Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 1 266 734 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 28.06.2006 Bulletin 2006/26

(51) Int Cl.: **B28B** 15/00 (2006.01) **B28B** 23/00 (2006.01)

B28B 1/08 (2006.01)

B28B 1/16^(2006.01) B28B 11/08^(2006.01) B28B 19/00^(2006.01)

(21) Application number: 02425375.9

(22) Date of filing: 07.06.2002

(54) Method and apparatus for the making of tiles, in particular for venetian floor tiles and the like

Verfahren und Vorrichtung zum Herstellen von Fliesen, insbesondere von venezianischen Bodenfliesen und dergleichen

Procédé et appareil pour la fabrication de carreaux, en particulier de carrelages vénitiens pour revêtement de sol et similaires

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE TR

(30) Priority: 11.06.2001 IT RM20010330

(43) Date of publication of application: 18.12.2002 Bulletin 2002/51

(73) Proprietor: Venix S.r.I. 37040 Zimella VR (IT)

(72) Inventor: Battaglia, Renato 36045 Loningo - VI (IT)

(74) Representative: Leone, Mario et al Società Italiana Brevetti S.p.A. Piazza di Pietra 39 00186 Roma (IT)

(56) References cited:

EP-A- 0 021 362 GB-A- 971 619 US-A- 3 324 213 US-A- 4 915 888

 PATENT ABSTRACTS OF JAPAN vol. 016, no. 359 (M-1289), 4 August 1992 (1992-08-04) -& JP 04 112003 A (YAMATOMI SANGIYOU KK), 14 April 1992 (1992-04-14)

EP 1 266 734 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

[0001] The present invention relates to a method for the making of tiles and the like, suitable for being employed as surfacing and support plane, which reproduce, in their motifs and techniques employed, so-called Venetian style floors.

1

[0002] The invention also relates to a device for forming tiles and to a plant for their fabrication.

[0003] This kind of floor, well known for its aesthetic qualities, consists of the application, directly onto the substrate of the ceiling that receives the floor, of a layer of semi-fluid binding material.

[0004] Said material, well known to the person skilled in the art as well as to those who lay this particular type of floor, shall be referred to by its conventional name of grout. It is a mixture substantially of water, cement, marble dust or the like. The characteristics of the mixture may vary to suit the requirements of the laying operation, in particular in regard to porosity, specific weight, colour and more.

[0005] In solidifying, it acquires considerable properties of hardness, resistance, aptitude to be ground and polished, producing a shiny surface. In the liquid state, it has the properties of a liquid-plastic fluid with a low viscosity that allows it to flow.

[0006] On the layer of grout laid onto the substrate with a uniform thickness, are laid discrete elements of broken gravel, and said laying operation is conventionally called seeding the gravel, said elements comprising pebbles, of various shapes and sizes, of stones, marbles, granites, glasses, etc., selected according to colour, size and the effect to be created on the floor.

[0007] It is understood that, when applying said gravel, it is possible to obtain a melange of different colours and stones, but also a well-ordered and precise design, on the pattern of a mosaic and also all imaginable intermediate solutions.

[0008] After applying the gravel, thereon is accurately laid an additional layer of grout which is left to be dried by air, a process that can last many days.

[0009] After the entire layer laid onto the substrate has reached a sufficient hardness and compactness following the complete curing of the cement which lasts for at least one month, it can be ground and polished, starting from grinding wheels with large grains and ending with grinding wheels for polishing.

[0010] The removal of the previously obtained irregular surface allows, on one hand, to obtain a planar surface, free of irregularities, shiny and compacted, with high resistance as a floor against impacts and other types of wear by friction, penetration of liquids and other harmful elements. On the other and, the polishing allows the gravel layer to emerge completely, enabling the motifs created during the laying stage to be fully visible, with their full aesthetic and also, in many cases, artistic impact.

[0011] From the above description it is understood that this type of floor, which is distinguished for its very high

value, is reserved to those who can afford the high costs and the time associated to such a complex craftsman like laying process.

[0012] Therefore, methods have been developed and are known in the art for making tiles which, once laid, are able to simulate the kind of floor described above.

[0013] These methods generally derive from the formation of a conglomerate of grout and gravel which, once dried, can be cut into tiles.

[0014] Other methods uses a support plane onto which grout and gravel are poured and layered.

