[0001] This invention is generally related to a personal communications device having global
positioning system receiver provisions which are clocked via a clock signal derived
from a clock source shared with CDMA based radio. More particularly, the invention
provides for a fractional N-synthesizer for providing a feedback signal for controlling
an oscillator signal output frequency.
[0002] Personal communications devices incorporating global positioning (GPS) capabilities
are becoming popular. In these devices, the circuitry and components necessary to
provide the global positioning capabilities must share the same enclosure and circuit
board real estate as the circuitry and components dedicated to providing, for example,
mobile (cellular) telephone capabilities. Further, circuitry and components for both
GPS capabilities as well as mobile telephone capabilities are powered by the same
power source, typically, via an on-board battery. While battery technology is improving,
it is typical that the more power consumed by a device the larger the physical size
of the battery necessary to provide a given operating time.
[0003] The demand for smaller, more compact personal communication devices is increasing.
Concurrent with this increasing demand for compactness is the demand for devices that
provide for increased functionality and capabilities. As functionality and capabilities
increase, typically, so does the need for power and printed circuit real estate within
the personal communications device.
[0004] In personal communications devices such as that shown in the block diagram of FIG.
1, wherein there is provided a personal communications device that incorporates a
global positioning systems (GPS) receiver 100 and a code division multiple access
(CDMA) based telecommunications device 200, it is common for separate clock sources
(oscillators) to be associated with the GPS receiver 100 and the CDMA device 200.
More particularly, GPS receiver 100 includes an associated oscillator 101 while CDMA
device 200 includes an associated oscillator 201. Each oscillator, 101 and 201 provides
a clock signal to the respective circuitry to which it is associated.
[0005] FIG.2 shows a GPS receiver 100, which includes an oscillator 101. Oscillator 101
provides a signal of a particular frequency to phase comparator 146. Phase comparator
146 also receives input from frequency divider 136 and outputs a signal to loop filter
145. Loop filter 145 provides a signal to voltage controlled oscillator (VCO) 115
which generates an output signal whose frequency is contingent upon the signal input
from loop filter 145. The signal from VCO 115 is provided to mixer 110 where it is
combined with a radio frequency (RF) signal from low noise amplifier (LNA) 105 to
produce a first intermediate frequency (IF) signal S1. This first IF signal S1 is
provided to variable amplifier 112 and then on to mixer 120 and mixer 121. In mixer
120, the signal S1 is combined with a signal S2 from frequency divider 130 to produce
an in-phase second IF frequency output signal S3. In mixer 121, the signal S1 is combined
with a signal S4 from frequency divider 130 to produce a quadrature-phase second IF
frequency output signal S5. Signal S3 is provided to comparator and A to D processor
125 to produce a digitized signal I for output to GPS baseband section 150. Signal
S5 is provided to comparator and A to D processor 126 to produce a digitized signal
Q for output to GPS baseband section 150. Frequency divider 130 also provides its
output signal S4 to frequency divider 135 and frequency divider 136. The output from
VCO 115 is also provided to frequency divider 130. Frequency divider 130 outputs a
signal S5 that is mixed by mixer 121 with a signal S1 to produce a signal S4.
[0006] As two separate oscillators are provided within the same personal communications
device 10, printed and/or integrated circuit real estate is devoted to accommodating
each oscillator and power consumption of two oscillators is greater than for one oscillator.
Thus, an unaddressed need exists in the industry to address the previous mentioned
deficiencies and inadequacies.
[0007] US 5,841,396 and
US 6,041,222 each disclose a personal communications device comprising a telecommunications unit,
a global positioning system (GPS) receiver and a clock source for providing a common
clock signal to the GPS receiver and the telecommunications unit.
US 5481,396 discloses in Fig. 6B and the corresponding description in column 14, starting with
line 10, that a common clock signal from the clock source is supplied as a reference
frequency to a frequency synthesizer in a GPS downconverter in the GPS receiver. The
frequency synthesizer produces inputs for two local oscillators in the GPS system.
The output of one of these two local oscillator is input into the first stage of an
RF to IF downconversion and is also supplied to the frequency synthesizer in a feedback
loop.
[0008] It is an object of the invention to provide an improved personal telecommunications
device having both global positioning systems (GPS) and telecommunications provisions
that share a common clock source.
