Background of the Invention
[0001] This invention relates to sulfonylaryl triazoles, methods of treatment and pharmaceutical
compositions for the treatment of cyclooxygenase mediated diseases.
[0002] Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used in treating pain and
the signs and symptoms of arthritis because of their analgesic and anti-inflammatory
activity. Common NSAIDs work by blocking the activity of cyclooxygenase (COX), an
enzyme that converts arachidonic acid into prostanoids. Two forms of COX are now known,
a constitutive isoform (COX-1) and an inducible isoform (COX-2) of which expression
is upregulated at sites of inflammation (Vane, J. R.; Mitchell, et. al.,
Proc. Natl. Acad. Sci. USA, 1994,
91, 2046). COX-1 appears to play a physiological role and to be responsible for gastrointestinal
and renal protection. On the other hand, COX-2 appears to play a pathological role
and is believed to be the predominant isoform present in inflammation conditions.
The therapeutic use of conventional NSAIDs is, however, limited due to drug associated
side effects, including life threatening ulceration and renal toxicity.
[0003] COX is also known as prostaglandin G/H synthase (PGHS). Prostaglandins, especially
prostaglandin E
2 (PGE
2), a predominant eicosanoid detected in inflammation conditions, are mediators of
pain, fever and other symptoms associated with inflammation. A pathological role for
prostaglandins has been implicated in a number of human diseases including rheumatoid
arthritis, osteoarthritis, pyrexia, asthma, bone resorption, cardiovascular diseases,
dysmenorrhea, premature labour, nephritis, nephrosis, atherosclerosis, hypotension,
shock, pain, cancer and Alzheimer. Compounds that selectively inhibit the biosynthesis
of prostaglandins by intervention of the induction phase of the inducible enzyme COX-2
and/or by intervention of the activity of the enzyme COX-2 on arachidonic acid would
provide alternate therapy to the use of NSAIDs or corticosteriods in that such compounds
would exert anti-inflammatory effects without the adverse side effects associated
with COX-1 inhibition.
[0004] A variety of triazole compounds which inhibit COX has been disclosed in United States
Patents No. 4,259,504, 4,962,119, 5,066,668, and 5,376,670; European Patent Publications
EP 3895A1, EP 155486A, and EP 1099695; and scientific publication (
Eur. J. Med. Chem. 1990,
25, 95-101).
Summary of the Invention
[0005] The present invention relates to compounds of the formula

wherein m is 0, 1, or 2; preferably 2;
R1 is selected from the group consisting of:
(a) (C1-C6)alkyl (preferably branched (C1-C6)alkyl), (C2-C6)alkenyl, (C2-C6)alkynyl, (C1-C6)alkoxy, (C1-C6)alkylcarbonyl, formyl, formamidyl, (C1-C6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, (C1-C6)alkoxyamido, (C1-C6)alkylthio, (C3-C7)carbocyclylthio, (C6-C10)arylthio, (C2-C9)heteroarylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C6-C10)aryloxy, (C2-C9)heteroaryloxy, (C2-C9)heterocyclylcarbonyl, or (C1-C6)alkylcarbonyl-N(R2)-;
(b) phenyl optionally substituted by one to three substituents independently selected
from the group consisting of halo (preferably fluoro), hydroxy, cyano, mercapto, hydroxycarbonyl,
nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl; preferably halo, most preferably one to three fluoro atoms;
(c) phenyl fused to a saturated, partially saturated or aromatic (5- to 7-membered)-carbocyclyl
ring;
wherein either of said phenyl or said fused saturated, partially saturated or aromatic
(5- to 7-membered)-carbocyclyl ring is optionally substituted by one to two substituents
per ring, wherein said substituents are independently selected from the group consisting
of halo (such as chloro, bromo, or fluoro), hydroxy, cyano, mercapto, hydroxycarbonyl,
nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl;
(d) phenyl fused to a saturated, partially saturated or aromatic (5- to 6-membered)-heterocyclyl
containing one to two ring heteroatoms independently selected from the group consisting
of -N=, -NR2-, -S- and -O-;
wherein either of said phenyl or said fused saturated, partially saturated or aromatic
(5- to 6-membered)-heterocyclyl is optionally substituted with one to two substituents
per ring;
wherein said substituents are independently selected from the group consisting
of halo (such as chloro, bromo, or fluoro), hydroxy, cyano, mercapto, hydroxycarbonyl,
nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl;
(e) (3- to 7-membered)-carbocyclyl optionally containing one or two double bonds,
preferably the (3- to 7-membered)-carbocyclyl contains no double bonds;
wherein said (3- to 7-membered)-carbocyclyl may also be optionally substituted
by one to three substituents independently selected from the group consisting of halo
(such as chloro, bromo, or fluoro), hydroxy, cyano, mercapto, hydroxycarbonyl, nitro,
(C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl; preferably the (5- to 7-membered)-carbocyclyl contains no substituents;
(f) (5- to 7-membered)-carbocyclyl fused to a saturated, partially saturated or aromatic
(5- to 7-membered)-carbocyclyl ring;
wherein said (5- to 7-membered)-carbocyclyl may optionally contain one or two double
bonds;
wherein either of said (5- to 7-membered)-carbocyclyl or said fused saturated,
partially saturated or aromatic (5- to 7-membered)-carbocyclyl ring is optionally
substituted by one to two substituents per ring, wherein said substituents are independently
selected from the group consisting of halo (such as chloro, bromo, or fluoro), hydroxy,
cyano, mercapto, hydroxycarbonyl, nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl;
(g) (5- to 7-membered)-carbocyclyl fused to a saturated, partially saturated or aromatic
(5- to 6-membered)-heterocyclyl containing one to two ring heteroatoms independently
selected from the group consisting of -N=, -NR2-, -S- and -O-;
wherein said (5- to 7-membered)-carbocyclyl may optionally contain one or two double
bonds;
wherein either of said (5- to 7-membered)-carbocyclyl or said fused saturated,
partially saturated or aromatic (5- to 6-membered)-heterocyclyl is optionally substituted
with one to two substituents per ring;
wherein said substituents are independently selected from the group consisting
of halo, (such as chloro, bromo, or fluoro), hydroxy, cyano, mercapto, hydroxycarbonyl,
nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl;
(h) saturated, partially saturated or aromatic (5- to 6-membered) heterocyclyl containing
one to four, preferably one, ring heteroatom(s) independently selected from the groups
consisting of -N=, -NR2-, -O-, and -S-, preferably selected from the group consisting of -N= and -O-;
wherein said (5- to 6-membered) heterocyclyl is optionally substituted by one to
three substituents independently selected from the group consisting of halo (such
as chloro, bromo, or fluoro), hydroxy, cyano, mercapto, hydroxycarbonyl, nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl; preferably said (5- to 6-membered) heterocyclyl is unsubstituted;
(i) saturated, partially saturated or aromatic (5- to 6-membered) heterocyclyl containing
one to two ring heteroatoms independently selected from the group consisting of -N=,
-NR2-, -S- and -O-;
wherein said saturated, partially saturated or aromatic (5- to 6-membered)heterocyclyl
is fused to a saturated, partially saturated or aromatic (5- to 7-membered)-carbocyclyl
ring;
wherein either of said saturated, partially saturated or aromatic (5- to 6-membered)heterocyclyl
ring or said fused saturated, partially saturated or aromatic (5- to 7-membered)-carbocyclyl
ring is optionally substituted by one to two substituents per ring;
wherein said substituents are independently selected from the group consisting
of halo (such as chloro, bromo, or fluoro), hydroxy, cyano, mercapto, hydroxycarbonyl,
nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl; and
(j) saturated, partially saturated or aromatic (5- to 6-membered)heterocyclyl containing
one to two ring heteroatoms independently selected from the group consisting of -N=,
-NR2-, -S-, and -O-;
wherein said saturated, partially saturated or aromatic (5- to 6-membered)heterocyclyl
is fused to a saturated, partially saturated or aromatic (5- to 6-membered)-heterocyclyl
containing one to two ring heteroatoms independently selected from the group consisting
of -N=, -NR2-, -S- and -O-;
wherein either of said saturated, partially saturated or aromatic (5- to 6-membered)heterocyclyl
or said fused saturated, partially saturated or aromatic (5- to 6-membered)-heterocyclyl
is optionally substituted with one to two substituents per ring;
wherein said substituents are independently selected from the group consisting
of halo (such as chloro, bromo, or fluoro), hydroxy, cyano, mercapto, hydroxycarbonyl,
nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl;
wherein each of said R1 (a), (b), (c), (d), (e), (f), (g), (h), (i), or (j) (C1-C6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo (such as chloro, bromo, or
fluoro), hydroxy, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, carbonyl, formyl, formamidyl, (C1-C6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, (C1-C6)alkoxyamido, (C6-C10)aryl, (C6-C10)aryloxy, (C2-C9)heteroaryl, (C2-C9)heteroaryloxy, (C2-C9)heteroarylcarbonyl, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C1-C6)alkylcarbonyl-N(R2)-, and (C1-C6)alkylcarbonyloxy;
R2 is hydrogen or (C1-C6)alkyl, such as methyl or ethyl;
R3 is hydrogen, halo (such as chloro, bromo, or fluoro), (C1-C6)alkyl (preferably methyl), (C2-C6)alkenyl, (C2-C6)alkynyl, (C1-C6)alkoxy, (C3-C7)carbocyclyl, (C1-C6)alkylcarbonyl-, formyl, formamidyl, cyano, nitro, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, amino-SO2-, N-(C1-C6)alkylamino-SO2-, N,N-[(C1-C6)alkyl]2amino-SO2-, (C6-C10)arylamino-SO2-, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, (C6-C10)aryl, (C6-C10)aryloxy, (C2-C9)heteroaryl, (C2-C9)heteroaryloxy, (C2-C9)heteroarylcarbonyl, (C1-C6)alkoxyamido, (C1-C6)alkylthio, (C6-C10)arylthio, (C2-C9)heteroarylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C1-C6)alkyl-SO2-amino, or (C1-C6)alkylcarbonyl-N(R2)-;
wherein each of said R3 (C1-C6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from halo, hydroxy, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, carbonyl, formyl, formamidyl, (C1-C6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, (C1-C6)alkoxyamido, (C6-C10)aryl, (C6-C10)aryloxy, (C2-C9)heteroaryl, (C2-C9)heteroaryloxy, (C2-C9)heteroarylcarbonyl, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C1-C6)alkylcarbonyl-N(R2)-, and (C1-C6)alkylcarbonyloxy; most preferably said (C1-C6)alkyl group, preferably methyl, is substituted by two to three, preferably three,
halo, preferably fluoro;
R4 is (C3-C7)carbocyclyl (such as cyclohexyl), (C6-C10)aryl, (C2-C9)heteroaryl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, formyl-N(R2)-, (C1-C6)alkylcarbonyl-N(R2)-, (C1-C6)alkyloxycarbonyl-N(R2)-, or (C1-C6)alkyl-SO2-amino;
wherein each of said R4 (C1-C6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, carbonyl, formyl, formamidyl, (C1-C6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, (C1-C6)alkoxyamido, (C6-C10)aryl, (C6-C10)aryloxy, (C2-C9)heteroaryl, (C2-C9)heteroaryloxy, (C2-C9)heteroarylcarbonyl, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C1-C6)alkylcarbonyl-N(R2)-, and (C1-C6)alkylcarbonyloxy; preferably the R4 (C1-C6)alkyl group is not substituted;
R5 is hydrogen, halo, hydroxy, mercapto, (C1-C6)alkyl, (C1-C6)alkoxy optionally substituted with one to three halogen atoms, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, cyano, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkylcarbonyloxy, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, nitro, or (C1-C6)alkylthio;
wherein each of said R5 (C1-C6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo (such as chloro, bromo, or
fluoro), hydroxy, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, carbonyl, formyl, formamidyl, (C1-C6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, (C1-C6)alkoxyamido, (C6-C10)aryl, (C6-C10)aryloxy, (C2-C9)heteroaryl, (C2-C9)heteroaryloxy, (C2-C9)heteroarylcarbonyl, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C1-C6)alkylcarbonyl-N(R2)-, and (C1-C6)alkylcarbonyloxy;
and the pharmaceutically acceptable salts thereof.
[0006] The present invention also relates to the pharmaceutically acceptable acid addition
salts of compounds of the formula I. The acids which are used to prepare the pharmaceutically
acceptable acid addition salts of the aforementioned base compounds of this invention
are those which form non-toxic acid addition salts, i.e., salts containing pharmacologically
acceptable anions, such as the hydrochloride, hydrobromide, hydroiodide, nitrate,
sulfate, bisulfate, phosphate, acid phosphate, acetate, lactate, citrate, acid citrate,
tartrate, bitartrate, succinate, maleate, fumarate, gluconate, saccharate, benzoate,
methanesulfonate, ethanesulfonate, benzenesulfonate, para-toluenesulfonate and pamoate
[
i.e., 1,1 '-methylene-bis-(2-hydroxy-3- naphthoate)]salts.
[0007] The invention also relates to base addition salts of formula I. The chemical bases
that may be used as reagents to prepare pharmaceutically acceptable base salts of
those compounds of formula I that are acidic in nature are those that form non-toxic
base salts with such compounds. Such non-toxic base salts include, but are not limited
to those derived from such pharmacologically acceptable cations such as alkali metal
cations (
e.
g., potassium and sodium) and alkaline earth metal cations (
e.
g., calcium and magnesium), ammonium or watersoluble amine addition salts such as N-methylglucamine
(meglumine), and the lower alkanolammonium and other base salts of pharmaceutically
acceptable organic amines.
[0008] The compounds of this invention include all stereoisomers (
e.g., cis and trans isomers) and all optical isomers of compounds of the formula I (
e.
g., R and S enantiomers), as well as racemic, diastereomeric and other mixtures of
such isomers.
[0009] The compounds of the invention also exist in different tautomeric forms. This invention
relates to all tautomers of formula I.
[0010] The compounds of this invention may contain olefin-like double bonds. When such bonds
are present, the compounds of the invention exist as cis and trans configurations
and as mixtures thereof.
[0011] Unless otherwise indicated, the alkyl, referred to herein, as well as the alkyl moieties
of other groups referred to herein (
e.g., alkoxy), may be linear or branched (such as methyl, ethyl,
n-propyl,
isopropyl,
n-butyl,
iso-butyl,
secondary-butyl,
tertiary-butyl).
[0012] Unless otherwise indicated, halo includes fluoro, chloro, bromo or iodo.
[0013] As used herein, the term "alkenyl" means straight or branched chain unsaturated radicals
of 2 to 6 carbon atoms, including, but not limited to ethenyl, 1-propenyl, 2-propenyl
(allyl),
iso-propenyl, 2-methyl-1-propenyl, 1-butenyl, or 2-butenyl.
[0014] As used herein, the term "alkynyl" is used herein to mean straight or branched hydrocarbon
chain radicals of 2 to 6 carbon atoms having one triple bond including, but not limited
to, ethynyl, propynyl, or butynyl.
[0015] As used herein, the term "alkoxy" refers to O-alkyl groups, wherein alkyl is as defined
above.
[0016] As used herein, the term "alkoxycarbonyl" refers to an alkoxy radical as described
above connected to a carbonyl group (>C=O), which, in turn, serves as the point of
attachment.
[0017] As used herein, the term "carbocyclyl" refers to a mono or bicyclic carbocyclic ring
(
e.g., cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl,
cyclopentenyl, cyclohexenyl, bicyclo[2.2.1]heptanyl, bicyclo[3.2.1]octanyl and bicyclo[5.2.0]nonanyl,
etc.); optionally containing 1 or 2 double bonds.
[0018] As used herein, the term "amido" refers to aminocarbonyl- or carbamoyl- or NH
2-(C=O)- moiety.
[0019] As used herein the term "aryl" means aromatic radicals such as phenyl, naphthyl,
tetrahydronaphthyl, or indanyl.
[0020] As used herein the term "heteroaryl" refers to aromatic groups containing one or
more heteroatoms (O, S, or N). A multicyclic group containing one or more heteroatoms
wherein at least one ring of the group is aromatic is a s"heteroaryl" group. The heteroaryl
groups of this invention can also include ring systems substituted with one or more
oxo moieties. Examples of heteroaryl groups include, but are not limited to, pyridinyl,
pyridazinyl, imidazolyl, pyrimidinyl, pyrazolyl, triazolyl, pyrazinyl, quinolyl, isoquinolyl,
tetrazolyl, furyl, thienyl, isoxazolyl, thiazolyl, oxazolyl, isothiazolyl, pyrrolyl,
quinolinyl, isoquinolinyl, indolyl, benzimidazolyl, benzofuranyl, cinnolinyl, indazolyl,
indolizinyl, phthalazinyl, pyridazinyl, triazinyl, isoindolyl, purinyl, oxadiazolyl,
thiazolyl, thiadiazolyl, furazanyl, benzofurazanyl, benzothiophenyl, benzotriazolyl,
benzothiazolyl, benzoxazolyl, quinazolinyl, quinoxalinyl, naphthyridinyl, dihydroquinolyl,
tetrahydroquinolyl, dihydroisoquinolyl, tetrahydroisoquinolyl, benzofuryl, furopyridinyl,
pyrrolopyrimidinyl, and azaindolyl.