[0015] However this methods permits the production only of marble-like tiles or construction blocks with stones set into, which are remarkable different from the so-called Venetian style floors.

[0016] For example, Japanese Patent n. 04 112003 A uses a formwork onto which a first layer concrete is formed, then decorative stones are placed allowing vibration to unify the upper ends thereof to the same height. Finally a second layer of concrete is poured.

[0017] US Patent n. 3,324,213 describes a method for making decorative tiles using a mix of resins and decorative stones poured on a support and comprising a step of moving a pressing and vibrating element on the surface of said mix, in order to uniform the distribution of the stones.

[0018] Moreover, this system allows to produce tiles whose gravel is arranged according to a disorderly matrix, without the ability to obtain designs. Moreover, once the application of the tiles is completed, while minimising the thickness of the gap, the transition between a tile and the other is nonetheless perceivable because of the irregular placement of tiles cut in correspondence with the edge of the tile itself next to each other.

[0019] These drawbacks, in spite of the reduction in the costs associated with the laying operation which is reduced to a simple placement of tiles, are such that they considerably limit the use of this kind of floor.

[0020] The technical problem constituting the basis for the present invention is to provide a method for making tiles that allows to overcome the drawbacks mentioned above with reference to the prior art.

[0021] This problem is solved by a method as specified in claim 1, comprising the phases of:

- * laying a first layer of grout on a planar support;
- * placing a quantity of gravel on the surface of said first layer of grout;
- * subjecting said support to sussultatory vibrations, determining the partial burying of the gravel in said first layer of grout;
- * laying, onto said first layer of grout, a second layer of grout obtaining a semi-finished tile;
- * vibrating the whole semi-finished tile; and
- * drying said semi-finished tile.

[0022] According to an embodiment of the invention, the method comprise the additional phase of grinding a

2

45

50

surface of said semi-finished tile until obtaining a predetermined degree of finish. Otherwise, the grinding and polishing phases can also be carried out after the laying on a suitably prepared substrate.

[0023] A partial grinding of said surface is also possible. In this case, a method of laying the tiles obtained as described above, provides for laying an additional thin layer of grout on the laid tiles, where the limited thickness of said additional layer enables its rapid drying, followed by a polishing operation that erases any trace of gap between tiles.

[0024] In any case, the transition between a tile and the other is difficult to perceive, given the absence of cut stones on the edge of the tile.

[0025] The placement of the gravel in the method according to the invention can take place with any degree of accuracy: from a mechanical and automated laying to a manual laying which, among other advantages, allows to obtain well defined designs and mosaics.

[0026] According to the same inventive concept, a device for forming tiles and the like for Venetian stile floors comprises:

- * a tray structure able to receive semi-fluid grout;
- * means for dispensing semi-fluid grout in said tray structure:
- * means for dispensing grout in said tray structure;
- * a vibrating element whereon the tray structure is set; and
- * means for generating sussultatory vibrations.

[0027] A plant for making Venetian floor tiles and the like according to claim 9 comprises the device as defined above, means for drying semi-finished tiles and means for finishing the rough tile surface.

[0028] The present invention shall be described hereafter according to a preferred embodiment thereof, together with some variations, provided by way of nonlimiting example with reference to the accompanying drawings in which:

- * Figures 1 through 6, 7a, 7b, 8a and 8b schematically show some phases of the method according to the present invention in combination with details of a forming device; and
- * Figure 9 shows a schematic plan view of a plant for implementing the method according to the invention.

[0029] With reference to Figures 1 through 6, a device 1 for making tiles is partially shown, limited to the detail in which the tile is formed.

[0030] Said device comprises a vibrating element 2, in particular a planar support element that is set in vibration by vibration generating means 8.

[0031] On the vibrating element 2 the device 1 comprises a tray structure 5 which in turn comprises a planar support 50 delimited by walls 3 that define a pre-deter-

mined thickness. Between the vibrating element 2 and the tray structure 5 is interposed a damping layer whose function shall become apparent farther on.

[0032] The device 1 further comprises dispensing means 6 for releasing a quantity of semi-fluid grout. Said dispensing means 6 are conveniently hopper-like structured and receive the grout from a system for mixing and dispensing components of the grout itself.

