(19) |
 |
|
(11) |
EP 1 277 016 B9 |
(12) |
CORRECTED EUROPEAN PATENT SPECIFICATION |
|
Note: Bibliography reflects the latest situation |
(15) |
Correction information: |
|
Corrected version no 1 (W1 B1) |
|
Corrections, see Claims |
(48) |
Corrigendum issued on: |
|
14.03.2007 Bulletin 2007/11 |
(45) |
Mention of the grant of the patent: |
|
06.12.2006 Bulletin 2006/49 |
(22) |
Date of filing: 18.04.2000 |
|
(51) |
International Patent Classification (IPC):
|
(86) |
International application number: |
|
PCT/EP2000/003443 |
(87) |
International publication number: |
|
WO 2001/079761 (25.10.2001 Gazette 2001/43) |
|
(54) |
CENTRAL HEATING SYSTEM FOR HEAT USERS PROVIDED WITH HEAT STORAGE VESSELS
ZENTRALHEIZUNGSANLAGE FÜR WÄRMEBENUTZER MIT WÄRMESPEICHER
SYSTEME DE CHAUFFAGE CENTRAL DESTINE AUX UTILISATEURS DE CHAUFFAGE CENTRAL MUNI DE
RECIPIENTS DE STOCKAGE DE CHALEUR
|
(84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
(43) |
Date of publication of application: |
|
22.01.2003 Bulletin 2003/04 |
(73) |
Proprietor: Collet, Peter J. |
|
7311 GZ Apeldoorn (NL) |
|
(72) |
Inventor: |
|
- Collet, Peter J.
7311 GZ Apeldoorn (NL)
|
(56) |
References cited: :
EP-A- 0 168 084 US-A- 5 697 551
|
DE-A- 3 123 875
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to a heating system for a plurality of seperate heat
users, such as houses, apartments, comprising at least one heat source for heating
a heat transfer liquid such as water, a circulation system for delivery of hot heat
transfer liquid to said users, and each of said users provided with means that include
a heat storage vessel containing heat transfer liquid as heat storage medium.
[0002] Said circulation system comprises delivery conduits for supplying hot heat transfer
liquid to said users and return conduits for returning cooler heat transfer liquid
back to the heat source. Delivery and return conduits comprise main conduits and service
conduits, said service conduits connecting main conduits to each of said heat users.
Said circulation system further comprises flow governing means, including delivery
and charging means for delivery of hot heat transfer liquid to said heat users and
for charging said heat storage vessels, such governing means further including bypass
means for allowing a bypass flow of heat transfer liquid from delivery to return conduits
without passing through a heat storage vessel.
[0003] Such heating systems are known from patent application EPA 0 168 084 and EUROHEAT
& POWER - Fernwärme international 3/1998, pages 50 - 52. The advantages claimed for
such systems particularly include a higher energy efficiency because of lower heat
losses of said service conduits. Hot primary water contained by said heat storage
vessel is circulated through a through-flow heat exchanger for heating domestic water
on demand and optionally through one or more heat emitters, such as radiators, for
providing space heating on demand. Heat losses of service conduits are reduced because
such conduits cool down during periods in between consecutive charging of a heat storage
vessel, such reduction in heat losses being greater when the time intervals between
charging are longer, particularly when the daily heat demand is relatively low and
the liquid containment volume of the heat storage vessel is relatively large. In said
references mention is made of storage vessels having a volume of 200 liters.
[0004] A disadvantage of such known heating systems is that although the heat losses of
service conduits are reduced, the heat losses of main delivery and return conduits
remain high. The temperature of liquid flowing through main delivery conduits is continuously
kept at a high level, so as to deliver on demand of individual users, hot heat transfer
liquid having a temperature that is higher than a selected minimum delivery temperature
for heat storage. Such selected minimum temperature, for example 75 degrees Celcius,
is selected so as to be sufficiently high for heating domestic water to a relatively
high temperature, for example 60 degrees Celcius, after the stored heat transfer liquid
has undergone a temperature drop because of heat losses during storage.
[0005] Because the heat losses of the main delivery conduits cause the temperature of heat
transfer liquid flowing through such conduits to decrease, such flow is continuously
kept above a minimum level so as to prevent delivery temperatures from dropping below
said minimum temperature for heat storage. During periods that little or no heat transfer
liquid is required for heating purposes, the flow through main delivery conduits is
continuously maintained above said minimum level by conducting heat transfer liquid
through bypass conduits connecting main delivery conduits to main return conduits,
such bypass conduits comprising thermostatic valve means. Because hot heat transfer
liquid that is bypassed is not cooled by heat utilization, such bypass flow causes
high temperatures of liquid flowing through main return conduits, thereby increasing
the heat losses of main return conduits.
[0006] High temperatures of heat transfer liquid returning to the heat source through main
return conduits may further reduce energy efficiency because of a lower efficiency
of heat production, particularly when the heat source includes means of heat production
having an energy conversion efficiency and/or heat recovery effectiveness that is
reduced when said return temperature is increased, for example heat pumps, condensing
heat recovery heat exchangers, Rankine cycle cogeneration installations, intercooled
gasturbine cogeneration installations, solar heat panels, and the like. Such means
of heat production have great energy savings potential because of a high ratio between
useful heat production and prime energy (fuel) consumption. Such energy savings are
also of great benefit in reducing emissions of fuel combustion.
[0007] Because of the reduction in energy efficiency caused by high temperatures in main
delivery and return conduits, it is generally mandatory for such conduits to have
a high degree of heat insulation so as to avoid energy savings from becoming very
low or even negative, particularly when the daily heat demand is low and/or the users
are located in an area with low building density. Such high degree of insulation has
the disadvantage of increasing investment and (indirectly) maintenance costs. The
causes of such cost increases include a higher price per meter of conduit and higher
costs of installation because a larger outer (jacket) diameter causes the flexibility
and therefore the ease of handling during installation to be reduced.
[0008] Other disadvantages of such heating systems relate to the size of the heat storage
vessel, a larger vessel causing higher heat losses and increased costs, and limiting
the applicability of such systems when said heat users have limited space for installing
such vessels in an otherwise advantageous location.
[0009] An object of the invention is to improve the energy efficiency of such heating systems
by greatly reducing heat losses of main delivery and return conduits and by decreasing
return temperatures to the heat source, particularly during periods of the year when
there is little or no demand for space heating. Another object of the invention is
to decrease investment and maintenance costs by reducing the heat insulation of main
delivery and return conduits without reducing energy savings to undesirably low levels.
Another object of the invention is to greatly reduce the size of heat storage vessels
so as to avoid or reduce said disadvantages of large heat storage vessels.
[0010] Accordingly the proposed heating system is characterized by having little or no continuous
bypass flow downstream of main delivery conduits during times that no heat transfer
liquid is delivered to any heat user connected downstream of such main delivery conduits.
During such times, the temperature of liquid contained by such main delivery conduit
decreases, causing the heat losses of such conduit to decrease. According to the invention
the duration of such cooling down times (cooling time spans), and therefore the reduction
in heat losses, is increased by concurrently charging the heat storage vessels of
a plurality of said connected users, so as to have such charged heat storage vessels
approximately fully charged at approximately the same time, thereby causing the time
span before depletion of any heat storage vessel of said connected users to be on
average longer than when heat storage vessels are charged on individual demand.