[0021] The term "heterocyclic" as used herein refers to a cyclic group containing 2-9 carbon
atoms and 1-4 hetero atoms selected from N, O, or S. Examples of such rings include
furyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, isoxazolyl,
oxazolyl, thiazolyl, isothiazolyl, oxadiazolyl, oxatriazolyl, pyridyl, pyridazinyl,
pyrimidinyl, pyrazinyl, triazinyl, and the like. Examples of said monocyclic saturated
or partially saturated ring systems are tetrahydrofuran-2-yl, tetrahydrofuran-3-yl,
imidazolidin-1-yl, imidazolidin-2-yl, imidazolidin-4-yl, pyrrolidin-1-yl, pyrrolidin-2-yl,
pyrrolidin-3-yl, piperidin-1-yl, piperidin-2-yl, piperidin-3-yl, piperazin-1-yl, piperazin-2-yl,
piperazin-3-yl, 1,3-oxazolidin-3-yl, isothiazolidine, 1,3-thiazolidin-3-yl, 1,2-pyrazolidin-2-yl,
1,3-pyrazolidin-1-yl, thiomorpholine, 1,2-tetrahydrothiazin-2-yl, 1,3-tetrahydrothiazin-3-yl,
tetrahydrothiadiazine, morpholine, 1,2-tetrahydrodiazin-2-yl, 1,3-tetrahydrodiazin-1-yl,
1,4-oxazin-2-yl, or 1,2,5-oxathiazin-4-yl.
[0022] The term "phenyl fused to a saturated, partially saturated or aromatic (5- to 7-membered)-carbocyclic
ring", as used herein, unless otherwise indicated, means a bicyclic group having a
first phenyl ring covalently bound to the triazole nucleus and wherein said first
ring is fused to a second ring comprising a 5 to 7 membered carbocycle, wherein the
5 to 7 members include the carbon atoms common to both rings. Examples of such rings
include tetralin-5-yl, tetralin-6-yl, 2,3-dihydro-inden-4-yl, 2,3-dihydro-inden-5-yl,
inden-4-yl, inden-5-yl, 7,8-dihydro-naphthalen-1-yl, 7,8-dihydro-naphthalen-2-yl,
5,6-dihydro-naphthalen-1-yl, 5,6-dihydro-naphthalen-2-yl, 5,8-dihydro-naphthalen-1-yl,
5,8-dihydro-naphthalen-2-yl, naphthalen-1-yl, naphthalen-2-yl, 5-(6,7,8,9-tetrahydro-5H-benzocyclohepten-1-yl)-,
5-(8,9-dihydro-7H-benzocyclohepten-1-yl)-, 5-(6,7-dihydro-5H-benzocyclohepten-1-yl)-,
5-(7H-benzocyclohepten-1-yl)-, 5-(5H-benzocyclohepten-1-yl)-, 5-(9H-benzocyclohepten-1-yl)-,
5-(6,7,8,9-tetrahydro-5H-benzocyclohepten-2-yl)-, 5-(6,7-dihydro-5H-benzocyclohepten-2-yl)-,
5-(8,9-dihydro-7H-benzocyclohepten-2-yl)-, 5-(5H-benzocyclohepten-2-yl)-, 5-(9H-benzocyclohepten-2-yl)-,
or 5-(7H-benzocyclohepten-2-yl)-.
[0023] The term "phenyl fused to a saturated, partially saturated or aromatic (5- to 6-membered)-heterocyclic
ring", as used herein, unless otherwise indicated, means a bicyclic group having a
first phenyl ring covalently bound to the triazole nucleus and wherein said first
ring is fused to a second ring comprising a (5- to 6-membered)-heterocyclic ring,
wherein the 5 to 6 members include the carbon atoms common to both rings. Said second
ring comprises a saturated, partially saturated or aromatic (5- to 6-membered)-heterocyclic
ring. Examples of such rings include quinolin-5-yl, quinolin-6-yl, quinolin-7-yl,
quinolin-8-yl, isoquinolin-5-yl, isoquinolin-6-yl, isoquinolin-7-yl, isoquinolin-8-yl,
quinazolin-5-yl, quinazolin-6-yl, quinazolin-7-yl, quinazolin-8-yl, cinnolin-5-yl,
cinnolin-6-yl, cinnolin-7-yl, cinnolin-8-yl, 4H-1,4-benzoxazin-5-yl, 4H-1,4-benzoxazin-6-yl,
4H-1,4-benzoxazin-7-yl, 4H-1,4-benzoxazin-8-yl, 4H-1,4-benzthiazin-5-yl, 4H-1,4-benzthiazin-6-yl,
4H-1,4-benzthiazin-7-yl, 4H-1,4-benzthiazin-8-yl, 1,4H-1,4-benzdiazin-5-yl, 1,4H-1,4-benzdiazin-6-yl,
1,4H-1,4-benzdiazin-7-yl, 1,4H-1,4-benzdiazin-8-yl, indol-4-yl, indol-5-yl, indol-6-yl,
indol-7-yl, benzo(b)thiophen-4-yl, benzo(b)thiophen-5-yl, benzo(b)thiophen-6-yl, benzo(b)thiophen-7-yl,
benzofuran-4-yl, benzofuran-5-yl, benzofuran-6-yl, benzofuran-7-yl, benzisoxazol-4-yl,
benzisoxazol-5-yl, benzisoxazol-6-yl, benzisoxazol-7-yl, benzoxazol-4-yl, benzoxazol-4-yl,
benzoxazol-5-yl, benzoxazol-6-yl and benzoxazol-7-yl. Preferred fused phenylheteroaryl
rings include quinolinyl, isoquinotinyl, indolyl, benzo(b)thiophenyl, or benzofuranyl.
[0024] The term "(3- to 7-membered)-carbocyclic", as used herein, unless otherwise indicated,
means a monocyclic group containing 3 to 7 carbon atoms and optionally containing
1 or 2 double bonds. Examples of such rings include cyclopropyl, cyclobutyl, cyclopentyl,
cyclohexyl, cycloheptanyl, cyclopentenyl, cyclohexenyl or cycloheptenyl.
[0025] The term "(5- to 7-membered)-carbocyclic", as used herein, unless otherwise indicated,
means a monocyclic group containing 5 to 7 carbon atoms and optionally containing
1 or 2 double bonds. Examples of such rings include cyclopentyl, cyclohexyl, cycloheptanyl,
cyclopentenyl, cyclohexenyl or cycloheptenyl.
[0026] The term "(5- to 7-membered)-carbocyclic fused to a saturated or partially saturated
(5- to 7-membered)-carbocyclic ring", as used herein, unless otherwise indicated,
means a bicyclic group having a first carbocyclic ring covalently bound to the triazole
nucleus and wherein said first ring is fused to a second ring comprising a 5 to 7
membered carbocycle, wherein the 5 to 7 members include the carbon atoms common to
both rings and wherein said second ring may contain 1, 2 or 3 double bonds. Examples
of such rings, wherein the fusion is so called ortho fused, include tetralin-1-yl,
tetralin-2-yl, hexahydronaphthalen-1-yl, hexahydronaphthalen-2-yl, octahydronaphthalen-1-yl,
octahydronaphthalen-2-yl, decalin-1-yl, decalin-2-yl, 4,5,6,7-tetrahydro-indan-4-yl,
4,5,6,7-tetrahydro-indan-5-yl, 4,5,6,7,8,9-hexahydro-indan-4-yl, 4,5,6,7,8,9-hexahydro-indan-5-yl,
4,5,6,7-tetrahydro-inden-4-yl, 4,5,6,7-tetrahydro-inden-5-yl, 4,5,6,7,8,9-hexahydro-inden-4-yl,
4,5,6,7,8,9-hexahydro-inden-5-yl, pentalan-1-yl, pentalan-2-yl , 4,5 dihydro-pentalan-1-yl,
4,5 dihydro-pentalan-2-yl, 4,5,6,7 tetrahydro-pentalan-1-yl, 4,5,6,7 tetra-pentalan-2-yl,
benzocycloheptan-5-yl, benzocycloheptan-6-yl and the like. Examples of such bicyclic
rings that are not ortho fused include bicyclo[3.2.1]-octan-2-yl, bicyclo[3.2.1]-octan-3-yl,
bicyclo [5.2.0]nonan-2-yl, bicyclo [5.2.0]nonan-3-yl, bicyclo [5.2.0]nonan-4-yl, bicyclo
[4.3.2]undecan-7-yl, bicyclo [4.3.2]undecan-8-yl, bicyclo [4.3.2]undecan-9-yl, bicyclo[2.2.2]-octan-2-yl,
bicyclo[2.2.2]-octan-3-yl, bicyclo[2.2.1]-heptan-2-yl, bicyclo[3.1.1]-heptan-2-yl,
or borneol-2-yl.
[0027] The term "(5- to 7-membered)carbocyclic fused to a saturated, partially saturated
or aromatic (5- to 6-membered)-heterocyclic", as used herein, unless otherwise indicated,
means a bicyclic group having a first carbocyclic ring covalently bound to the triazole
nucleus and wherein said first ring is fused to a second ring comprising a 5 to 6
membered heterocyclic ring, wherein said second 5 to 6 members include the atoms common
to both rings. Said second ring comprises a saturated, partially saturated or aromatic
(5- to 6-membered)-heterocyclic ring. Examples of said bicyclic ring systems are 5,6,7,8
tetrahydro-quinolin-5-yl, 5,6,7,8 tetrahydro-quinolin-6-yl, 5,6,7,8 tetrahydro-quinolin-7-yl,
5,6,7,8 tetrahydro-quinolin-8-yl, 5,6,7,8 tetrahydro-isoquinolin-5-yl, 5,6,7,8 tetrahydro-isoquinolin-6-yl,
5,6,7,8 tetrahydro-isoquinolin-7-yl, 5,6,7,8 tetrahydro-isoquinolin-8-yl, 5,6,7,8
tetrahydro-quinazolin-5-yl, 5,6,7,8 tetrahydro-quinazolin-6-yl, 5,6,7,8 tetrahydro-quinazolin-7-yl,
5,6,7,8 tetrahydro-quinazolin-8-yl, 5,6,7,8 tetrahydro-4H-1,4-benzoxazin-5-yl, 5,6,7,8
tetrahydro-4H-1,4-benzoxazin-6-yl, 5,6,7,8 tetrahydro-4H-1,4-benzoxazin-7-yl, 5,6,7,8
tetrahydro-4H-1,4-benzoxazin-8-yl, 5,6,7,8 tetrahydro-4H-1,4-benzthiazin-5-yl, 5,6,7,8
tetrahydro-4H-1,4-benzthiazin-6-yl, 5,6,7,8 tetrahydro-4H-1,4-benzthiazin-7-yl, 5,6,7,8
tetrahydro-4H-1,4-benzthiazin-8-yl, 5,6,7,8 tetrahydro-1,4H-1,4-benzdiazin-5-yl, 5,6,7,8
tetrahydro-1,4H-1,4-benzdiazin-6-yl, 5,6,7,8 tetrahydro-1,4H-1,4-benzdiazin-7-yl,
5,6,7,8 tetrahydro-1,4H-1,4-benzdiazin-8-yl, 4,5,6,7 tetrahydro-indol-4-yl, 4,5,6,7
tetrahydro indol-5-yl, 4,5,6,7 tetrahydro-indol-6-yl, 4,5,6,7 tetrahydro-indol-7-yl,
4,5,6,7 tetrahydro-benzo(b)thiophen-4-yl, 4,5,6,7 tetrahydro-benzo(b)thiophen-5-yl,
4,5,6,7 tetrahydro-benzo(b)thiophen-6-yl, 4,5,6,7 tetrahydro-benzo(b)thiophen-7-yl,
4,5,6,7 tetrahydro-benzofuran-4-yl, 4,5,6,7 tetrahydro-benzofuran-5-yl, 4,5,6,7 tetrahydro-benzofuran-6-yl,
4,5,6,7 tetrahydro-benzofuran-7-yl, 4,5,6,7 tetrahydro-benzisoxazol-4-yl, 4,5,6,7
tetrahydro-benzisoxazol-5-yl, 4,5,6,7 tetrahydro-benzisoxazol-6-yl, 4,5,6,7 tetrahydro-benzisoxazol-7-yl,
4,5,6,7 tetrahydro-benzoxazol-4-yl, 4,5,6,7 tetrahydro-benzoxazol-4-yl, 4,5,6,7 tetrahydro-benzoxazol-5-yl,
4,5,6,7 tetrahydro-benzoxazol-6-yl, or 4,5,6,7 tetrahydro-benzoxazol-7-yl.
[0028] The term "saturated, partially saturated or aromatic (5- to 6-membered)heterocyclic
containing 1 to 4 ring heteroatoms independently selected from -N=, -NR
2-, -O- or -S-", as used herein, unless otherwise indicated, means a monocyclic (5-
to 6-membered)heterocyclic ring covalently bound to the triazole nucleus. Said ring
may contain optional double bonds so as to include saturated, partially saturated
or aromatic (5- to 6-membered)-heterocyclic rings. Examples of the monocyclic aromatic
ring systems are furyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl,
isoxazolyl, oxazolyl, thiazolyl, isothiazolyl, oxadiazolyl, oxatriazolyl, pyridyl,
pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, and the like. Examples of said monocyclic
saturated or partially saturated ring systems are piperidin-1-yl, piperidin-2-yl,
piperidin-3-yl, piperazin-1-yl, piperazin-2-yl, piperazin-3-yl, 1,3-oxazolidin-3-yl,
isothiazolidine, 1,3-thiazolidin-3-yl, 1,2-pyrazolidin-2-yl, 1,3-pyrazolidin-1-yl,
thiomorpholine, 1,2-tetrahydrothiazin-2-yl, 1,3-tetrahydrothiazin-3-yl, tetrahydrothiadiazine,
morpholine, 1,2-tetrahydrodiazin-2-yl, 1,3-tetrahydrodiazin-1-yl, 1,4-oxazin-2-yl,
or 1,2,5-oxathiazin-4-yl.
[0029] The term "saturated, partially saturated or aromatic (5- to 6-membered)heterocyclic
fused to a saturated, partially saturated or aromatic (5- to 7-membered)-carbocyclic
ring", as used herein, unless otherwise indicated, means a bicyclic group having a
first (5- to 6-membered)heterocyclic ring covalently bound to the triazole nucleus
and wherein said first ring is fused to a second ring comprising a 5 to 6 membered
heterocyclic ring, wherein said second 5 to 6 members include the atoms common to
both rings. Said first and second rings comprise saturated, partially saturated or
aromatic (5- to 6-membered)-heterocyclic rings. Examples of said bicyclic ring systems
are indolidin-4-yl, indolidin-5-yl, quinolidin-5-yl, quinolidin-6-yl, quinolidin-7-yl,
quinolidin-8-yl, isoquinolidin-5-yl, isoquinolidin-6-yl, isoquinolidin-7-yl, isoquinolidin-8-yl,
quinazolidin-5-yl, quinazolidin-6-yl, quinazolidin-7-yl, quinazolidin-8-yl, benzofuran-2-yl,
benzofuran-3-yl, isobenzofuran-1-yl, isobenzofuran-3-yl, benzothiophen-2-yl, benzothiophen-3-yl,
indol-2-yl, indol-3-yl, isoindol-1-yl, isoindol-3-yl, cyclopentapyrid-2-yl, cyclopentapyrid-3-yl,
benzoxazol-2-yl, or cinnolin-4-yl.
[0030] The term "saturated, partially saturated or aromatic (5- to 6-membered)heterocyclic
fused to a saturated, partially saturated or aromatic (5- to 6-membered)-heterocyclic"
as used herein, unless otherwise indicated, means a bicyclic heterocyclic group having
a first ring covalently bound to the triazole nucleus and containing five to six ring
atoms comprising one to two heteroatoms each independently selected from -N=, -NH-,
-[N-(C
1-C
4)alkyl]-, -O- and -S-; wherein said first ring is fused to a second ring comprising
a 5 to 6 membered heterocyclic ring, wherein said second 5 to 6 members include the
atoms common to both rings. Said second ring comprises a saturated, partially saturated
or aromatic (5- to 6-membered)-heterocyclic ring. Examples of said bicyclic ring systems
are pyrano[3,4b]pyrrolyl, pyrano[3,2b]pyrrolyl, pyrano[4,3b]pyrrolyl, purin-2-yl,
purin-6-yl, purin-7-yl, purin-8-yl, pteridin-2-yl, pyrido[3,4b]pyridyl, pyrido[3,2b]pyridyl,
pyrido[4,3b]pyridyl, or naphthyridinyl.