[0033] With reference to device 1, a first phase of the method according to the present embodiment comprises the phase of laying a first layer of grout 70 determined by the dispensing of a first pre-determined quantity 7 of grout by said dispensing means 6 (Figure 1).

[0034] Once the pre-determined quantity 7 of grout has been cast into the tray structure 5, the vibrating element 2 is set in vibration.

[0035] The vibration generating means 8 are structured in such a way as to comprise a pair of eccentric elements, conventional in nature and thus not shown herein, mounted on mutually parallel shafts that are also parallel to the planar support 50, being connected in rotary fashion, for instance by means of bearings or bushings, to the vibrating element.

[0036] Said shafts are set in mutually opposite rotations, with the same velocity of rotation, in such a way as to generate a sussultatory vibration that assures that the laying of the grout layer takes place in uniform fashion from the viewpoint of density and thickness.

[0037] The damping layer 4 serves the purpose of cancelling the effect of any second-order vibration that should be generated together with the required sussultatory vibrations.

[0038] Incidentally, the term sussultatory vibration means the vibration that determines a reciprocating motion on a direction that is perpendicular to the vibrating element 2, or to the planar support 50.

[0039] The thickness of the first grout layer 70 is equal to about half the thickness determined by the walls 3 of the tray structure 5. In the present embodiment the thickness is 6-7 mm (Figure 2).

[0040] Once the laying of the first layer 70 is complete, the method comprises the phase of placing a quantity of gravel 9 on said first layer. Various systems can be employed to place the gravel; the system found to be most accurate is the manual one whereby it is possible to obtain, thanks to the craftsmen's expertise employed therein, a "natural" appearance or, on the contrary, a precise design, guided with appropriate templates.

[0041] It is in any case clear that this phase can also be carried out with different laying systems, in particular mechanical systems for dropping a pre-determined quantity of gravel.

[0042] It is also clear that the gravel in question is composed of irregular pieces of different sizes, possibly also with several distinct colours.

[0043] With the laying operation, a structure is obtained where the grout layer 70 is superficially covered with gravel whose pieces are partially buried in the semi-

20

40

fluid grout or are set down superficially (Figure 3).

[0044] At this point the method according to the present invention comprises the phases of subjecting said planar support 50 to sussultatory vibrations, using said generating means 8. Thanks to the particular nature of the vibrations and to the density of the grout 7, the gravel is partially buried in the first layer of grout 70 with a substantially uniform distribution 10 (Figure 4).

[0045] With the dispensing means 6, in a subsequent phase of the present fabrication method is dispensed a second pre-determined quantity 11 of grout, to fill the tray structure 5 to the top (Figure 5). Said second quantity of grout then goes to constitute a second layer of grout that is laid onto the previous one, to constitute a semi-finished tile 12.

[0046] To achieve this, the tray structure is again subjected to sussultatory vibrations, which determine the laying of the added grout and the uniform distribution of the grout 9 over the whole thickness and over the whole surface of the semi-finished tile 12 (Figure 6).

[0047] Said semi-finished tile, at this point, to undergo the subsequent work processes, undergoes a phase in which it is dried. The drying operation can occur naturally or in an environment that promotes the dehydration and curing (crystallisation) of the grout, for instance by means of steam baking controlled temperature.

[0048] During this phase, the semi-finished tile 12 is contained in the tray structure 5 that will then be eliminated, if it is of the disposable kind, or reused. The separation between tile to be finished and tray structure 5 can be facilitated by lubricating the inner surface of the tray structure 5 before laying the first layer of grout.

[0049] Note that no cut pieces of gravel will fall in correspondence with the edge of the semi-finished tile, as is the case when a whole block of solidified grout and gravel is cut to produce tiles in this way. The presence of said cut pieces would enable a careful observer to notice the presence of a gap, however thin, between the tiles once the laying operation is complete. Moreover, the uniform distribution prevents the edge of the tile to be identified due to a thinning out of the gravel at the margins. These characteristics are highly appreciated because they allow the floor obtained by laying tiles to approximate the floor obtained with traditional methods whereby the grout and the gravel are laid directly onto the substrate.

[0050] Note, additionally, that this traditional effect can thus be obtained avoiding a specific preparation of the substrate and the very long time required for drying the floor on site, all with reduced tile thickness, lesser than 20 mm.

