Field Of The Invention
[0001] The present invention pertains to the field of computer systems. More particularly,
this invention pertains to the field of improving signal integrity on a high speed
data bus.
Background of the Invention
[0002] The response of a high-speed data bus, such as one of today's high bandwidth memory
busses, depends strongly on the characteristics of the output drivers coupled to the
bus. Among the various characteristics that affect signal integrity on the data bus
is the voltage at which the output driver becomes a non-linear current source. This
non-linearity can negatively impact signal integrity and can result in data corruption.
[0003] Figure 1 shows a prior data bus coupled to a bus controller 170. The bus controller
170 may be connected to a microprocessor or other computer system agent (not shown).
The data bus is represented by transmission line segments 120, 130, and 140. The bus
is terminated by a terminating resistor 110 which is tied to a terminating voltage
Vterm. Coupled to the bus are two driver transistors 150 and 160. The driver transistor
150 may receive an input signal at its gate terminal 151 and the driver transistor
160 may receive another input signal at its gate terminal 161. The input signals may
be received from a memory device or other data source. The driver transistors 150
and 160 serve to transmit data out onto the data bus.
[0004] The driver transistors 150 and 160 conduct current when a logically high voltage
is applied to the gate terminals of the driver transistors. The bus controller 170
detects the current drain through the driver transistors 150 and 160 and in this manner
the driver transistors 150 and 160 are able to communicate with the bus controller
170. The bus controller 170 has a minimum current specification that must be met before
the bus controller 170 can detect data transmission from the driver transistors 150
and 160. A typical current specification may be 28mA. Therefore, for this example,
the driver transistors 150 and 160 must be able to sink 28mA of current in order to
ensure proper data transfer.
[0005] A problem may occur when driver transistors 150 and 160 try to perform a back-to-back
transfer. For this example, Vterm equals 1.8V and the logically high voltage applied
to the gate terminal of the driver transistors 150 and 160 is also 1.8V. When 1.8
volts is present on the bus (due to the connection to Vterm through the terminating
resistor 110) and a logically high voltage is applied to the gate terminals of the
driver transistors 150 and 160, the driver transistors 150 and 160 operate in their
saturation regions and the driver transistors 150 and 160 are therefore able to sink
a constant current (28mA is this example). If, however, the voltage on the bus falls
below the driver saturation voltage, then the driver transistors 150 and 160 would
not be operating in their saturation regions and would therefore not be able to sink
a constant current of 28mA. This can present problems during back-to-back transfers.
[0006] For example, a logically high voltage is applied to the gate terminal 151 of the
driver transistor 150 during a clock period and the driver transistor 150 sinks 28mA
during that clock period. Towards the end of the clock period, the logically high
voltage is removed from the gate terminal of the driver transistor 150 and the driver
transistor 150 ceases to sink current. In the next clock period, another logically
high voltage is applied to the gate terminal 161 of driver transistor 160. However,
instead of 1.8V being present on the bus at the beginning of the clock period, the
data transfer during the previous clock period may have caused the voltage on the
bus to drop to perhaps 1.0V. With a logically high voltage of 1.8V applied to the
gate terminal 161 and with the bus sitting at 1.0V, the driver transistor 160 is not
able to operate in its saturation region and is not able to sink a constant 28mA.
Data corruption is a possible result.
[0007] Prior data bus systems have dealt with this problem by inserting a wait cycle between
data transfers. For example, with the data transfer described above an extra clock
period can be inserted between the data transfer of driver 150 and the data transfer
of driver 160, thus allowing the voltage on the data bus time to return to 1.8V which
would allow the driver transistor 160 to operate in its saturation region. The insertion
of a wait cycle, however, has the drawback of reducing data throughput and negatively
impacting system performance.
[0008] US-A-5 969 554 discloses a pre-drive circuit that increases an upper limit of a voltage
range at input but does not reduce an upper limit of the voltage range at input.
[0009] According to a first aspect of the invention there is provided an apparatus comprising
a driver circuit as claimed in claim 1.
[0010] According to a second aspect of the invention there is provided a method as claimed
in claim 8.
Brief Description of the Drawings
[0011] The invention will be understood more fully from the detailed description given below
and from the accompanying drawings of embodiments of the invention which, however,
should not be taken to limit the invention to the specific embodiments described,
but are for explanation and understanding only.