[0011] During times in between concurrent charging operations, any of said users may have
a demand for domestic hot water that causes depletion of hot heat transfer liquid
contained by its heat storage vessel, particularly when such demand is for a hot shower
or bath, and when the liquid containment volume of the storage vessel is relatively
small. When the temperature of liquid, contained by (a) main delivery conduit(s) upstream
of such user, has dropped below a selected minimum temperature for delivery of hot
heat transfer liquid to said user, then the volume of heat transfer liquid that must
be bypassed before delivery of liquid having a sufficiently high temperature can take
place, may be very large. During the time span of such bypass operation, referred
to in the following as the bypass time span, the heat transfer liquid for heating
domestic water is drwn from the storage vessel. The (rest) volume of hot liquid contained
by said storage vessel at the beginning of the bypass flow is selected so as to be
sufficient for heating a maximum flow of domestic hot water during said bypass time
span, so as to ensure an uninterrupted supply of domestic hot water during the period
of such demand. A problem of such mode of operation is that when the volume of liquid
that must be bypassed is large, said bypass time span, and therefore said rest volume,
may also be large, causing size requirements and heat losses of heat storage vessels
to increase.
[0012] According to the invention such disadvantages are minimized by including governing
means that are controlled such as to maintain a high temperature of heat transfer
liquid inside main delivery conduits upstream of said cooled down main delivery conduits,
thereby reducing bypass time span by reducing the volume of heaat transfer liquid
that must be bypassed. Such main delivery and corresponding return conduits are indicated
in the following by adding the term "supply".
[0013] Further according to the invention bypass means are provided for reducing bypass
time span by greatly increasing the bypass flow through said cooled down main delivery
conduits. Providing such high flow bypass capability includes maximizing flow through
bypass valves of individual heat users and may include bypass valves connecting main
delivery and return conduits and/or may include central control means for concurrently
opening individual bypass valves of a plurality of heat users.
[0014] These and other features and advantages of the present invention are described, with
reference to the accompanying drawings, for an example of an embodiment of a heating
system according to the invention.
Fig.1 is a schematic representation of a heating system comprising a heat source and
a circulation system for supplying hot primary water to a plurality of heat users.
Fig 2 is a schematic representation of apparatus for receiving and utilizing hot primary
water by a heat user.
[0015] Fig.1 schematically shows a circulation system having delivery conduits that are
represented by full lines and indicated by numerals having an affix D, and return
conduits that are indicated by broken lines and like numerals having an affix R. Said
circulation system comprises a main supply ring delivery conduit 1D and a main supply
ring return conduit 1R connecting a heat source 2 to (examples of) groups of heat
users G1, G2, G3 ,G4, each group comprising at least one main branch conduit that
is connected by service conduits to each of said users. Such users are provided with
apparatus, not shown in Fig. 1, for receiving and utilizing hot heat transfer liquid.
Circulation pump 4 provides circulation of heat transfer liquid through delivery and
return conduits.
[0016] Main supply ring delivery conduit 1D has at least two connections with heat source
2 . During periods that little or no heat transfer liquid is delivered to said users,
circulation pump 3 is governed such as to provide circulation of hot heat transfer
liquid through said main supply ring delivery conduit 1D and heat source 2, said heat
source heating such circulated liquid so as to compensate for heat losses of main
supply ring delivery conduit 1D, thereby continuously providing at each connection
to a main branch delivery conduit, hot heat transfer liquid having a temperature within
a small band of for example 3 degrees. Heating systems that include such main supply
ring conduits are known to also have the advantage of increasing the reliability of
the heating system by maintaining the delivery of hot heat transfer liquid to most
or all heat users when a section of the main ring conduit is closed for maintenance
or repairs.
[0017] Delivery of hot heat transfer liquid for concurrently charging heat storage vessels
of a plurality of users is preferably timed so as to have storage vessels contain
sufficient hot heat transfer liquid for meeting low volume demands during periods
in between consecutive concurrent charging operations. Such low volume demands are
for example for heating domestic water for washing hands or washing dishes, or for
providing space heating for keeping room temperatures at an approximately constant
level. On days without space heating demand, and when heat storage vessels have a
relatively small liquid containment volume of for example 40 liters, such timing may
for example comprise 4 concurrent charging operations per day. On days with space
heating demand, the number of such charging operations may be increased up to more
than 20 per day. The liquid containment volume of heat storage vessels may advantageously
be increased up to for example 80 liters, for users having a greater total of low
volume domestic water demands, and/or a greater space heating demand, and/or having
service conduits of greater length.
[0018] Concurrent charging of storage vessels may be sequenced for adjacent users, so as
to reduce flow losses in main delivery conduits during such charging operations. The
timing of such operations is preferably controlled by one or more central electronic
system controllers, not shown in Fig.1, connected by wireless and/or conduit-bound
transmission means with users of a group or with all users of the heating system.
Such communication means may advantageously be utilized for also centrally recording
the energy usage of heat users.
[0019] When users have a high volume demand for hot heat transfer liquid, for example for
heating domestic water for a hot shower or bath, or for providing space heating during
a warm up period after a night with decreased room thermostat setting, it becomes
very likely that the heat storage vessel, particularly a small vessel, becomes depleted
during such demand. Additional hot heat transfer liquid for meeting such demand and
for individually recharging said heat storage vessel is then delivered in between
two consecutive concurrent charging operations, thereby increasing the frequency and
reducing the average duration of cooling time spans, thereby increasing the heat losses
of such conduits. However, because such high volume demands occur predominately during
limited periods of the day, particularly during early morning and late evenings, the
average cooling time spans during other periods of the day are little reduced, therefore
the daily heat loss reduction remains high.
[0020] When such a high volume demand is for heating domestic water, it is mandatory for
comfort reasons to provide an uninterrupted flow of domestic hot water during the
period of such demand, particularly when such demand is for providing a hot shower.
Means are provided for adapting the bypass flow so as to deliver hot heat transfer
liquid for heating domestic water before the heat storage vessel of such user is fully
depleted of hot heat transfer liquid. Such means are described in the following for
examples of user groups shown in Fig 1.
[0021] User group G1 is representative of a small number of heat users, for example houses
such as 6 in a row of six houses, located close to main supply ring conduits 1D, 1R.
Hot heat transfer liquid flowing though main supply ring delivery conduit 1D is supplied
to such users through main branch delivery conduit 5D and service delivery conduits
such as 7D. When the temperature of liquid contained by main branch delivery conduit
5D drops below a set minimum temperature for delivery to users, for example below
70 degrees Celcius, the volume of liquid that must be bypassed, so as to deliver heat
transfer liquid having at least said temperature, to a user located farthest from
said main supply ring delivery conduit 1D, may for example be 15 liters. Such user
is provided with an individual bypass valve 26, not shown in Fig 1, which because
of a limited maximum flow through service delivery conduit 8D may have a maximum flow
capability of only 10 liters per minute. The bypass time span is then one and half
minutes. The rest volume of the heat storage vessel is set so as to provide hot liquid
for heating a maximum flow of domestic hot water during such time span, for example
9 liters.
