(11) EP 1 270 415 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

02.01.2003 Bulletin 2003/01

(21) Application number: 02015723.6

(22) Date of filing: 13.08.1997

(84) Designated Contracting States: **DE NL**

(30) Priority: 14.08.1996 JP 21470296

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 97113962.1 / 0 836 992

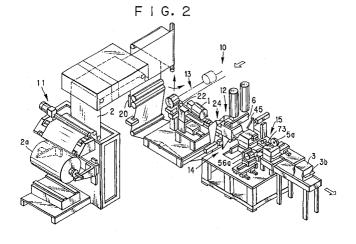
(71) Applicant: FUJI PHOTO FILM CO., LTD. Kanagawa (JP)

(72) Inventors:

Fujiwara, Takayuki
 Minami-Ashigara-shi, Kanagawa (JP)

(51) Int CI.⁷: **B65B 9/06**

- Sumida, Kunihiro
 Minami-Ashigara-shi, Kanagawa (JP)
- Okutsu, Kazuo Minami-Ashigara-shi, Kanagawa (JP)
- (74) Representative: Grünecker, Kinkeldey, Stockmair & Schwanhäusser Anwaltssozietät Maximilianstrasse 58 80538 München (DE)


Remarks:

This application was filed on 12 - 07 - 2002 as a divisional application to the application mentioned under INID code 62.

(54) A pillow type packaging apparatus

(57) The invention relates to a pillow type packaging apparatus for packaging an article (1) in a packaging bag (3), including a conveyor mechanism (26,28) for conveying flexible continuous sheet material (2), a guide unit (24) for guiding said continuous sheet material (2) being conveyed, to form said continuous sheet material into a tube in which a pair of longitudinal edges (2b) of said continuous sheet material are confronted with each other, a center sealer (25) for thermally sealing up said longitudinal edges (26), and an inserter (13,38) for inserting said article (1) into said tube through said guide unit (24) while a front end of said article (1) is directed downstream, wherein said tube is formed into said pack-

aging bag (3) by cutting and sealing, a first and a second bender plate (45) for folding first and second lateral portions of said tube inwards, wherein said first and second bender plate (45) respectively have a triangular shape, are disposed downstream from said guide unit (24) and opposite to each other with respect to said tube, and are swingable about respective axes thereof, and a third and a fourth bender plate (46) for folding third and fourth lateral portions of said tube toward one another, wherein said third and fourth bender plate (46) respectively are disposed downstream from said guide unit (24), opposite to each other with respect to said tube, crosswise to arrangement of said first and second bender plate (45), and are swingable.

Description

[0001] Generally, a pillow type packaging apparatus operates to wrap an article into a bag or packaging by use of continuous sheet material being flat, to obtain a package. In the packaging operation, the outer form of the article is also utilized by way of an auxiliary guide member for the tube forming to keep a tubular shape of the packaging bag. If a shape of a tube forming guide unit as viewed in cross section is different from that of the article as viewed in cross section, it is extremely difficult to obtain the package with agreeable appearance. Also it is extremely difficult without the article to form the packaging bag being empty in a desired size. When supply of the article is stopped for example for changing the size and shape of the packaging bag, it is required to supply a dummy article to stabilize the tube forming operation. Even if there is an unusable or unacceptable portion in the continuous sheet material such as a connected portion, it is difficult to remove the unusable part of the continuous sheet material from the apparatus without the article. It is necessary to wrap the article, remove the article with the unusable packaging bag, and then wrap again the article being uncovered.

[0002] JP-Y 38-7673 and JP-Y 55-23922 disclose a use of an inner guide frame, which is disposed inside the tube forming guide unit, for guiding the continuous sheet material inside its tubular portion.

[0003] When the continuous sheet material used for the packaging operation is highly rigid, for example 100 microns or more thick, a problem arises by shortening a tube forming distance to deform the continuous sheet material in an abrupt manner. Fine wrinkles (called "darts") occur on the continuous sheet material, to increase resistance to tube forming remarkably. JP-A 63-272607 (corresponding to U.S.P. 4,761,937) suggests solution of this problem. The tube forming resistance is reduced by disposing a roller or arcuate member in a bending position in the tube forming guide unit for bending the continuous sheet material.

[0004] This idea has a shortcoming in that a path length of the continuous sheet material in a width direction between a position before the tube forming guide unit and a position after it is not regular. The term "path length" herein is used to represent a length of a locus of the continuous sheet material being sent through the tube forming guide unit. Thus tension of the continuous sheet material in the width direction is irregular. Possibility of occurrence of zigzag movement of the continuous sheet material is high. The continuous sheet material, typically with low resiliency, does not run smoothly even by use of the roller or arcuate member being suggested. Wrinkles may occur with higher likeliness. If the tube forming guide unit has a curved portion, it is difficult to maintain similarity of a shape of the guide unit after a change in the size to its shape before the change.

[0005] In general, a tube forming distance is determined long sufficiently in the apparatus for the tube

forming of the continuous sheet material with low resiliency. This is because the difference in the path length of the continuous sheet material in the width direction between upstream and downstream positions from the tube forming guide unit should be absorbed, even though the continuous sheet material has small tendency of extension and compression.

[0006] In the pillow type packaging apparatus, the article should be supplied to the tube forming guide unit while positioned at a regular interval article from article, for the purpose of preventing the article from colliding a bottom sealer. There are suggestions for this positioning, which have been worked in practical use. JP-B 58-44525 (corresponding to JP-A 54-138792) discloses a mechanical construction for positioning each article by use of a pusher. JP-B 7-67922 (corresponding to JP-A 4-44912) discloses an electric construction according to which a sensor is disposed directly before the tube forming guide unit, and a supply conveyor is started in response to a signal from the sensor.

[0007] The continuous sheet material after the tube forming for the tubular shape is subjected to a station of the gusset forming shortly before the bottom sealer. In the gusset forming, lateral faces of the continuous sheet material are folded inwards. The continuous sheet material is collapsed and flattened in a vertical direction, to discharge air from two consecutive articles. JP-B 7-108689 (corresponding to JP-A 2-282004) discloses the gusset forming in which the bottom sealer is used by way of a tube forming guide unit. The bottom sealer is moved, for example according to a technique of the box motion.

[0008] There is a problem in that a conveyor, which conveys the article being packaged, is likely to interfere with the bottom sealer. JP-B 7-64326 (corresponding to JP-A 2-282005) suggests a solution, according to which the conveyor is extended and shortened. A conveyor belt unit consists of upstream and downstream conveyor sections, in which a common single belt is connected in a roll form. The belt roll is horizontally moved to change an interval between upstream and downstream conveyor sections. An interval between the conveyor sections is changed greater for allowing heaters above and below a conveying path to operate for the center sealing, and changed as zero (0) in a closed state with the heaters retracted vertically from the conveying path. [0009] JP-Y 38-7673 and JP-Y 55-23922 disclose the inner guide frame, which, however, is changeable in the size only in the width direction of the packaging bag. No suggestion exists for an inner guide frame changeable in the size in a vertical direction of the packaging bag. In changing the size of the tube forming guide unit, the tube forming state should be adjusted while the continuous sheet material is manually supplied by an operator. The pillow type packaging apparatus known so far in the art is comparatively unadvantageous in comparison with other types of packaging apparatus, because of low suitability to changing the size of the continuous sheet material.

[0010] It is important that the tube forming guide unit should have a shape with a constant path length between upstream and downstream positions from the tube forming guide unit in any position of the continuous sheet material in its width direction, to prevent looseness in forming the continuous sheet material into the tubular shape. JP-B 60-55364 (corresponding to JP-A 58-64908) discloses an example of a shape of the tube forming guide unit. However the tube forming guide unit has a continuous surface. If the size of the packaging bag is required to change, the tube forming guide unit must be entirely exchanged or deformed.

3

[0011] In the known apparatuses, the inner guide frame is only inserted in an opening of the tube forming guide unit. There occurs looseness in the packaging bag in association with a gap between the tube forming guide unit and the inner guide frame. It is likely that tightness in the bottom sealed portion becomes low due to wrinkles caused in the gusset forming. It is likely that there occurs failure in the gusset forming such as deviations between a folded line of gussets and any of four lateral edges of the packaging bag.

[0012] The above-mentioned apparatus with the tube forming distance being great has an inevitably great size. If an accident occurs in the tube forming guide unit, it is extremely difficult to pass the continuous sheet material in the packaging apparatus initially for next operation. It is also necessary to remove a considerable number of inserted test articles from the line, and insert dummy articles to stabilize the forming of the packaging bag before safely starting the packaging operation.

[0013] JP-B 58-44525 (corresponding to JP-A 54-138792) and JP-B 7-67922 (corresponding to JP-A 4-44912) suggest the positioning method of an interval between articles with prevention of collision between the article and the bottom sealer. However it is difficult to check the article in the tube forming guide unit for exactness in the regular interval in the arrangement. If an operator manually adjusts the apparatus for eliminating difficulties in the tube forming guide unit, collision may occur again in the article and the bottom sealer to result in drawbacks of the known method. The interval between the articles changes depending upon a height of the article. The packaging apparatus suitable for plural sizes has a difficulty in positioning the article at a suitable interval again upon restarting of the apparatus after the operator's adjustment.