[0051] The finishing of the semi-finished tile 12 can comprise different phases that depend on the type of laying whereto the tiles are destined. In general, the finishing comprise a series of grinding operations, using grinding wheels with progressively finer grain, until obtaining a shiny surface.

[0052] The purpose of the grinding operation is also to

level and regularised the pieces of gravel that emerge from the semi-finished tile surface.

[0053] The finishing can comprise a first phase of rough grinding with first grinding wheel means 14 acting on a rough tile P set down on a support 13. An irregular surface 15 is obtained, which can be exploited during the laying operation.

[0054] The rough tile P can be laid normally, obtaining a uniform, but not shiny, surface.

[0055] Onto said surface it is possible to lay, with traditional systems with spatulas, a thin layer of grout, able to dry very rapidly. Subsequently, the floor thus obtained can be ground to the shiny finish, erasing any type of gap or junction between tiles.

[0056] If a more refined tile is desired, it is possible to proceed with a second grinding phase with second grinding wheel means 16, with fine and very fine grain, to obtain a shiny surface 17 (Figure 9). With this tile it is possible to execute a rapid laying, wholly similar to the one that can be executed with ceramic tiles, obtaining a Venetian floor.

[0057] With reference to Figure 9, a plant 20 is described for manufacturing Venetian floor tiles according to the method described above. Said plant comprises a forming line 22 along which the tray structures 5 are moved, passing through a series of sub-stations some of which are provided with vibration generating means 8. [0058] Said line 22 comprises an inlet 21 that receives the empty tray structure 5. It then comprises a first substation 35 where the tray structures are lubricated, and a second sub-station 36 for the laying of the first grout layer 70. For this purpose the plant comprises tanks 25 of fluid material for the composition of the grout in predetermined proportions. Said tanks 25 feed mixing means 26 where the grout is mixed to feed a manifold 27 which in turn feeds a pair of dispensing lines 23, 24 respectively to lay the first and the second layer of grout 70.

[0059] In this part of the plant the colouring of the grout is determined; said colouring usually remains the same for a batch of tiles. In any case, the utmost flexibility is allowed.

[0060] Lubrication may take place manually or automatically.

[0061] The first dispensing line 23 provides grout to said second sub-station 36, which is followed by a third sub-station 37 where vibration generating means 8 are used to lay the first grout layer 70 uniformly.

[0062] In a fourth sub-station 38 the gravel is distributed superficially, preferably in manual fashion by an experienced worker who also positions any templates to guide the laying.

[0063] Note that this approach allows to produce single pieces to compose floors that can have even extremely complex designs. The worker will thus be able to employ templates, for instance made of sheared cardboard, produced automatically through a computerised CAD/CAM system with which the floor itself is drawn and designed.

[0064] In a fifth sub-station 39 vibration generating means 8 contribute to bury the gravel in the grout with a correct procedure, and the worker will immediately be able to check whether the gravel, which is substantially fastened to the grout in this phase, assumes the required disposition.

[0065] In all the phases where vibrations are applied and in particular where the gravel is to be buried in the grout, the duration of said application may be controlled tile by tile by the worker, to obtain a uniform quality level also by varying the quantity of gravel, the piece size, the density of the gravel, the complexity of the design etc.

[0066] Otherwise, for large scale productions, the duration of the vibration can be pre-set.

[0067] Subsequently, in a sixth sub-station 40, fed by the second dispensing line 24 of the grout, the semi-finished tile is provided with said second quantity of grout 11, and in a seventh sub-station 41 the vibration generating means 8 produce a semi-finished tile with the required thickness.

[0068] The fourth sub-station 38, the one where the craftsman expertise the present method allows to exploit is concentrated, can be subdivided into multiple sub-stations for the laying of different types of gravel. It is in any case understood that the same manufacturing quality can be achieved by a mechanical laying system, active for instance with screens fitted with templates, to obtain designs with the gravel, and conventional systems for transporting the gravel. The same mechanical system can operate with the aforementioned CAD/CAM system, for the large scale production of tiles.

[0069] After the seventh sub-station 41, the tray structures are conveyed in appropriate conditioning spaces 29 for curing the tiles. Conveniently, said space will comprise a multiplicity of shelves 28 to position the tray structures stacked but allowing the flow of the air and of the steam produced by an appropriate controlled temperature conditioning system.