[0022] User groups G2, G3 and G4 comprise larger numbers of users located farther from main
ring conduits 1D, 1R. The volume of water contained by main delivery conduits connecting
users to main supply ring delivery conduit 1D, and therefore the volume of heat transfer
liquid that is to be bypassed within said set bypass time span of one and half minutes,
may be very much larger.
[0023] For users of group G2, comprising two rows of six houses such as 7, such bypass volume
may for example be 50 liters. Bypass means that connect main delivery conduit 8D with
main return conduit 8R, are provided at the downstream end of delivery conduit 8D,
so as to greatly increase the bypass flow capability in comparison with the maximum
flow through the bypass valve of an individual user, so as to keep the bypass time
span below one and a half minutes. Said bypass means include bypass valve 9 and temperature
sensor 10. Bypass valve 9 is governed to open when one of the users of G2 signals
a demand for delivery of hot heat transfer liquid and when temperature sensor 10 senses
heat transfer liquid contained by main delivery conduit 8D to be below a set minimum
temperature for delivery of hot heat transfer liquid to users. The signal for such
user demand may be transmitted through aforementioned communication means between
central system controller and said user, or alternatively by pressure sensing means,
not shown in Fig. 1, signaling a sudden pressure change in main branch delivery conduit
8D. Bypass valve 9 is governed to close when temperature sensor 10 senses a temperature
that is above said set minimum temperature.
[0024] User group G3 is representative of a still larger number of heat users that may be
located even farther from main supply ring conduits 1D, 1R. Because a temperature
drop of all the liquid contained by delivery conduit 11D may cause the required bypass
volume to be very high, for example more than 100 liters, bypass valve 12 is controlled
such as to continuously bypass heat transfer liquid from main supply branch delivery
conduit 11D to corresponding return conduit 11R, so as to maintain high liquid temperatures
in main supply branch delivery conduit 11D, so as to reduce the volume of heat transfer
liquid to be bypassed within said set time span of one and half minutes. Said bypass
means 12 may be very simple and therefore cheap, comprising for example a fixed orifice.
[0025] Means for greatly increasing the bypass flow in comparison with the maximum flow
through an individual bypass valve may, as an alternative to bypass means 9,10 shown
for G2, comprise aforementioned central system controller governing individual bypass
valves of a plurality of users downstream of main delivery conduit 13D, so as to open
when one of such users signals a demand for delivery of hot heat transfer liquid,
and when the cooling time span since a preceding delivery to any of said users exceeds
a set limit. Such limit is set so as to correspond with the time that it takes for
the temperature of liquid contained by main branch delivery conduit 13D to drop below
said selected minimum delivery temperature. Such alternative means for greatly increasing
the bypass flow provide the advantage of avoiding the need for bypass valve means
9, 10, which may, particularly when such means would need to be located outside of
a building, significantly reduce investment and maintenance costs.
[0026] User group G4 is representative of multistorey buildings comprising apartments such
as 14. Hot heat transfer liquid flowing through main supply ring delivery conduit
1D is supplied to such users through main branch delivery conduit 15D, connected downstream
to a plurality of main branch delivery conduits such as 16D, each of which are connected
by service delivery conduits such as 17D to heating apparatus inside each of said
apartments. Valve means that are provided for greatly increasing the bypass flow in
comparison with the maximum flow through an individual bypass valve, connect main
delivery conduit 15D with main return conduit 15R at the downstream end of delivery
conduit 15D. Said means include bypass valve 18 and temperature sensor 19 that operate
in the manner as described in the foregoing for bypass means 9,10.
[0027] Delivery and return conduits of a heating system according to the invention may advantageously
be adapted so as to provide high energy efficiency and low investment and maintenance
costs.
[0028] Service conduits such as 7D,7R , and main branch conduits such as 5D,5R and 8D,8R
and 13D,13R, preferably comprise insulated liquid carrying (carrier) pipes that have
little or no problems with frequent and large temperature changes, for example flexible
conduits comprising plastic carrier pipes.
[0029] A major cost reduction may be provided by reducing the heat insulation and thereby
the outer diameter of such conduits. Because the time-averaged temperature of water
contained by such conduits is low, such adaptation causes little increase in heat
losses. A first cost reduction is provided by the reduced weight and increased flexibility
of such conduits. A second cost reduction, and a much improved reliability, may be
provided by prefabricating the connections between such a main conduit and a plurality
of service conduits, and adapting such connections so as to transport such prefabricated
combination of conduits as a roll, particularly by connecting such a main conduit
and service conduits in parallel. Prefabricated connections are particularly advantageous
when said conduits comprise wiring for electronic communication between users and
aforementioned central system controller(s).
[0030] Said circulation system may advantageously comprise return conduits with carrier
pipes having inner diameters that are larger than inner diameters of carrier pipes
of delivery conduits having like numerals, for example between one and a half and
twice times as large, and to have less heat insulation, thereby reducing the costs
of such conduits. Because the time-averaged temperature of heat transfer liquid contained
by return conduits is very low, such decreased insulation causes only a small increase
in heat losses. Other advantages provided by such increase in inner diameter of return
conduits are related to greatly decreased flow pressure losses in return conduits.
[0031] Heat source 2 includes heat production means 20 for heating heat transfer liquid
returning to the heat source at a low temperature, for example 25 degrees Celcius.
Such heat production means preferably have an energy efficiency and/or effectiveness
that yields greater energy savings when the (averaged) heat production temperature
is decreased, for example a plurality of electric heat pumps that are placed in series
for stepwise heating of heat transfer liquid, such heat pumps subtracting heat from
a low temperature heat source, not shown in Fig.1, such as ground water, surface water,
waste effluent and/or the like. Other examples for heat production means 20 include
condenser means of Rankine cycle cogeneration installations, solar heat panels having
a heat recovery effectiveness that increases as the temperature of the heat transfer
liquid is reduced , and the like.
[0032] Preferably heat source 2 also includes production means 21 for further heating heat
transfer liquid to the temperature of the heat transfer liquid exiting heat source
2 and flowing through main ring delivery conduit 1D. Such means may advantageously
comprise heat production processes for which the energy efficiency hardly decreases
when such exit temperature is raised, for example gasmotor cogeneration installations,
fuel fired boilers, and the like.
[0033] Heat source 2 may alternatively comprise heat production means that combine said
effects of first and second heat production in a single installation, for example
a cogeneration installation or a fuel fired boiler comprising an integrated condensing
heat exchanger for heat recovery from exhaust gases, or a cogeneration installation
comprising an intercooled gasturbine.
[0034] Not shown in Fig 1 are auxiliary apparatus, well known to persons skilled in the
art, such as heat storage reservoirs, pumps, valves, and the like.
[0035] Alternative embodiments of heating systems according to the invention may comprise
a heat source supplying a smaller number of building units, for example a heat source
for supplying apartments 14 of a multistorey apartment block, and having such heat
source located inside the apartment block. Alternatively the embodiment shown in Fig
1 may form part of a larger heating system, heat source 2 being for example connected
by delivery and return conduits to a remotely located heat source, for example waste
heat recovery means of an industrial plant or a central electricity generating station.