[0012] Figure 1 is a block diagram of a prior system for transferring data over a high speed
bus.
[0013] Figure 2 is a block diagram of system implemented in accordance with an embodiment
of the invention.
[0014] Figure 3 is a block diagram of a data transceiver implemented in accordance with
an embodiment of the invention.
[0015] Figure 4 is a circuit diagram of a data transceiver implemented in accordance with
an embodiment of the invention.
[0016] Figure 5 is a flow diagram of a method for reducing back-to-back voltage glitch on
a high speed data bus implemented in accordance with an embodiment of the invention.
Detailed Description
[0017] An example embodiment of a method and apparatus for reducing back-to-back voltage
glitch on a high speed bus will be described. For this example, a pre-driver circuit
receives an input voltage signal whose voltage level swings from a logically low voltage
level to a logically high voltage level where the logically low voltage level approximately
equals VSS and the logically high voltage level approximately equals VCC. The pre-driver
reduces the magnitude of the voltage swing to create a signal that when delivered
to a driver transistor ensures that the driver transistor will operate in its saturation
region even when the voltage on the high speed bus is at its minimum specified voltage.
When the driver transistor operates in its saturation region it can sink a constant
current and also provide a high output impedance.
[0018] Figure 2 is a block diagram of a high speed bus system implemented in accordance
with an embodiment of the invention. The system of Figure 2 includes a bus controller
270. The bus controller 270 may be coupled to a microprocessor or other computer system
agent (not shown). The bus controller 270 receives data from a data transceiver 400
and a data transceiver 260. The data transceivers 400 and 260 are coupled to memory
devices 280 and 290 respectively. The memory devices 280 and 290 deliver data to the
data transceivers 400 and 260. The data transceivers 400 and 260 transmit the data
received from the memory devices 280 and 290 to the bus controller 270. The data transceivers
400 and 260 communicate with the bus controller 270 via a data bus represented by
transmission line segments 220, 230, and 240. The data bus also includes a termination
resistor 210 that is connected to a termination voltage Vterm. Vterm for this example
embodiment is 1.8V.
[0019] Other embodiments are possible using other values for VCC and Vterm. The termination
resistor 210 has a value of 28 Ohms, which matches the characteristic impedance of
the transmission line segments 220, 230. and 240. Other embodiments are possible using
different values for the termination resistor 210 and the characteristic impedance
of the transmission line segments 220, 230, and 240. The data bus system of Figure
2 may operate at a clock speed of 400MHz, although other embodiments are possible
using other clock speeds. Further, although the system of Figure 2 includes memory
devices, other embodiments are possible using other computer system agents to deliver
data to the bus controller 270 through the data transceivers 400 and 260. Also, although
in this example embodiment two data transceivers are discussed, other embodiments
are possible using other numbers of data transceivers.
[0020] In order to make the most efficient use of the potential available bandwidth, the
data transceivers 400 and 260 may perform back-to-back data transfers where one of
the data transceivers can deliver data in one clock period and the other data transceiver
can deliver data in the next clock period without a wait cycle inserted between the
data transfers. To help ensure signal integrity and proper data transfer, the data
transceivers sink a constant current when conducting and when the voltage level on
the bus is within a range defined by Vterm and a minimum low voltage specification.
ln this example embodiment, the minimum low voltage specification is 1.0V, although
other embodiments are possible using other minimum low voltage specifications.
[0021] Figure 3 is a block diagram of the data transceiver 400. The data transceiver 260
of Figure 2 may be implemented in like fashion but will not be mentioned in connection
with Figure 3 nor in connection with Figure 4 in order to simplify the discussion.
[0022] The data transceiver 400 includes a pre-driver circuit 410 and a driver circuit 420.
The pre-driver circuit receives an input signal 405. The input signal 405 may be delivered
from a memory device such the memory device 280 of Figure 2. The input signal 405
in this example embodiment has a voltage swing of from VCC to VSS.
[0023] The pre-driver circuit 410 takes the input signal 405 and reduces the voltage swing
to produce a reduced voltage signal 415 that is delivered to the driver circuit 420.
The reduced voltage signal 415 has a voltage swing that ensures that the driver circuit
420 can sink a constant current when conducting. The driver circuit 420 draws current
from an output pad 425 that provides a connection to the data bus of Figure 2.