[0031] An embodiment of the present invention includes compounds of formula I, referred
to as the R
1 (a) group of compounds, wherein R
1 is (C
1-C
6)alkyl (preferably branched (C
1-C
6)alkyl, such as 3-methylbutyl), (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
1-C
6)alkoxy, (C
1-C
6)alkylcarbonyl, formyl, formamidyl, (C
1-C
6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C
1-C
6)alkoxycarbonyl, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
5-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, (C
1-C
6)alkoxyamido, (C
1-C
6)alkylthio, (C
5-C
7)carbocyclylthio, (C
6-C
10)arylthio, (C
2-C
9)heteroarylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, (C
6-C
10)aryloxy, (C
2-C
9)heteroaryloxy, (C
2-C
9)heterocyclylcarbonyl, or (C
1-C
6)alkylcarbonyl-N(R
2)-;
wherein each of said R
1 (a) (C
1-C
6)alkyl group wherever they occur may optionally be substituted with one to three substituents,
preferably no substituents, independently selected from the group consisting of halo,
hydroxy, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
1-C
6)alkoxy, carbonyl, formyl, formamidyl, (C
1-C
6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C
1-C
6)alkoxycarbonyl, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, (C
1-C
6)alkoxyamido, (C
6-C
10)aryl, (C
6-C
10)aryloxy, (C
2-C
9)heteroaryl, (C
2-C
9)heteroaryloxy, (C
2-C
9)heteroarylcarbonyl, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, (C
1-C
6)alkylcarbonyl-N(R
2)-, and (C
1-C
6)alkylcarbonyloxy.
[0032] Another embodiment of the R
1 (a) group of compounds includes compounds of formula I wherein R
1 is (C
1-C
6)alkyl substituted with one to three substituents independently selected from the
group consisting of halo, hydroxy, (C
1-C
6)alkyl, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, carbonyl, formyl, formamidyl, (C
1-C
6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C
1-C
6)alkoxycarbonyl, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, (C
1-C
6)alkoxyamido, (C
6-C
10)aryl, (C
6-C
10)aryloxy, (C
2-C
9)heteroaryl, (C
2-C
9)heteroaryloxy, (C
2-C
9)heteroarylcarbonyl, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, (C
1-C
6)alkylcarbonyl-N(R
2)-, and (C
1-C
6)alkylcarbonyloxy.
[0033] A preferred embodiment of the R
1 (a) group of compounds includes compounds of formula I wherein R
1 is (C
1-C
6)alkyl, preferably branched (C
1-C
6)alkyl, more preferably 3-methylbutyl, tert-butyl, 2-methylbutyl, or 2-methylpropyl,
most preferably 3-methylbutyl or 2-methylbutyl.
[0034] An embodiment and a preferred group of compounds of the present invention includes
compounds of formula I, referred to as the R
1 (b) group of compounds, wherein R
1 is phenyl optionally substituted by one to three substituents independently selected
from the group consisting of halo (preferably fluoro), hydroxy, cyano, mercapto, hydroxycarbonyl,
nitro, (C
1-C
6)alkyl, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, -OCF
3, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, N-(C
1-C
6)alkoxyamido, (C
1-C
6)alkylcarbonyloxy, (C
1-C
6)alkylcarbonyl-N(R
2)-, formyl, (C
1-C
6)alkylcarbonyl, (C
1-C
6)alkoxycarbonyl, (C
6-C
10)aryl and (C
2-C
9)heterocyclyl;
wherein each of said R
1 (b) (C
1-C
6)alkyl group wherever they occur may optionally be substituted with one to three substituents,
preferably no substituents, independently selected from the group consisting of halo,
hydroxy, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, carbonyl, formyl, formamidyl, (C
1-C
6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C
1-C
6)alkoxycarbonyl, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, (C
1-C
6)alkoxyamido, (C
6-C
10)aryl, (C
6-C
10)aryloxy, (C
2-C
9)heteroaryl, (C
2-C
9)heteroaryloxy, (C
2-C
9)heteroarylcarbonyl, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, (C
1-C
6)alkylcarbonyl-N(R
2)-, and (C
1-C
6)alkylcarbonyloxy.
[0035] Another embodiment of the R
1 (b) group of compounds includes compounds of formula I wherein R
1 is phenyl substituted by one to three substituents independently selected from the
group consisting of halo, hydroxy, cyano, mercapto, hydroxycarbonyl, nitro, (C
1-C
6)alkyl, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, -OCF
3, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, N-(C
1-C
6)alkoxyamido, (C
1-C
6)alkylcarbonyloxy, (C
1-C
6)alkylcarbonyl-N(R
2)-, formyl, (C
1-C
6)alkylcarbonyl, (C
1-C
6)alkoxycarbonyl, (C
6-C
10)aryl and (C
2-C
9)heterocyclyl.
[0036] Other preferred embodiment of the R
1 (b) group of compounds includes compounds of formula I wherein R
1 is phenyl substituted by one to three halo atoms, preferably one halo atom, preferably
fluoro, more preferably 2-fluoro or 4-fluoro.
[0037] Other preferred embodiment of the R
1 (b) group of compounds includes compounds of formula I wherein R
1 is unsubstituted phenyl.
[0038] An embodiment of the present invention and a preferred group of compounds of the
present invention includes compounds of formula I, referred to as the R
1 (c) group of compounds, wherein R
1 is phenyl fused to a saturated, partially saturated or aromatic (5- to 7-membered)-carbocyclyl
ring;
wherein either of said phenyl or said fused saturated, partially saturated or aromatic
(5- to 7-membered)-carbocyclyl ring is optionally substituted by one to two substituents
per ring, wherein said substituents are independently selected from the group consisting
of halo, hydroxy, cyano, mercapto, hydroxycarbonyl, nitro, (C
1-C
6)alkyl, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, -OCF
3, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, N-(C
1-C
6)alkoxyamido, (C
1-C
6)alkylcarbonyloxy, (C
1-C
6)alkylcarbonyl-N(R
2)-, formyl, (C
1-C
6)alkylcarbonyl, (C
1-C
6)alkoxycarbonyl, (C
6-C
10)aryl and (C
2-C
9)heterocyclyl;
wherein each of said R
1 (c) (C
1-C
6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, carbonyl, formyl, formamidyl, (C
1-C
6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C
1-C
6)alkoxycarbonyl, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, (C
1-C
6)alkoxyamido, (C
6-C
10)aryl, (C
6-C
10)aryloxy, (C
2-C
9)heteroaryl, (C
2-C
9)heteroaryloxy, (C
2-C
9)heteroarylcarbonyl, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, (C
1-C
6)alkylcarbonyl-N(R
2)-, and (C
1-C
6)alkylcarbonyloxy.
[0039] An embodiment and a preferred group of compounds of the present invention includes
compounds of formula I, referred to as the R
1 (d) group of compounds, wherein R
1 is phenyl fused to a saturated, partially saturated or aromatic (5- to 6-membered)-heterocyclyl
containing one to two ring heteroatoms independently selected from the group consisting
of -N=, -NR
2-, -S- and -O-;
wherein either of said phenyl or said fused saturated, partially saturated or aromatic
(5- to 6-membered)-heterocyclyl is optionally substituted with one to two substituents
per ring;
wherein said substituents are independently selected from the group consisting
of halo, hydroxy, cyano, mercapto, hydroxycarbonyl, nitro, (C
1-C
6)alkyl, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, -OCF
3, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, N-(C
1-C
6)alkoxyamido, (C
1-C
6)alkylcarbonyloxy, (C
1-C
6)alkylcarbonyl-N(R
2)-, formyl, (C
1-C
6)alkylcarbonyl, (C
1-C
6)alkoxycarbonyl, (C
6-C
10)aryl and (C
2-C
9)heterocyclyl;
wherein each of R
1 (d) (C
1-C
6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, carbonyl, formyl, formamidyl, (C
1-C
6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C
1-C
6)alkoxycarbonyl, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, (C
1-C
6)alkoxyamido, (C
6-C
10)aryl, (C
6-C
10)aryloxy, (C
2-C
9)heteroaryl, (C
2-C
9)heteroaryloxy, (C
2-C
9)heteroarylcarbonyl, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, (C
1-C
6)alkylcarbonyl-N(R
2)-, and (C
1-C
6)alkylcarbonyloxy.
[0040] An embodiment of the present invention and a preferred group of compounds includes
compounds of formula I, referred to as the R
1 (e) group of compounds, wherein R
1 is (3- to 7-membered)-carbocyclyl, preferably (5- to 6-membered)-carbocyclyl, optionally
containing one or two double bonds, preferably no double bonds;
wherein said (3- to 7-membered)-carbocyclyl, preferably (5- to 6-membered)-carbocyclyl,
may also be optionally substituted by one to three substituents, preferably one substituent,
independently selected from the group consisting of halo, hydroxy, cyano, mercapto,
hydroxycarbonyl, nitro, (C
1-C
6)alkyl, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, -OCF
3, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, N-(C
1-C
6)alkoxyamido, (C
1-C
6)alkylcarbonyloxy, (C
1-C
6)alkylcarbonyl-N(R
2)-, formyl, (C
1-C
6)alkylcarbonyl, (C
1-C
6)alkoxycarbonyl, (C
6-C
10)aryl and (C
2-C
9)heterocyclyl;
wherein each of said R
1 (e) (C
1-C
6)alkyl group wherever they occur may optionally be substituted with one to three substituents,
preferably no substituents, independently selected from the group consisting of halo,
hydroxy, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, carbonyl, formyl, formamidyl, (C
1-C
6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C
1-C
6)alkoxycarbonyl, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, (C
1-C
6)alkoxyamido, (C
6-C
10)aryl, (C
6-C
10)aryloxy, (C
2-C
9)heteroaryl, (C
2-C
9)heteroaryloxy, (C
2-C
9)heteroarylcarbonyl, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, (C
1-C
6)alkylcarbonyl-N(R
2)-, and (C
1-C
6)alkylcarbonyloxy.
[0041] A preferred embodiment of the R
1 (e) group of compounds includes compounds of formula I wherein R
1 is (3- to 7-membered)-carbocyclyl, preferably (5- to 6-membered)-carbocyclyl, containing
no double bonds, wherein said (3- to 7-membered)-carbocyclyl, preferably (5- to 6-membered)-carbocyclyl,
is optionally substituted by one to three substituents, preferably one substituent,
independently selected from the group consisting of halo, hydroxy, cyano, or (C
1-C
6)alkyl.
[0042] An embodiment of the present invention includes compounds of formula I, referred
to as the R
1 (f) group of compounds, wherein R
1 is (5- to 7-membered)-carbocyclyl fused to a saturated, partially saturated or aromatic
(5- to 7-membered)-carbocyclyl ring;
wherein said (5- to 7-membered)-carbocyclyl may optionally contain one or two double
bonds;
wherein either of said (5- to 7-membered)-carbocyclyl or said fused saturated,
partially saturated or aromatic (5- to 7-membered)-carbocyclyl ring is optionally
substituted by one to two substituents per ring, wherein said substituents are independently
selected from the group consisting of halo, hydroxy, cyano, mercapto, hydroxycarbonyl,
nitro, (C
1-C
6)alkyl, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, -OCF
3, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, N-(C
1-C
6)alkoxyamido, (C
1-C
6)alkylcarbonyloxy, (C
1-C
6)alkylcarbonyl-N(R
2)-, formyl, (C
1-C
6)alkylcarbonyl, (C
1-C
6)alkoxycarbonyl, (C
6-C
10)aryl and (C
2-C
9)heterocyclyl;
wherein each of said R
1 (f) (C
1-C
6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, carbonyl, formyl, formamidyl, (C
1-C
6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C
1-C
6)alkoxycarbonyl, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, (C
1-C
6)alkoxyamido, (C
6-C
10)aryl, (C
6-C
10)aryloxy, (C
2-C
9)heteroaryl, (C
2-C
9)heteroaryloxy, (C
2-C
9)heteroarylcarbonyl, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, (C
1-C
6)alkylcarbonyl-N(R
2)-, and (C
1-C
6)alkylcarbonyloxy.
[0043] An embodiment of the present invention includes compounds of formula I, referred
to as the R
1 (g) group of compounds, wherein R
1 is (5- to 7-membered)-carbocyclyl fused to a saturated, partially saturated or aromatic
(5- to 6-membered)-heterocyclyl containing one to two ring heteroatoms independently
selected from the group consisting of -N=, -NR
2-, -S- and -O-;
wherein said (5- to 7-membered)-carbocyclyl may optionally contain one or two double
bonds;
wherein either of said (5- to 7-membered)-carbocyclyl or said fused saturated,
partially saturated or aromatic (5- to 6-membered)-heterocyclyl is optionally substituted
with one to two substituents per ring;
wherein said substituents are independently selected from the group consisting
of halo, hydroxy, cyano, mercapto, hydroxycarbonyl, nitro, (C
1-C
6)alkyl, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, -OCF
3, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, N-(C
1-C
6)alkoxyamido, (C
1-C
6)alkylcarbonyloxy, (C
1-C
6)alkylcarbonyl-N(R
2)-, formyl, (C
1-C
6)alkylcarbonyl, (C
1-C
6)alkoxycarbonyl, (C
6-C
10)aryl and (C
2-C
9)heterocyclyl;
wherein each of said R
1 (g) (C
1-C
6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, carbonyl, formyl, formamidyl, (C
1-C
6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C
1-C
6)alkoxycarbonyl, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, (C
1-C
6)alkoxyamido, (C
6-C
10)aryl, (C
6-C
10)aryloxy, (C
2-C
9)heteroaryl, (C
2-C
9)heteroaryloxy, (C
2-C
9)heteroarylcarbonyl, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, (C
1-C
6)alkylcarbonyl-N(R
2)-, and (C
1-C
6)alkylcarbonyloxy.
[0044] An embodiment of the present invention includes compounds of formula I, referred
to as the R
1 (h) group of compounds, wherein R
1 is saturated, partially saturated or aromatic, preferably saturated or aromatic,
(5- to 6-membered) heterocyclyl containing one to four, preferably one, ring heteroatoms
independently selected from the groups consisting of -N=, -NR
2-, -O-, and -S-, preferably selected from the group consisting of -N= and -O-;
wherein said (5- to 6-membered) heterocyclyl is optionally substituted by one to
three substituents independently selected from the group consisting of halo, hydroxy,
cyano, mercapto, hydroxycarbonyl, nitro, (C
1-C
6)alkyl, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, -OCF
3, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, N-(C
1-C
6)alkoxyamido, (C
1-C
6)alkylcarbonyloxy, (C
1-C
8)alkylcarbonyl-N(R
2)-, formyl, (C
1-C
6)alkylcarbonyl, (C
1-C
6)alkoxycarbonyl, (C
6-C
10)aryl and (C
2-C
9)heterocyclyl;
wherein each of said R
1 (h) (C
1-C
6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, carbonyl, formyl, formamidyl, (C
1-C
6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C
1-C
6)alkoxycarbonyl, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, (C
1-C
6)alkoxyamido, (C
6-C
10)aryl, (C
6-C
10)aryloxy, (C
2-C
9)heteroaryl, (C
2-C
9)heteroaryloxy, (C
2-C
9)heteroarylcarbonyl, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, (C
1-C
6)alkylcarbonyl-N(R
2)-, and (C
1-C
6)alkylcarbonyloxy.
[0045] A preferred embodiment of the R
1 (h) group of compounds includes compounds of formula I wherein R
1 is saturated, partially saturated or aromatic, preferably saturated or aromatic,
(5- to 6-membered) heterocyclyl containing one ring heteroatom independently selected
from the groups consisting of -N=, -NR
2-, -O-, and -S-, preferably selected from the group consisting of -N= and -O-; wherein
said (5- to 6-membered) heterocyclyl is unsubstituted.
[0046] Another preferred embodiment of the R
1 (h) group of compounds includes compounds of formula I wherein R
1 is saturated or aromatic (5- to 6-membered) heterocyclyl containing one ring heteroatom
independently selected from the groups consisting of -N= and -O-; wherein said (5-
to 6-membered) heterocyclyl is optionally substituted by one to three (C
1-C
6)alkyl, preferably methyl.