[0009] This object is achieved by a device and a method according to claims 1 and 8, respectively.
[0010] Further developments of the invention are given in the dependent claims.
[0011] Other systems, methods, features, and advantages of the invention will be or become
apparent to one with skill in the art upon examination of the following figures and
detailed description.
[0012] The invention can be better understood with reference to the following figures. The
components in the figures are not necessarily to scale, emphasis instead being placed
upon clearly illustrating the principles of the invention. In the figures, like reference
numerals designate corresponding parts throughout the different views.
FIG. 1 is a block diagram of a typical personal communications device;
FIG. 2 is a schematic diagram of a GPS receiver;
FIG. 3 is a block diagram of the invention;
FIG. 4 is a schematic diagram of a personal communications device according to the
invention;
FIG. 5 is a schematic diagram of a Fractional-N synthesizer;
FIG. 6 is a detailed description of an embodiment of a phase compensation circuit
and an on-chip tuning circuit;
FIG. FIG. 7 is a timing diagram illustrating the relationship between signals of the
frequency synthesizer in relation to the signals of the compensation circuit; and
FIG. 8 is a diagram showing a further embodiment of the invention.
[0013] The invention seeks to provide a personal communications device 10 having global
positioning system (GPS) capabilities. The invention seeks to provide a personal communications
device 10 in which a single oscillator 201 acts as a clock source for both mobile
telephone circuitry 200 and global positioning system (GPS) circuitry 100. GPS circuitry
100 includes fractional synthesizer provisions for controlling the generation of the
frequency of signals based upon the oscillator 201.
[0014] FIG. 3 shows a block diagram of a personal communications device 10 according to
the invention. There is provided a global positioning system (GPS) receiver 100 and
a code division multiple access (CDMA) based telecommunications unit 200. GPS receiver
100 includes a GPS radio 102 and a GPS baseband unit 103. GPS radio 102 receives and
processes GPS signals and provides them to the baseband unit 103 for further extraction
of data from a received GPS signal. There is also provided a CDMA radio unit 202 for
receiving, processing and transmitting CDMA based RF signals and a CDMA baseband unit
203 for further processing of CDMA RF signals received or to be transmitted. CDMA
telecommunications unit 200 includes an oscillator 201 for providing a clock signal
to circuitry of COMA telecommunications unit 200 and to GPS receiver 100. More particularly
CDMA oscillator 201 provides a clock signal to CDMA radio 202, CDMA baseband unit
203 and to GPS receiver 102 and GPS baseband unit 103.
[0015] FIG. 4 shows a diagram detailing GPS receiver 100. There is provided a voltage controlled
oscillator (VCO) 115 which generates a GPS system clock signal Z whose frequency is
contingent upon the voltage input from loop filter 145. The output from VCO 115 is
provided to mixer 110 where it is combined with a received radio frequency (RF) input
signal from low noise amplifier (INA) 105 to produce a first intermediate frequency
(IF) signal S1. This first IF signal S1 is provided to amplifier 112 and then to mixer
120 and mixer 121. At mixer 120 it is combined with a signal S2 from frequency divider
130 to produce a second IF frequency output signal S3. At mixer 121 second IF frequency
output signal S1 is combined with a signal S4 also from frequency divider 130 to produce
a further IF frequency output signal S5. Signal S4 is also provided to frequency divider
135 where it is converted into a signal of alternate frequency S6 and output to GPS
baseband unit 150.
[0016] Signal S3 is input to comparator and A to D processor 125 where it is processed and
converted into a digital output signal I for input to GPS baseband unit 150. Likewise
signal S5 is input to comparator and A to D processor 126 where it is processed and
converted into digital output signal Q which is provided to GPS baseband unit 150.
[0017] The GPS system clock signal Z output from VCO 115 is also provided to frequency divider
130 and a frequency synthesizer 116. Frequency divider 116 converts the signal Z from
VCO 115 into a feedback signal S7 that is provided to phase comparator 146 which outputs
a control signal S9 to loop filter 145 in response to the input of the feedback signal
S7 and the clock signal S8 from oscillator 201. Control signal S9 is then provided
to VCO 115, which adjusts the frequency of output signal Z in accordance with the
control signal S9. In this illustration it can be seen that there is formed a feedback
loop composed of frequency synthesizer 116, phase comparator 146 and loop filter 145.