[0024] One embodiment of the pre-driver circuit may include a simple voltage divider circuit,
although a simple voltage divider circuit would have the drawback of continuously
drawing current.
[0025] Figure 4 is a circuit diagram of one embodiment of the data transceiver 400. This
example embodiment does not continuously draw significant amounts of current as would
be the case with a simple voltage divider circuit. The pre-driver circuit 410 includes
NMOS transistors 411, 414, and 416 as well as PMOS transistors 412 and 413. The driver
circuit 420 includes NMOS transistors 421 and 422.
[0026] When the input signal 405 swings to VCC (1.8V in this example), the transistor 411
conducts and a voltage of VCC minus one threshold voltage for transistor 411 is applied
to the gate terminal of transistor 414. Transistor 416 also conducts and a voltage
level of VSS is delivered to the reduced voltage signal 415. When VSS is applied to
the transistor 422, the transistor 422 does not conduct and no current is drawn from
the output pad 425 which is connected to the data bus.
[0027] When the input signal 405 swings to VSS, the NMOS transistors 411 and 416 cease to
conduct and instead the PMOS transistors 412 and 413 conduct. When the transistor
412 conducts, a voltage level of VSS plus one threshold voltage for transistor 412
is applied to the gate of transistor 414 and a voltage level of one threshold voltage
for transistor 412 minus one threshold voltage for transistor 414 is applied to the
reduced voltage signal 415. The transistors 412 and 414 can be designed to produce
an appropriate voltage for the reduced voltage signal 415 when the input signal is
at VSS. An appropriate voltage applied to the reduced voltage signal 415 would be
a voltage that would allow the transistor 422 to operate in its saturation region
and thereby sink a constant current when conducting. If the minimum voltage seen by
the output pad 425 is 1.0V and if the threshold voltage for transistor 422 is .4V,
then the transistor 422 will operate in its saturation region when the voltage applied
to the reduced voltage signal 415 does not exceed 1.4V.
[0028] The transistor 421 provides capacitive decoupling between the output pad 425 and
the driver transistor 422. Thus, any high frequency oscillations observed on the output
pad 425 will not negatively impact the operation of the driver transistor 422.
[0029] Although specific voltage levels are mentioned in the above discussion, other embodiments
are possible using other voltage levels.
[0030] Figure 5 is a flow diagram of a method for reducing back-to-back voltage glitch on
a high speed data bus implemented in accordance with an embodiment of the invention.
At block 510, a logically high input voltage is received. The logically high input
voltage is reduced at block 520. At block 530, the reduced logically high input voltage
is applied to a gate terminal of a driver transistor such that the driver transistor
operates in its saturation region.
[0031] In the foregoing specification the invention has been described with reference to
specific exemplary embodiments thereof. It will, however, be evident that various
modifications and changes may be made thereto without departing from the scope of
the invention as set forth in the appended claims. The specification and drawings
are, accordingly, to be regarded in an illustrative rather than in a restrictive sense.
[0032] Reference in the specification to "an embodiment," "one embodiment," "some embodiments,"
or "other embodiments" means that a particular feature, structure, or characteristic
described in connection with the embodiments is included in at least some embodiments,
but not necessarily all embodiments, of the invention. The various appearances of
"an embodiment," "one embodiment," or "some embodiments" are not necessarily all referring
to the same embodiments.
1. An apparatus (400), comprising:
a driver circuit (420) including a driver transistor (422), the driver transistor
(422) including a gate terminal, characterized in that
the driver circuit (420) further comprises a decoupling transistor (421) connected
between the driver transistor (422) and an output pad (425), the decoupling transistor
(421) including a gate terminal, the gate terminal of the decoupling transistor connected
to a positive supply voltage (435); and
a pre-driver circuit (410) to accept a logically high input voltage (405) and to deliver
a reduced logically high input voltage (415) to the gate terminal of the driver transistor
(422), wherein the reduced logically high input voltage (415) is no greater than the
threshold voltage for the driver transistor (422) plus substantially 1.0V.
2. The apparatus of claim 1, wherein the reduced logically high voltage (415) delivered
to the gate terminal of the driver transistor (422) is no greater than 1.4V.
3. The apparatus of claim 1, wherein the driver transistor (422) and the decoupling transistor
(421) are connected in a cascode arrangement.