[0036] Fig. 2 schematically shows apparatus for receiving and utilizing hot heat transfer
liquid by a heat user, including a heat storage vessel 22 and a through flow heat
exchanger 23 for heating domestic water, that are preferably contained within a common
shell of heat insulating material 24 , so as to keep the temperature of domestic water
heater 23 high during periods in between withdrawals of domestic hot water , thereby
providing the advantages of instant availability of domestic hot water and reduced
standstill heat losses of said heater in between withdrawals of domestic hot water.
[0037] Heat storage vessel 22 contains heat transfer liquid preferably having a stratified
temperature distribution, whereby an upper zone of hot liquid is separated from a
lower zone of cooler liquid by a layer of liquid 25 having a steep vertical temperature
gradient, such separating layer moving downward when the heat storage vessel is charged,
and moving upward when hot heat transfer liquid is withdrawn for heating domestic
water and/or for providing space heating.
[0038] Upon receiving a signal from aforementioned control means for beginning of a concurrent
charging operation, bypass control valve 26 is activated so as to open and cause a
flow of heat transfer liquid through bypass conduit 27, such flow preferably being
as high as is allowable for reasons that limit the maximum flow through service delivery
conduit 7D, such reasons being for example flow pressure losses or so as to avoid
high noise levels. Flow limiter 28 in bypass conduit 27 is optionally included so
as to provide such flow limitation. When temperature sensor 29 signals the temperature
of the bypassed liquid to be higher than a set temperature, bypass control valve 26
is activated so as to close and control valve 30 is activated so as to open, causing
hot heat transfer liquid to flow through service delivery conduit 7D and through conduit
31 into heat storage vessel 22, and causing cooler heat transfer liquid to flow out
of said storage vessel through conduit 32 and through service return conduit 7R, thereby
causing the heat storage vessel to be charged. The flow rate during charging is preferably
kept within a relatively narrow band by flow limiter 33, and by operating circulation
pump 4 at heat source 2 so as to keep the pressure difference over said flow limiter
above a set level during such charging operation. The charging operation is terminated
by control means, including temperature sensor 34 in the lower part of storage vessel
22, activating valve 30 so as to close.
[0039] A signal for individual charging of a heat storage vessel operation is given by temperature
sensor 35 sensing an upward movement of separating layer 25, thereby indicating the
hot heat transfer liquid contained by storage vessel 22 to have decreased below a
set minimum volume. Such set volume is selected so as to provide hot heat transfer
liquid water for heating a high(est) flow of domestic water during aforementioned
bypass time span of one and a half minutes, so as to avoid an undesirable drop in
temperature of domestic hot water exiting from domestic water heater 23 during a period
of domestic hot water withdrawal, particularly when such withdrawal is for a hot shower.
[0040] Upon the beginning of a withdrawal of domestic hot water from an outlet such as tap
36 or douche head 37, flow sensor means 38 in the secondary circuit of domestic water
heater 23 , preferably a compact counter flow heat exchanger, activates control valve
39 and circulation pump 40 so as to circulate hot heat transfer liquid from the upper
part of storage vessel 22 through the primary side of domestic water heater 23. Control
valve 39 is thermostatically controlled by temperature sensor 47 so as to keep the
temperature of heated domestic water approximately constant within a narrow temperature
band. Domestic water heating may alternatively be controlled by means that are known
to persons skilled in the art.
[0041] Space heating is provided by a direct system comprising at least one radiator heat
emitter such as 41 through which heat transfer liquid is circulated. Alternatively
an indirect system may be provided including a heat exchanger for transfer of heat
from heat transfer liquid to secondary water circulating through said radiator(s).
Space heating may alternatively be provided by other known systems, for example an
air circulation system or a floor heating system.
[0042] Control means for providing space heating may for example include a central room
thermostat 42 activating control valve 43 and circulation pump 40 so as to circulate
hot heat transfer liquid through at least one radiator 41. Such control means may
also or alternatively include thermostatic valves, not shown in Fig. 2, for the or
each radiator. Circulated heat transfer liquid for space heating is generally withdrawn
from the upper part of heat storage vessel 22 and cooler heat transfer liquid is returned
to the lower part of said vessel. When a space heating demand occurs during charging
of said heat storage vessel, circulation of heat transfer liquid through space heating
emitters may be parallel to circulation of heat transfer liquid for charging of heat
storage vessel 22, or priority controls may be provided for closing control valve
43. Priority control means may also be provided for closing said control valve during
a withdrawal of domestic hot water.
[0043] By adapting flow limiter 33 and pressure levels in the circulation system so as to
keep the flow rate during delivery of heat transfer liquid to a user within a relatively
narrow band, the heat meter of a user may advantageously comprise a simple cheap water
meter 44 registering the accumulated volume of heat transfer liquid delivered to a
user, and an electronic meter 45 registering during delivery periods the time integrated
temperature difference sensed by temperature sensors 29 and 46. Such heat meter, providing
high measuring accuracy, may be much cheaper than known heat meters comprising a flow
meter for registering the time integrated product of flow and temperature.
[0044] Preferably users comprise an individual electronic controller unit, not shown in
Fig. 2, that is in communication with some or all of the aforementioned sensors end
control means, and that is in communication with aforementioned central system controller(s).
1. Method for delivering heat to a plurality of heat users (6), using a heating system
comprising at least one heat source (2) for heating a heat transfer liquid, a circulation
system for delivery of heat transfer liquid to each of such users having a heat storage
vessel (22) containing heat transfer liquid as heat storage medium, the circulation
system comprising delivery and return conduits that include main supply conduits (11D,
11R), main branch conduits (8D, 8R) and service conduits (7D, 7R), the circulation
system further comprising flow governing means including delivery and charging means
(30) for delivery of hot heat transfer liquid and for charging of heat storage vessels
and further including bypass means (26) for allowing a bypass flow of heat transfer
liquid from delivery to return conduits without passing through a heat storage vessel,
characterized by controlling said bypass means such that there is little or no continuous bypass flow
downstream of such said main branch delivery conduits (8D) during times that no heat
transfer liquid is delivered to any heat user connected downstream of such said main
branch delivery conduits.
2. Method according to claim 1, whereby said flow governing means include means for controlling
the temperature of heat transfer liquid inside such said main supply delivery conduit
(11D), characterized by controlling said governing means such as to maintain the temperature of heat transfer
liquid inside said main supply delivery conduits above a selected temperature.
3. Method according to claim 2, whereby said main supply delivery conduits include at
least one main supply ring delivery conduit (1D) and said governing means include
pumping means (3) for circulating heat transfer liquid through said main supply ring
delivery conduit, characterized by controlling said pumping means such as to maintain the temperature of heat transfer
liquid inside said main supply ring delivery conduit above a selected temperature
and within a selected temperature band.
4. Method according to claim 2 or 3, whereby said main supply delivery conduits comprise
at least one main supply branch delivery conduit (11D) and said flow governing means
include a main bypass valve (12) connecting said conduit with corresponding main branch
return conduit (11R), characterized by controlling the flow through said bypass valve such as to maintain the temperature
of heat transfer liquid inside said main supply branch delivery conduit above a selected
temperature.