[0014] JP-B 7-108689 (corresponding to JP-A 2-282004) has a shortcoming in that the packaging bag is the more difficult to produce according to a height of the packaging bag. The continuous sheet material more than required is used. To effect the above-mentioned box motion, a relevant mechanism must have a complicated structure due to synchronization between conveyance of the article and movement of the bottom sealer. [0015] A gusseted portion should be formed by bending four faces of the continuous sheet material of the

tubular shape with bender members swingable about their respective axes. The respective axes of the bender members are not positioned along sides of an end face of the article according to any of the known constructions, and do not form a gusseted portion with agreeable appearance. Also known bender members are likely to damage the continuous sheet material.

[0016] If a considerable amount of air remains in the packaging bag, the continuous sheet material must be used to an extent more than is enough. It is difficult to stabilize an packaging operation. To reduce this surplus amount of the continuous sheet material, there is a suggestion in that a suction nozzle is inserted into the tube forming guide unit to discharge the remaining air from the article. However it is difficult to adapt this suggestion to packaging the article not quadrangular as viewed in cross section.

[**0017**] JP-B 7-64326 (corresponding to JP-A 2-282005) discloses a use of a conveyor belt for conveying the article and an extensible structure for the conveyor belt. However this idea cannot be applied to a use of an accumulate conveyor. It is general to use a method of preventing interference with the bottom sealer by shifting the conveyor. However the conveyor of the shiftable type requires spaces in forward and reverse directions for shifting stroke. It is impossible at the same time to effect reception and delivery of the articles, so that cycle time becomes excessively long, and inconsistent to heightening efficiency,

[0018] In the pillow type packaging apparatus where the packaging bag is supplied and the article is inserted into the packaging bag before a bag mouth of the packaging bag is closed, the closing operation is influenced by the article, the remaining air or the like. It is difficult to close the bag mouth of the packaging bag in the same state as before opening the bag mouth without difference. Typically with the gusseted bag, a process is required for folding the gusseted portion inwards in closing the packaging bag.

[0019] There are suggestions to solve this problem. JP-B 7-41895 (corresponding to JP-A 5-330518) discloses a use of force of suction for retaining the packaging bag. JP-B 52-29672 (corresponding to U.S.P. 3,859,062) discloses an operation of squeezing the bag mouth with a chuck. However the former has a shortcoming due to small force of retention with the suction. The latter must have a complicated mechanical structure for the chuck. Another shortcoming is a relatively great number of packaging steps because of insertion of the chuck into the packaging bag.

[0020] JP-B 61-44725 (corresponding to JP-A 55-134003) discloses a method in which the chuck squeezes the bag mouth, and rotated and moved toward the article for creating a folded end. The rotation and movement of the chuck are synchronized by engagement of a rack and a pinion.

[0021] If the chuck of the plate shape is used for folding the bag mouth, the chuck must be moved along a path of a sine curve when the chuck is rotated at a constant speed. It is impossible to keep tension applied to the continuous sheet material during the folding operation of the bag mouth. The bag mouth cannot be folded tightly typically when the article is fragile with small rigidity, or has an edge liable to be damaged.

[0022] If excessive tension is applied to the continuous sheet material for the purpose of tight folding, air is likely to enter the bag mouth to expand the packaging bag after the end folding, so that a difficulty may occur in a succeeding process. It is further likely that the chuck is not removed from the bag mouth after folding the bag mouth

[0023] To solve this problem, JP-A 2-19223 suggests a construction in which a rotational shaft of the chuck is so eccentric that the rotational shaft lies on a folding line of the continuous sheet material, and the rotational shaft is moved each time that the chuck makes half a rotation. However it is extremely difficult to rotate and move the chuck at the same time. Also it requires a complicated mechanism.

[0024] JP-B 55-13976 (corresponding to JP-A 49-3937) discloses a method of attaching a tape to a package. A tape attacher roller is pressed to the article by moving along a line lying on an end face of the article, so as to attach the tape in the L-shape for enclosing the bag mouth firmly. This is an acceptable method if the article in the package is sufficiently rigid, for example a corrugated fiberboard box. However edges of the article are likely to be damaged by pressure of the tape attacher roller if the article in the package is fragile, and with the continuous sheet material being fragile.

[0025] In the apparatus, a front end of the tape is captured by the chuck. The tape is supplied by a regular length, is cut and then is attached to the article. It is necessary to retain a rear end of the tape by means of the suction on the side of a roll of the unused tape. A target portion to be captured by the chuck should be previously free. The tape with small rigidity in a general manner, however, has instability in the position of the front end after the cutting operation. Failure is likely to occur in capturing of the chuck.

[0026] JP-A 3-176344 suggests a method of retaining the front end of the tape by use of the suction. However it is extremely difficult to determine the sucking force greater than adhesive force of the tape. The tape cannot be run stably. In view of the foregoing problems, it is an objective of the present invention to improve a pillow type packaging apparatus such that gusset portions and a bag mouth can be bent or folded with agreeable appearance.

[0027] According to the invention, this objective is solved by a pillow type packaging apparatus for packaging an article in a packaging bag, including a conveyor mechanism for conveying flexible continuous sheet material, a guide unit for guiding said continuous sheet material being conveyed, to form said continuous sheet material into a tube in which a pair of longitudinal edges

of said continuous sheet material are confronted with each other, a center sealer for thermally sealing up said longitudinal edges, an inserter for inserting said article into said tube through said guide unit while a front end of said article is directed downstream, wherein said tube is formed into said packaging bag by cutting and sealing, a first and a second bender plate for folding first and second lateral portions of said tube inwards, wherein said first and second bender plate respectively have a triangular shape, are disposed downstream from said guide unit and opposite to each other with respect to said tube, and swingable about respective axes thereof, and a third and a fourth bender plate for folding third and fourth lateral portions of said tube toward one another, wherein said third and fourth bender plate respectively are disposed downstream from said guide unit, opposite to each other with respect to said tube, crosswise to disposition of said first and second bender plate, and swingable.

[0028] Advantageously, by the pillow type packaging apparatus the continuous sheet material can be prevented from being damaged.

[0029] According to a preferred embodiment, said inserter is adapted to position a rear end face of said article at said axes, wherein said rear end face is opposite to said front end of said article.

[0030] According to another preferred embodiment, said axes are disposed in a downstream end of said guide unit.

[0031] Further, it is an advantage to keep tension suitably applied to the continuous sheet material during the folding operation of the bag mouth by a pillow type packaging apparatus for packaging an article in a packaging bag, including a conveyor mechanism for conveying flexible continuous sheet material, a guide unit for guiding said continuous sheet material being conveyed, to form said continuous sheet material into a tube in which a pair of longitudinal edges of said continuous sheet material are confronted with each other, a center sealer for thermally sealing up said longitudinal edges, an inserter for inserting said article into said tube through said guide unit while a front end of said article is directed downstream, a cutter for cutting said tube containing said article to obtain said packaging bag, wherein said packaging bag has a mouth formed by cutting of said cutter and an advancing bottom disposed opposite to said mouth, a bottom sealer for sealing said advancing bottom, wherein said bottom sealer is disposed upstream from said cutter, a folder chuck unit for squeezing said mouth, wherein said folder chuck unit is disposed downstream from said cutter and rotatable, and a rotating mechanism for rotating said folder chuck unit, wherein said folder chuck unit folds said mouth for one time or more while it is moved toward said article contained in said packaging bag.

[0032] Consequently, even when the article is fragile with small rigidity or has an edge liable to be damaged, the bag mouth can be folded tightly.

40

[0033] Moreover, it is still another advantage that no excessive spaces in forward and reverse directions for shifting stroke are required for the conveyor in preventing interference with the bottom sealer by a pillow type packaging apparatus for packaging an article in a packaging bag, including a first conveyor mechanism for conveying flexible continuous sheet material, a guide unit for guiding said continuous sheet material being conveyed, to form said continuous sheet material into a tube in which a pair of longitudinal edges of said continuous sheet material are confronted with each other, a center sealer for thermally sealing up said longitudinal edges, an inserter for inserting said article into said tube through said guide unit while a front end of said article is directed downstream, wherein said tube is formed into said packaging bag by cutting and sealing, a second conveyor mechanism, disposed downstream from said first conveyor mechanism, for conveying said packaging bag containing said article to a station for closing a mouth of said packaging bag, a third conveyor mechanism, disposed downstream from said second conveyor mechanism, for conveying said packaging bag containing said article to an exit path, a slider for sliding said second conveyor mechanism between upstream and downstream positions with reference to a direction of conveyance, wherein said second conveyor mechanism is away from said third conveyor mechanism, when located in said upstream position, and away from said first conveyor mechanism, when located in said downstream position, a cutter for cutting said tube containing said article to obtain said packaging bag, wherein said packaging bag has said mouth formed by cutting of said cutter and an advancing bottom disposed opposite to said mouth, and said cutter cuts said tube between said first and second conveyor mechanism, when said second conveyor mechanism is in said downstream position, a bottom sealer, disposed upstream from said cutter, for sealing said advancing bottom when said second conveyor mechanism is in said downstream position, wherein said first conveyor mechanism conveys said continuous sheet material for next packaging bag to be produced, when said second conveyor mechanism is in said upstream position, and an extensible auxiliary path mechanism for providing a length additional to said second conveyor mechanism to prevent said packaging bag with said article from dropping down from between said second and third conveyor mechanism, wherein said extensible auxiliary mechanism is connected to said second conveyor mechanism and extended when said second conveyor mechanism is moved to said upstream position.