[0047] Another preferred embodiment of the R
1 (h) group of compounds includes compounds of formula I wherein R
1 is pyridin-2-yl or pyridin-3-yl substituted by one to three substituents independently
selected from the group consisting of halo, hydroxy, cyano, mercapto, hydroxycarbonyl,
nitro, (C
1-C
6)alkyl, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, -OCF
3, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, N-(C
1-C
6)alkoxyamido, (C
1-C
6)alkylcarbonyloxy, (C
1-C
6)alkylcarbonyl-N(R
2)-, formyl, (C
1-C
6)alkylcarbonyl, (C
1-C
6)alkoxycarbonyl, (C
6-C
10)aryl and (C
2-C
9)heterocyclyl.
[0048] A more preferred embodiment of the R
1 (h) group of compounds includes compounds of formula I wherein R
1 is pyridin-2-yl or pyridin-3-yl, wherein said pyridin-2-yl or pyridin-3-yl is unsubstituted.
[0049] An embodiment of the present invention includes compounds of formula I, referred
to as the R
1 (i) group of compounds, wherein R
1 is saturated, partially saturated or aromatic (5-to 6-membered) heterocyclyl containing
one to two ring heteroatoms independently selected from the group consisting of -N=,
-NR
2-, -S- and -O-;
wherein said saturated, partially saturated or aromatic (5- to 6-membered)heterocyclyl
is fused to a saturated, partially saturated or aromatic (5- to 7-membered)-carbocyclyl
ring;
wherein either of said saturated, partially saturated or aromatic (5- to 6-membered)heterocyclyl
ring or said fused saturated, partially saturated or aromatic (5- to 7-membered)-carbocyclyl
ring is optionally substituted by one to two substituents per ring;
wherein said substituents are independently selected from the group consisting
of halo, hydroxy, cyano, mercapto, hydroxycarbonyl, nitro, (C
1-C
6)alkyl, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, -OCF
3, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, N-(C
1-C
6)alkoxyamido, (C
1-C
6)alkylcarbonyloxy, (C
1-C
6)alkylcarbonyl-N(R
2)-, formyl, (C
1-C
6)alkylcarbonyl, (C
1-C
6)alkoxycarbonyl, (C
6-C
10)aryl and (C
2-C
9)heterocyclyl;
wherein each of R
1 (i) (C
1-C
6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, carbonyl, formyl, formamidyl, (C
1-C
6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C
1-C
6)alkoxycarbonyl, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, (C
1-C
6)alkoxyamido, (C
6-C
10)aryl, (C
6-C
10)aryloxy, (C
2-C
9)heteroaryl, (C
2-C
9)heteroaryloxy, (C
2-C
9)heteroarylcarbonyl, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, (C
1-C
6)alkylcarbonyl-N(R
2)-, and (C
1-C
6)alkylcarbonyloxy.
[0050] An embodiment of the present invention includes compounds of formula I, referred
to as the R
1 (j) group of compounds, wherein R
1 is saturated, partially saturated or aromatic (5- to 6-membered)heterocyclyl containing
one to two ring heteroatoms independently selected from the group consisting of -N=,
-NR
2-, -S-, and -O-;
wherein said saturated, partially saturated or aromatic (5- to 6-membered)heterocyclyl
is fused to a saturated, partially saturated or aromatic (5- to 6-membered)-heterocyclyl
containing one to two ring heteroatoms independently selected from the group consisting
of -N=, -NR
2-, -S- and -O-;
wherein either of said saturated, partially saturated or aromatic (5- to 6-membered)heterocyclyl
or said fused saturated, partially saturated or aromatic (5- to 6-membered)-heterocyclyl
is optionally substituted with one to two substituents per ring;
wherein said substituents are independently selected from the group consisting
of halo, hydroxy, cyano, mercapto, hydroxycarbonyl, nitro, (C
1-C
6)alkyl, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, -OCF
3, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, N-(C
1-C
6)alkoxyamido, (C
1-C
6)alkylcarbonyloxy, (C
1-C
6)alkylcarbonyl-N(R
2)-, formyl, (C
1-C
6)alkylcarbonyl, (C
1-C
6)alkoxycarbonyl, (C
6-C
10)aryl and (C
2-C
9)heterocyclyl;
wherein each of said R
1 (j) (C
1-C
6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, carbonyl, formyl, formamidyl, (C
1-C
6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C
1-C
6)alkoxycarbonyl, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, (C
1-C
6)alkoxyamido, (C
6-C
10)aryl, (C
6-C
10)aryloxy, (C
2-C
9)heteroaryl, (C
2-C
9)heteroaryloxy, (C
2-C
9)heteroarylcarbonyl, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, (C
1-C
6)alkylcarbonyl-N(R
2)-, and (C
1-C
6)alkylcarbonyloxy.
[0051] Other compounds of this invention are those of the formula I wherein R
5 is hydrogen, halo, hydroxy, mercapto, (C
1-C
6)alkyl, (C
1-C
6)alkoxy optionally substituted with one to three halogen atoms, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, cyano, formyl, (C
1-C
6)alkylcarbonyl, (C
1-C
6)alkylcarbonyloxy, hydroxycarbonyl, (C
1-C
6)alkoxycarbonyl, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, nitro, or (C
1-C
6)alkylthio;
wherein each of said R
5 (C
1-C
6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy, (C
2-C
6)alkenyl, (C
2-C
6)alkynyl, (C
3-C
7)carbocyclyl, (C
1-C
6)alkoxy, carbonyl, formyl, formamidyl, (C
1-C
6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C
1-C
6)alkoxycarbonyl, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, amido, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, N-(C
6-C
10)arylamido, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamido, (C
1-C
6)alkoxyamido, (C
6-C
10)aryl, (C
6-C
10)aryloxy, (C
2-C
9)heteroaryl, (C
2-C
9)heteroaryloxy, (C
2-C
9)heteroarylcarbonyl, (C
1-C
6)alkylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, (C
1-C
6)alkylcarbonyl-N(R
2)-, and (C
1-C
6)alkylcarbonyloxy.
[0052] Preferred compounds of this invention are those of the formula I wherein R
5 is hydrogen.
[0053] Another embodiment of the compounds of this invention are those of the formula I
wherein R
4 is amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, N-(C
3-C
7)carbocyclylamino, N-(C
6-C
10)arylamino, N-(C
1-C
6)alkyl-N-(C
6-C
10)arylamino, N-(C
2-C
9)heteroarylamino, formyl-N(R
2)-, (C
1-C
6)alkylcarbonyl-N(R
2)-, or (C
1-C
6)alkyl-SO
2-amino.
[0054] Other preferred compounds of this invention are those of the formula I wherein R
4 is amino.
[0055] Another embodiment of the compounds of this invention are those of the formula I
wherein R
3 is hydrogen, halo, (C
1-C
6)alkyl, (C
1-C
6)alkoxy, (C
1-C
6)alkylcarbonyl-, formyl, formamidyl, cyano, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, amido, N-(C
1-C
6)alkylamido, N-(C
6-C
10)arylamido, (C
6-C
10)aryl, (C
6-C
10)aryloxy, (C
1-C
6)alkylthio, (C
6-C
10)arylthio, (C
2-C
9)heteroarylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, (C
1-C
6)alkylamino-SO
2-, (C
1-C
6)alkylcarbonyl-N(R
2)-, (C
1-C
6)alkyloxy, (C
6-C
10)aryloxy, or (C
2-C
9)heteroaryloxy;
wherein each of said R
3 (C
1-C
6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from halo, hydroxycarbonyl, (C
1-C
6)alkoxycarbonyl, N-(C
1-C
6)alkylamido, N,N-[(C
1-C
6)alkyl]
2amido, or N-[(C
1-C
6)alkyl]-N-hydroxyamido.
[0056] Other preferred compounds of this invention are those of the formula I wherein R
3 is halo, (C
1-C
6)alkyl (preferably methyl) optionally substituted with one to three halo atoms, (C
1-C
6)alkylcarbonyl-, formyl, formamidyl, cyano, amino, N-(C
1-C
6)alkylamino, N,N-[(C
1-C
6)alkyl]
2amino, (C
1-C
6)alkylthio, (C
6-C
10)arylthio, (C
2-C
9)heteroarylthio, (C
1-C
6)alkyl-S(=O)-, (C
1-C
6)alkyl-SO
2-, (C
1-C
6)alkylcarbonyl-N(R
2)-, (C
1-C
6)alkyloxy, (C
6-C
10)aryloxy, or (C
2-C
9)heteroaryloxy.
[0057] Other preferred compounds of this invention are those of the formula I wherein R
3 is (C
1-C
6)alkyl (preferably methyl), -CF
3, -CF
2H, or cyano, more preferably wherein R
3 is -CF
3 or -CF
2H, most preferably wherein R
3 is -CF
3.
[0058] Another embodiment of the compounds of this invention are those of the formula I
wherein R
2 is hydrogen, or (C
1-C
6)alkyl.
[0059] Most preferred compounds of this invention are those of the formula I wherein R
1 is unsubstituted (C
1-C
6)alkyl, more preferably 3-methylbutyl or 2-methylbutyl; R
3 is -CF
3 or -CF
2H; R
4 is amino; m is 2; and R
5 is hydrogen.
[0060] Other most preferred compounds of this invention are those of the formula I wherein
R
1 is unsubstituted phenyl; R
3 is -CF
3 or -CF
2H; R
4 is amino; m is 2; and R
5 is hydrogen.
[0061] Other most preferred compounds of this invention are those of the formula I wherein
R
1 is phenyl substituted by one to three halo atoms, preferably 3-fluoro or 4-fluoro;
R
3 is -CF
3 or -CF
2H; R
4 is amino; m is 2; and R
5 is hydrogen.
[0062] Other most preferred compounds of this invention are those of the formula I wherein
R
1 is pyridin-2-yl or pyridin-3-yl, wherein said pyridin-2-yl or pyridin-3-yl is unsubstituted;
R
3 is -CF
3 or -CF
2H; R
4 is amino; m is 2; and R
5 is hydrogen.
[0063] Other most preferred compounds of this invention are those of the formula I wherein
R
1 is (3- to 7-membered)-carbocyclyl, containing no double bonds, wherein said (3- to
7-membered)-carbocyclyl is optionally substituted by one to three substituents independently
selected from the group consisting of halo, hydroxy, cyano, and (C
1-C
6)alkyl; R
3 is -CF
3 or -CF
2H; R
4 is amino; m is 2; and R
5 is hydrogen.
[0064] Other most preferred compounds of this invention are those of the formula I wherein
R
1 is saturated or aromatic (5- to 6-membered) heterocyclyl containing one ring heteroatom
independently selected from the groups consisting of -N= and -O-; wherein said (5-
to 6-membered) heterocyclyl is optionally substituted by one to three (C
1-C
6)alkyl; R
3 is -CF
3 or -CF
2H; R
4 is amino; m is 2; and R
5 is hydrogen.
[0065] Examples of specific preferred compounds of the formula I are the following:
4-(5-Phenyl-3-trifluoromethyl-[1,2,4]triazol-1-yl)-benzenesulfonamide;
4-(5-Pyridin-2-yl-3-trifluoromethyl-[1,2,4]triazol-1-yl)-benzenesulfonamide;
4-(5-Pyridin-3-yl-3-trifluoromethyl-[1,2,4]triazol-1-yl)-benzenesulfonamide;
4-(5-Furan-2-yl-3-trifluoromethyl-[1,2,4]triazol-1-yl)-benzenesulfonamide;
4-[5-(Tetrahydro-furan-2-yl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-[5-(Tetrahydro-pyran-4-yl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-[5-(2,2-Dimethyl-tetrahydro-pyran-4-yl)-3-trifluoromethyl-[1,2,4]triazol-1 -yl]-benzenesulfonamide;
4-[5-(4-Fluoro-phenyl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-[5-(3-Fluoro-phenyl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-[5-(2,2-Dimethyl-propyl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-[5-(2-Methyl-butyl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide
4-[5-(3-Methyl-butyl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-(5-Cyclobutyl-3-trifluoromethyl-[1,2,4]triazol-1-yl)-benzenesulfonamide;
4-(5-Cyclohexyl-3-trifluoromethyl-[1,2,4]triazol-1-yl)-benzenesulfonamide;
4-[5-(4-tert-Butyl-cyclohexyl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-[5-(3-Methyl-cyclohexyl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-[5-(3-Methoxy-cyclohexyl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-(5-Cyclopentyl-3-trifluoromethyl-[1,2,4]triazol-1-yl)-benzenesulfonamide;
4-(5-Isobutyl-3-trifluoromethyl-[1,2,4]triazol-1-yl)-benzenesulfonamide; and
the pharmaceutically acceptable salts thereof.
[0066] The present invention also relates to a pharmaceutical composition for the treatment
of a condition selected from the group consisting of arthritis (including osteoarthritis,
degenerative joint disease, spondyloarthropathies, gouty arthritis, systemic lupus
erythematosus, juvenile arthritis and rheumatoid arthritis), fever (including rheumatic
fever and fever associated with influenza and other viral infections), common cold,
dysmenorrhea, menstrual cramps, inflammatory bowel disease, Crohn's disease, emphysema,
acute respiratory distress syndrome, asthma, bronchitis, chronic obstructive pulmonary
disease, Alzheimer's disease, organ transplant toxicity, cachexia, allergic reactions,
allergic contact hypersensitivity, cancer (such as solid tumor cancer including colon
cancer, breast cancer, lung cancer and prostrate cancer; hematopoietic malignancies
including leukemias and lymphomas; Hodgkin's disease; aplastic anemia, skin cancer
and familiar adenomatous polyposis), tissue ulceration, peptic ulcers, gastritis,
regional enteritis, ulcerative colitis, diverticulitis, recurrent gastrointestinal
lesion, gastrointestinal bleeding, coagulation, anemia, synovitis, gout, ankylosing
spondylitis, restenosis, periodontal disease, epidermolysis bullosa, osteoporosis,
loosening of artificial joint implants, atherosclerosis (including atherosclerotic
plaque rupture), aortic aneurysm (including abdominal aortic aneurysm and brain aortic
aneurysm), periarteritis nodosa, congestive heart failure, myocardial infarction,
stroke, cerebral ischemia, head trauma, spinal cord injury, neuralgia, neuro-degenerative
disorders (acute and chronic), autoimmune disorders, Huntington's disease, Parkinson's
disease, migraine, depression, peripheral neuropathy, pain (including low back and
neck pain, headache and toothache), gingivitis, cerebral amyloid angiopathy, nootropic
or cognition enhancement, amyotrophic lateral sclerosis, multiple sclerosis, ocular
angiogenesis, corneal injury, macular degeneration, conjunctivitis, abnormal wound
healing, muscle or joint sprains or strains, tendonitis, skin disorders (such as psoriasis,
eczema, scleroderma and dermatitis), myasthenia gravis, polymyositis, myositis, bursitis,
burns, diabetes (including types I and II diabetes, diabetic retinopathy, neuropathy
and nephropathy), tumor invasion, tumor growth, tumor metastasis, corneal scarring,
scleritis, immunodeficiency diseases (such as AIDS in humans and FLV, FIV in cats),
sepsis, premature labor, hypoprothrombinemia, hemophilia, thyroiditis, sarcoidosis,
Behcet's syndrome, hypersensitivity, kidney disease, Rickettsial infections (such
as Lyme disease, Erlichiosis), Protozoan diseases (such as malaria, giardia, coccidia),
reproductive disorders (preferably in livestock), and septic shock in a mammal, preferably
a human, cat livestock or a dog, comprising an amount of a compound of formula I or
a pharmaceutically acceptable salt thereof effective in such treatment and a pharmaceutically
acceptable carrier.
[0067] The present invention also relates to a pharmaceutical composition for the treatment
of a disorder or condition that can be treated by selectively inhibiting COX-2 in
a mammal, preferably a human, cat, livestock or dog, comprising an effective amount
of a compound of formula I or a pharmaceutically acceptable salt thereof and a pharmaceutically
acceptable carrier.
[0068] The present invention also relates to a pharmaceutical composition for the treatment
of a condition selected from the group consisting of inflammatory diseases such as
arthritis (including osteoarthritis, degenerative joint disease, spondyloarthropathies,
gouty arthritis, systemic lupus erythematosus, juvenile arthritis and rheumatoid arthritis),
or fever (including rheumatic fever and fever associated with influenza).