[0070] From the shelves 28 are extracted the tray structures 5 containing cured tiles, able to be conveyed to a finishing plant, globally indicated with the reference number 42, which comprises an inlet 30 with a device 43 for extracting the semi-finished tile from the respective tray structure 5 which, is destined to be reused, will be cleaned.

[0071] From the extraction device 43 branches a transport line for moving the semi-finished tiles through a multiplicity of finishing stations.

[0072] In the embodiment described herein, the finishing plant 42 comprises in succession a first and a second calibration stations 31 and 32, provided with large grain grinding wheels, whereby it is possible to obtain a rough tile already suitable for laying in view of on site finishing. [0073] Subsequently, the plant has a third finishing station 34 which, with a series of grinding wheels with fine and very fine grain, produces a shiny surface that makes the tiles suitable to the laying of a finished floor.

[0074] From the description above it is readily apparent

that the fabrication method and the plant are able to produce not only floor tiles but also any ceramic-like plane, for instance tiles for floors, skirting boards, steps, wall, bathrooms, kitchen and bathroom counters, decorations of various kinds etc.

[0075] The formats may be the most diverse and above all they may be adapted to specific requirements. In particular, the tray structures described above may be fabricated on site, using sheets of plastic material, able to be hot-moulded with the required format.

[0076] In this way, it will be possible to avoid cutting the produced tiles, which could make evident, for the reasons explained above, the junctions between tiles.

[0077] To the method described above a person versed in the art, in order to meet additional and contingent requirements, may make numerous additional modifications and variations, all included within the scope of protection of the present invention, as defined by the accompanying claims.

Claims

20

25

40

45

- Method for fabricating tiles and the like, able to be used as floor and support plane, which reproduce, in the motifs and techniques employed, so-called Venetian floors, comprising the phases of:
 - * laying a first layer of grout (70) on a planar support (50);
 - * placing a quantity of gravel (9) on the surface of said first layer of grout (70);
 - * subjecting said planar support (50) to sussultatory vibrations, determining the partial burying of the gravel (9) in said first layer of grout (70);
 - * laying, onto said first layer of grout (70), a second layer of grout obtaining a semi-finished tile (12);
 - * vibrating the whole semi-finished tile; and
 - * drying said semi-finished tile (12).
- Method as claimed in claim 1, wherein said first layer of grout (70) is laid by applying sussultatory vibrations.
- Method as claimed in claim 1, wherein said second layer of grout is laid by applying sussultatory vibrations.
- 4. Method as claimed in claim 1, wherein the laying of the gravel is performed in accordance to a design and by means of a template.
 - Method as claimed in claim 1, wherein a phase of grinding a surface of said semi-finished tile until a pre-determined degree of finish is provide.
 - 6. Method as claimed in claim 1, wherein a partial grind-

55

5

10

15

35

40

45

50

ing of a surface of said semi-finished tile is provide.

- Method as claimed in claim 1, wherein a phase of curing by means of steam baking under controlled temperature is provided.
- **8.** Method as claimed in claim 1, wherein the planar support (50) is lubricated before laying said first layer (70) of grout.
- 9. Plant (20) for fabricating Venetian floor tiles according to the method of claim 1, comprising a forming line (22), along which tray structures (5) are moved, having: an inlet (21); a first sub-station (35) where the tray structures (5) are lubricated; a second substation (36) for the laying of a first layer of grout (70); a third sub-station (37) with vibration generating means (8) to lay the first layer of grout (70) uniformly; a fourth sub-station (39) for superficially distributing gravel (9); a fifth sub-station (39) with vibration generating means (8) to bury the gravel in the grout; a sixth sub-station (40) fed by a second quantity of grout (11); and a seventh sub-station (41) with vibration generating means.
- **10.** Plant (20) as claimed in claim 9, wherein the fourth sub-station (38) is subdivided into multiple sub-stations for the laying of different types of gravel.
- 11. Plant as claimed in claim 9, comprising conditioning spaces (29) for curing the tiles with a multiplicity of shelves 28 to arrange the tray structures (5) stacked but allowing the flow of the air and of the steam produced by an appropriate controlled temperature conditioning system.
- **12.** Plant (20) as claimed in claim 9, comprising a transport line for moving the semi-finished tiles through a multiplicity of finishing stations.