[0034] Thus, reception and delivery of the articles are effected at the same time, so that cycle time can be shortened and consistent to heightening efficiency.

[0035] It is a further advantage that edges of the articles are safe and not damaged if the article in the package is fragile by a tape attacher for attaching an adhesive tape to a packaging bag in which an article is con-

tained, wherein said adhesive tape is secured to a mouth of said packaging bag, on an end portion of said packaging bag and on an adjacent face of said packaging bag adjacent to said end portion, comprising a push roller, movable along a line on said end portion of said packaging bag, for pressing said adhesive tape against said end portion, and a tape retainer for retaining a portion of said adhesive tape on said adjacent face of said packaging bag and for preventing said push roller from pushing an edge between said end portion of said packaging bag and said adjacent face thereof to protect said edge from being damaged, wherein said tape retainer is protruded from said end portion partially.

[0036] Advantageously, the target portion of the tape can be captured reliably even if the tape has small rigidity and there is no instability in the position of the front end after the cutting operation by a tape attacher for attaching an adhesive tape to a packaging bag in which an article is contained, comprising a tape roll from which said adhesive tape is unwound, a feed chuck unit for capturing a distal end of said adhesive tape when said feed chuck unit is located in a first position, wherein said feed chuck unit is movable to a second position, an end chuck unit for capturing a portion of said adhesive tape near to said distal end when said feed chuck unit is located in said second position, wherein said feed chuck unit is released from capturing said distal end and moved back to said first position, when said end chuck unit captures said portion, and a tape cutter, disposed close to said first position, for cutting said adhesive tape after said end chuck unit captures said portion.

[0037] Further preferred embodiments of the present invention are laid down in the further subclaims.

[0038] In the following, the present invention is explained in greater detail by means of several embodiments thereof in conjunction with the accompanying drawings, wherein:

Fig. 1A is a front perspective illustrating an article with a packaging bag wrapping an article;

Fig. 1B is a rear perspective illustrating the article with the packaging bag wrapping the article;

Fig. 2 is a perspective illustrating a packaging apparatus;

Fig. 3 is a perspective illustrating an article supplier and a suction belt cooperating for tube forming and insertion of the article;

Fig. 4 is a perspective illustrating a tube forming guide unit;

Fig. 5 is a perspective illustrating an outer guide frame:

Fig. 6 is a perspective illustrating an inner guide frame:

Fig. 7A is an explanatory view in elevation, illustrating a state of sealing and cutting the front end of the packaging bag;

Fig. 7B is an explanatory view in elevation, illustrating a state of conveying the packaging bag after the

40

45

20

30

cutting operation;

Fig. 7C is an explanatory view in elevation, illustrating a state of squeezing the bag mouth after conveying the packaging bag;

Fig. 7D is a schematic view illustrating a sealer head and a cutter;

Fig. 7E is an explanatory view in elevation, illustrating a roller train in connection with a slidable conveyor;

Fig. 7F is a schematic view illustrating a conveyor and a slider associated therewith;

Fig. 8A is a perspective, partially cutaway, illustrating bender plates for bending a bag mouth;

Fig. 8B is a perspective, partially cutaway, illustrating a bending state of the bender plates;

Fig. 9A is a perspective, partially cutaway, illustrating a quadrangular tube into which the article is inserted:

Fig. 9B is a perspective, partially cutaway, illustrating a state where gussets are being formed in the tube:

Fig. 9C is a perspective, partially cutaway, illustrating a state where the gussets are formed but not yet cut;

Fig. 10 is a perspective, partially cutaway, illustrating another preferred embodiment of bender plates; Fig. 11 is a perspective, partially cutaway, illustrating a state where the bag mouth is initially chucked; Fig. 12 is a perspective illustrating folder chucks and a brake unit connected thereto;

Fig. 13 is a perspective illustrating a state where air is discharged through the bag mouth by discharge plates;

Fig. 14A is a side elevation, partially cutaway, illustrating a state where the folder chucks are initially oriented:

Fig. 14B is a side elevation, partially cutaway, illustrating a state where the folder chucks have made half a rotation:

Fig. 14C is a side elevation, partially cutaway, illustrating a state where the folder chucks have made three fourths of one rotation;

Fig. 14D is a side elevation, partially cutaway, illustrating a state where the folder chucks have finished the mouth folding after five fourths of one rotation; Fig. 15 is an explanatory view in side elevation, illustrating a tape attacher in the packaging apparatus:

Fig. 16A is an explanatory view in side elevation, illustrating a state where a feed chuck initially captures a tape end;

Fig. 16B is an explanatory view in side elevation, illustrating a state where the feed chuck has pulled the tape; and

Fig. 16C is an explanatory view in side elevation, illustrating a tape retainer retains the tape in contact with the package.

[0039] In Figs. 1A and 1B, a package is depicted, in which an article 1 is packaged. The article 1 is for example a roll of photosensitive material, such as photographic paper. A gusseted bag or packaging bag 3 is used to package the article 1, and is produced from continuous sheet material 2 or flat continuous material. See Fig. 2. The continuous sheet material 2 consists of, for example, continuous kraft paper with lamination of polyethylene colored black. The packaging bag 3 has a rear closing portion or bag mouth 3a, which is folded for three times, and tightly closed with an adhesive tape 5. The packaging bag 3 has an advancing bottom 3b, which is tightly closed by thermal welding by a bottom sealer 6 as front end closing unit (See Fig. 2). Note that the terms of the "bottom" 3b and the "bottom sealer" 6 are commonly used in the field of packaging techniques. In any part of the present description, the "bottom" 3b and the "bottom sealer" 6 relates to an advanding face of the packaging bag 3, and not to a lower face of the packaging bag.

[0040] In Fig. 2, a packaging apparatus 10 is constituted by a material supplier 11, a tube former 12, an article supplier 13 as inserter, a bender/sealer 14 and a folder/attacher 15. The bender/sealer 14 and the folder/ attacher 15 constitute a rear end closing unit. In the material supplier 11 is set a packaging material roll 2a in which the continuous sheet material 2 is wound. The material supplier 11 supplies the tube former 12 with the continuous sheet material 2. The tube former 12 forms the continuous sheet material 2 into a tube having a quadrangular shape as viewed in cross section, and welds together lateral edges of the continuous sheet material 2 by heat sealing along the center of the tube. The article supplier 13 inserts the article 1 at a regular interval into a downstream tubular portion of the continuous sheet material 2 past the tube former 12.

[0041] The bender/sealer 14 bends lateral faces of the quadrangular tubular shape of the continuous sheet material 2 in inward directions, and discharges air from between consecutively provided two articles. Then the bender/sealer 14 thermally welds the continuous sheet material 2 in its width direction, and cuts the continuous sheet material 2 by use of a cutter. The folder/attacher 15 folds the bag mouth 3a of the packaging bag 3 for three times, and attaches the adhesive tape 5 to it for keeping the bag mouth 3a folded. Note that the adhesive tape 5 is supplied from a tape roll 5a in which the adhesive tape 5 is wound in a roll form.

[0042] In the present apparatus, an operation of supply of the article and tube forming is effected in an intermittent manner. While the tube forming is stopped, the bender/sealer 14 is operated. After cutting of the continuous sheet material 2 in the width direction with the cutter, the article being packaged is conveyed to the folder/attacher 15. At the same time as this, the tube forming is started. The above process is repeated.

[0043] Components of the systems are described hereinafter in a downstream order. The continuous

sheet material 2 from the material supplier 11 is passed through an edge position controller 20 (referred to as E. P.C.) for rectifying an edge position of the continuous sheet material 2, and then moved under an article conveyor 22 as inserter. Then the continuous sheet material 2 is introduced to a guide unit 24 in the tube former 12 adapted to forming the continuous sheet material 2 into the packaging bag 3. See Fig. 4. The continuous sheet material 2 is shaped by the guide unit 24 into a tubular form having a quadrangular shape as viewed in cross section. In Fig. 3, lateral edges 2b of the continuous sheet material 2 are moved for conveyance by the virtue of feed rollers 26 and a suction belt 28. The feed rollers 26 and the suction belt 28 cooperate as a conveyor mechanism. The feed rollers 26 are disposed in a position immediately past a center sealer 25. The suction belt 28 is disposed as a base surface of a conveying path for the article 1.

[0044] To be precise, force applied in the downstream direction to the continuous sheet material 2 is determined by combination of the feed rollers 26 and the suction belt 28. A component force applied by the suction belt 28 to the continuous sheet material 2 is determined equal to or greater than resistant force applied to the continuous sheet material 2 by the guide unit 24 against the conveyance of the continuous sheet material 2.