[0018] FIG. 5 is a block diagram of the phase interpolated fractional N frequency synthesizer
116. The synthesizer 116 can be implemented as an integrated circuit using known CMOS
fabrication methods or other compatible semiconductor chip technologies. In FIG. 5,
a reference signal Z from VCO 115 is provided to an input of a phase detector 322.
The output of the phase-detector 322 is provided to a loop filter 324. The output
of the loop filter 324 is provided to a controlled oscillator 326, such as a VCO,
which has an output S7 (feedback signal S7) that is the output of the synthesizer
116. The signal S7 is supplied to a fractional-N divider 328. A control word K is
supplied to the fractional-N divider 328 in order to set the value of the divisor
N.
[0019] The output of the fractional-N divider 328 is provided to a phase compensation circuit
330 and to an on chip tuning circuit 332, which in combination are referred to as
a phase compensator. The output (fcomp) from the phase compensation circuit 330 is
provided as the second input to the phase detector 322. An accumulator 334 also receives
control word K and the signal Z. The carry out port (the carry signal S10) from the
accumulator 334 also serves as an input to the fractional-N divider 328. The signal
Z serves as the clocking signal for the accumulator 334. The signal S10 from carry
out port of the accumulator 334 triggers the divide by the N+1 function of the fractional-N
divider.
[0020] The phase detector 322, loops filter 324 and VCO 326 may be of any suitable type
known to those of ordinary skill. The types of phase detectors, loop filters, VCOs
and fractional-N dividers commonly used in fractional-N synthesizers can be used for
the synthesizer 320, such as voltage or current controlled oscillators, phase or phase/frequency
detectors, active or passive loop filters and loop filters with charge pumps.
[0021] FIG. 6 shows a more detailed description of an embodiment of phase compensation circuit
330 and on-chip tuning circuit 332. Phase compensation circuit 330 and on-chip tuning
circuit 332 may be implemented using an arrangement of voltage controlled delay elements
(D) where the amount of delay elements D provides a signal delay of Tvco/4, where
Tvco equals the period of the frequency of the output S10 of the VCO 326.
[0022] The output of the fractional-N divider 328 is applied to the series of delay lines
whose outputs are identified as φ1-φ4. It will be noted that φ1 has no delay elements,
while φ2 has a single delay element, φ3 has two delay elements and φ4 has three delay
elements. The signals φ1-φ4 are provided to control circuitry 339 that has an output
signal fcomp that is applied to an input of the phase detector 322 as shown in FIG.
5. The output fcomp of control circuitry 339 is selectively switched among the inputs
φ1-φ4 according to the output of the accumulator 334 which is provided to the control
circuit 339.
[0023] The on-chip tuning circuit 332 includes four voltage control delay elements D, a
phase detector 336 and a loop filter 338. In the on-chip tuning circuit 332 is implemented
as a delay locked loop. The signal S10 from VCO 326 passes through the four delay
elements (D) of the on-chip tuning circuit 332 and is then provided to the phase detector
336. In addition S10 is also applied to the phase detector 336. The phase detector
336 outputs a signal proportional to the difference in phased between the two input
signals. The output of the phase detector 336 then passes through a loop filter 338.
The output Vc of the loop filter 338 is used as a control voltage for each of the
delay elements D of the on-chip tuning circuit 332. Control voltage Vc is also applied
to each delay element (D) of the tuning circuit 332 is ¼ the period of the frequency
of the input signal to the delay locked loop. The tuning circuit 332 determines or
adjusts the value of the delay elements according to the input frequency.
[0024] FIG. 7 illustrates a timing diagram which illustrates the relationship between various
signals of the synthesizer 116 in relation to the signals of the compensation circuit
330 and on-chip tuning circuit 332. More particularly, FIG. 6b illustrates an example
wherein S10 =4.25(Z). In this example, the divider 328 is programmed for N=4 (via
control word K). The accumulator 334 is programmed (via control word K) to generate
a carry signal at every fourth cycle of the signal Z. Each time interval T is equal
to one cycle of Z. During the time interval T1-T4, S10 has 17 cycles and Z has 4 cycles.