[0069] The present invention also relates to a method for treating a condition selected
from the group consisting of arthritis (including osteoarthritis, degenerative joint
disease, spondyloarthropathies, gouty arthritis, systemic lupus erythematosus, juvenile
arthritis and rheumatoid arthritis), fever (including rheumatic fever and fever associated
with influenza and other viral infections), common cold, dysmenorrhea, menstrual cramps,
inflammatory bowel disease, Crohn's disease, emphysema, acute respiratory distress
syndrome, asthma, bronchitis, chronic obstructive pulmonary disease, Alzheimer's disease,
organ transplant toxicity, cachexia, allergic reactions, allergic contact hypersensitivity,
cancer (such as solid tumor cancer including colon cancer, breast cancer, lung cancer
and prostrate cancer; hematopoietic malignancies including leukemias and lymphomas;
Hodgkin's disease; aplastic anemia, skin cancer and familiar adenomatous polyposis),
tissue ulceration, peptic ulcers, gastritis, regional enteritis, ulcerative colitis,
diverticulitis, recurrent gastrointestinal lesion, gastrointestinal bleeding, coagulation,
anemia, synovitis, gout, ankylosing spondylitis, restenosis, periodontal disease,
epidermolysis bullosa, osteoporosis, loosening of artificial joint implants, atherosclerosis
(including atherosclerotic plaque rupture), aortic aneurysm (including abdominal aortic
aneurysm and brain aortic aneurysm), periarteritis nodosa, congestive heart failure,
myocardial infarction, stroke, cerebral ischemia, head trauma, spinal cord injury,
neuralgia, neuro-degenerative disorders (acute and chronic), autoimmune disorders,
Huntington's disease, Parkinson's disease, migraine, depression, peripheral neuropathy,
pain (including low back and neck pain, headache and toothache), gingivitis, cerebral
amyloid angiopathy, nootropic or cognition enhancement, amyotrophic lateral sclerosis,
multiple sclerosis, ocular angiogenesis, corneal injury, macular degeneration, conjunctivitis,
abnormal wound healing, muscle or joint sprains or strains, tendonitis, skin disorders
(such as psoriasis, eczema, scleroderma and dermatitis), myasthenia gravis, polymyositis,
myositis, bursitis, burns, diabetes (including types I and II diabetes, diabetic retinopathy,
neuropathy and nephropathy), tumor invasion, tumor growth, tumor metastasis, corneal
scarring, scleritis, immunodeficiency diseases (such as AIDS in humans and FLV, FIV
in cats), sepsis, premature labor, hypoprothrombinemia, hemophilia, thyroiditis, sarcoidosis,
Behcet's syndrome, hypersensitivity, kidney disease, Rickettsial infections (such
as Lyme disease, Erlichiosis), Protozoan diseases (such as malaria, giardia, coccidia),
reproductive disorders (preferably in livestock) and septic shock in a mammal, preferably
a human, cat livestock or a dog, comprising administering to said mammal an amount
of a compound of formula I or a pharmaceutically acceptable salt thereof effective
in treating such a condition.
[0070] The present invention also relates to a method for treating a disorder or condition
that can be treated by selectively inhibiting COX-2 in a mammal, preferably a human,
cat livestock or a dog, comprising administering to a mammal requiring such treatment
a COX-2 selective inhibiting effective amount of a compound of formula I or a pharmaceutically
acceptable salt thereof.
[0071] This invention also relates to a method of or a pharmaceutical composition for treating
inflammatory processes and diseases comprising administering a compound of formula
I of this invention or its salt to a mammal including a human, cat, livestock or dog,
wherein said inflammatory processes and diseases are defined as above, and said inhibitory
compound is used in combination with one or more other therapeutically active agents
under the following conditions:
A.) where a joint has become seriously inflammed as well as infected at the same time
by bacteria, fungi, protozoa, and/or virus, said inhibitory compound is administered
in combination with one or more antibiotic, antifungal, antiprotozoal, and/or antiviral
therapeutic agents;
B.) where a multi-fold treatment of pain and inflammation is desired, said inhibitory
compound is administered in combination with inhibitors of other mediators of inflammation,
comprising one or more members independently selected from the group consisting essentially
of:
(1) NSAIDs;
(2) H1 -receptor antagonists;
(3) kinin-B1 - and B2-receptor antagonists;
(4) prostaglandin inhibitors selected from the group consisting of PGD-, PGF- PGI2 -, and PGE-receptor antagonists;
(5) thromboxane A2 (TXA2-) inhibitors;
(6) 5-, 12- and 15-lipoxygenase inhibitors;
(7) leukotriene LTC4 -, LTD4/LTE4 -, and LTB4 -inhibitors;
(8) PAF-receptor antagonists;
(9) gold in the form of an aurothio group together with one or more hydrophilic groups;
(10) immunosuppressive agents selected from the group consisting of cyclosporine,
azathioprine, and methotrexate;
(11) anti-inflammatory glucocorticoids;
(12) penicillamine;
(13) hydroxychloroquine;
(14) anti-gout agents including colchicine; xanthine oxidase inhibitors including
allopurinol; and uricosuric agents selected from probenecid, sulfinpyrazone, and benzbromarone;
C.) where older mammals are being treated for disease conditions, syndromes and symptoms
found in geriatric mammals, said inhibitory compound is administered in combination
with one or more members independently selected from the group consisting essentially
of:
(1) cognitive therapeutics to counteract memory loss and impairment;
(2) anti-hypertensives and other cardiovascular drugs intended to offset the consequences
of atherosclerosis, hypertension, myocardial ischemia, angina, congestive heart failure,
and myocardial infarction, selected from the group consisting of:
a. diuretics;
b. vasodilators;
c. β-adrenergic receptor antagonists;
d. angiotensin-ll converting enzyme inhibitors (ACE-inhibitors), alone or optionally
together with neutral endopeptidase inhibitors;
e. angiotensin II receptor antagonists;
f. renin inhibitors;
g. calcium channel blockers;
h. sympatholytic agents;
i. α2-adrenergic agonists;
j. α-adrenergic receptor antagonists; and
k. HMG-CoA-reductase inhibitors (anti-hypercholesterolemics);
(3) antineoplastic agents selected from:
a. antimitotic drugs selected from:
i. vinca alkaloids selected from:
[1] vinblastine, and
[2] vincristine;
(4) growth hormone secretagogues;
(5) strong analgesics;
(6) local and systemic anesthetics; and
(7) H2 -receptor antagonists, proton pump inhibitors, and other gastroprotective agents.
[0072] The term "treating", as used herein, refers to reversing, alleviating, inhibiting
the progress of, or preventing the disorder or condition to which such term applies,
or one or more symptoms of such disorder or condition. The term "treatment, as used
herein, refers to the act of treating, as "treating" is defined immediately above.
[0073] The term "livestock animals" as used herein refers to domesticated quadrupeds, which
includes those being raised for meat and various byproducts,
e.g., a bovine animal including cattle and other members of the genus
Bos, a porcine animal including domestic swine and other members of the genus
Sus, an ovine animal including sheep and other members of the genus
Ovis, domestic goats and other members of the genus
Capra; domesticated quadrupeds being raised for specialized tasks such as use as a beast
of burden,
e.g., an equine animal including domestic horses and other members of the family Equidae,
genus
Equus, or for searching and sentinel duty,
e.g., a canine animal including domestic dogs and other members of the genus
Canis; and domesticated quadrupeds being raised primarily for recreational purposes,
e.g., members of
Equus and
Canis, as well as a feline animal including domestic cats and other members of the family
Felidae, genus
Felis.
[0074] "Companion animals" as used herein refers to cats, dogs and horses. As used herein,
the term "dog(s)" denotes any member of the species
Canis familiaris, of which there are a large number of different breeds. While laboratory determinations
of biological activity may have been carried out using a particular breed, it is contemplated
that the inhibitory compounds of the present invention will be found to be useful
for treating pain and inflammation in any of these numerous breeds. Dogs represent
a particularly preferred class of patients in that they are well known as being very
susceptible to chronic inflammatory processes such as osteoarthritis and degenerative
joint disease, which in dogs often results from a variety of developmental diseases,
e.g., hip dysplasia and osteochondrosis, as well as from traumatic injuries to joints.
Conventional NSAIDs, if used in canine therapy, have the potential for serious adverse
gastrointestinal reactions and other adverse reactions including kidney and liver
toxicity. Gastrointestinal effects such as single or multiple ulcerations, including
perforation and hemorrhage of the esophagus, stomach, duodenum or small and large
intestine, are usually debilitating, but can often be severe or even fatal.
[0075] The term "treating reproductive disorders (preferably in livestock)" as used herein
refers to the use of the COX-2 inhibitors of the invention in mammals, preferably
livestock animals (cattle, pigs, sheep, goats or horses), during the estrus cycle
to control the time of onset of estrus by blocking the uterine signal for lysis of
the corpus luteum, i.e. F-series prostaglandins, then removing the inhibition when
the onset of estrus is desired. There are settings where it is useful to control or
synchronize the time of estrus, especially when artificial insemination or embryo
transfer are to be performed. Such use also includes enhancing the rate of embryo
survival in pregnant livestock animals. Blocking F-series prostaglandin release can
have several beneficial actions including reducing uterine contractions, enhancing
uteroplacental bloodflow, supporting recognition of pregnancy, and postponing lysis
of the corpus luteum at the time when estrus would have occurred had the animal not
become pregnant (around Day 21 of pregnancy). Such treatment also abrogates the effects
of stress on reproduction. For example reductions in fertility caused by excessive
heat, negative energy balance and other stresses which have a COX-2 mediated component,
as does abortion induced by stress such as heat, transportation, co-mingling, palpation,
infection, etc. Such treatment is also useful to control the time of parturition,
which is accompanied by release of F-series prostaglandins that lead to lysis of the
corpus luteum. Inhibition of COX-2 would block the onset of premature labor in livestock
animals, allowing the offspring time to mature before birth. Also there are settings
where controlling the time of parturition is a useful tool for management of pregnant
animals.
[0076] The subject invention also includes isotopically-labelled compounds, which are identical
to those recited in Formula I, but for the fact that one or more atoms are replaced
by an atom having an atomic mass or mass number different from the atomic mass or
mass number usually found in nature. Examples of isotopes that can be incorporated
into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen,
phosphorous, fluorine and chlorine, such as
2H,
3H,
13C,
14C,
15N,
18O,
17O,
31P,
32P,
35S,
18F, and
36CI, respectively. Compounds of the present invention, prodrugs thereof, and pharmaceutically
acceptable salts of said compounds or of said prodrugs which contain the aforementioned
isotopes and/or other isotopes of other atoms are within the scope of this invention.
Certain isotopically-labelled compounds of the present invention, for example those
into which radioactive isotopes such as
3H and
14C are incorporated, are useful in drug and/or substrate tissue distribution assays.
Tritiated, i.e.,
3H, and carbon-14, i.e.,
14C, isotopes are particularly preferred for their ease of preparation and detectability.
Further, substitution with heavier isotopes such as deuterium, i.e.,
2H, can afford certain therapeutic advantages resulting from greater metabolic stability,
for example increased
in vivo half-life or reduced dosage requirements and, hence, may be preferred in some circumstances.
Isotopically labelled compounds of Formula I of this invention and prodrugs thereof
can generally be prepared by carrying out the procedures disclosed in the Schemes
and/or in the Examples and Preparations below, by substituting a readily available
isotopically labelled reagent for a non-isotopically labelled reagent.
[0077] This invention also encompasses pharmaceutical compositions containing prodrugs of
compounds of the formula I. This invention also encompasses methods of treating disorders
that can be treated by the selective inhibition of COX-2 comprising administering
prodrugs of compounds of the formula I. Compounds of formula I having free amino,
amido, hydroxy, carboxylic acid ester, sulfonamide or carboxylic groups (especially
alkyl-S- and alkyl-(S=O)-) can be converted into prodrugs. Prodrugs include compounds
wherein an amino acid residue, or a polypeptide chain of two or more (
e.
g., two, three or four) amino acid residues which are covalently joined through peptide
bonds to free amino, hydroxy or carboxylic acid groups of compounds of formula I.
The amino acid residues include the 20 naturally occurring amino acids commonly designated
by three letter symbols and also include, 4-hydroxyproline, hydroxylysine, demosine,
isodemosine, 3-methylhistidine, norvalin, beta-alanine, gamma-aminobutyric acid, citrulline,
homocysteine, homoserine, ornithine and methionine sulfone. Prodrugs also include
compounds wherein carbonates, carbamates, amides and alkyl esters are covalently bonded
to the above substituents of formula I through the carbonyl carbon prodrug sidechain.
Prodrugs also include metabolically labile groups such as ethers, acetates, mercaptans
and sulfoxides.
[0078] One of ordinary skill in the art will appreciate that the compounds of the invention
are useful in treating a diverse array of diseases. One of ordinary skill in the art
will also appreciate that when using the compounds of the invention in the treatment
of a specific disease that the compounds of the invention may be combined with various
existing therapeutic agents used for that disease.
[0079] For the treatment of rheumatoid arthritis, the compounds of the invention may be
combined with agents such as TNF-α inhibitors such as anti-TNF monoclonal antibodies
and TNF receptor immunoglobulin molecules (such as Enbrel®), low dose methotrexate,
lefunimide, hydroxychloroquine, d-penicilamine, auranofin or parenteral or oral gold.
[0080] The compounds of the invention can also be used in combination with existing therapeutic
agents for the treatment of osteoarthritis. Suitable agents to be used in combination
include standard non-steroidal anti-inflammatory agents (hereinafter NSAID's) such
as piroxicam, diclofenac, propionic acids such as naproxen, flurbiprofen, fenoprofen,
ketoprofen and ibuprofen, fenamates such as mefenamic acid, indomethacin, sulindac,
apazone, pyrazolones such as phenylbutazone, salicylates such as aspirin, COX-2 inhibitors
such as celecoxib and rofecoxib, analgesics and intraarticular therapies such as corticosteroids
and hyaluronic acids such as hyalgan and synvisc.
[0081] The active ingredient of the present invention may be administered in combination
with inhibitors of other mediators of inflammation, comprising one or more members
selected from the group consisting essentially of the classes of such inhibitors and
examples thereof which include, matrix metalloproteinase inhibitors, aggrecanase inhibitors,
TACE inhibitors, leucotriene receptor antagonists, IL-1 processing and release inhibitors,
ILra, H
1 -receptor antagonists; kinin-B
1 - and B
2 -receptor antagonists; prostaglandin inhibitors such as PGD-, PGF- PGI
2 -, and PGE-receptor antagonists; thromboxane A
2 (TXA2-) inhibitors; 5- and 12-lipoxygenase inhibitors; leukotriene LTC
4 -, LTD
4/LTE
4 -, and LTB
4 -inhibitors; PAF-receptor antagonists; gold in the form of an aurothio group together
with various hydrophilic groups; immunosuppressive agents,
e.
g., cyclosporine, azathioprine, and methotrexate; anti-inflammatory glucocorticoids;
penicillamine; hydroxychloroquine; anti-gout agents,
e.
g., colchicine, xanthine oxidase inhibitors,
e.
g., allopurinol, and uricosuric agents,
e.
g., probenecid, sulfinpyrazone, and benzbromarone.
[0082] The compounds of the present invention may also be used in combination with anticancer
agents such as endostatin and angiostatin or cytotoxic drugs such as adriamycin, daunomycin,
cis-platinum, etoposide, taxol, taxotere and alkaloids, such as vincristine, and antimetabolites
such as methotrexate.
[0083] The compounds of the present invention may also be used in combination with anti-hypertensives
and other cardiovascular drugs intended to offset the consequences of atherosclerosis,
including hypertension, myocardial ischemia including angina, congestive heart failure,
and myocardial infarction, selected from vasodilators such as hydralazine, β-adrenergic
receptor antagonists such as propranolol, calcium channel blockers such as nifedipine,
α
2-adrenergic agonists such as clonidine, α-adrenergic receptor antagonists such as
prazosin, and HMG-CoA-reductase inhibitors (anti-hypercholesterolemics) such as lovastatin
or atorvastatin.
[0084] The active ingredient of the present invention may also be administered in combination
with one or more antibiotic, antifungal, antiprotozoal, antiviral or similar therapeutic
agents.
[0085] The compounds of the present invention may also be used in combination with CNS agents
such as antidepressants (such as sertraline), anti-Parkinsonian drugs (such as L-dopa,
requip, mirapex, MAOB inhibitors such as selegine and rasagiline, comP inhibitors
such as Tasmar, A-2 inhibitors, dopamine reuptake inhibitors, NMDA antagonists, nicotine
agonists, dopamine agonists and inhibitors of neuronal nitric oxide synthase), and
anti-Alzheimer's drugs such as donepezil, tacrine, COX-2 inhibitors, propentofylline
or metryfonate.
[0086] The compounds of the present invention may also be used in combination with osteoporosis
agents such as roloxifene, lasofoxifene, droloxifene or fosomax and immunosuppressant
agents such as FK-506 and rapamycin.