[0045] In Fig. 4, the guide unit 24 is constituted by an outer guide frame 31 and an inner guide frame 32. The outer guide frame 31 regulates a surface to become the outside of the packaging bag 3. The inner guide frame 32 regulates a surface to become the inside of the packaging bag 3. In Fig. 5, the outer guide frame 31 includes four corner portions 31a, 31b, 31c and 31d separate from one another. Each of the corner portions 31a-31d forms a lateral edge of the packaging bag 3. For enabling an operation of forming the packaging bag 3 in any of various sizes, the position of each of the corner portions 31a-31d is changeable by use of an AC servo motor, which is connected to it by a ball screw.

[0046] In Fig. 6, the inner guide frame 32 includes four rails 32a, 32b, 32c and 32d as a first frame portion. Each of the rails 32a, 32b, 32c and 32d has an L-shape as viewed in cross section, and supports an inside of one respective lateral edge of the packaging bag 3. The rail 32a is kept with a predetermined clearance from the corner portion 31a, and disposed in a shiftable manner together with the corner portion 31a. The position of the rail 32a is changeable by use of an AC servo motor, which is connected to it by a ball screw. Similarly the rails 32b, 32c and 32d are respectively associated with the corner portions 31b, 31c and 31d.

[0047] If the width of the continuous sheet material 2 is required to change, the feed rollers 26 are released from the nipping state. The center sealer 25 and the feed rollers 26 are moved upwards and retreat. The continuous sheet material 2 is conveyed only by the suction belt 28. The outer guide frame 31 and the inner guide frame 32 are moved in synchronism to positions associated

with a new designated size. An attached portion between a new continuous sheet material and the continuous sheet material 2 being older is discharged. Afterwards the center sealer 25 and the feed rollers 26 are set in positions for the new size, and lowered and set in the nipping state. The size is thus changed over. The apparatus stands by for insertion of article having the new size.

[0048] In Fig. 5, front edges 35 of the corner portions 31a-31d of the outer guide frame 31 are tapered, and remain to have flatness with inner surfaces of the corner portions 31a-31d. A radius of curvature R of the front edges 35 is in a preferable range of 0.2-0.3 mm, and is nearly equal to a thickness T of the continuous sheet material 2. This is effective in reducing resistance of the guide unit 24 against conveyance of the continuous sheet material 2. Note that, for enlarging effectiveness of reducing resistance of the guide unit 24, it is also possible to attach a teflon member to the front edges 35, coat the front edges 35 with teflon, or finish the front edges 35 with a mat finished surface. Of course the teflon may be replaced with other material with low coefficient of friction.

[0049] It is to be noted that the outer guide frame 31 may be formed to satisfy a condition of:

$T \le R \le 5 \text{ mm}.$

[0050] The rails 32a-32d of the inner guide frame 32 are determined longer than the corner portions 31a-31d in the conveying direction of the article 1. The inner guide frame 32 includes rails 33a, 33b and 33c and a rail 33d (not shown) as a second frame portion. The rails 33a-33d have a thickness enlarged in an outward direction to such an extent that the rails 33a-33d have a contour substantially equal to an inside of the outer guide frame 31, namely the outside of the tube.

[0051] In Fig. 3, a robot arm 38 as inserter in the article supplier 13 is controlled by a controller 38a, and operated to insert the article 1 at a predetermined interval into the packaging bag 3 past the guide unit 24. In the present embodiment, two articles 1 are inserted into the packaging bag 3 by the robot arm or inserter 38. Alternatively it is possible to insert a single article into the packaging bag 3 in a deepest position of the guide unit 24, specifically with sufficiency in cycle time, and rigidity and stroke of the robot arm or inserter 38. Even when the size of the article 1 is changed, operation of changing the interval of the articles can be eliminated.

[0052] Each article 1 after being packaged by the tube former 12 are conveyed to the bender/sealer 14. A shiftable feeder mechanism 40 in the bender/sealer 14 for receiving the packaging bag 3 with the article 1 contained has a moving construction of Figs. 7A-7C for the purpose of avoiding interference between the bottom sealer 6 and the benders for forming the gussets. In Fig. 7D, the bottom sealer 6 includes a cutter 6a, and a seal-

er head 6b.

[0053] In Fig. 7E, a roller train 42 as an extensible path mechanism is connected to a downstream end of the shiftable feeder mechanism 40. The roller train 42 is a train of plural rollers connected to one another. The roller train 42 is inserted in an L-shaped guide tube 41. When the shiftable feeder mechanism 40 is shifted toward the tube former 12 to receive the article 1 being packaged, the roller train 42 absorbs occurrence of a gap between the shiftable feeder mechanism 40 and a conveyor 43 as a downstream conveyor path. The conveyor 43 is adapted for a succeeding process of folding the rear closing portion or bag mouth.

[0054] In Fig. 7F, the shiftable feeder mechanism 40 includes a conveyor 40a and a slider 40b. The conveyor 40a includes plural rollers which are rotated in synchronism to feed the article 1 with the packaging bag 3 wrapping the article 1. Alternatively the conveyor 40a may consist of a conveyor belt. The slider 40b slides the conveyor 40a in downstream and upstream directions.

[0055] In Figs. 8A and 8B, the bender/sealer 14 includes first and second bender plates 45 and third and fourth bender plates 46, all of which are located on the side of the guide unit 24 upstream from the bender/sealer 14. The bender plates 45 and 46 are swingable, and correspond to respective four sides of the quadrangle of the cross section of the tube. The first and second bender plates 45 have a triangular shape, and are swung to bend centers of two opposite lateral faces of the continuous sheet material 2 in an inward direction. The third and fourth bender plates 46 have a T-shape, and are swung to bend top and bottom horizontal faces of the continuous sheet material 2 toward each other. In Figs. 9A-9C, a folded tubular portion 47 is formed on the continuous sheet material 2 between the articles by the first and second bender plates 45.

[0056] Rotational axes of the first and second bender plates 45 are disposed at an end of the inner guide frame 32. The third and fourth bender plates 46 are swung to cover the first and second bender plates 45 at least partially. It is preferable to dispose the rotational axes of the first and second bender plates 45 relatively closer to the guide unit 24 for the purpose of neatening the gussets. In Fig. 10, top and bottom portions of the inner guide frame 32 are relatively long in the downstream direction. This is effective in eliminating distortion of the packaging bag 3 due to the thickness of the first and second bender plates 45. Note that the T-shape of the third and fourth bender plates 46 is to prevent interference with the first and second bender plates 45.

[0057] In Fig. 11, there are arranged bag closing plates 48 and push guides 49 on the downstream side of the bender/sealer 14. The bag closing plates 48 squeeze the bag mouth 3a between them in the vertical direction. The push guides 49 push the folded tubular portion 47 of the bag mouth 3a in the inward direction. After the contact with the first and second bender plates 45, the third and fourth bender plates 46, the bag closing

plates 48 and the push guides 49, the continuous sheet material 2 with the bag mouth 3a and the folded tubular portion 47 is welded together and closed by the bottom sealer 6, which is moved up and down by an air cylinder. Then the continuous sheet material 2 is cut by the cutter 6a located on the side of the bottom sealer 6.

[0058] Beside the bag closing plates 48 are disposed transfer chucks 53, which squeeze the bag mouth 3a between the transfer chucks 53 and an upper one of the bag closing plates 48 after folding the folded tubular portion 47. The transfer chucks 53 are rotatable. In Fig. 7A, the transfer chucks 53 squeeze the bag mouth 3a before the continuous sheet material 2 is cut. The transfer chucks 53 are arranged in a transfer unit 55 to allow the packaging bag 3 to be conveyed to the folder/attacher 15 in a squeezed state. See Figs. 7A-7C.

[0059] In Fig. 12, there are a pair of folder chucks 56 arranged in the folder/attacher 15 for squeezing the bag mouth 3a. The folder chucks 56, while rotated, are moved toward the packaging bag 3. The bag mouth 3a of the packaging bag 3, when the bag mouth 3a is positioned by the transfer chucks 53 and conveyed to the folder/attacher 15 as depicted in Fig. 7B, is squeezed by the folder chucks 56, and then released from the transfer chucks 53. See Fig. 7C.

[0060] In Fig. 13, an end face pressing member 57 is raised to push a rear end face 3c of the packaging bag 3. A pair of air discharge guides 58 push lateral faces of the packaging bag 3 to discharge air through an open end of the bag mouth 3a. In Figs. 14A-14D, the folder chucks 56 squeezing the bag mouth 3a are caused by a rotating mechanism 56a to make (1+1/4) rotations, so that the bag mouth 3a is folded for the three times. A reference numeral 56b designates a central shaft about which the folder chucks 56 are rotated.

[0061] In Fig. 12, a hysteresis brake unit 62 is located in a position downstream from the folder chucks 56, and is connected to each of the folder chucks 56 via a rack/pinion mechanism 61. The hysteresis brake unit 62 applies back tension to the folder chucks 56. Although the folder chucks 56 are rotatable in an eccentric manner, the hysteresis brake unit 62 causes the folder chucks 56 to effect a folding operation with sufficient tightness.