5. Method according to any of the preceding claims, characterized by controlling said governing means such as to include charging operations that include
concurrent charging of heat storage vessels of a plurality of heat users connected
downstream of such said main branch delivery conduits (5D).
6. Method according to any of the preceding claims, whereby said delivery and charging
means include means (35) for signaling a demand for delivery of hot heat transfer
liquid to each heat user, characterized by, after a demand by such said heat user for delivery of hot heat transfer liquid,
bypassing heat transfer liquid having a temperature lower than a selected minimum
temperature for delivery to such heat user, until the temperature of the heat transfer
liquid is equal or higher than said minimum temperature.
7. Method according to any of the preceding claims, characterized by maximizing the bypass flow, during bypassing the heat transfer liquid having a temperature
lower than said selected minimum temperature, in order to minimize bypass time span.
8. Method according to claim 7, characterized by increasing said bypass flow by opening a number of individual bypass valves (26)
each connecting a service delivery conduit (7D) with a corresponding service return
conduit (7R), of a plurality of users connected downstream of a main branch delivery
conduit (5D), whe one of such users signals a demand for delivery of heat transfer
liquid.
9. Method according to claim 7 or 8, characterized by increasing said bypass flow by opening a main bypass valve (9) connecting a main
branch delivery conduit (8D) with a corresponding main branch return conduit (8R).
10. A heating system for delivering heat to a plurality of heat users (6), comprising
at least one heat source (2) for heating a heat transfer liquid, a circulation system
for delivery of heat transfer liquid to each of such users having a heat storage vessel
(22) containing heat transfer liquid as heat storage medium, the circulation system
comprising delivery and return conduits that include main supply conduits (11D, 11R),
main branch conduits (8D, 8R) and service conduits (7D, 7R), the circulation system
further comprising flow governing means including delivery and charging means (30)
for delivery of hot heat transfer liquid and for charging heat storage vessels, such
delivery and charging means including means (33) for signalling a demand for charging
heat storage vessel, such flow governing means further including bypass means (26)
for allowing a bypass flow of heat transfer liquid from delivery to return conduits
without passing through a heat storage vessel, characterized by said flow governing means being adapted to cause a flow such that within a selected
time span after a signal for charging a heat storage vessel of a heat user, heat transfer
liquid having a temperature higher than a selected temperature is delivered to such
heat user.
11. A heating system according to claim 10, characterized by said flow governing means including at least one central electronic system controller
in communication with a plurality of heat users.
12. A heating system according to claims 10 or 11, characterized by said bypass means comprising individual bypass valves (26) connecting service delivery
conduit (7D) with corresponding service return conduit (7R) and said flow governing
means being adapted to control individual bypass valves of a plurality of users downstream
of a main branch delivery conduit.
13. A heating system according to one or more of claims 10 - 12, characterized by said bypass means comprising at least one main bypass valve (9) connecting a main
delivery conduit (8D) with a corresponding main return conduit (8R), said flow governing
means being adapted to control the main bypass valve.
14. A heating system according to one or more of claims 10 - 13, characterized by said flow governing means including a temperature sensor (10) for sensing the temperature
of the heat transfer liquid in a main delivery conduit (8D) and said flow governing
means being adapted to control a bypass valve (9) to open when one of the users downstream
of said main delivery conduit signals a demand for hot heat transfer liquid and the
temperature of water contained by said conduit is sensed to be lower than a selected
temperature, and for such bypass valve to close when such temperature is sensed to
be higher than a selected temperature.
15. A heating system according to one or more of claims 10 - 14, characterized by said circulation system comprising main supply ring delivery conduit (1D).
16. A heating system according to or more of claims 10 - 15, characterized by return conduits comprising carrier pipes having a larger inner diameter and less
heat insulation than corresponding delivery conduits.
17. A heating system according to one or more of claims 10-16, characterized by main conduits and service conduits having prefabricated connections.
18. A heating system according to claim 17, characterized by said prefabricated connections comprising main conduits and service conduits connected
in parallel.
19. A heating system according to one or more of the preceding claims, characterized by said heat storage vessel (22) containing heat transfer liquid having a stratified
temperature distribution.
20. A heating system according to one or more of the preceding claims, characterized by said users comprising a through flow domestic water heater (23).
21. A heating system according to claim 19 and 20, characterized by said heat storage vessel (22) and said through flow domestic water heater (23) having
a common encasing of heat insulating material (24).
22. A heating system according to one or more of the preceding claims, characterized by said stratified heat storage vessel (22) having a water containment volume between
40 and 80 liters.
23. A heating system according to one or more of the preceding claims, characterized by said heat users comprising means for keeping the flow during delivery of hot heat
transfer liquid to such a user within a set band, and comprising a heat meter that
includes an accumulative water meter (44) and means (45) for registering the time
integrated difference between delivery and return temperature, sensed by temperature
sensors (29) (46), over the time of delivery.
24. A heating system according to any of the preceding claims, characterized by said heat source (2) comprising at least one form of heat production means that is
selected from the group that includes heat pumps, solar heat panels, (intercooled)
gasturbine cogeneration installations, gasmotor cogeneration installations or fuel
fired boilers.
1. Verfahren zur lieferung von Wärme an eine Mehrzahl von Wärmebenützer, mit Gebrauchmachung
von einer Heizungsanlage umfassend zum mindestens eine Wärmequelle (2) für Erwärmung
von einer Wärmeübertragungsflüssigeitkeit, ein Zirkulationssystem für Lieferung von
Wärmeübertragungsflüssigkeit an jeder der solcher Benützer der ein Wärmespeicher (22)
mit Wärmeübertragungsflüssigkeit als Wärmespeichermedium enthaltet, das Zirkulationssystem
weiter umfassend Vorlauf- und RücklaufLeitungen die Hauptlieferungsleitungen (11D,
11R), Hauptabzweigleitungen (8D, 8R) und Hausanschlussleitungen (7D, 7R) enthalten,
das Zirkulationssystem weiter umfassend Durchflussreglungsmittel die Lieferungs- und
Aufladungsmittel enthalten für Lieferung von heiszes Wärmeübertragungsflüssigkeit
und für Aufladung von Wärmespeichern, und weiter umfassend Bypassmittel (26) für das
ermöglichen von einem Bypassdurchfluss von Wärmeübertragungsflüssigkeit ab Vorlauf-
zu Rücklaufleitungen ohne Passierung von einem Wärmespeicher, dadurch gekennzeichnet dass genannte Bypassmittel derartig angepasst sind dass es wenig oder kein kontinuierlicher
Bypassdurchfluss gibt flussabwärts von solche genannte Hauptabzweigvorlaufleitungen
(8D) während Perioden das keine Wärmeübertragungsflüssigkeit geliefert wird an irgend
einen Wärmebenutzer der flussabwärts angeschlossen ist an solche Hauptabzweigvorlaufleitungen.