Patentansprüche

 Verfahren zum Herstellen von Fliesen und dergleichen, die als Fußboden und Auflagefläche genutzt werden können und in den eingesetzten Motiven und Techniken so genannte venezianische Fußböden wiedergeben, wobei das Verfahren die Phasen umfasst:

> Verlegen einer ersten Vergussmörtelschicht (70) auf einer ebenen Bettung (50); Aufbringen einer Kiesmenge (9) auf die Oberfläche der ersten Vergussmörtelschicht (70); Aussetzen der ebenen Bettung (50) den Rüttelschwingungen, die das teilweise Versenken der Kiesmenge (9) in die erste Vergussmörtelschicht (70) bestimmen;

Verlegen einer zweiten Mörtelschicht auf der ersten Mörtelschicht (70), indem eine halb fertige Fliese (12) erhalten wird;

Einrütteln der gesamten halb fertigen Fliese; und

Trocknen der halb fertigen Fliese (12).

- Verfahren nach Anspruch 1, bei dem die erste Mörtelschicht (70) durch Anwendung von Rüttelschwingungen verlegt wird.
- Verfahren nach Anspruch 1, bei dem die zweite Mörtelschicht durch Anwendung von Rüttelschwingungen verlegt wird.
- 4. Verfahren nach Anspruch 1, bei dem das Auflegen von Kies entsprechend einem Entwurf und mittels einer Schablone durchgeführt wird.
- 5. Verfahren nach Anspruch 1, bei dem eine Phase des Schleifens einer Oberfläche der halb fertigen Fliese bis zu einem vorbestimmten Grad der Fertigbearbeitung vorgesehen ist.
- 25 6. Verfahren nach Anspruch 1, bei dem teilweises Schleifen einer Oberfläche der halb fertigen Fliese vorgesehen ist.
- Verfahren nach Anspruch 1, bei dem eine Phase des Aushärtens durch Trocknen mit Dampf bei einer geregelten Temperatur vorgesehen ist.
 - Verfahren nach Anspruch 1, bei dem die ebene Bettung (50) geschmiert wird, bevor die erste Mörtelschicht (70) verlegt wird.
 - 9. Anlage (20) zum Herstellen von venezianischen Fußbodenfliesen nach dem Verfahren von Anspruch 1, die eine Formstrecke (22) umfasst, an der entlang Schalenanordnungen (5) bewegt werden; mit einem Einlass (21); einer ersten Nebenstation (35), in der die Schalenanordnungen geschmiert werden; einer zweiten Nebenstation (36) zum Verlegen einer ersten Mörtelschicht (70); einer dritten Nebenstation (37) mit einer Schwingungserzeugungseinrichtung (8) zum gleichmäßigen Verlegen der ersten Mörtelschicht (70); einen vierten Nebenstation (39) zum Verteilen von Kies (9) an der Oberfläche; einer fünften Nebenstation (39) mit einer Schwingungserzeugungseinrichtung (8) zum Versenken von Kies in dem Mörtel; einer mit einer zweiten Mörtelmenge (11) gespeisten, sechsten Nebenstation (40); und einer siebenten Nebenstation (41) mit einer Schwingungserzeugungseinrichtung.
 - **10.** Anlage (20) nach Anspruch 9, bei der die vierte Nebenstation (38) in mehrere Nebenstationen zum Auflegen von unterschiedlichen Kiestypen unterteilt ist.