[0062] The central shaft 56b, about which the folder chucks 56 are rotatable, is also slid along a straight path or orbit 56c indicated by the phantom lines in Figs. 14A-14D

[0063] After the folding operation, a retainer 65, in Fig. 15, retains a folded portion 66 in a folded state. Then the folder chucks 56 are pulled away. A tape attacher 67 attaches the adhesive tape 5 to the packaging bag 3 over the folded portion 66 in an L-shape. In the course of pulling the folder chucks 56, the sides of the packaging bag 3 are retained by the air discharge guides 58, so as to stabilize the position of the packaging bag 3.

[0064] In Figs. 16A-16C, the adhesive tape 5 is unwound from the tape roll 5a by a feed chuck unit 70 and extended by a predetermined distance to a position 70a

of Fig. 16A. The feed chuck unit 70 is controlled by a controller 67a. Then the leading end of the adhesive tape 5 is captured by an end chuck unit 71. See Fig. 16B. Then the feed chuck unit 70 is released from the capture, and moved back to its home position. Again the adhesive tape 5 is captured by the feed chuck unit 70. There is a tape retainer 73 which is movable toward and away from the packaging bag 3, and is disposed in such a manner that a rear end of the tape retainer 73 is projected beyond the level of the rear end face 3c of the packaging bag 3. After the state of Fig. 16B, the tape retainer 73 is moved down to the packaging bag 3. A push roller 74 or ironing roller is rotated while moved down along the rear end face 3c, to push the leading end of the adhesive tape 5 to the rear end face 3c for tight attachment, so that the folded portion 66 is enclosed by the adhesive tape 5. Since the end of the tape retainer 73 is protruded beyond the level of the rear end face 3c, the tape retainer 73 protects corners 3d of the packaging bag 3, and prevents the push roller 74 from breaking the corners 3d with pressure.

[0065] In the vicinity of the feed chuck unit 70, a tape cutter 75 is lowered to cut the adhesive tape 5 to which tension is being applied, as illustrated in Fig. 16C. A portion squeezed by the feed chuck unit 70 becomes a next formed leading end of the adhesive tape 5. Immediately a push roller 76 behind the tape retainer 73 starts rotating and moving away from the tape retainer 73, to attach the adhesive tape 5 to the top of the packaging bag 3, as depicted in Fig. 15.

[0066] In the above embodiment, the folder/attacher 15 is separate from the bender/sealer 14 for the purpose of increasing the cycle time. Alternatively it is possible to use a rear end closing unit of a single station including the bender/sealer 14 and the folder/attacher 15. This is effective in rendering the packaging apparatus more compact. In the above embodiment, the bag mouth 3a is squeezed by the transfer chucks 53 before cutting the continuous sheet material 2, and squeezed by the folder chucks 56 after transfer to the folder/attacher 15 with the transfer chucks 53. Alternatively it is possible to eliminate the transfer chucks 53. The bag mouth 3a may be squeezed by the folder chucks 56 before cutting the continuous sheet material 2.

[0067] It is possible to use the present invention in an apparatus of JP-B 7-41895 (corresponding to JP-A 5-330518), where a plurality of bags or packagings, having one closed end and one open end are prepared and stacked, are supplied. Furthermore, the present invention can be used for a flat bag or packaging without the gussets of the above embodiment.

[0068] Note that, in Fig. 8A, the first and second bender plates 45, when open to retreat from the continuous sheet material, are directed in the upstream direction. In Fig. 10, the first and second bender plates 45, when open to retreat from the continuous sheet material, are directed in the downstream direction. Either of those constructions can be chosen for preference in preparing

the packaging apparatus. It is to be noted that the first and second bender plates 45 in Fig. 8A should be combined with the third and fourth bender plates 46 having rotational axes lying on a plane near to a plane where the rotational axes of the first and second bender plates 45 lie. The first and second bender plates 45 in Fig. 10 should be combined with the third and fourth bender plates 46 having axes lying on a plane disposed downstream from a plane where the axes of the first and second bender plates 45 lie.

[0069] Note that the first and second bender plates 45 in either of Figs. 8A and 10 are associated with a slider mechanism (not shown) for moving the first and second bender plates 45 straight to retreat from the continuous sheet material after forming the gussets.

[0070] Furthermore the first and second bender plates 45 in either of Figs. 8A and 10 may be associated with a slider mechanism for moving the first and second bender plates 45 straight back and forth to and from the continuous sheet material. It is possible to eliminate the swinging structure of the first and second bender plates 45. This applies to the third and fourth bender plates 46 similarly.

[0071] It is possible to use the present invention in an apparatus of JP-B 58-44525 (corresponding to JP-A 54-138792), where the continuous sheet material 2 is supplied downwards into a tube forming guide unit, and the longitudinal edges 2b are sealed by the center sealer arranged under them.

[0072] In the above embodiment, the inserter 38 inserts two articles 1 into the quadrangular tube to become two packaging bags 3. The quadrangular tube containing the two articles 1 is conveyed by the feed rollers 26 and the suction belt 28 to the shiftable feeder mechanism 40 intermittently by a length of each single article, prior to the cutting and sealing operation. Alternatively the inserter 38 may operate to insert three articles, or a greater number of articles, into one longer quadrangular tube to become three or more packaging bags 3. The cutting and sealing operation may occur three or more times to follow each one operation of the inserter 38 for the insertion.

[0073] Furthermore, the inserter 38 may operate to insert two serially supplied articles 1 into the quadrangular tube to become one relatively long packaging bag. This one packaging bag may contain two articles 1 which directly contact each other in their longitudinal direction in it.

[0074] Although the present invention has been fully described by way of the preferred embodiments thereof with reference to the accompanying drawings, various changes and modifications will be apparent to those having skill in this field. Therefore, unless otherwise these changes and modifications depart from the scope of the present invention, they should be construed as included therein.