During the time interval T1, the fractional-N divider 328 divides the signal S10 by
4. In the second time period T2 and the third time period T3, the divider 328 again
divides the signal S10 by 4. At the beginning of the fourth time period, T4, the accumulator
334 generates the carry signal which causes the divider to divide by N+1, in this
example N+1=5. Therefore, signal Z is divided by five during T4.
[0025] During the time period T1, the phase compensation circuit 330, more specifically,
control circuit 339, provides the signal φ1 to the phase detector 322. At the beginning
of the time period T1, signal φ1 is in phase with the signal Z. At the beginning of
the time period φ2, the output of the phase compensation circuit 330 switches to φ2.
Switching of the output of the control circuit 339 is controlled by the output of
the accumulator 334, which is clocked by the signal Z. It will be noted that φ2 is
in phase with Z at the output of the phase compensation circuit 330. Similarly, at
the beginning of the time period T3, the output of the phase compensation circuit
330 switches to φ3 and then at the beginning of the time period T4, the output of
the phase compensation circuit 330 switches to φ4. The pattern then repeats. In this
way, compensation for the phase lag of the divider 328 is accomplished.
[0026] FIG. 8 illustrates an alternate embodiment in which provisions are made for selectively
providing feedback to phase comparator 146 via fractional N synthesizer 116 or a frequency
divider 136. In this embodiment a switch 250 is provided for switching between the
output of fractional N synthesizer 116 or frequency divider 136 for input to phase
comparator 146. Switch 250 may be a multiplexor or other logic gating. Further, switch
250 can be permanently set to a desired position during manufacturer or could remain
selectively switchable and controllable via application of an appropriate switching
signal.
OTHER EMBODIMENTS
[0027] The present invention can be implemented in the systems described in U.S. in
U.S. Patent No. 5.874.914 for "GPS Receiver Utilizing A Communication Link" and in
U.S. Patent No. 5.841,396 also, for a "GPS Receiver Utilizing A Communication Link". Here there is disclosed
a global positioning system (GPS) receiver which incorporates a first antenna for
receiving a GPS signal and a downconverter coupled to the first antenna. The first
antenna provides the GPS signals to the downconverter. A local oscillator is coupled
to the downconverter and provides a reference signal to the downconverter to convert
the GPS signals from a first frequency to a second frequency. A second antenna is
provided for receiving a precision carrier frequency signal from a source of the precision
carrier frequency signal. An automatic frequency control (AFC) circuit is coupled
to the second antenna. The AFC circuit provides a second reference signal to the local
oscillator to calibrate the first reference signal from the local oscillator. The
local oscillator is used to acquire the GPS signals.
[0028] There is also described a mobile. GPS receiver having a first antenna for receiving
GPS signals and a downconverter coupled to the first antenna. The first antenna provides
the GPS signals to the downconverter. The downconverter has an input for receiving
a local oscillator signal to convert the GPS signals from a first frequency to a second
frequency. The second antenna is provided for receiving a precision carrier frequency
signal from a source providing the precision carrier frequency signal. An automatic
frequency control (AFC) circuit is coupled to the second antenna. The AFC circuit
is also coupled to the downconverter to provide the local oscillator signal that is
used to acquire the GPS signals.
[0029] Further, the present invention can be implemented in the system described in
U.S. Patent No. 6.002.363 for "Combined GPS Positioning Systems and Communication System Utilizing Shared Circuitry."
U.S. Patent No. 6.002.363 discloses among other things a GPS receiver which includes a GPS antenna for receiving
data representative of GPS signals from at least one satellite: a digital processor
coupled to the GPS antenna, the digital processor processes the data representative
of GPS signals from at least one satellite, including performing a matched filtering
operation to determine a pseudorange based on the data representative of GPS signals.
The digital processor also processes communication signals received through a communication
link, the processing of communication signals comprising demodulation of communication
signals sent to the GPS receiver.
[0030] Additionally, the present invention can be implemented in the system described in
U.S. Patent No. 5,734,966 for a "Wireless Communications System For Adapting to Frequency Drift."