2. Verfahren nach Anspruch 1, wobei genannte Durchfluszreglungsmittel Mittel enthalt
für Reglung der Temperatur von Wärmeübertragungsflüssigkeit innerhalb solche genannte
Hauptlieferungsvorlaufleitungen (11D), dadurch gekennzeichnet dasz genannte Reglungsmittel derart geregelt werden dasz die Temperatur der Wärmeübertragungsflüssigkeit
innerhalb genannte Hauptlieferungsvorlaufleitungen oberhalb eine bestimmte Temperatur
gehalten wird.
3. Verfahren nach Anspruch 2, wobei genannte Hauptlieferungsvorlaufleitungen mindestens
eine Hauptlieferungskreisvorlaufleitung (1D) enthalten und genannte Reglungsmittel
Pumpmittel (3) enthalten für das Rundpumpen von Wärmeübertragungsflüssigkeit durch
genannte Hauptlieferungskreisvorlaufleitung, dadurch gekennzeichnet dasz genannte Pumpmittel derartig geregelt werden das die Temperatur der Wärmeübertragungsflüssigkeit
innerhalb genannte Hauptlieferungskreisvorlaufleitung oberhalb eine bestimmte Temperatur
und innerhalb ein bestimmte Temperaturbereich gehalten wird.
4. Verfahren nach Anspruch 2 oder 3, wobei genannte Hauptlieferungsvorlaufleitungen mindestens
eine Hauptlieferungsabzweigvorlaufleitung (11D) enthalten und genannte Durchflussreglungsmittel
ein Hauptbypassventil (12) enthalten der genannte Leiting mit korrespondierende Hauptlieferungsabzweigrücklaufleitung
(11R) verbindet, dadurch gekennzeichnet dasz der Durchfluss durch genanntes Bypaszventil derartig geregelt wird das die Temperatur
der Wärmeübertragungsflüssigkeit innerhalb genannte Hauptlieferungsabzweigvorlaufleitung
oberhalb eine bestimmte Temperatur gehalten wird.
5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet dasz genannte Reglungsmittel derartig geregelt werden dasz der Aufladungsbetrieb
gleichzeitige Auflading enthaltet von Wärmespeichern einer Mehrzahl von Wärmebenützer
die flussabwarts von solche genannte Hauptabzweigvorlaufleitingen angeschlossen sind.
6. Verfahren nach einem der vorangehenden Ansprüche, wobei genannte Lieferungs- und Aufladungsmittel
Mittel (35) enthalten zur Meldung von eine Frage für Lieferung von heiszer Wärmeübertragungsflüssigkeit
zu jeden Wärmebenutzer, dadurch gekennzeichnet dasz, nach eine Frage von solch einen Wärmebenutzer für Lieferung von heiszer Wärmeübertragungs-flüssigkeit,
Bypassung von Wärmeübertragungsflüssigkeit mit einer Temperatur unterhalb eine bestimmte
Minimaltemperatur für Lieferung von solche Wärmeübertragungsflüssigkeit, bis die Temperatur
der Wärmeübertragungsflüssigkeit gleich oder höher ist als genannte Temperatur.
7. Verfahren nach einem der vorangehenden Ansprüche, gekennzeichnet durch Maximierung des Bypaszflusses, während Bypassung von Wärmeübertragungsflüssigkeit
mit einer Temperatur die niedriger ist als genannte Minimaltemperatur, mit das Ziel
die Bypasszeitspanne zu minimieren..
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet dasz der Bypassflusz erhöht wird durch öffnen von einer Anzahl individueller Bypassventile(26)
die jeder eine Hausanschluszvorlaufleitung (7D) verbindet mit einer korrespondierender
Hausanschluszrücklaufleitung (7R), von einer Mehrzahl von Benützer flussabwärts von
einer Hauptabzweigvorlaufleiting (5D), wenn einer der solche Benützer eine Frage für
Lieferung von Wärmeübertragungsflüssigkeit meldet.
9. Verfahren nach Anspruch 7 oder 8, gekennzeichnet durch Erhöhung von genannter Bypassflusz durch öffnen eines Hauptbypassventil (9) das eine Hauptabzweigvorlaufleiting (8D) mit einer
Hauptabzweigrücklaufleiting (8R) verbindet.
10. Eine Heizungsanlage für Lieferung von Wärme an eine Mehrzahl von Wärmebenützer (6),
enthaltend zum mindestens eine Wärmequelle (2) für Erwärmung von einer Wärmeübertragungsflüssigkeit,
ein Zirkulationssystem für Lieferung von Wärmeübertragungsflüssigkeit an jeder der
solcher Benützer der ein Wärmespeicher (22) hat dasz Wärmeübertragungsflüssigkeit
als Wärmespeichermedium enthaltet, das Zirkulationssystem weiter umfassend Vorlauf-
und Rücklaufleitungen die Hauptlieferungsleitungen (11D, 11R), Hauptabzweigleitungen
(8D, 8R) und Hausanschluszleitungen (7D, 7R) enthalten, das Zirkulationssystem weiter
umfassend Durchflussreglungsmittel die Lieferungs- und Aufladungsmittel (30) enthalten
für die Lieferung von heiszes Wärmeübertragungsflüssigkeit und für Aufladung von Wärmespeichern,
solche Lieferungs- und Aufladungsmittel umfassend Mittel (33) zür signalierung einer
Frage für Aufladung von Wärmespeicher, solche Durchflussreglungsmittel weiter umfassend
Bypassmittel (26) für das ermöglichen von einem Bypassdurchfluss von Wärmeübertragungsflüssigkeit
ab Vorlauf- zu Rücklaufleitungen ohne Passierung von einem Wärmespeicher, dadurch gekennzeichnet dasz genannte Bypassmittel adaptiert sind um einer solcher Durchfluss zu verursachen
dasz innerhalb eine bestimmte Zeitspanne nach eine Frage zur Aufladung von einem Wärmespeicher,
Wärmeübertragungsflüssigkeit mit einer Temperatur höher als einer bestimmte Temperatur
geliefert wird an solcher Wärmebenutzer.
11. Eine Heizungsanlage nach Anspruch 10, dadurch gekennzeichnet dasz genannte Durchfluszreglungsmittel zum mindestens ein centrale elektronische
Systemregler enthalten der in verbindung ist mit einer Mehrzahl von Wärmebenützer.
12. Eine Heizungsanlage nach Anspruch 10 oder 11, dadurch gekennzeichnet dasz genannter Bypassmittel einzelne Bypassventile (26) enthalten die Hausanschluszvorlaufleitung
(7D) mit korrespondierender Hausanschluszrücklaufleitung (7R) verbindet und genannte
Durchfluszreglungsmittel adaptiert sind um einzelne Bypassventile von einer Mehrzahl
von Benützer flussabwärts von einer Hauptabzweigvorlaufleitung zu regeln.
13. Eine Heizungsanlage nach einer oder mehrere Ansprüche 10 - 12, dadurch gekennzeichnet dasz genannte Bypassmittel zum mindestens ein Hauptbypassventil (9) enthalten der
eine Hauptvorlaufleitung (8D) verbindet mit einer korrespondierender Hauptrücklaufleitung
(8R), wobei genannte Durchfluszreglungsmittel adaptiert sind um der Hauptbypassventil
zu regeln.