5

20

40

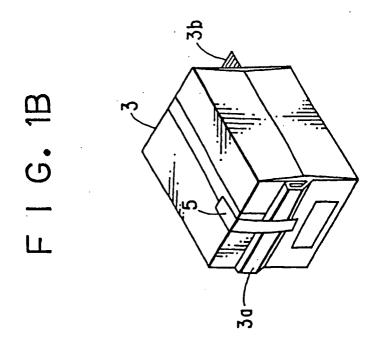
45

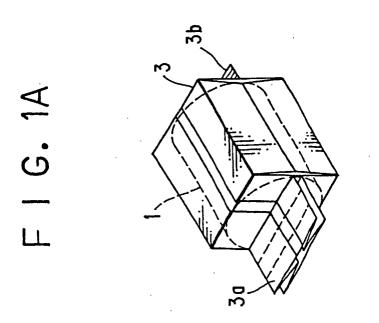
50

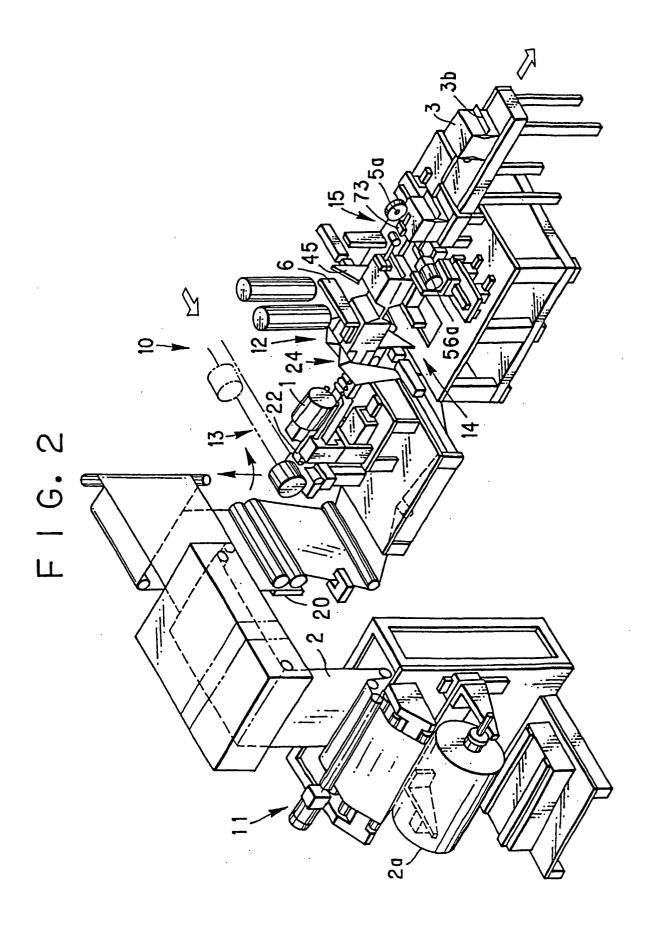
Claims

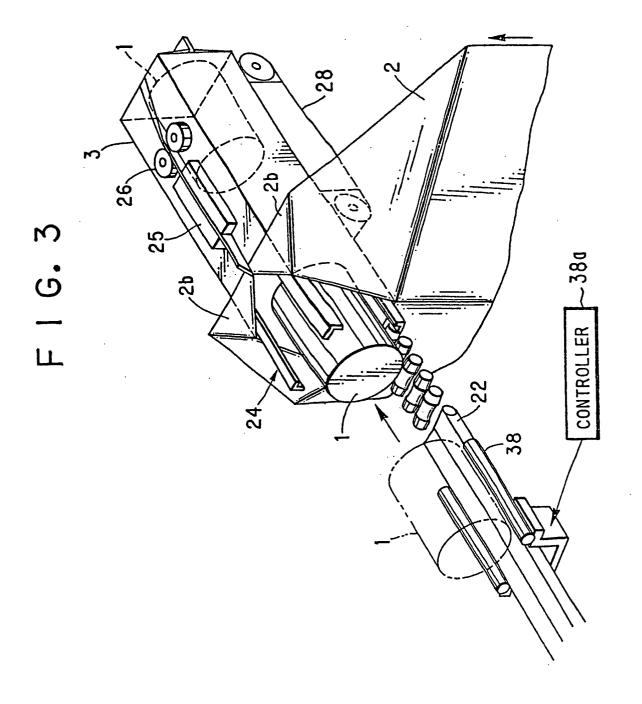
- 1. A pillow type packaging apparatus for packaging an article (1) in a packaging bag (3), including:
 - a conveyor mechanism (26,28) for conveying flexible continuous sheet material (2),
 - a guide unit (24) for guiding said continuous sheet material (2) being conveyed, to form said continuous sheet material into a tube in which a pair of longitudinal edges (2b) of said continuous sheet material are confronted with each other
 - a center sealer (25) for thermally sealing up said longitudinal edges (26), and
 - an inserter (13,38) for inserting said article (1) into said tube through said guide unit (24) while a front end of said article (1) is directed downstream, wherein said tube is formed into said packaging bag (3) by cutting and sealing,
 - a first and a second bender plate (45) for folding first and second lateral portions of said tube inwards, wherein said first and second bender plate (45), respectively, have a triangular shape, are disposed downstream from said guide unit (24) and opposite to each other with respect to said tube, and are swingable about respective axes thereof, and
 - a third and a fourth bender plate (46) for folding third and fourth lateral portions of said tube toward one another, wherein said third and fourth bender plate (46), respectively, are disposed downstream from said guide unit (24), opposite to each other with respect to said tube, crosswise to arrangement of said first and second bender plate (45), and are swingable.
- 2. A pillow type packaging apparatus according to claim 1, **characterized in that** said inserter (13,38) is adapted to position a rear end face (3c) of said article (1) at said axes, wherein said rear end face (3c) is opposite to said front end of said article (1).
- 3. A pillow type packaging apparatus according to claim 1 or 2, **characterized in that** said axes are disposed in a downstream end of said guide unit (24).
- **4.** A pillow type packaging apparatus for packaging an article (1) in a packaging bag (3), including:
 - a conveyor mechanism (26,28) for conveying flexible continuous sheet material (2),
 - a guide unit (24) for guiding said continuous sheet material (2) being conveyed, to form said continuous sheet material into a tube in which a pair of longitudinal edges (2b) of said continuous sheet material are confronted with each

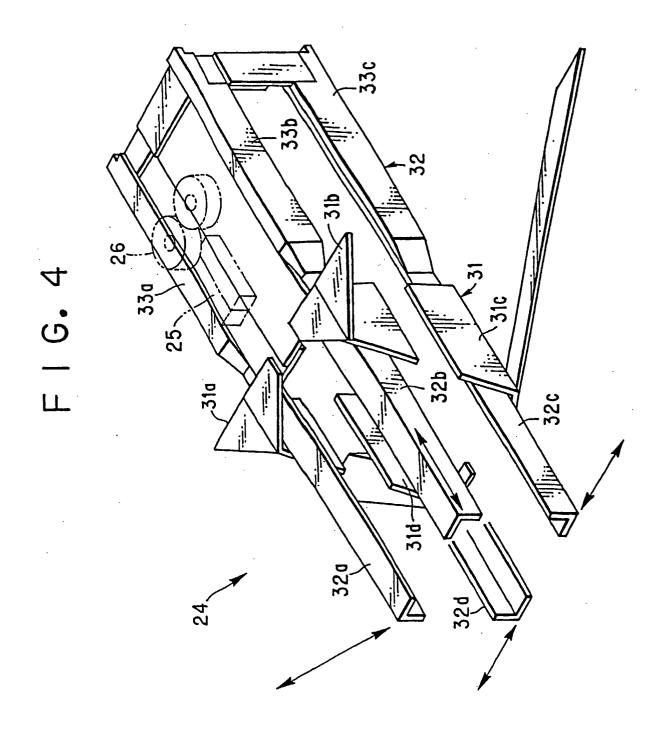
other.

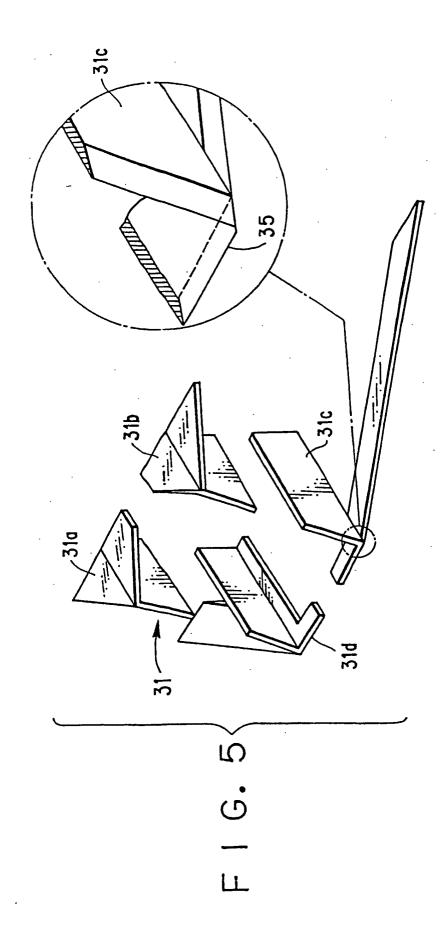

- a center sealer (25) for thermally sealing up said longitudinal edges (26),
- an inserter (13,38) for inserting said article (1) into said tube through said guide unit (24) while a front end of said article (1) is directed downstream,
- a cutter (6a) for cutting said tube containing said article (1) to obtain said packaging bag (3), wherein said packaging bag (3) has a mouth (3a) formed by cutting of said cutter (6a) and an advancing bottom (3b) disposed opposite to said mouth (3a),
- a bottom sealer (6b) for sealing said advancing bottom (3b), wherein said bottom sealer (6b) is disposed upstream from said cutter (6a),
- a folder chuck unit for squeezing said mouth (3a), wherein said folder chuck unit is disposed downstream from said cutter (6a) and is rotatable, and
- a rotating mechanism (56a) for rotating said folder chuck unit, wherein said folder chuck unit folds said mouth (3a) for one time or more while it is moved toward said article (1) contained in said packaging bag (3).
- **5.** A pillow type packaging apparatus for packaging an article (1) in a packaging bag (3), including:
 - a first conveyor mechanism (26,28) for conveying flexible continuous sheet material (2),
 - a guide unit (24) for guiding said continuous sheet material (2) being conveyed, to form said continuous sheet material into a tube in which a pair of longitudinal edges (2b) of said continuous sheet material are confronted with each other,
 - a center sealer (25) for thermally sealing up said longitudinal edges (26),
 - an inserter (13,38) for inserting said article (1) into said tube through said guide unit (24) while a front end of said article (1) is directed downstream, wherein said tube is formed into said packaging bag (3) by cutting and sealing,
 - a second conveyor mechanism (40a), disposed downstream from said first conveyor mechanism (26,28), for conveying said packaging bag (3) containing said article (1) to a station for closing a mouth (3a) of said packaging bag (3),
 - a third conveyor mechanism, disposed downstream from said second conveyor mechanism (40a), for conveying said packaging bag (3) containing said article (1) to an exit path,
 - a slider (40b) for sliding said second conveyor mechanism (40a) between upstream and downstream positions with reference to a direction of conveyance, wherein said second conveyor mechanism (40a) is away from said third

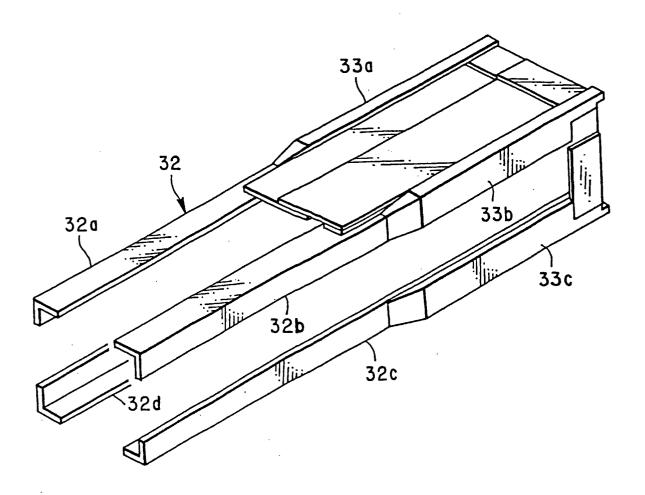

conveyor mechanism, when located in said upstream position, and away from said first conveyor mechanism (26,28), when located in said downstream position,