U.S. Patent No. 5.734,966 discloses among other things a frequency tolerant wireless transceiver to receive
and transmit on the wireless signal energy on the same frequency and to automatically
adjust to that frequency, the transceiver includes: an antenna to receive a wireless
data signal, including application data from one or more remote transceivers, at an
actual frequency and issue this signal as a conducted radio frequency (RF) data signal
and to transmit a wireless return signal at the actual frequency to the remote transceiver
in response to a conducted RF return signal: a synthesizer to generate a local oscillator
(LO) signal sequentially in response to a first and a second frequency control signal,
and to generate the RF return signal at the actual frequency in response to the second
frequency control signal and having modulation in response to a digital return signal;
a direct conversion receiver to receive the LO signal to down convert the RF data
signal to a baseband data signal; a frequency discriminator to receive the baseband
data signal, to provide a frequency difference signal for the current frequency difference
between the expected frequency and the actual frequency, and to demodulate the baseband
data signal, and to issue a demodulated data signal; and a microcontroller system
having a receive adjust mode to provide the first frequency control signal predictive
of an expected frequency and to receive the frequency difference signal, having a
receive data mode to process the frequency difference signal, to provide the second
frequency control signal predictive of the actual frequency, and to receive the demodulated
data signal, including the application data, and to provide the digital return signal.
[0031] There is further disclosed a frequency tolerant transceiver to automatically adjust
to receive a radio frequency (RF) data signal on an actual frequency and to transmit
an RF return signal on that same frequency, the transceiver comprising: a synthesizer
for sequentially generating a local oscillator (LO) signal and the RF return signal,
the LO signal sequentially having a first frequency corresponding to an expected frequency
of the RF data signal and a second frequency corresponding to the actual frequency
of the RF data signal in response to a first and a second frequency control signal,
respectively, the RF return signal having the second frequency in response to the
second frequency control signal; and a microcontroller system having a receive adjust
mode for providing the first frequency control signal predictive of the expected frequency
and providing the second frequency control signal for the actual frequency based upon
a frequency difference between the actual frequency and the expected frequency.
[0032] The personal communications device of the invention can be implemented in hardware,
software, firmware, or a combination thereof. In the preferred embodiment(s), the
personal communications device is implemented in software or firmware that is stored
in a memory and that is executed by a suitable instruction execution system. If implemented
in hardware, as in an alternative embodiment, the personal communications device of
the invention can implemented with any or a combination of the following technologies,
which are all well known in the art: a discrete logic circuit(s) having logic gates
for implementing logic functions upon data signals, an application specific integrated
circuit having appropriate logic gates, a programmable gate array(s) (PGA), a fully
programmable gate array (FPGA),
etc.
[0033] It should be emphasized that the above-described embodiments of the invention, particularly,
any "preferred" embodiments, are merely possible examples of implementations, merely
set forth for a clear understanding of the principles of the invention. Many variations
and modifications may be made to the above-described embodiment(s) of the invention
without departing substantially from the scope of the invention as defined by the
following claims.
1. A personal communications device, comprising
a telecommunications unit (200),
a global positioning systems (GPS) receiver (100), and
a clock source (201) for providing a common clock signal (S8) to the global positioning
receiver and the telecommunications unit,
wherein said GPS receiver comprises a voltage controlled oscillator (115) for generating
a system clock signal (Z) based upon the clock source, and a feedback loop for controlling
the voltage controlled oscillator, having a frequency synthesizer (116) for producing
a feedback signal (S7), wherein
said feedback loop further comprises a phase comparator (146, 150) for generating
a control signal (S9) in accordance with the feedback signal (S7) and the common clock
source signal (S8) and a loop filter (145) for processing the control signal (S9)
and outputting it to the voltage controlled oscillator (115), and
said frequency synthesizer (116) comprises
a controlled oscillator (326) having a variable output (S7) controlled by an input
signal,
a fractional-N divider frequency divider (328) coupled to receive the output (S7)
of the controlled oscillator and responsive to the output to provide a frequency divided
output signal, a phase compensation circuit (330) coupled to receive the frequency
divided output signal from the frequency divider, the phase compensation circuit responsive
to the frequency divided output signal to provide an output (f comp) which compensates
for phase lag of the frequency divided output of the frequency divider, and
a phase detector (322) coupled to receive the frequency and to output a signal proportional
to the difference in phase between the two inputs to control the controlled oscillator.