4. A system comprising:
a data bus controller (270); and
a data transceiver, wherein the data transceiver includes an apparatus (400) as claimed
in claim 1
5. The system of claim 4, the pre-driver circuit (410) to deliver the reduced logically
high voltage (415) to the gate terminal of the driver transistor (422) such that the
driver transistor (422) operates in its saturation region, wherein the reduced logically
high input voltage (415) is no greater than the threshold voltage for the driver transistor
plus substantially 1.0V.
6. The system of claim 4, the driver circuit (420) further comprising a decoupling transistor
(421) connected between the driver transistor (422) and an output pad (425), the output pad (425) connected to the data bus (220-240), the decoupling transistor
(421) including a gate terminal, the gate terminal of the decoupling transistor (421)
connected to a positive supply voltage (435).
7. The system of claim 4, wherein the reduced logically high voltage (415) delivered
to the gate terminal of the driver transistor (422) is no grater than the threshold
voltage for the driver transistor (422) plus substantially 1.0V.
8. A method for operating a driver circuit as claimed in claim 1, comprising:
receiving a logically high input voltage (405) at the driver circuit;
reducing the logically high input voltage (405); and
applying the reduced logically high input voltage (415) to a gate terminal of a driver
transistor (422) of the driver circuit such that the driver transistor (422) operates
in its saturation region, wherein reducing the logically high input voltage (405)
includes reducing the logically high input voltage (405) such that the reduced logically
high input voltage (415) is no greater than the threshold voltage for the driver transistor
(422) plus substantially 1.0V.
1. Vorrichtung (400), die folgendes umfasst:
Treiberschaltung (420) mit einem Treibertransistor (422), wobei der Treibertransistor
(422) einen Steueranschluss aufweist, dadurch gekennzeichnet, dass:
die Treiberschaltung (420) ferner einen Abblocktransistor (421) umfasst, der zwischen
den Treibertransistor (422) und einen Ausgangsanschluss (425) gekoppelt ist, wobei
der Abblocktransistor (421) einen Steueranschluss aufweist, wobei der Steueranschluss
des Abblocktransistors mit einer positiven Versorgungsspannung (435) verbunden ist;
und
eine Vortreiberschaltung (410) zur Annahme einer logisch hohen Eingangsspannung (405)
und für die Zufuhr einer reduzierten logisch hohen Eingangsspannung (415) an den Steueranschluss
des Treibertransistors (422), wobei die reduzierte logisch hohe Eingangsspannung (415)
nicht höher ist als die Schwellenspannung für den Treibertransistor (422) plus im
Wesentlichen 1,0 Volt.
2. Vorrichtung nach Anspruch 1, wobei die reduzierte logisch hohe Spannung (415), die
dem Steueranschluss des Treibertransistors (422) zugeführt wird, nicht höher ist als
1,4 Volt.
3. Vorrichtung nach Anspruch 1, wobei der Treibertransistor (422) und der Abblocktransistor
(421) in einer Kaskadenanordnung verbunden sind.
4. System, das folgendes umfasst:
einen Datenbus-Controller (270); und
einen Daten-Transceiver, wobei der Daten-Transceiver eine Vorrichtung (400) gemäß
dem gegenständlichen Anspruch 1 aufweist.
5. System nach Anspruch 4, wobei die Vortreiberschaltung (410) die reduzierte logisch
hohe Spannung (415) dem Steueranschluss des Treibertransistors (422) zuführt, so dass
der Treibertransistor (422) in dessen Sättigungsbereich arbeitet, wobei die reduzierte
logisch hohe Eingangsspannung (415) nicht höher ist als die Schwellenspannung für
den Treibertransistor plus im Wesentlichen 1,0 Volt.
6. System nach Anspruch 4, wobei die Treiberschaltung (420) ferner einen Abblocktransistor
(421) umfasst, der zwischen den Treibertransistor (422) und einen Ausgangsanschluss
(425) gekoppelt ist, wobei der Ausgangsanschluss (425) mit dem Datenbus (220 - 240)
verbunden ist, wobei der Abblocktransistor (421) einen Steueranschluss aufweist, wobei
der Steueranschluss des Abblocktransistors (421) mit einer positiven Versorgungsspannung
(435) verbunden ist.
7. System nach Anspruch 4, wobei die reduzierte logisch hohe Spannung (415), die dem
Steueranschluss des Treibertransistors (422) zugeführt wird, nicht höher ist als die
Schwellenspannung für den Treibertransistor (422) plus im Wesentlichen 1,0 Volt.