14. Eine Heizungsanlage nach einer oder mehrere Ansprüche 10 - 13, dadurch gekennzeichnet dasz genannte Durchflussreglungsmittel ein Temperaturfühler (10) enthalten die die
Temperatur von Wärmeübertragungsflüssigkeit innerhalb eine Hauptvorlaufleitung (8D)
detektiert und wobei genannte Durchflussreglungsmittel adaptiert sind um Bypassventil
(9) zu öffnen wann einer der Benützer flussabwärts von genannte Hauptvorlaufleitung
eine Frage meldet um Lieferung von heiszes Wärmeübertragungsflüssigkeit und die Temperatur
von Wasser innerhalb genannte Leitung unten eine bestimmter Temperatur detektiert
wird, und um solche Bypassventil zu schlieszen wann eine Temperatur oberhalb eine
bestimmter Temperatur detektiert wird .
15. Eine Heizungsanlage nach einer oder mehrere Ansprüche 10 - 14, dadurch gekennzeichnet dasz genannte Kreislaufsystem Hauptlieferungskreisvorlaufleitung (1D) enthaltet.
16. Eine Heizungsanlage nach einer oder mehrere Ansprüche 10 - 15, gekennzeichnet durch Rücklaufleitungen die Mediumleitungen enthalten mit gröszere Innendiameter und geringere
Wärmeisolierung als korrespondierende Vorlaufleidungen.
17. Eine Heizungsanlage nach einer oder mehrere Ansprüche 10 - 16, dadurch gekennzeichnet dasz Hauptleitungen und Hausanschluszleitungen vorgefertigte Verbindungen haben.
18. Eine Heizungsanlage nach Anspruch 17, dadurch gekennzeichnet dasz genannte vorgefertigte Verbindungen Hauptleitungen und Hausanschluszleitungen
parallel verbinden.
19. Anlage nach einem der vorangehenden Ansprüche, gekennzeichnet durch dasz genannte Wärmespeicher (22) Wärmeübertragungsflüssigkeit enthaltet mit einem
schichten Temperaturverteiling.
20. Anlage nach einem der vorangehenden Ansprüche, gekennzeichnet durch dasz genannte Benützer ein Durchflusssanitairwassererwärmer (23) enthalten.
21. Eine Heizungsanlage nach Anspruch 19 oder 20, dadurch gekennzeichnet dasz genannte Wärmespeicher (22) und genannte Durchflusssanitairwassererhitzer (23)
ein gemeinsame Umfassung (24) von wärmeisolierendes Material haben.
22. Anlage nach einem der vorangehenden Ansprüche, gekennzeichnet durch dasz genannte Wärmespeicher (22) ein wasserenthaltend Volume zwischen 40 und 80 Liters
haben.
23. Anlage nach einem der vorangehenden Ansprüche, gekennzeichnet durch dasz genannte Benützer Mittel enthalten um die Durchflusz während lieferung von heiszes
Wärmeübertragungsflüssigkeit innerhalb ein bestimmte Bereich, und die weiter ein Wärmezähler
enthaltet dasz ein akkumulative Wasserzähler (44) und Mittel (45) für registrieren
von zeitintegrierte Differenz zwischen Vorlauf- und Rücklauf-temperatur, die detektiert
wird durch Temperaturfühler (29) (46) während die Lieferungszeit.
24. Anlage nach einem der vorangehenden Ansprüche, gekennzeichnet durch dasz genannte Wärmequelle (2) zum mindestens einer Art von Wärmerzeugungsmittel enthaltet
der selektiert wird von einer Gruppe der Wärmepumpen, Sonnenkollektoren, (Zwischengekühlte)
Gasturbine Wärme-Kraft Anlagen, Gasmotor Wärme-Kraft Anlagen oder Heizstoff gefeuerte
Kesselanlagen enthaltet.
1. Procédé de fournir de la chaleur au pluriel d'utilisateurs de chauffage (6), faire
usage d'un système de chauffage comprenant du moins une source de chaleur (2) pour
chauffer un fluide caloporteur, un système de circulation pour délivrer ce fluide
caloporteur à chaque tel utilisateurs muni d'un récipient de stockage de chaleur (22)
contenant du fluide caloporteur pour le stockage de chaleur, le système de circulation
comprenant en outre conduits d'arrivé et de retour qui comprends conduits principaux
de prévu (11D, 11R), conduits principaux branché (8D, 8R) et conduits de service (7D,
7R), le système de circulation comprenant en outre moyens de réglage qui comprends
moyens de délivrer et de charger (30) pour délivrer du fluide caloporteur chaud et
pour charger des récipients de stockage de chaleur et en outre comprends moyens de
bipasse (26) pour permettre un débit de bipasse de fluide caloporteur de conduits
d'arrivé à de retour sans passer un récipient de stockage de chaleur, caractérisé par régler ces moyens de bipasse ainsi qu'il y a de peu ou rien de débit de bipasse continu
à l'aval de ces conduits principaux branché d'arrivé nommé (8D) pendant les temps
que pas de fluide caloporteur est délivrer à quelqu'un des utilisateurs de chauffage
raccorder à l'aval de tel conduits principaux branché d'arrivé nommé.
2. Procédé selon la revendication 1, duquel ces moyens de réglage le débit comprenant
des moyens de régler la température de fluide caloporteur entre tel conduits principaux
de prévu d'arrivée nommé (11D), caractérisé par régler ces moyens de réglage nommé ainsi que la température de fluide caloporteur
entre tel conduits principaux de prévu d'arrivé nommé est maintenue plus haut qu'une
température sélectionnée.
3. Procédé selon la revendication 2, duquel ces conduits principaux de prévu nommé comprenant
du moins un conduit principal d'arrivé cercle de prévu (1D) et ces moyens de réglage
nommé comprenant des moyens de pompe (3) pour circuler du fluide caloporteur à travers
de ce conduit principal d'arrivé cercle de prévu nommé, caractérisé par régler ces moyens de pompe en ce qui la température de fluide caloporteur entre ce
conduit principale d'arrivée cercle de prévu est maintenu plus haut qu'une température
sélectionnée et entre une portée de la température sélectionnée.
4. Procédé selon la revendication 2 ou 3, duquel ces conduits principaux d'arrivé de
prévu nommé comprennent du moins un conduit principal d'arrivé branché de prévu (11D)
et ces moyens de réglage nommé comprends une vanne principale de bipasse (12) qui
raccorde le conduit nommé avec le conduit principal de retour branché de prévu correspondent
(11R), caractérisé par ajuster le débit à travers cette vanne de bipasse en ce qui la température de fluide
caloporteur entre ce conduit principale d'arrivée branchée de prévu est maintenue
plus haut qu'une température sélectionnée.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ces moyens de réglage nommé sont ajustés pour obtenir des procédées de chargement
comprenant des chargements synchroniques des récipients de stockage de chaleur d'un
pluriel des utilisateurs de chauffage raccordant à l'aval d'un conduit principal branché
d'arrivé nommé (5D).