2. The device according to claim 1 wherein the telecommunications device comprises a
CDMA based telecommunications device.
3. The device according to claim 1 or 2 wherein the telecommunications unit (200) comprises
the clock source (201).
4. The device according to one of claims 1 to 3 wherein the clock source comprises a
crystal oscillator.
5. The device of one of claims 1 to 4 wherein the controlled oscillator (326) is a voltage
controlled oscillator.
6. The device of one of claims 1 to 5, further comprising a switch for selectably engaging
the feedback loop to control the voltage controlled oscillator.
7. The device of claim 6 wherein the switch (250) is permanently set during manufacture.
8. A method of clocking GPS receiver operations comprising the steps of
receiving a clock signal (S8) from a clock source from a crystal oscillator (201)
of a telecommunication unit (200),
generating a control voltage for controlling frequency of an oscillator signal generated
by a voltage controlled oscillator (115) based upon a feedback signal (S7) from a
frequency synthesizer (116) of the GPS receiver, and
generating a system clock signal (Z) of a particular frequency in response to the
control voltage, wherein
the feedback signal (S7) is generated by the frequency synthesizer in accordance with
the following steps:
receiving the system clock signal (Z);
frequency dividing the feedback signal by at least two integer values to generate
a fractional-N divider signal over a discrete time period;
generating a variably delayed signal based upon the fractional-N divided signal, wherein
the variably delay compensates for phase delays of the fractional-N divided signal
within the discrete time period; and
comparing the phase of the variably delayed signal and a reference signal and varying
the system clock signal according to difference.
9. The method according to claim 8 wherein the telecommunications unit comprises a CDMA
based telecommunications unit.
1. Persönliche Kommunikationsvorrichtung, mit
einer Telekommunikationseinheit (200),
einem Global-Positioning-System(GPS)-Empfänger (100), und
einer Taktquelle (201) zum Liefern eines gemeinsamen Taktsignals (S8) an den Global-Positioning-Empfänger
und die Telekommunikationseinheit,
bei der der GPS-Empfänger einen spannungsgesteuerten Oszillator (115) zum Erzeugen
eines Systemtaktsignals (Z) basierend auf der Taktquelle, und eine Rückkopplungsschleife
zum Steuern des spannungsgesteuerte Oszillator mit einem Frequenz-Synthesizer (116)
zum Erzeugen eines Rückkopplungssignals (S7) aufweist,
bei der
die Rückkopplungsschleife weiter einen Phasenkomparator (146, 150) zum Erzeugen eines
Steuersignals (S9) entsprechend des Rückkopplungssignals (S7) und des gemeinsamen
Taktquellensignals (S8) und einen Schleifenfilter (145) zum Verarbeiten des Steuersignals
(S9) und zum Ausgeben desselben an den spannungsgesteuerten Oszillator (115) aufweist,
und der Frequenz-Synthesizer (116)
einen gesteuerten Oszillator (326) mit einer variablen Ausgabe (S7), der durch ein
Eingangssignal gesteuert wird,
einen Fractional-N-Teiler-Frequenzteiler (328), der zum Empfangen der Ausgabe (S7)
des gesteuerten Oszillators verbunden ist und auf die Ausgabe mit dem Liefern eines
frequenzgeteilten Ausgangssignals reagiert,
eine Phasenkompensationsschaltung (330), die zum Empfangen des frequenzgeteilten Ausgangssignals
von dem Frequenzteiler verbunden ist, wobei die Phasenkompensationsschaltung auf das
frequenzgeteilte Ausgangssignal mit dem Liefern einer Ausgabe (f comp), die eine Phasenverzögerung
der frequenzgeteilten Ausgabe des Frequenzteilers kompensiert, reagiert, und
einen Phasendetektor (322), der verbunden ist zum Empfangen der Frequenz und zum Ausgeben
eines Signals, das proportional zu der Phasendifferenz zwischen den beiden Eingaben
ist, zum Steuern des gesteuerten Oszillators, aufweist.
2. Vorrichtung nach Anspruch 1, bei der die Telekommunikationsvorrichtung eine CDMA-basierende
Telekommunikationsvorrichtung aufweist.