8. Verfahren zum Betreiben einer Treiberschaltung nach Anspruch 1, wobei das Verfahren
folgendes umfasst:
das Empfangen einer logisch hohen Eingangsspannung (405) an der Treiberschaltung;
das Reduzieren einer logisch hohen Eingangsspannung (405); und
das Anlegen einer reduzierten logisch hohen Eingangsspannung (415) an einen Steueranschluss
eines Treibertransistors (422) der Treiberschaltung, so dass der Treibertransistor
(422) in dessen Sättigungsbereich arbeiten, wobei das Reduzieren der logisch hohen
Eingangsspannung (405) das Reduzieren der logisch hohen Eingangsspannung (405) aufweist,
so dass die reduzierte logisch hohe Eingangsspannung (415) nicht höher ist als die
Schwellenspannung für den Treibertransistor (422) plus im Wesentlichen 1,0 Volt.
1. Appareil (400), comprenant :
un circuit d'attaque (420) comprenant un transistor d'attaque (422), le transistor
d'attaque (422) comprenant une borne de porte, caractérisé en ce que
le circuit d'attaque (420) comprend en outre un transistor de découplage (421) relié
entre le transistor d'attaque (422) et un plot de sortie (425), le transistor de découplage
(421) comprenant une borne de porte, la borne de porte du transistor de découplage
étant reliée à une tension d'alimentation positive (435) ; et
un circuit de pré-attaque (410) pour accepter une tension d'entrée logiquement élevée
(405) et pour fournir une tension d'entrée logiquement élevée réduite (415) à la borne
de porte du transistor d'attaque (422), dans lequel la tension d'entrée logiquement
élevée réduite (415) n'est pas supérieure à la tension seuil pour le transistor d'attaque
(422) plus sensiblement 1,0 V.
2. Appareil selon la revendication 1, dans lequel la tension logiquement élevée réduite
(415) fournie à la borne de porte du transistor d'attaque (422) n'est pas supérieure
à 1,4 V.
3. Appareil selon la revendication 1, dans lequel le transistor d'attaque (422) et le
transistor de découplage (421) sont reliés dans un agencement cascode.
4. Système comprenant :
un contrôleur de bus de données (270) ; et
un émetteur-récepteur de données, dans lequel l'émetteur-récepteur de données comprend
un appareil (400) selon la revendication 1.
5. Système selon la revendication 4, le circuit de pré-attaque (410) devant amener la
tension logiquement élevée réduite (415) à la borne de porte du transistor d'attaque
(422) de telle sorte que le transistor d'attaque (422) fonctionne dans sa région de
saturation, dans lequel la tension d'entrée logiquement élevée réduite (415) n'est
pas supérieure à la tension seuil pour le transistor d'attaque plus sensiblement 1,0
V.
6. Système selon la revendication 4, le circuit d'attaque (420) comprenant en outre un
transistor de découplage (421) couplé entre le transistor d'attaque (422) et un plot
de sortie (425), le plot de sortie (425) étant relié au bus de données (220-240),
le transistor de découplage (421) comprenant une borne de porte, la borne de porte
du transistor de découplage (421) étant reliée à une tension d'alimentation positive
(435).
7. Système selon la revendication 4, dans lequel la tension logiquement élevée réduite
(415) amenée à la borne de porte du transistor d'attaque (422) n'est pas supérieure
à la tension seuil pour le transistor d'attaque (422) plus sensiblement 1,0 V).
8. Procédé pour actionner un circuit d'attaque selon la revendication 1, comprenant les
étapes consistant à :
recevoir une tension d'entrée logiquement élevée (405) au niveau du circuit d'attaque
;
réduire la tension d'entrée logiquement élevée (405) ; et
appliquer la tension d'entrée logiquement élevée réduite (415) à une borne de porte
d'un transistor d'attaque (422) du circuit d'attaque de telle sorte que le transistor
d'attaque (422) fonctionne dans sa région de saturation, dans lequel la réduction
de la tension d'entrée logiquement élevée (405) comprend l'étape consistant à réduire
la tension d'entrée logiquement élevée (405) de telle sorte que la tension d'entrée
logiquement élevée réduite (405) n'est pas supérieure à la tension seuil pour le transistor
d'attaque (422) plus sensiblement 1,0 V.