5

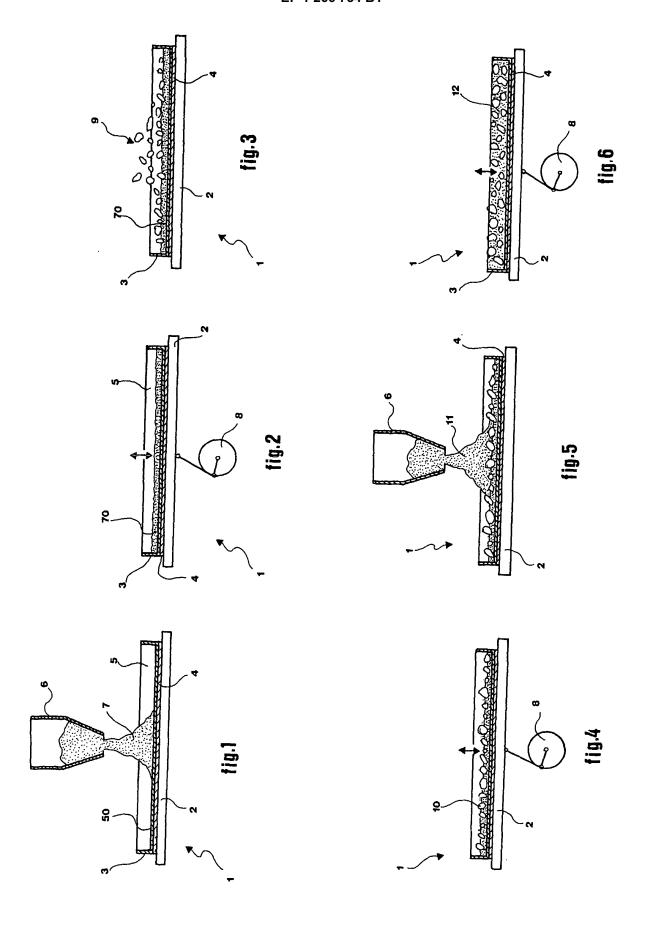
10

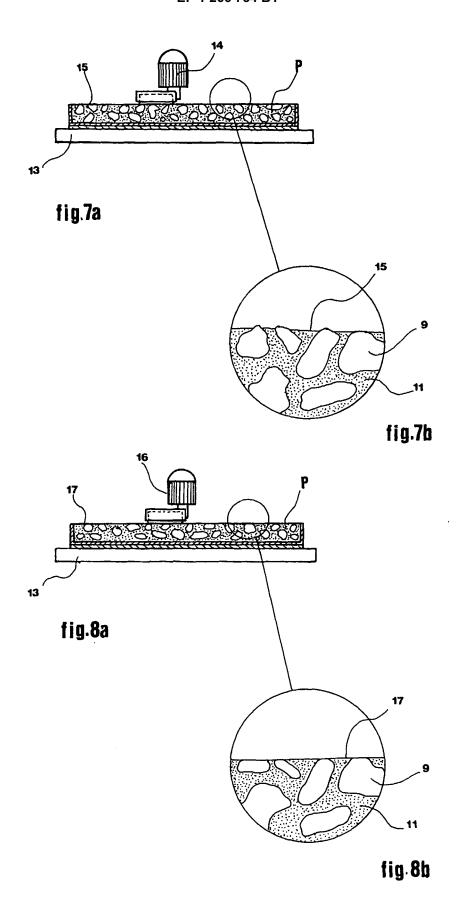
15

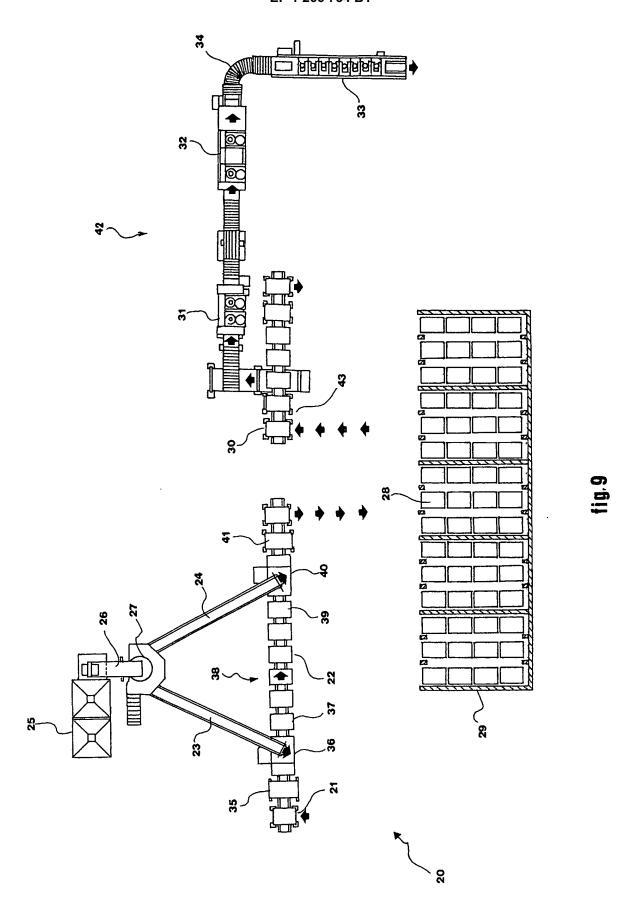
20

30

35


- 11. Anlage nach Anspruch 9, die Lagerungsräume (29) zum Härten der Fliesen mit einer Vielzahl von Regalen (28) umfasst, um die Schalenanordnungen (5) gestapelt anzubringen, die jedoch das Durchströmen der Luft und des durch ein geeignet geregeltes Klimatisierungssystem erzeugten Dampfes ermöglichen.
- **12.** Anlage (20) nach Anspruch 9, die eine Transportstrecke aufweist, um die halb fertigen Fliesen durch eine Vielzahl von Fertigbearbeitungsstationen zu bewegen.


Revendications


- Procédé de fabrication de carreaux et similaires, capables d'être utilisés comme revêtements de sol et comme plans de support, qui reproduisent, en termes de motifs et de techniques utilisés, des sols dits "vénitiens", comprenant les phases consistant à :
 - poser une première couche de coulis (70) sur un support plat (50) ;
 - placer une quantité de graviers (9) sur la surface de ladite première couche de coulis (70) ;
 - soumettre ledit support plat (50) à des vibrations verticales de grande amplitude, déterminant l'ensevelissement partiel des graviers (9) dans ladite première couche de coulis (70);
 - poser, sur ladite première couche de coulis (70), une seconde couche de coulis pour l'obtention d'un carreau semi-fini (12);
 - faire vibrer le carreau semi-fini entier ; et
 - sécher ledit carreau semi-fini (12).
- 2. Procédé selon la revendication 1, dans lequel ladite première couche de coulis (70) est posée en appliquant des vibrations verticales de grande amplitude.
- 3. Procédé selon la revendication 1, dans lequel ladite seconde couche de coulis est posée en appliquant des vibrations verticales de grande amplitude.
- **4.** Procédé selon la revendication 1, dans lequel la pose des graviers est effectuée selon un modèle et à l'aide d'un gabarit.
- 5. Procédé selon la revendication 1, dans lequel une phase de meulage d'une surface dudit carreau semifini jusqu'à ce qu'un degré prédéterminé de finition soit obtenu est prévue.