[0087] The present invention also relates to the formulation of the active agents of the
present invention alone or with one or more other therapeutic agents which are to
form the intended combination, including wherein said different drugs have varying
half-lives, by creating controlled-release forms of said drugs with different release
times which achieves relatively uniform dosing; or, in the case of non-human patients,
a medicated feed dosage form in which said drugs used in the combination are present
together in admixture in said feed composition. There is further provided in accordance
with the present invention co-administration in which the combination of drugs is
achieved by the simultaneous administration of said drugs to be given in combination;
including co-administration by means of different dosage forms and routes of administration;
the use of combinations in accordance with different but regular and continuous dosing
schedules whereby desired plasma levels of said drugs involved are maintained in the
patient being treated, even though the individual drugs making up said combination
are not being administered to said patient simultaneously.
Detailed Description of the Invention
[0088] The following reaction scheme illustrates the preparation of the compounds of the
present invention. Unless otherwise indicated, m, and R
1 through R
5 in the reaction scheme and discussion that follow are as defined above.

Scheme 1 refers to the preparation of compounds of the formula I. Referring to Scheme
1, compounds of formula I can be prepared by reacting a compound of formula II with
a compound of a general formula R
1COX, wherein X includes hydroxy, halo (such as chloro), or (C
1-C
6)alkoxy (such as methoxy) in the presence of an activating agents in a solvent, optionally
in the presence of an acid. Suitable activating agents include diisopropylcarbopdiimide
or chloroformate. Suitable acids include hydrochloric acid, acetic acid, trifluoroacetic
acid, p-toluenesulfonic acid and sulfuric acid. If X is hydroxy, preferably the aforesaid
reaction is performed under neutral conditions. If X is halo, such as chloro, preferably
the aforesaid reaction is performed under basic condition. Suitable bases include
triethylamine and potassium carbonate. If X is (C
1-C
6)alkoxy, preferably the aforesaid reaction is performed under neutral or basic conditions,
more preferably under basic condition. Suitable bases include triethylamine and potassium
carbonate. Suitable solvents include alcohol (such as ethanol, trifluoroethanol, methanol,
propanol, isopropanol or butanol), dioxane, dimethyl sulfoxide (DMSO), N,N-dimethylformamide
(DMF), N,N-dimethylacetamide (DMA), N-methyl-2-pyrrolidinone (NMP), benzene, toluene
or chloroform, preferably dioxane. This reaction can be carried out at a temperature
from about 0°C to about 140°C, preferably at about 90°C. This reaction can be carried
out for a period of from about 1 hour to about 72 hours, preferably from about 1 hour
to 24 hours, until the reaction is complete.
[0089] The compounds of formula II can be prepared by reacting a compound of the formula
III with a compound of the formula V:

wherein R
5 is as defined above, or an acidic salt thereof, such as a hydrochloric salt thereof,
in the presence of a base and a solvent. Suitable bases include amine (such as triethylamine),
potassium carbonate (K
2CO
3), sodium carbonate (Na
2CO
3), sodium hydride (NaH), sodium methoxide, potassium-tert-butoxide, lithium diisopropylamide,
pyrrolidine and piperidine, preferably triethylamine. Suitable solvents include dialkylether
(such as diethylether or methyl tert-butyl ether), tetrahydrofuran (THF), alcohol
(such as methanol), dichloromethane, DMF, DMA or DMSO, preferably THF. This reaction
can be carried out at a temperature from about -78°C to about 100°C, preferably at
about 25°C. This reaction can be carried out for a period of from about 5 minutes
to about 72 hours, preferably from about 1 hour to about 24 hours.
[0090] Compounds of formula III can be prepared from a compound of the formula IV by reaction
of the compound of formula III with an activating reagent, in the presence of a base
and a solvent. Suitable activating reagents include triflic anhydride, mesyl anhydride,
phoshorus trichloride, and phosphorus tribromide. Suitable bases include potassium
carbonate, triethylamine, or diisopropylethylamine, preferably diisopropylethylamine.
Suitable solvents include dichloromethane, tetrahydrofuran, or DMF, preferably tetrahydrofuran
or dichloromethane. This reaction can be carried out at a temperature from about -78°C
to about 50°C, preferably at about 25°C. This reaction can be carried out for a period
of from about 5 minutes to about 72 hours, preferably from about 1 hour to about 24
hours.
[0091] Compounds of formula IV are commercially available or can be made by methods well
known to those of ordinary skill in the art. For example, compounds of formula IV
can be prepared by the methods described in Comprehensive Organic Transformations,
Larock, 1989, 1
st edition;
Advanced Organic Chemistry, Jerry March, 1992, 4
th edition, which are herein incorporated by reference.
[0092] Other methods of preparing the compounds of Formula I are well known to those skilled
in the art such as those described in
Heterocycles, 31,1041 (1990). The compounds of formula I can also be synthesized by using the method
of Kharash, Negishi, Stille, or Suzuki et. al., which are well known in the art. In
general, aryl compounds are synthesized by a number of catalytic cross-coupling reactions
from aryl halides or triflates and aryl metal reagents (such as Grignard reagent (the
so-called Kharasch reaction), aryl zinc reagent (the so-called Negishi reaction),
aryl tin reagent (the so-called Stille reaction), arylboron reagent (the so-called
Suzuki reaction), aryl silyl reagent, etc. (see for example S. P. Stanforth,
Tetrahedron, 1998,
54, 263-303)).
[0093] Unless indicated otherwise, the pressure of each of the above reactions is not critical.
Generally, the reactions will be conducted at a pressure of about one to about three
atmospheres, preferably at ambient pressure (about one atmosphere).
[0094] Those skilled in the art will appreciate that the above schemes describe general
methods for preparing the compounds of the invention. Specific compounds of formula
I may possess sensitive functional groups that require protecting groups when prepared
with the intermediates described. Examples of suitable protecting groups may be found
in T.W. Greene and P. Wuts,
Protecting Groups in Organic Synthesis, John Wiley & Sons, 2nd Edition, New York, 1991.
[0095] The compounds of the formula I which are basic in nature are capable of forming a
wide variety of different salts with various inorganic and organic acids. Although
such salts must be pharmaceutically acceptable for administration to animals, it is
often desirable in practice to initially isolate a compound of the formula I from
the reaction mixture as a pharmaceutically unacceptable salt and then simply convert
the latter back to the free base compound by treatment with an alkaline reagent, and
subsequently convert the free base to a pharmaceutically acceptable acid addition
salt. The acid addition salts of the base compounds of this invention are readily
prepared by treating the base compound with a substantially equivalent amount of the
chosen mineral or organic acid in an aqueous solvent medium or in a suitable organic
solvent such as methanol or ethanol. Upon careful evaporation of the solvent, the
desired solid salt is obtained.
[0096] The acids which are used to prepare the pharmaceutically acceptable acid addition
salts of the base compounds of this invention are those which form non-toxic acid
addition salts,
i.e., salts containing pharmacologically acceptable anions, such as hydrochloride, hydrobromide,
hydroiodide, nitrate, sulfate or bisulfate, phosphate or acid phosphate, acetate,
lactate, citrate or acid citrate, tartrate or bitartrate, succinate, maleate, fumarate,
gluconate, saccharate, benzoate, methanesulfonate and pamoate [
i.e., 1,1'-methylene-bis-(2-hydroxy-3-naphthoate)] salts.
[0097] Those compounds of the formula I which are also acidic in nature,
e.g., wherein any of R
1, R
3, R
4, or R
5 include a hydroxycarbonyl, tetrazole, or other acidic moiety, are capable of forming
base salts with various pharmacologically acceptable cations. Examples of such salts
include the alkali metal or alkaline-earth metal salts and particularly, the sodium
and potassium salts. These salts are all prepared by conventional techniques. The
chemical bases which are used as reagents to prepare the pharmaceutically acceptable
base salts of this invention are those which form non-toxic base salts with the herein
described acidic compounds of formula I. These non-toxic base salts include those
derived from such pharmacologically acceptable cations as sodium, potassium, calcium
and magnesium, etc. These salts can easily be prepared by treating the corresponding
acidic compounds with an aqueous solution containing the desired pharmacologically
acceptable cations, and then evaporating the resulting solution to dryness, preferably
under reduced pressure. Alternatively, they may also be prepared by mixing lower alkanolic
solutions of the acidic compounds and the desired alkali metal alkoxide together,
and then evaporating the resulting solution to dryness in the same manner as before.
In either case, stoichiometric quantities of reagents are preferably employed in order
to ensure completeness of reaction and maximum product yields.
METHOD FOR ASSESSING BIOLOGICAL ACTIVITIES:
[0098] The activity of the compounds of the formula I of the present invention was demonstrated
by the following assays.
Human In vitro assays
Human cell-based COX-1 assay
[0099] Human peripheral blood obtained from healthy volunteers was diluted to 1/10 volume
with 3.8% sodium citrate solution. The platelet-rich plasma immediately obtained was
washed with 0.14 M sodium chloride containing 12 mM Tris-HCI (pH 7.4) and 1.2 mM EDTA.
Platelets were then washed with platelet buffer (Hanks buffer (Ca free) containing
0.2% BSA and 20 mM Hepes). Finally, the human washed platelets (HWP) were suspended
in platelet buffer at the concentration of 2.85 x 10
8 cells/ml and stored at room temperature until use. The HWP suspension (70 µl aliquots,
final 2.0 x 10
7 cells/ml) was placed in a 96-well U bottom plate and 10 µl aliquots of 12.6 mM calcium
chloride added. Platelets were incubated with A23187 (final 10 µM, Sigma) with test
compound (0.1 - 100 µM) dissolved in DMSO (final concentration; less than 0.01%) at
37°C for 15 minutes. The reaction was stopped by addition of EDTA (final 7.7 mM) and
TxB2 in the supernatant quantitated by using a radioimmunoassay kit (Amersham) according
to the manufacturer's procedure.
Human cell-based COX-2 assay
[0100] The human cell based COX-2 assay was carried out as previously described (Moore
et al., Inflam. Res., 45, 54, 1996). Confluent human umbilical vein endothelial cells (HUVECs, Morinaga) in
a 96-well flat bottom plate were washed with 80 ml of RPMI1640 containing 2% FBS and
incubated with hlL-1β (final concentration 300 U/ml, R & D Systems) at 37°C for 24
hours. After washing, the activated HUVECs were incubateed with test compound (final
concentration; 0.1nM-1µM) dissolved in DMSO (final concentration; less than 0.01%)
at 37°C for 20 minutes and stimulated with A23187 (final concentration 30 mM) in Hanks
buffer containing 0.2% BSA, 20 mM Hepes at 37°C for 15 minutes. 6-Keto-PGF
1α, stable metabolite of PGl2, in the supernatant was quantitated by using a radioimmunoassay
method (antibody; Preseptive Diagnostics, SPA; Amersham).
Canine In vitro assays
[0101] The following canine cell based COX 1 and COX-2 assays have been reported in Ricketts
et al.,
Evaluation of Selective Inhibition of Canine Cyclooxygenase 1 and 2 by Carprofen and
Other Nonsteroidal Anti-inflammatory Drugs, American Journal of Veterinary Research, 59 (11), 1441-1446.
Protocol for Evaluation of Canine COX-1 Activity
[0102] Test drug compounds were solubilized and diluted the day before the assay was to
be conducted with 0.1 mL of DMSO/9.9 mL of Hank's balanced salts solution (HBSS),
and stored overnight at 4°C. On the day that the assay was carried out, citrated blood
was drawn from a donor dog, centrifuged at 190 times g for 25 minutes at room temperature,
and the resulting platelet-rich plasma was then transferred to a new tube for further
procedures. The platelets were washed by centrifuging at 1500 times g for 10 minutes
at room temperature. The platelets were washed with platelet buffer comprising Hank's
buffer (Ca free) with 0.2% bovine serum albumin (BSA) and 20 mM HEPES. The platelet
samples were then adjusted to 1.5 x 10
7/mL, after which 50 µl of calcium ionophore (A23187) together with a calcium chloride
solution were added to 50 µl of test drug compound dilution in plates to produce final
concentrations of 1.7 µM A23187 and 1.26 mM Ca. Then, 100 µl of canine washed platelets
were added and the samples were incubated at 37°C for 15 minutes, after which the
reaction was stopped by adding 20 µl of 77 mM EDTA. The plates were then centrifuged
at 2000 times g for 10 minutes at 4°C, after which 50 µl of supernatant was assayed
for thromboxane B
2 (TXB
2) by enzyme-immunoassay (EIA). The pg/mL of TXB
2 was calculated from the standard line included on each plate, from which it was possible
to calculate the percent inhibition of COX-1 and the IC
50 values for the test drug compounds.
Protocol for Evaluation of Canine COX-2 Activity
[0103] A canine histocytoma (macrophage-like) cell line from the American Type Culture Collection
designated as DH82, was used in setting up the protocol for evaluating the COX-2 inhibition
activity of various test drug compounds. There was added to flasks of these cells
10 µg/mL of LPS, after which the flask cultures were incubated overnight. The same
test drug compound dilutions as described above for the COX-1 protocol were used for
the COX-2 assay and were prepared the day before the assay was carried out. The cells
were harvested from the culture flasks by scraping, and were then washed with minimal
Eagle's media (MEM) combined with 1% fetal bovine serum, centrifuged at 1500 rpm for
2 minutes, and adjusted to a concentration of 3.2 x 10
5 cells/mL. To 50 µl of test drug dilution there was added 50 µl of arachidonic acid
in MEM to give a 10 µM final concentration, and there was added as well 100 µl of
cell suspension to give a final concentration of 1.6 x 10
5 cells/mL. The test sample suspensions were incubated for 1 hour and then centrifuged
at 1000 rpm for 10 minutes at 4° C, after which 50 µl aliquots of each test drug sample
were delivered to EIA plates. The EIA was performed for prostaglandin E
2 (PGE
2), and the pg/mL concentration of PGE
2 was calculated from the standard line included on each plate. From this data it was
possible to calculate the percent inhibition of COX-2 and the IC
50 values for the test drug compounds. Repeated investigations of COX-1 and COX-2 inhibition
were conducted over the course of several months. The results are averaged, and a
single COX-1 : COX-2 ratio is calculated.
[0104] Whole blood assays for COX-1 and COX-2 are known in the art such as the methods described
in C. Brideau, et al.,
Inflammation Research, Vol. 45, pp. 68-74 (1996). These methods may be applied with feline, canine or human
blood as needed.
In vivo assays
Carrageenan induced foot edema in rats
[0105] Male Sprague-Dawley rats (5 weeks old, Charles River Japan) were fasted overnight.
A line was drawn using a marker above the ankle on the right hind paw and the paw
volume (V0) was measured by water displacement using a plethysmometer (Muromachi).
Animals were given orally either vehicle (0.1% methyl cellulose or 5% Tween 80) or
a test compound (2.5 ml per 100g body weight). One hour later, the animals were then
injected intradermally with λ-carrageenan (0.1 ml of 1% w/v suspension in saline,
Zushikagaku) into right hind paw (Winter
et al., Proc. Soc. Exp. Biol. Med., 111, 544, 1962; Lombardino
et al., Arzneim. Forsch., 25, 1629, 1975) and three hours later, the paw volume (V3) was measured and the
increase in volume (V3-V0) calculated. Since maximum inhibition attainable with classical
NSAIDs is 60-70%, ED
30 values were calculated.
Gastric ulceration in rats
[0106] The gastric ulcerogenicity of test compound was assessed by a modification of the
conventional method (Ezer
et al., J. Pharm. Pharmacol., 28, 655, 1976; Cashin
et al., J. Pharm. Pharmacol., 29, 330 - 336, 1977). Male Sprague-Dawley rats (5 weeks old, Charles River Japan),
fasted overnight, were given orally either vehicle (0.1% methyl cellulose or 5% Tween
80) or a test compound (1 ml per 100g body weight). Six hours after, the animals were
sacrificed by cervical dislocation. The stomachs were removed and inflated with 1%
formalin solution (10 ml). Stomachs were opened by cutting along the greater curvature.
From the number of rats that showed at least one gastric ulcer or haemorrhaging erosion
(including ecchymosis), the incidence of ulceration was calculated. Animals did not
have access to either food or water during the experiment.
Canine whole blood ex vivo determinations of COX-1 and COX-2 activity inhibition
[0107] The
in vivo inhibitory potency of a test compound against COX-1 and COX-2 activity may be evaluated
using an
ex vivo procedure on canine whole blood. Three dogs were dosed with 5 mg/kg of the test compound
administered by oral gavage in 0.5% methylcellulose vehicle and three dogs were untreated.