6. Procédé selon l'une quelconque des revendications précédentes, duquel ces moyens de
délivrer et de charger nommé comprenant des moyens (35) de signaler une demande à
délivrer de fluide caloporteur chaud à chaque utilisateur de chauffage, caractérisé en ce qu'après une demande d'un tel utilisateur de chauffage pour délivrer de fluide caloporteur
chaud, bipasse de fluide caloporteur avec une température plus bas q'une température
minimum sélectionnée de délivrer à tel utilisateur de chauffage, jusqu'à la température
de fluide caloporteur est égal ou plus haut que cette température minimum.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé par maximaliser le débit de bipasse, pendant bipasse de fluide caloporteur avec une température
plus bas q'une température minimum sélectionnée, pour minimaliser l'espace de temps
de bipasse.
8. Procédé selon la revendication 7, caractérisé par augmenter ce débit de bipasse nommé par ouvrir un nombre de vannes de bipasse individuel
(26) chacun de ce qui raccordent un conduit de service d'arrivé (7D) avec un conduit
de service de retour correspond (7R), d'un pluriel des utilisateurs de chauffage raccordent
à l'aval d'un conduit principal branché d'arrivé nommé (5D), quand un de ces utilisateurs
de chauffage nommé signale une demande à délivrer de fluide caloporteur.
9. Procédé selon la revendication 8, caractérisé par augmenter ce débit de bipasse nommé par ouvrir une vanne de bipasse principal (9)
qui raccorde un conduit principal branché d'arrivé (8D) avec un conduit principal
branché de retour correspondent (8R).
10. Un système de chauffage pour fournir de la chaleur à un pluriel d'utilisateurs de
chauffage (6), comprenant du moins une source de chaleur (2) pour chauffer un fluide
caloporteur, un système de circulation pour délivrer du fluide caloporteur à chaque
tels utilisateurs muni d'un récipient de stockage de chaleur (22) contenant du fluide
caloporteur pour le stockage de chaleur, le système de circulation comprenant en outre
conduits d'arrivé et de retour qui comprennent conduits principaux de prévu (11D,
11R), conduits principaux branchés (8D, 8R) et conduits de service (7D, 7R), le système
de circulation comprenant en outre des moyens de réglage qui comprennent moyens de
délivrer et de charger (30) pour délivrer du fluide caloporteur chaud et pour charger
des récipients de stockage de chaleur, tels moyens de délivrer et de charger comprenant
des moyens (33) de signaler une demande à charger un récipient de stockage de chaleur,
ces moyens de réglage comprenant des moyens de bipasse (26) pour permettre un débit
de bipasse de fluide caloporteur de conduits d'arrivé à de retour sans passer un récipient
de stockage de chaleur, caractérisé par ces moyens de réglage nommé qui sont ajusté pour obtenir un débit qui cause dans
un intervalle de temps sélectionnés après une signale pour charger un récipient de
stockage de chaleur d'un utilisateur de chauffage, délivrer du fluide caloporteur
d'une température plus haut q'une température minimum sélectionnée à tel utilisateur
de chauffage.
11. Un système de chauffage selon la revendication 10, caractérisé en ce qui ces moyens de réglage nommés comprenant du moins un régulateur de système électronique
en communication avec un pluriel d'utilisateurs de chauffage.
12. Un système de chauffage selon la revendication 10, caractérisé en ce qui ces moyens de bipasse nommés comprenant des vannes de bipasse individuel (26)
qui raccordent un conduit de service d'arrivé (7D) avec un conduit de service de retour
correspondent (7R) et ces moyens de réglage nommés être ajusté pour réguler les vannes
de bipasse individuel d'un pluriel d'utilisateurs de chauffage à l'aval d'un conduit
principal branché d'arrivé nommé.
13. Un système de chauffage selon un ou plusieurs des revendications 10 - 12, caractérisé en ce qui les moyens de bipasse nommés comprenant du moins une vanne de bipasse principal
(9) qui raccorde un conduit principal branché d'arrivé (8D) avec un conduit principal
branché de retour correspondent (8R), ces moyens de réglage nommés être ajusté pour
réguler la vanne de bipasse principal.
14. Un système de chauffage selon un ou plusieurs des revendications 10 - 13, caractérisé en ce qui ces moyens de réglage nommés comprenant un senseur de température (10) à détecter
la température de fluide caloporteur entre un conduit principale d'arrivé (8D) et
ces moyens de réglage nommés être ajusté pour ouvrir une vanne de bipasse (9) quand
un des utilisateurs de chauffage à l'aval de ce conduit principal d'arrivé nommé signale
une demande de fluide caloporteur chaud et la température d'eau contenant par ce conduit
nommé sont détecté être plus bas q'une température sélectionnée, et pour fermé cette
vanne de bipasse quand cette température est détectée être plus haut q'une température
sélectionnée.
15. Un système de chauffage selon un ou plusieurs des revendications 10 - 14, caractérisé par ce système de circulation contenant un conduit principal d'arrivé cercle de prévu
(1D).
16. Un système de chauffage selon un ou plusieurs des revendications 10 - 15, caractérisé par des conduits de retour contenant conduits à medium avec un diamètre intérieur et
moins de l'isolant thermique que les conduits d'arrivé correspondent.
17. Un système de chauffage selon un ou plusieurs des revendications 10 - 16, caractérisé par conduits principaux et conduits de service contenant raccordements préfabriqués.
18. Un système de chauffage selon la revendication 10, caractérisée en ce qui raccordements préfabriqués contenant conduits principaux et conduits de service
qui sont raccordé en parallèle.
19. Un système de chauffage selon un ou plusieurs des revendications précédentes, caractérisé par le récipient de stockage de chaleur nommé (22) contenant du fluide caloporteur avec
une distribution de température stratifiée.
20. Un système de chauffage selon un ou plusieurs des revendications précédentes, caractérisé par ces utilisateurs de chauffage nommés comprenant un échangeur de chaleur d'écoulement
(23).
21. Un système de chauffage selon les revendications 19 et 20, caractérisé par ce récipient de stockage de chaleur nommé (22) et cet échangeur de chaleur traversé
(23) comprenant une enveloppe collective d'un matériel isolante thermique.
22. Un système de chauffage selon un ou plusieurs des revendications précédentes, caractérisé par ce récipient de stockage de chaleur stratifié nommé (22) comprenant un volume contenu
d'eau entre 40 et 80 liter.
23. Un système de chauffage selon un ou plusieurs des revendications précédentes, caractérisé par ces utilisateurs de chauffage nommés comprenant moyens de maintenir entre une marge
déterminée le débit pendant délivrer de fluide caloporteur chaud à tel utilisateur,
et comprenant un compteur de chaleur qui comportant un compteur d'eau accumulative
(44) et moyens (45) de calcul intégral de temps la différence entre la température
d'arrivée et de retour, sondé par sondes de la température (29) (46), pendant le temps
de délivrance.
24. Procédé selon l'une quelconque des revendications précédentes, caractérisé par cette source de chaleur nommée (2) comprenant au moins une façon de moyens de produire
de chaleur qui est sélecté d'un groupe comprenant pompes à chaleur, panneaux solaire,
turbine à gaz central thermique (avec refroidissement intermédiaire), moteur à gaz
central thermique ou chaudières de chauffage à carburent.

