated diphenylamine (ex Ciba Geigy)
Irganox® L101 is a high molecular weight phenolic antioxidant (ex Ciba Geigy)
Irganox® L115 and Irganox® L 1035 are high molecular weight phenolic antioxidants
with a thioether group (ex Ciba Geigy)
Irganox® L06 is an alkylated phenyl-α-naphthylamine (ex Ciba Geigy)
Irganox® L135 is a high molecular weight phenolic antioxidant (ex Ciba Geigy)
Irganox® L150 is a mixture of alkylated diphenylamine, a phenolic antioxidant and
a phenolic antioxidant with a thioether group (ex Ciba Geigy)
Paranox® 106 is a polyisobutenylsuccinimide dispersant (ex Infenium, Linden, NJ)
Molyvan® 822 is a dinuclear molybdenum dithiocarbamate (ex R T Vanderbilt Co)
Examples A-E
[0028] The compositions of the Test oils A-E are shown in Table 1 below:
TABLE 1
| Test Oils |
A |
B |
C |
D |
E |
| 600 SN (% wt) |
94.0 |
93.0 |
93.0 |
93.0 |
93.0 |
| Paranox® 106 (% wt) |
6.0 |
6.0 |
6.0 |
6.0 |
6.0 |
| Irganox® L150 |
- |
1.0 |
- |
0.5 |
0.5 |
| Mo3-dithiocarbamate* |
- |
- |
1.0 |
0.5 |
- |
| Molyvan® 822 (% wt) |
- |
- |
- |
- |
0.5 |
| *containing 11.5% by weight of molybdenum |
[0029] The characteristics of the fresh Test oils (A-E) are shown in Table 2 below:
TABLE 2
| Test Oils |
A |
B |
C |
D |
E |
| Fresh Oil KV100 (cSt) |
13.08 |
13.06 |
13.28 |
13.17 |
13.05 |
| KV100 of Test Oil/Soot-Laden 600SN (4.4 wt% soot) Mixture (25/75) mm2/s (cSt) |
14.84 |
14.91 |
15.24 |
14.52 |
14.86 |
| Calculated KV100 of Test oil/Fresh 600SN Mixture (25/75) mm2/s (cSt*) |
11.74 |
11.73 |
11.79 |
11.76 |
11.73 |
| Relative Viscosity (Viscosity Ratio), ηr (Fresh oil) |
1.26 |
1.27 |
1.29 |
1.23 |
1.27 |
| * Based on additive rule KV (mix) = f KV(1) + (1-f)KV(2) in which f is the mass fraction
of component 1. |
The following Table 3 shows the characteristics of the used oils (A-E) after the
oxidation test.
TABLE 3
| Test Oils |
A |
B |
C |
D |
E |
| Used Oil KV100 mm2/s (cSt) |
30.99 |
14.52 |
13.77 |
13.29 |
13.59 |
| KV100 of Used Oil/Soot-Laden 600SN (4.4 wt% soot) Mixture (25/75) (cSt) |
24.35 |
19.05 |
18.55 |
16.16 |
17.84 |
| Calculated KV100 of Used oil/Fresh 600SN Mixture (25/75) mm2/s (cSt) |
13.85 |
11.96 |
11.87 |
11.77 |
11.82 |
| Relative Viscosity (Viscosity Ratio), ηr (Used oil) |
1.76 |
1.59 |
1.56 |
1.37 |
1.51 |
From the above results it is clear that the compositions containng the trinuclear
molybdenum compound according to the present invention significantly improves the
viscosity control and the dispersancy retention capability of the composition.
Eamples F-R
[0030] Using the same methods and materials as described under the General Procedure above
for Examples (A-E), the following further tests were carried out on additional Test
oils.
[0031] The compositions of the Test oils used in Examples (F-R) are shown in Table 4 below:

[0032] As previously with Examples (A-E), the characteristics of the fresh oil used in F-R
are shown in Table 5 below:

[0033] As previously with Examples (A-E), Table 6 below shows the characteristics of the
Used oil in Examples F-R:

1. A method of controlling the soot induced viscosity of diesel engine lubricant composition
comprising a base stock and a dispersant by adding an effective amount of an antioxidant
characterised in that the antioxidant comprises an oil soluble trinuclear organomolybdenum compound of
the generic formula:
Mo3Sx-(Q) (I)
wherein x is from 4 to 10 and Q is a core group, which may be a ligand, and at least
one other compound selected from a phenolic and an aminic compound.
2. A method according to Claim 1 wherein said composition comprises a major amount of
a natural or synthetic lubricating oil having a kinematic viscosity of 3.5 to 25 mm2/s (cSt) at 100°C.
3. A method according to any one of the preceding Claims wherein the trinuclear molybdenum
compounds are of formula (I)
Mo3Sx-(Q) (I)
wherein x is 7 and Q is a core group.
4. A method according to any one of the preceding Claims wherein the core group Q is
a ligand capable of rendering the organomolybderium compound of formula (I) oil soluble
and ensuring that said molybdenum compound is substantially charge neutral.
5. A method according to any one of the preceding Claims wherein the phenolic compound
is a hindered phenol.
6. A method according to any one of the preceding Claims wherein the aminic compound
is selected from one or more of diaryl amines, aryl naphthyl amines and alkyl derivatives
of diaryl amines and the aryl naphthyl amines of the formulae (VII) or (VIII) below
wherein each of R
4 and R
5 is a hydrogen atom or represents the same or different alkyl groups from 1-8 carbon
atoms
7. A method according to any one of the preceding Claims wherein the antioxidant which
comprises the trinuclear organomolybdenum compound and at least one other compound
selected from a phenolic and/or an aminic compound forms a minor component of the
total lubricant composition.
8. A method according to any one of the preceding Claims wherein the antioxidant which
comprises the trinuclear organomolybdenum compound and an aminic compound forms a
minor component of the total lubricant composition.
9. A method according to any one of the preceding Claims wherein the trinuclear organomolybdenum
compound is present in said composition in an amount of 0.05 to 5.00 wt % of the total
composition.
10. A method according to any one of the preceding Claims wherein the amount of phenolic
and/or aminic compounds present in said composition is 0.10 to 3.0 wt % of the total
composition.
1. Verfahren zum Steuern der Ruß-induzierten Viskosität von Dieselmotorschmiermittelzusammensetzung,
die Basismaterial und Dispergiermittel umfasst, indem eine wirksame Menge Antioxidans
zugegeben wird, dadurch gekennzeichnet, dass das Antioxidans eine öllösliche dreikernige Organomolybdänverbindung mit der generischen
Formel:
Mo3Sx- (Q) (I),
in der x 4 bis 10 ist und Q eine Kerngruppe ist, die ein Ligand sein kann, und mindestens
eine andere Verbindung ausgewählt aus phenolischer und aminischer Verbindung umfasst.
2. Verfahren nach Anspruch 1, bei dem die Zusammensetzung eine größere Menge natürliches
oder synthetisches Schmieröl mit einer kinematischen Viskosität von 3,5 bis 25 mm2/s (cSt) umfasst.
3. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die dreikernigen Molybdänverbindungen
die Formel (I)
Mo3Sx-(Q) (I),
hat, in der x 7 ist und Q eine Kerngruppe ist.
4. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Kerngruppe Q ein Ligand
ist, der die Organomolybdänverbindung der Formel (I) öllöslich machen und gewährleisten
kann, dass die Molybdänverbindungen im Wesentlichen ladungsneutral ist.
5. Verfahren nach einem der vorhergehenden Ansprüchen, bei dem die phenolische Verbindung
ein gehindertes Phenol ist.
6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die aminische Verbindung
ausgewählt ist aus einem oder mehreren von Diarylaminen, Arylnaphthylaminen und Alkylderivaten
von Diarylaminen und den Arylnaphthylaminen mit den folgenden Formeln (VII) oder (VIII),
in denen jedes von R
4 und R
5 ein Wasserstoffatom ist oder für gleiche oder unterschiedliche Alkylgruppen mit 1
bis 8 Kohlenstoffatomen steht
7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Antioxidans, das die
dreikernige Organomolybdänverbindung und mindestens eine weitere Verbindung ausgewählt
aus phenolischer und/oder aminischer Verbindung umfasst, eine geringfügige Komponente
der gesamten Schmiermittelzusammensetzung bildet.
8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Antioxidans, das die
dreikernige Organomolybdänverbindung und eine aminische Verbindung umfasst, eine geringfügige
Komponente der gesamten Schmiermittelzusammensetzung bildet.
9. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die dreikernige Organomolybdänverbindung
in der Zusammensetzung in einer Menge von 0,05 bis 5,00 Gew.-% der gesamten Zusammensetzung
vorhanden ist.
10. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Menge der phenolischen
und/oder aminischen Verbindungen, die in der Zusammensetzung vorhanden sind, 0,10
bis 3,0 Gew.-% der gesamten Zusammensetzung beträgt.
1. Procédé de réglage de la viscosité, induite par la suie, d'une composition lubrifiante
pour moteur Diesel, comprenant une huile de base et un agent dispersant en ajoutant
une quantité efficace d'un antioxydant, caractérisé en ce que l'antioxydant comprend un composé d'organomolybdène trinucléaire soluble dans l'huile
de formule générale :
Mo3Sx-(Q) (I)
dans laquelle x est 4 à 10 et Q est un groupe central, qui peut être un ligand, et
au moins un autre composé choisi parmi un composé phénolique et un composé aminé.
2. Procédé selon la revendication 1, dans lequel ladite composition comprend une quantité
majeure d'une huile lubrifiante naturelle ou synthétique ayant une viscosité cinématique
de 3,5 à 25 mm2/s (cSt) à 100°C.
3. Procédé selon l'une quelconque des revendications précédentes, dans lequel les composés
d'organomolybdène trinucléaires ont pour formule (I) :
Mo3Sx-(Q) (I)
dans laquelle x est 7 et Q est un groupe central.
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel le groupe
central Q est un ligand capable de rendre le composé d'organomolybdène de formule
(I) soluble dans l'huile et de garantir que ledit composé de molybdène est sensiblement
de charge neutre.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel le composé
phénolique est un phénol empêché.
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel le composé
aminé est choisi parmi un ou plusieurs des diarylamines, des arylnaphtylamines et
des dérivés alkyliques de diarylamines et d'arylnaphtylamines de formule (VII) ou
(VIII) données ci-dessous, dans lesquelles chacun de R
4 et R
5 est un atome d'hydrogène ou représente des groupes alkyle identiques ou différents
de 1 à 8 atomes de carbone :
7. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'antioxydant,
qui comprend le composé d'organomolybdène trinucléaire et au moins un autre composé
choisi parmi un composé phénolique et/ou aminé, forme un composant mineur de la composition
lubrifiante totale.
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'antioxydant,
qui comprend le composé d'organomolybdène trinucléaire et un composé aminé, forme
un composant mineur de la composition lubrifiante totale.
9. Procédé selon l'une quelconque des revendications précédentes, dans lequel le composé
d'organomolybdène trinucléaire est présent dans ladite composition en quantité de
0,05 à 5,00 % en poids de la composition totale.
10. Procédé selon l'une quelconque des revendications précédentes, dans lequel la quantité
de composés phénoliques et/ou aminés présents dans ladite composition est de 0,10
à 3,0 % en poids de la composition totale.