A zero-hour blood sample was collected from all dogs in the study prior to dosing,
followed by 2- and 8-hour post-dose blood sample collections. Test tubes were prepared
containing 2µL of either (A) calcium ionophore A23187 giving a 50 µM final concentration,
which stimulates the production of thromboxane B
2 (TXB
2) for COX-1 activity determination; or of (B) lipopolysaccharide (LPS) to give a 10
µg/mL final concentration, which stimulates the production of prostaglandin E
2 (PGE
2) for COX-2 activity determination. Test tubes with unstimulated vehicle were used
as controls. A 500 µL sample of blood was added to each of the above-described test
tubes, after which they were incubated at 37°C for one hour in the case of the calcium
ionophore-containing test tubes, and overnight in the case of the LPS-containing test
tubes. After incubation, 10 µL of EDTA was added to give a final concentration of
0.3%, in order to prevent coagulation of the plasma which sometimes occurs after thawing
frozen plasma samples. The incubated samples were centrifuged at 4°C and the resulting
plasma sample of ∼200 µL was collected and stored at -20°C in polypropylene 96-well
plates. In order to determine endpoints for this study, enzyme immunoassay (EIA) kits
available from Cayman were used to measure production of TXB
2 and PGE
2, utilizing the principle of competitive binding of tracer to antibody and endpoint
determination by colorimetry. Plasma samples were diluted to approximate the range
of standard amounts which would be supplied in a diagnostic or research tools kit,
i.e., 1/500 for TXB
2 and 1/750 for PGE
2.
[0108] The data set out in Table 1 below show how the percent inhibition of COX-1 and COX-2
activity is calculated based on their zero hour values. The data is expressed as treatment
group averages in pg/ml of TXB
2 and PGE
2 produced per sample. Plasma dilution was not factored in said data values.
[0109] The data in Table 1 show that, in this illustration, at the 5 mg/kg dose there was
significant COX-2 inhibition at both timepoints. The data in Table 1 also show that
at the 5 mg/kg dose there was no significant inhibition of COX-1 activity at the timepoints
involved. Accordingly, the data in Table 1 clearly demonstrates that at the 5 mg/kg
dosage concentration this compound possesses good COX-2 selectivity.
TABLE 1
| COX-1 ACTIVITY INHIBITION - Group Averages |
| |
TXB2 Pg/mL/Well |
Percent Inhibition |
| Hour |
0-hour |
2-hour |
8-hour |
2-hour |
8-hour |
| Untreated |
46 |
45 |
140 |
2% |
0% |
| 5mg/kg |
41 |
38 |
104 |
7% |
0% |
| COX-2 ACTIVITY INHIBITION - Group Averages |
| |
PGE2 Pg/mL/Well |
Percent Inhibition |
| Hour |
0-hour |
2-hour |
8-hour |
2-hour |
8-hour |
| Untreated |
420 |
486 |
501 |
0% |
0% |
| 5mg/kg |
711 |
165 |
350 |
77% |
51% |
[0110] COX inhibition is observed when the measured percent inhibition is greater than that
measured for untreated controls. The percent inhibition in the above table is calculated
in a straightforward manner in accordance with the following equation:

Data Analysis
[0111] Statistical program packages, SYSTAT (SYSTAT, INC.) and StatView (Abacus Cencepts,
Inc.) for Macintosh were used. Differences between test compound treated group and
control group were tested for using ANOVA. The IC50 (ED30) values were calculated
from the equation for the log-linear regression line of concentration (dose) versus
percent inhibition.
[0112] Most compounds prepared in the Working Examples as described hereinafter were tested
by at least one of the methods described above, and showed IC
50 values of 0.001 µM to 3 µM with respect to inhibition of COX-2 in either the canine
or human assays.
[0113] COX-2 selectivity can be determined by ratio in terms of IC
50 value of COX-1 inhibition to COX-2 inhibition. In general, it can be said that a
compound showing a COX-2/COX-1 inhibition ratio of more than 5 has good COX-2 selectivity.
[0114] In general, these compounds are most desirably administered to humans in doses ranging
from 0.01 mg to 100 mg per kg of body weight per day, although variations will necessarily
occur depending upon the weight, sex and condition of the subject being treated, the
disease state being treated and the particular route of administration chosen. However,
a dosage level that is in the range of from 0.1 mg to 10 mg per kg of body weight
per day, single or divided dosage is most desirably employed in humans for the treatment
of abovementioned diseases.
[0115] These compounds are most desirably administered to said non-human mammals,
e.g. dogs, cats, horses or livestock in an amount, expressed as mg per kg of body weight
of said member per day, ranging from about 0.01 mg/kg to about 20.0 mg/kg/day, preferably
from about 0.1 mg/kg to about 12.0 mg/kg/day, more preferably from about 0.5 mg/kg
to about 10.0 mg/kg/day, and most preferably from about 0.5 mg/kg to about 8.0 mg/kg/day.
[0116] The compounds of the present invention may be administered alone or in combination
with pharmaceutically acceptable carriers or diluents by either of the above routes
previously indicated, and such administration can be carried out in single or multiple
doses. More particularly, the novel therapeutic agents of the invention can be administered
in a wide variety of different dosage forms,
i.e., they may be combined with various pharmaceutically acceptable inert carriers in the
form of tablets, capsules, lozenges, trochees, hard candies, powders, sprays, creams,
salves, suppositories, jellies, gels, pastes, lotions, ointments, aqueous suspensions,
injectable solutions, elixirs, syrups, and the like. Such carriers include solid diluents
or fillers, sterile aqueous media and various nontoxic organic solvents, etc. Moreover,
oral pharmaceutical compositions can be suitably sweetened and/or flavored. In general,
the therapeutically-effective compounds of this invention are present in such dosage
forms at concentration levels ranging from 5% to 70% by weight, preferably 10% to
50% by weight.
[0117] For administration of the compounds of the present invention to mammals, including
humans, a variety of conventional routes may be used. Suitable routes include oral,
parenteral (
e.g., intravenous, intramuscular, intraperitoneal, or subcutaneous), buccal, rectal,
intranasal, and transdermal.
[0118] Preferably the active compound will be administered orally. However, some variation
in dosage will necessarily occur depending on the condition of the subject being treated.
The person responsible for administration will, in any event, determine the appropriate
dose for the individual subject.
[0119] The active compounds can be administered in a wide variety of different dosage forms,
in general, the effective amount of the compounds of this invention are present in
such dosage forms at concentration levels ranging from about 5.0% to about 70% by
weight.
[0120] For oral administration, tablets containing various excipients such as microcrystalline
cellulose, sodium citrate, calcium carbonate, dicalcium phosphate and glycine may
be employed along with various disintegrants such as starch (and preferably corn,
potato or tapioca starch), alginic acid and certain complex silicates, together with
granulation binders like polyvinylpyrrolidone, sucrose, gelation and acacia. Additionally,
lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are
often very useful for tabletting purposes. Solid compositions of a similar type may
also be employed as fillers in gelatin capsules; preferred materials in this connection
also include lactose or milk sugar as well as high molecular weight polyethylene glycols.
When aqueous suspensions and/or elixirs are desired for oral administration, the active
ingredient may be combined with various sweetening or flavoring agents, coloring matter
or dyes, and, if so desired, emulsifying and/or suspending agents as well, together
with such diluents as water, ethanol, propylene glycol, glycerin and various like
combinations thereof. In the case of animals, they are advantageously contained in
an animal feed or drinking water in a concentration of 5-5000 ppm, preferably 25 to
500 ppm.
[0121] For parenteral administration (intravenous, intramuscular, intraperitoneal, or subcutaneous
use) a sterile injectable solution of the active ingredient is usually prepared. Solutions
of a compound of the present invention in either sesame or peanut oil or in aqueous
propylene glycol may be employed. The aqueous solutions should be suitably adjusted
and buffered, preferably at a pH of greater than 8, if necessary and the liquid diluent
first rendered isotonic. These aqueous solutions are suitable intravenous injection
purposes. The oily solutions are suitable for intravenous, intramuscular and subcutaneous
injection purposes. The preparation of all these solutions under sterile conditions
is readily accomplished by standard pharmaceutical techniques well known to those
skilled in the art. In the case of animals, compounds can be administered intramuscularly
or subcutaneously at dosage levels of about 0.1 to 50 mg/kg/day, advantageously 0.2
to 10 mg/kg/day given in a single dose or up to 3 divided doses.
[0122] For buccal administration, the composition may take the form of tablets or lozenges
formulated in conventional manner.
[0123] For rectal administration, the active compounds of the invention may also be formulated
in rectal compositions such as suppositories or retention enemas,
e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
[0124] For intranasal administration or administration by inhalation, the active compounds
of the invention are conveniently delivered in the form of a solution or suspension
from a pump spray container that is squeezed or pumped by the patient or as an aerosol
spray presentation from a pressurized container or a nebulizer, with the use of a
suitable propellant,
e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon
dioxide or other suitable gas. In the case of a pressurized aerosol, the dosage unit
may be determined by providing a valve to deliver a metered amount. The pressurized
container or nebulizer may contain a solution or suspension of the active compound.
Capsules and cartridges (made, for example, from gelatin) for use in an inhaler or
insufflator may be formulated containing a powder mix of a compound of the invention
and a suitable powder base such as lactose or starch.
[0125] For transdermal administration, transdermal patches prepared in accordance with well
known drug delivery technology may be prepared and applied to the skin of a mammal,
preferably a human or a dog, to be treated, whereafter the active agent by reason
of its formulated solubility characteristics migrates across the epidermis and into
the dermal layers of the skin where it is taken up as part of the general circulation,
ultimately providing systemic distribution of the active ingredient over a desired,
extended period of time. Also included are implants which are placed beneath the epidermal
layer of the skin,
i.e. between the epidermis and the dermis of the skin of the patient being treated. Such
an implant will be formulated in accordance with well known principles and materials
commonly used in this delivery technology, and may be prepared in such a way as to
provide controlled-, sustained-, and/or delayed-release of the active ingredient into
the systemic circulation of the patient. Such subepidermal (subcuticular) implants
provide the same facility of installation and delivery efficiency as transdermal patches,
but without the limitation of being subject to degradation, damage or accidental removal
as a consequence of being exposed on the top layer of the patient's skin.
[0126] A preferred composition provides delayed-, sustained-, and/or controlled-release
of said anti-inflammatory selective COX-2 inhibitor. Such preferred compositions include
all such dosage forms which produce ≥ 80% inhibition of COX-2 isozyme activity and
result in a plasma concentration of said inhibitor of at least 3 fold the COX-2 IC
50 for at least 4 hours; preferably for at least 8 hours; more preferably for at least
12 hours; more preferably still for at least 16 hours; even more preferably still
for at least 20 hours; and most preferably for at least 24 hours. Preferably, there
is included within the above-described dosage forms those which produce ≥ 80% inhibition
of COX-2 isozyme activity and result in a plasma concentration of said inhibitor of
at least 5 fold the COX-2 IC
50 for at least 4 hours, preferably for at least 8 hours, more preferably for at least
12 hours, still more preferably for at least 20 hours, and most preferably for at
least 24 hours. More preferably, there is included the above-described dosage forms
which produce ≥ 90% inhibition of COX-2 isozyme activity and result in a plasma concentration
of said inhibitor of at least 5 fold the COX-2 IC
50 for at least 4 hours, preferably for at least 8 hours, more preferably for at least
12 hours, still more preferably for at least 20 hours, and most preferably for at
least 24 hours.
[0127] The following examples contain detailed descriptions of the methods of the preparation
of compounds of formula I. These detailed descriptions fall within the scope of the
invention and serve to exemplify the above described general synthetic procedures
which form part of the invention. These detailed descriptions are presented for illustrative
purposes only and are not intended to restrict the scope of the present invention.
[0128] The invention is illustrated in the following non-limiting examples in which, unless
stated otherwise: all operations were carried out at room or ambient temperature,
that is, in the range of 18-25 °C; evaporation of solvent was carried out using a
rotary evaporator under reduced pressure with a bath of up to 60 °C; reactions were
monitored by thin layer chromatography (tlc) and high performance liquid chromatography
(hplc), and reaction times are given for illustration only; melting points (m.p.)
given are uncorrected (polymorphism may result in different melting points); structure
and purity of all isolated compounds were assured by at least one of the following
techniques: tlc (Merck silica gel 60 F-254 precoated plates), or mass spectrometry.
Yields are given for illustrative purposes only. Flash column chromatography was carried
out using Merck silica gel 60 (230-400 mesh ASTM). ). Preparative HPLC was carried
out using Hewlett Packard 1100 Liquid Chromatography/Mass Selective Detector (LC/MSD).
Separation was done on a Monochrom 5µ CN column PN 0509-250*212 from MetaChem Technologies.
The flow rate was 20 ml/min running a gradient of 0 to 90% of isopropanol in n-hexane.
Low-resolution mass spectral data (El) were obtained on an Automass 120 (JEOL) mass
spectrometer. Liquid Chromatography data was collected on a Hewlett Packard 1100 Liquid
Chromatography/ Mass Selective Detector (LC/MSD). Analysis was performed on a Luna
C-18 column with dimensions of 3.0x150 mm. The flow rate was 0.425 ml/minute running
a gradient of 50% 0.1% aqueous formic acid and 50% acetonitrile to 100% acetonitrile
in 15 minutes. The ionization type for the mass detector of the Mass Spectrophotometer
was atmospheric pressure electrospray in the positive ion mode with a fragmentor voltage
of 50 volts.

PROCEDURE:
4-[N-(1-Amino-2,2,2-trifluoro-ethylidene)-hydrazino]-benzenesulfonamide.
[0129] 4-Hydrazino-benzenesulfonamide hydrochloride (3.0 g, 13.4 mmole) was stirred with
trifluoroacetamidine (2.25 g, 20.1 mmol), triethylamine (0.69 ml, 5 mmol) and tetrahydrofuran
(60 ml) for 2 days. The reaction mixture was poured into 200 ml of water and the resulting
mixture was extracted with 50 ml of ethyl acetate. The extract was washed with brine,
dried over magnesium sulfate and concentrated in vacuum. The residue was dissolved
in methanol (10 ml) and ammonia in methanol (2M, 10 ml) was added at stirring in one
portion. After stirring for 20 hours, most of the solvent was evaporated in vacuum,
the residue was treated with water (200 ml) and the resulting mixture was extracted
with ethyl acetate (50 ml). The organic extract was washed with water, brine, dried
over magnesium sulfate and concentrated in vacuum. Crystallization from ethyl acetate/hexane
provided the above named product (3.17g, 84%).
Example 1: 4-(5-Phenyl-3-trifluoromethyl-[1,2,4]triazol-1-yl)-benzenesulfonic acid
amide.
[0130]

[0131] To a solution of 4-[N-(1-amino-2,2,2-trifluoro-ethylidene)-hydrazino]-benzenesulfonamide
(0.05 g, 0.18 mmol) and pyridine (0.02 ml, 0.25 mmol) in dichloromethane (1 ml) a
solution of benzoyl chloride (0.023 ml, 0.20 mmol) in dichloromethane (0.2 ml) was
added in one portion at 0° C. The reaction mixture was allowed to warm to ambient
temperature with stirring for 5 minutes and the stirring was continued for 1 hour
at the same temperature. The reaction mixture was subjected to the conventional aqueous
work-up and the residue was heated in dioxane (0.7 ml) at 90°C for 24 hours.
[0132] After cooling down to room temperature, water (2 ml) was added to the vial and the
resulting mixture was extracted with ethyl acetate (1 ml). The organic extract was
concentrated to dryness and the residue was dissolved in methylene chloride (1.8 ml).
The resulting clear solution was subjected to preparative HPLC on a normal phase column.
[0133] The following examples were prepared by an analogous procedure to that of Example
1, with an appropriate starting material. The particular apparatus and data acquisition
parameters are as defined above.

[0134] While the invention has been described and illustrated with reference to certain
particular embodiments thereof, those skilled in the art will appreciate that various
adaptations, changes, modifications, substitutions, deletions, or additions of procedures
and protocols may be made without departing from the spirit and scope of the invention.
It is intended, therefore, that the invention be defined by the scope of the claims
that follow and that such claims be interpreted as broadly as is reasonable.