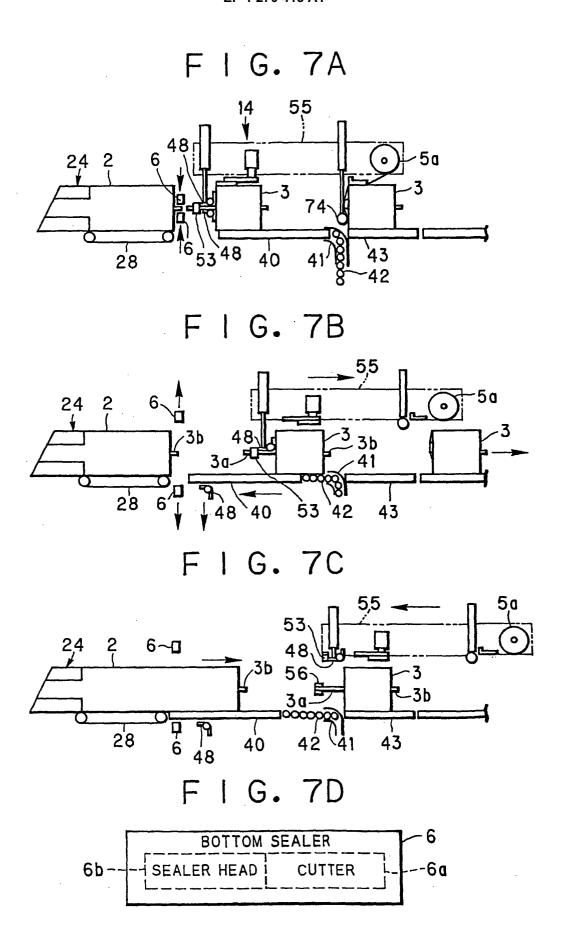

19

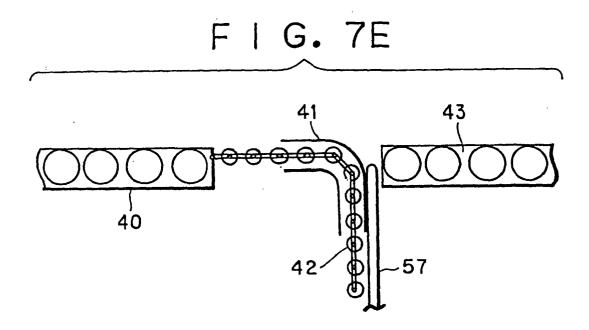

- a cutter (6a) for cutting said tube containing said article (1) to obtain said packaging bag (3), wherein said packaging bag (3) has said mouth (3a) formed by cutting of said cutter (6a) and an advancing bottom (3b) disposed opposite to said mouth (3a), and said cutter (6a) cuts said tube between said first and second conveyor mechanism (26,28;40a), when said second conveyor mechanism (40a) is in said downstream position,
- a bottom sealer (6b), disposed upstream from said cutter (6a), for sealing said advancing bottom (3b) when said second conveyor mechanism (40a) is in said downstream position, wherein said first conveyor mechanism (26,28) conveys said continuous sheet material for the next packaging bag to be produced, when said second conveyor mechanism (40a) is in said upstream position, and
- an extensible auxiliary path mechanism for providing a length additional to said second conveyor mechanism (40a) to prevent said packaging bag (3) with said article (1) from dropping down from between said second and third conveyor mechanism (40a), wherein said extensible auxiliary mechanism is connected to said second conveyor mechanism (40a) and extended when said second conveyor mechanism (40a) is moved to said upstream position.
- 6. A tape attacher for attaching an adhesive tape to a 35 packaging bag (3) in which an article (1) is contained, wherein said adhesive tape is secured to a mouth (3a) of said packaging bag (3), on an end portion of said packaging bag (3) and on an adjacent face of said packaging bag (3) adjacent to said end portion, comprising:
 - a push roller, movable along a line on said end portion of said packaging bag (3), for pressing said adhesive tape against said end portion,
 - a tape retainer for retaining a portion of said adhesive tape on said adjacent face of said packaging bag (3) and for preventing said push roller from pushing an edge between said end portion of said packaging bag (3) and said adjacent face thereof to protect said edge from being damaged, wherein said tape retainer is protruded from said end portion partially.
- 7. A tape attacher for attaching an adhesive tape to a packaging bag (3) in which an article (1) is contained, comprising:

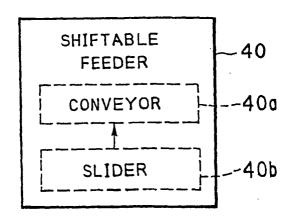

- a tape roll from which said adhesive tape is unwound.
- a feed chuck unit for capturing a distal end of said adhesive tape when said feed chuck unit is located in a first position, wherein said feed chuck unit is movable to a second position,
- an end chuck unit for capturing a portion of said adhesive tape near to said distal end when said feed chuck unit is located in said second position, wherein said feed chuck unit is released from capturing said distal end and moved back to said first position, when said end chuck unit captures said portion, and
- a tape cutter, disposed close to said first position, for cutting said adhesive tape after said end chuck unit captures said portion.