- **6.** Procédé selon la revendication 1, dans lequel un meulage partiel d'une surface dudit carreau semi-fini est prévu.
- 7. Procédé selon la revendication 1, dans lequel une

- phase de cuisson à l'aide d'une cuisson à la vapeur sous température contrôlée est prévue.
- **8.** Procédé selon la revendication 1, dans lequel le support plat (50) est lubrifié avant de poser ladite première couche (70) de coulis.
- Installation (20) destinée à fabriquer des carreaux de sol vénitiens selon le procédé de la revendication 1, comprenant une ligne de formage (22), le long de laquelle des structures à plateaux (5) se déplacent, possédant : une entrée (21) ; un premier sous-poste (35) auguel les structures à plateaux (5) sont lubrifiées; un second sous-poste (36) destiné à la pose d'une première couche de coulis (70) ; un troisième sous-poste (37) muni de moyens de génération de vibrations (8) afin de poser la première couche de coulis (70) de manière uniforme ; un quatrième sous-poste (39) destiné à répartir superficiellement les graviers (9) ; un cinquième sous-poste (39) muni de moyens de génération de vibrations (8) afin d'ensevelir les graviers dans le coulis ; un sixième sous-poste (40) alimenté par une seconde quantité de coulis (11), et un septième sous-poste (41) muni de moyens de génération de vibrations.
- 10. Installation (20) selon la revendication, dans laquelle le quatrième sous-poste (38) est subdivisé en plusieurs sous-postes destinés à la pose de différents types de graviers.
- 11. Installation selon la revendication 9, comprenant des espaces de conditionnement (29) destinés à cuire les carreaux avec une multiplicité de tablettes (28) afin d'agencer les structures à plateaux (5) en les empilant, mais permettre un flux d'air et de vapeur produit par un système de conditionnement à régulation de température approprié.
- 40 12. Installation (20) selon la revendication 9, comprenant une ligne de transport destinée à déplacer les carreaux semi-finis dans une multiplicité de postes de finition.

50