1. A compound of the formula

wherein m is 0, 1, or 2;
R1 is selected from the group consisting of:
(a) (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C1-C6)alkoxy, (C1-C8)alkylcarbonyl, formyl, formamidyl, (C1-C6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, (C1-C6)alkoxyamido, (C1-C6)alkylthio, (C3-C7)carbocyclylthio, (C6-C10)arylthio, (C2-C9)heteroarylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C6-C10)aryloxy, (C2-C9)heteroaryloxy, (C2-C9)heterocyclylcarbonyl, or (C1-C6)alkylcarbonyl-N(R2)-;
(b) phenyl optionally substituted by one to three substituents independently selected
from the group consisting of halo, hydroxy, cyano, mercapto, hydroxycarbonyl, nitro,
(C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl;
(c) phenyl fused to a saturated, partially saturated or aromatic (5- to 7-membered)-carbocyclyl
ring;
wherein either of said phenyl or said fused saturated, partially saturated or aromatic
(5- to 7-membered)-carbocyclyl ring is optionally substituted by one to two substituents
per ring, wherein said substituents are independently selected from the group consisting
of halo, hydroxy, cyano, mercapto, hydroxycarbonyl, nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl;
(d) phenyl fused to a saturated, partially saturated or aromatic (5- to 6-membered)-heterocyclyl
containing one to two ring heteroatoms independently selected from the group consisting
of -N=, -NR2-, -S- and -O-;
wherein either of said phenyl or said fused saturated, partially saturated or aromatic
(5- to 6-membered)-heterocyclyl is optionally substituted with one to two substituents
per ring;
wherein said substituents are independently selected from the group consisting
of halo, hydroxy, cyano, mercapto, hydroxycarbonyl, nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl;
(e) (3- to 7-membered)-carbocyclyl optionally containing one or two double bonds;
wherein said (3- to 7-membered)-carbocyclyl may also be optionally substituted
by one to three substituents independently selected from the group consisting of halo,
hydroxy, cyano, mercapto, hydroxycarbonyl, nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl;
(f) (5- to 7-membered)-carbocyclyl fused to a saturated, partially saturated or aromatic
(5- to 7-membered)-carbocyclyl ring;
wherein said (5- to 7-membered)-carbocyclyl may optionally contain one or two double
bonds;
wherein either of said (5- to 7-membered)-carbocyclyl or said fused saturated,
partially saturated or aromatic (5- to 7-membered)-carbocyclyl ring is optionally
substituted by one to two substituents per ring, wherein said substituents are independently
selected from the group consisting of halo, hydroxy, cyano, mercapto, hydroxycarbonyl,
nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl;
(g) (5- to 7-membered)-carbocyclyl fused to a saturated, partially saturated or aromatic
(5- to 6-membered)-heterocyclyl containing one to two ring heteroatoms independently
selected from the group consisting of -N=, -NR2-, -S- and -O-;
wherein said (5- to 7-membered)-carbocyclyl may optionally contain one or two double
bonds;
wherein either of said (5- to 7-membered)-carbocyclyl or said fused saturated,
partially saturated or aromatic (5- to 6-membered)-heterocyclyl is optionally substituted
with one to two substituents per ring;
wherein said substituents are independently selected from the group consisting
of halo, hydroxy, cyano, mercapto, hydroxycarbonyl, nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl;
(h) saturated, partially saturated or aromatic (5- to 6-membered) heterocyclyl containing
one to four ring heteroatoms independently selected from the groups consisting of
-N=, -NR2-, -O-, and -S-;
wherein said (5- to 6-membered) heterocyclyl is optionally substituted by one to
three substituents independently selected from the group consisting of halo, hydroxy,
cyano, mercapto, hydroxycarbonyl, nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl;
(i) saturated, partially saturated or aromatic (5- to 6-membered) heterocyclyl containing
one to two ring heteroatoms independently selected from the group consisting of -N=,
-NR2-, -S- and -O-;
wherein said saturated, partially saturated or aromatic (5- to 6-membered)heterocyclyl
is fused to a saturated, partially saturated or aromatic (5- to 7-membered)-carbocyclyl
ring;
wherein either of said saturated, partially saturated or aromatic (5- to 6-membered)heterocyclyl
ring or said fused saturated, partially saturated or aromatic (5- to 7-membered)-carbocyclyl
ring is optionally substituted by one to two substituents per ring;
wherein said substituents are independently selected from the group consisting
of halo, hydroxy, cyano, mercapto, hydroxycarbonyl, nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, yl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl; and
(j) saturated, partially saturated or aromatic (5- to 6-membered)heterocyclyl containing
one to two ring heteroatoms independently selected from the group consisting of -N=,
-NR2-, -S-, and -O-;
wherein said saturated, partially saturated or aromatic (5- to 6-membered)heterocyclyl
is fused to a saturated, partially saturated or aromatic (5- to 6-membered)-heterocyclyl
containing one to two ring heteroatoms independently selected from the group consisting
of -N=, -NR2-, -S- and -O-;
wherein either of said saturated, partially saturated or aromatic (5- to 6-membered)heterocyclyl
or said fused saturated, partially saturated or aromatic (5- to 6-membered)-heterocyclyl
is optionally substituted with one to two substituents per ring;
wherein said substituents are independently selected from the group consisting
of halo, hydroxy, cyano, mercapto, hydroxycarbonyl, nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl;
wherein each of said R1 (a), (b), (c), (d), (e), (f), (g), (h), (i), or (j) (C1-C6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, carbonyl, formyl, formamidyl, (C1-C6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, (C1-C6)alkoxyamido, (C6-C10)aryl, (C6-C10)aryloxy, (C2-C9)heteroaryl, (C2-C9)heteroaryloxy, (C2-C9)heteroarylcarbonyl, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C1-C6)alkylcarbonyl-N(R2)-, and (C1-C6)alkylcarbonyloxy;
R2 is hydrogen or (C1-C6)alkyl;
R3 is hydrogen, halo, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C1-C6)alkoxy, (C3-C7)carbocyclyl, (C1-C6)alkylcarbonyl-, formyl, formamidyl, cyano, nitro, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, amino-SO2-, N-(C1-C6)alkylamino-SO2-, N,N-[(C1-C6)alkyl]2amino-SO2-, (C6-C10)arylamino-SO2-, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, (C6-C10)aryl, (C6-C10)aryloxy, (C2-C9)heteroaryl, (C2-C9)heteroaryloxy, (C2-C9)heteroarylcarbonyl, (C1-C6)alkoxyamido, (C1-C6)alkylthio, (C6-C10)arylthio, (C2-C9)heteroarylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C1-C6)alkyl-SO2-amino, or (C1-C6)alkylcarbonyl-N(R2)-;
wherein each of said R3 (C1-C6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy, (C2-C6)alkenyl,(C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, carbonyl, formyl, formamidyl, (C1-C6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, (C1-C6)alkoxyamido, (C6-C10)aryl, (C6-C10)aryloxy, (C2-C9)heteroaryl, (C2-C9)heteroaryloxy, (C2-C9)heteroarylcarbonyl, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C1-C6)alkylcarbonyl-N(R2)-, and (C1-C6)alkylcarbonyloxy;
R4 is (C3-C7)carbocyclyl, (C6-C10)aryl, (C2-C9)heteroaryl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, formyi-N(R2)-, (C1-C6)alkylcarbonyl-N(R2)-, (C1-C6)alkyloxycarbonyl-N(R2)-, or (C1-C6)alkyl-SO2-amino;
wherein each of said R4 (C1-C6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, carbonyl, formyl, formamidyl, (C1-C6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, (C1-C6)alkoxyamido, (C6-C10)aryl, (C6-C10)aryloxy, (C2-C9)heteroaryl, (C2-C9)heteroaryloxy, (C2-C9)heteroarylcarbonyl, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C1-C6)alkylcarbonyl-N(R2)-, and (C1-C6)alkylcarbonyloxy;
R5 is hydrogen, halo, hydroxy, mercapto, (C1-C6)alkyl, (C1-C6)alkoxy optionally substituted with one to three halogen atoms, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, cyano, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkylcarbonyloxy, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, nitro, or (C1-C6)alkylthio;
wherein each of said R5 (C1-C6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, carbonyl, formyl, formamidyl, (C1-C6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C8)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, (C1-C6)alkoxyamido, (C6-C10)aryl, (C6-C10)aryloxy, (C2-C9)heteroaryl, (C2-C9)heteroaryloxy, (C2-C9)heteroarylcarbonyl, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C1-C6)alkylcarbonyl-N(R2)-, and (C1-C6)alkylcarbonyloxy;
and a pharmaceutically acceptable salt thereof.
2. A compound according to claim 1 wherein R
1 is
(a) (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C1-C6)alkoxy, (C1-C6)alkylcarbonyl, formyl, formamidyl, (C1-C6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, (C1-C6)alkoxyamido, (C1-C6)alkylthio, (C3-C7)carbocyclylthio, (C6-C10)arylthio, (C2-C9)heteroarylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C6-C10)aryloxy, (C2-C9)heteroaryloxy, (C2-C9)heterocyclylcarbonyl, or (C1-C6)alkylcarbonyl-N(R2)-;
wherein each of said R1 (a) (C1-C6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, carbonyl, formyl, formamidyl, (C1-C6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, (C1-C6)alkoxyamido, (C6-C10)aryl, (C6-C10)aryloxy, (C2-C9)heteroaryl, (C2-C9)heteroaryloxy, (C2-C9)heteroarylcarbonyl, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C1-C6)alkylcarbonyl-N(R2)-, and (C1-C6)alkylcarbonyloxy.
3. A compound according to claim 1 wherein R
1 is
(b) phenyl optionally substituted by one to three substituents independently selected
from the group consisting of halo, hydroxy, cyano, mercapto, hydroxycarbonyl, nitro,
(C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl;
wherein each of said R1 (b) (C1-C6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, carbonyl, formyl, formamidyl, (C1-C6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, (C1-C6)alkoxyamido, (C6-C10)aryl, (C6-C10)aryloxy, (C2-C9)heteroaryl, (C2-C9)heteroaryloxy, (C2-C9)heteroarylcarbonyl, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C1-C6)alkylcarbonyl-N(R2)-, and (C1-C6)alkylcarbonyloxy.
4. A compound according to claim 1 wherein R
1 is
(e) (5- to 7-membered)-carbocyclyl optionally containing one or two double bonds;
wherein said (5- to 7-membered)-carbocyclyl may also be optionally substituted
by one to three substituents independently selected from the group consisting of halo,
hydroxy, cyano, mercapto, hydroxycarbonyl, nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl;
wherein each of said R1 (e) (C1-C6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, carbonyl, formyl, formamidyl, (C1-C6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, (C1-C6)alkoxyamido, (C6-C10)aryl, (C6-C10)aryloxy, (C2-C9)heteroaryl, (C2-C9)heteroaryloxy, (C2-C9)heteroarylcarbonyl, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C1-C6)alkylcarbonyl-N(R2)-, and (C1-C6)alkylcarbonyloxy.
5. A compound according to claim 1 wherein R
1 is
(h) saturated, partially saturated or aromatic (5- to 6-membered) heterocyclyl containing
one to four ring heteroatoms independently selected from the groups consisting of
-N=, -NR2-, -O-, and -S-;
wherein said (5- to 6-membered) heterocyclyl is optionally substituted by one to
three substituents independently selected from the group consisting of halo, hydroxy,
cyano, mercapto, hydroxycarbonyl, nitro, (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, -OCF3, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, N-(C1-C6)alkoxyamido, (C1-C6)alkylcarbonyloxy, (C1-C6)alkylcarbonyl-N(R2)-, formyl, (C1-C6)alkylcarbonyl, (C1-C6)alkoxycarbonyl, (C6-C10)aryl and (C2-C9)heterocyclyl;
wherein each of said R1 (h) (C1-C6)alkyl group wherever they occur may optionally be substituted with one to three substituents
independently selected from the group consisting of halo, hydroxy, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C7)carbocyclyl, (C1-C6)alkoxy, carbonyl, formyl, formamidyl, (C1-C6)alkylcarbonyl, cyano, mercapto, nitro, hydroxycarbonyl, (C1-C6)alkoxycarbonyl, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, amido, N-(C1-C6)alkylamido, N,N-[(C1-C6)alkyl]2amido, N-(C6-C10)arylamido, N-(C1-C6)alkyl-N-(C6-C10)arylamido, (C1-C6)alkoxyamido, (C6-C10)aryl, (C6-C10)aryloxy, (C2-C9)heteroaryl, (C2-C9)heteroaryloxy, (C2-C9)heteroarylcarbonyl, (C1-C6)alkylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C1-C6)alkylcarbonyl-N(R2)-, and (C1-C6)alkylcarbonyloxy.
6. A compound according to claim 1 wherein R1 is branched (C1-C6)alkyl.
7. A compound according to claim 1 wherein R1 is phenyl substituted by one to two halo atoms.
8. A compound according to claim 1 wherein R1 is (3- to 7-membered)-carbocyclyl, containing no double bonds, wherein said (3- to
7-membered)-carbocyclyl is optionally substituted by one to three substituents independently
selected from the group consisting of halo, hydroxy, cyano, and (C1-C6)alkyl.
9. A compound according to claim 1 wherein R1 is saturated or aromatic (5- to 6-membered) heterocyclyl containing one ring heteroatom
independently selected from the groups consisting of -N= and -O-; wherein said (5-
to 6-membered) heterocyclyl is optionally substituted by one to three (C1-C6)alkyl.
10. A compound according to any preceding claim wherein R3 is halo, (C1-C6)alkyl optionally substituted with one to three fluoro atoms, (C1-C6)alkylcarbonyl-, formyl, formamidyl, cyano, amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, (C1-C6)alkylthio, (C6-C10)arylthio, (C2-C9)heteroarylthio, (C1-C6)alkyl-S(=O)-, (C1-C6)alkyl-SO2-, (C1-C6)alkylcarbonyl-N(R2)-, (C1-C6)alkyloxy, (C6-C10)aryloxy, or (C2-C9)heteroaryloxy.
11. A compound according to any preceding claim wherein R3 is trifluoromethyl.
12. A compound according to any preceding claim wherein R4 is amino, N-(C1-C6)alkylamino, N,N-[(C1-C6)alkyl]2amino, N-(C3-C7)carbocyclylamino, N-(C6-C10)arylamino, N-(C1-C6)alkyl-N-(C6-C10)arylamino, N-(C2-C9)heteroarylamino, formyl-N(R2)-, (C1-C6)alkylcarbonyl-N(R2)-, or (C1-C6)alkyl-SO2-amino.
13. A compound according to any preceding claim wherein R4 is amino.
14. A compound according to any preceding claim wherein R5 is hydrogen.
15. A compound according to any preceding claim wherein m is 2.
16. A compound according to claim 1 wherein said compound is selected from the group consisting
of:
4-(5-Phenyl-3-trifluoromethyl-[1,2,4]triazol-1-yl)-benzenesulfonamide;
4-(5-Pyridin-2-yl-3-trifluoromethyl-[1,2,4]triazol-1 -yl)-benzenesulfonamide;
4-(5-Pyridin-3-yl-3-trifluoromethyl-[1,2,4]triazol-1-yl)-benzenesulfonamide;
4-(5-Furan-2-yl-3-trifluoromethyl-[1,2,4]triazol-1-yl)-benzenesulfonamide;
4-[5-(Tetrahydro-furan-2-yl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-[5-(Tetrahydro-pyran-4-yl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-[5-(2,2-Dimethyl-tetrahydro-pyran-4-yl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-[5-(4-Fluoro-phenyl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-[5-(3-Fluoro-phenyl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-[5-(2,2-Dimethyl-propyl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-[5-(2-Methyl-butyl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide
4-[5-(3-Methyl-butyl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-(5-Cyclobutyl-3-trifluoromethyl-[1,2,4]triazol-1-yl)-benzenesulfonamide;
4-(5-Cyclohexyl-3-trifluoromethyl-[1,2,4]triazol-1-yl)-benzenesulfonamide;
4-[5-(4-tert-Butyl-cyclohexyl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-[5-(3-Methyl-cyclohexyl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-[5-(3-Methoxy-cyclohexyl)-3-trifluoromethyl-[1,2,4]triazol-1-yl]-benzenesulfonamide;
4-(5-Cyclopentyl-3-trifluoromethyl-[1,2,4]triazol-1-yl)-benzenesulfonamide;
4-(5-lsobutyl-3-trifluoromethyl-[1,2,4]triazol-1-yl)-benzenesulfonamide;
or a pharmaceutically acceptable salt thereof.
17. A compound according to any of claims 1 to 16 for use as a medicament.
18. A pharmaceutical composition for the treatment of a disorder or condition that can
be treated by selectively inhibiting COX-2 in a mammal, comprising an effective amount
of a compound according to any of claims 1 to 16 or a pharmaceutically acceptable
salt thereof and a pharmaceutically acceptable carrier.
19. The use of a compound according to any of claims 1 to 16 or a pharmaceutically acceptable
salt thereof for the manufacture of a medicament for treating a disorder or condition
in a mammal that can be treated by selectively inhibiting COX-2.