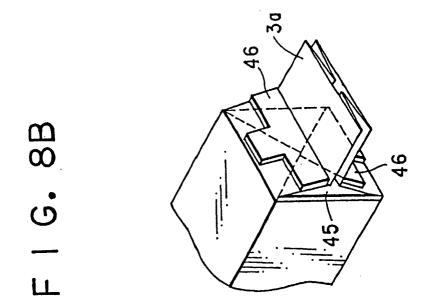


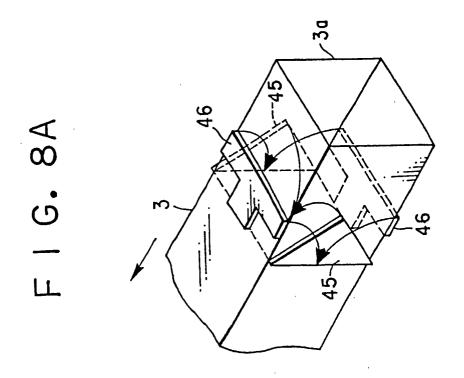


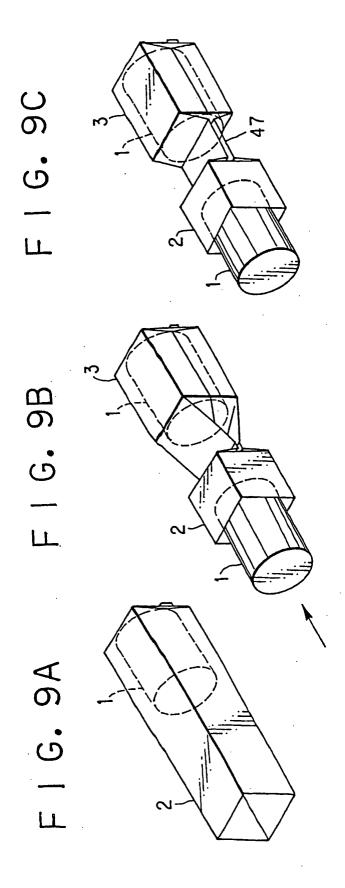




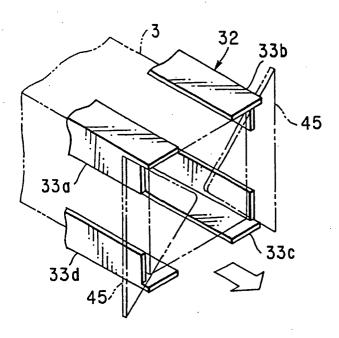

F | G. 6

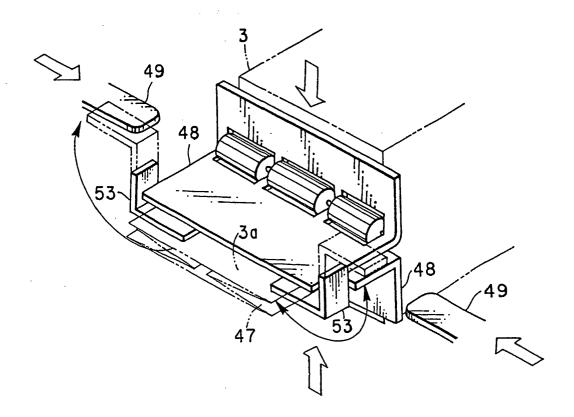


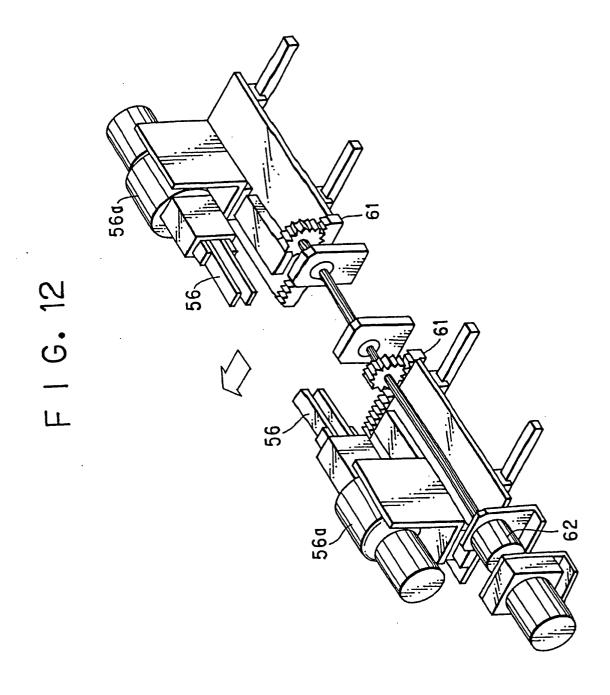


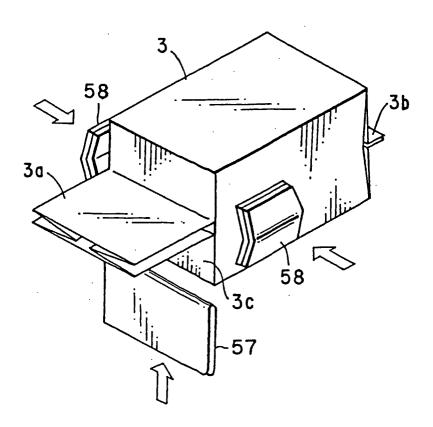


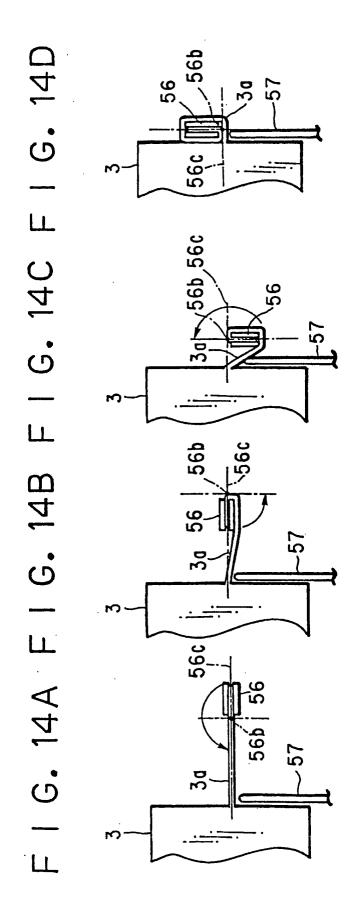
F | G. 7F

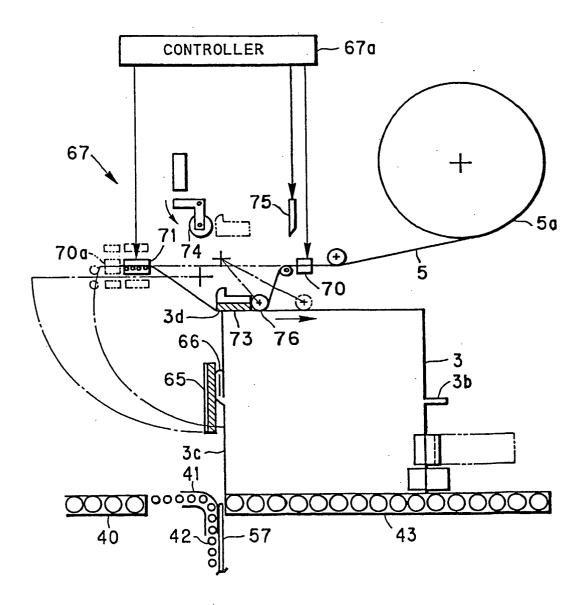


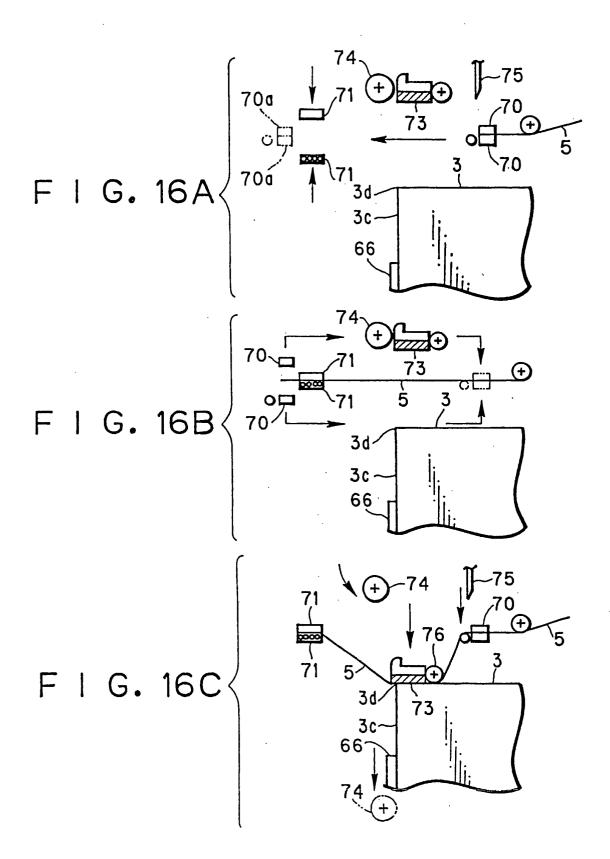







F | G. 11




F I G. 13

F I G. 15

EUROPEAN SEARCH REPORT

Application Number

EP 02 01 5723

	DOCUMENTS CONSID	ERED TO BE RELEY	/ANT		
Category	Citation of document with ir of relevant pass	ndication, where appropriate, ages	Releva to clai		CATION OF THE TON (Int.CI.7)
X	US 3 328 938 A (MAC 4 July 1967 (1967-0 * the whole documen	7-04)	1	B65B9/0	06
Y	WO 95 18748 A (HAYS 13 July 1995 (1995- * abstract; figures * page 13, paragrap paragraph 1 *	07-13) 1,4-6 *	4		
Y	GB 1 472 609 A (DRG 4 May 1977 (1977-05 * the whole documen	-04)	4		
Α	US 5 255 495 A (HAY 26 October 1993 (19 * the whole documen	93-10-26)	5		
X	GB 865 639 A (BARRA 19 April 1961 (1961 * the whole documen	6	TECHNIC SEARCH	AL FIELDS ED (Int.CI.7)	
A	FR 1 477 482 A (TAB INDUSTRIEMASCHINEN) 5 July 1967 (1967-0			B65B	
***************************************	The present search report has	been drawn up for all claims			
	Place of search	Date of completion of t	he search	Examiner	
	THE HAGUE	28 October	2002	Vigilante,	M
X : par Y : par doc A : tecl O : nor	ATEGORY OF CITED DOCUMENTS ticularly relevant if taken alone ticularly relevant if combined with anolument of the same category nological background newritten disclosure mediate document	E : earli after D : doci L : doci & : men	ry or principle underlyin er patent document, but the filing date ument cited in the applic ment cited for other rea niber of the same patent iment	published on, or eation sons	ng

Application Number

EP 02 01 5723

CLAIMS INCURRING FEES
The present European patent application comprised at the time of filing more than ten claims.
Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):
No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.
LACK OF UNITY OF INVENTION
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:
see sheet B
All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.
As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.
Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:
None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:

LACK OF UNITY OF INVENTION SHEET B

Application Number EP 02 01 5723

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. Claims: 1-4

2. Claim : 5
conveying mechanism in a pillow type packaging apparatus

bag closing mechanism in a pillow type packaging apparatus

3. Claims: 6,7
tape attacher for a pillow type packaging apparatus

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 02 01 5723

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

28-10-2002

Patent document cited in search report			Publication date		Patent family member(s)		Publication date
US	3328938	Α	04-07-1967	US	3237364	Α	01-03-1966
WO	9518748	Α	13-07-1995	US	5447012	Α	05-09-1995
				AT	215474	T	15-04-2002
				AU	688847	B2	19-03-1998
				AU	1526395	Α	01-08-1995
				CA	2154066	A1	13-07-1995
				DE	69526150	D1	08-05-2002
				EP	0691916	A1	17-01-1996
				MO	95187 4 8	A1	13-07-1995
GB	1472609	A	04-05-1977	NONE	go oppe speec smere ekilik filikli (filit Mill), gyeze çeker si	den kiribi dilibi dilibi dilibi dadil igaggi agas	, angue serve came, mane camé divid dage gaste state (1900-180) serve serve acces acces
US	525 549 5	Α	26-10-1993	CA	2141339	A1	11-05-1994
				DE	69332025	D1	18-07-2002
				DE	69332025	T2	02-10-2002
				EP	0665796	A1	09-08-1995
				MO	9410037	A1	11-05-1994
GB	865639	A	19-04-1961	NONE	en 1960- 1960- 1959 (ALIA: 1960- 1961: Valle; V		- whole 1960 (1960 (1960 IIII) 1966, cape attri minis (1960 attr) 4661 4660 4564
FR	1477482	A	05-07-1967	NONE	an space moith statio appear state annue compe annue state de		n comm miller within 1846-18470 (1946 cours) arrow upon cours assess cours upon tolka

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82