3. Vorrichtung nach Anspruch 1 oder 2, bei der die Telekommunikationseinheit (200) die
Taktquelle (201) aufweist.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, bei der die Taktquelle einen Kristalloszillator
aufweist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, bei der der gesteuerte Oszillator (326)
ein spannungsgesteuerter Oszillator ist.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, die weiter einen Schalter zum selektiven
Verwenden der Rückkopplungsschleife zum Steuern des spannungsgesteuerten Oszillators
aufweist.
7. Vorrichtung nach Anspruch 6, bei der der Schalter (250) während der Herstellung permanent
eingestellt wird.
8. Verfahren zum Takten von GPS-Empfängerbetriebsabläufen, das die Schritte des Empfangens
eines Taktsignals (S8) von einer Taktquelle von einem Kristalloszillator (201) einer
Telekommunikationseinheit (200),
Erzeugens einer Steuerspannung zum Steuern einer Frequenz eines Oszillatorsignals,
das durch einen spannungsgesteuerten Oszillator (115) des GPS-Empfängers basierend
auf einem Rückkopplungssignal (S7) von einem Frequenz-Synthesizer (116) des GPS-Empfängers
erzeugt wird, und
Erzeugens eines Systemtaktsignals (Z) einer bestimmten Frequenz als Reaktion auf die
Steuerspannung,
aufweist, bei dem
der Frequenz-Synthesizer das Rückkopplungssignal (S7) entsprechend der folgenden Schritte
erzeugt:
Empfangen des Systemtaktsignals (Z);
Frequenzteilen des Rückkopplungssignals durch mindestens zwei ganzzahlige Werte zum
Erzeugen eines Fractional-N-Teilersignals über einen diskreten Zeitraum;
Erzeugen eines variabel verzögerten Signals basierend auf dem Fractional-N-geteilten
Signal, bei dem die variable Verzögerung Phasenverzögerungen des Fractional-N-geteilten
Signals innerhalb des diskreten Zeitraums kompensiert; und
Vergleichen der Phase des variabel verzögerten Signals und eines Referenzsignals und
Variieren des Systemtaktsignals entsprechend der Differenz.
9. Verfahren nach Anspruch 8, bei dem die Telekommunikationseinheit eine CDMAbasierte
Telekommunikationseinheit aufweist.
1. Dispositif de communication personnel, comprenant
une unité de télécommunication (200),
un récepteur de systèmes de positionnement par satellite (GPS) (100), et
un générateur de signaux d'horloge (201) pour fournir un signal d'horloge commun (S8)
au récepteur de positionnement par satellite et à l'unité de télécommunication,
dans lequel ledit récepteur GPS comprend un oscillateur à commande par tension (115)
pour générer un signal d'horloge système (Z) basé sur le générateur de signaux d'horloge,
et une boucle de réaction servant à commander l'oscillateur à commande par tension
ayant un synthétiseur de fréquence (116) pour produire un signal de réaction (S7),
dans lequel
ladite boucle de réaction comprend en outre un comparateur de phase (146, 150) pour
générer un signal de commande (S9) conforme au signal de réaction (57) et au signal
commun du générateur de signaux d'horloge (S8), et un filtre à boucle (145) pour traiter
le signal de commande (S9) et le transmettre vers l'oscillateur à commande par tension
(115), et
ledit synthétiseur de fréquence (116) comprend
un oscillateur commandé (326) ayant une sortie variable (57) commandée par un signal
d'entrée,
un diviseur de fréquence de diviseur fractionnel N (328) couplé pour recevoir le signal
de sortie (57) de l'oscillateur commandé et réactif au signal de sortie pour fournir
un signal de sortie de fréquence divisée, un circuit de compensation de phase (330)
couplé pour recevoir le signal de sortie de fréquence divisée provenant du diviseur
de fréquence, le circuit de compensation de phase étant réactif au signal de sortie
de fréquence divisée pour fournir un signal de sortie (f comp) qui compense un retard
de phase du signal de sortie de fréquence divisée du diviseur de fréquence, et
un détecteur de phase (322) couplé pour recevoir la fréquence et pour émettre un signal
proportionnel à la différence de phase entre les deux signaux d'entrée pour commander
l'oscillateur commandé.
2. Dispositif selon la revendication 1, dans lequel le dispositif de télécommunication
comprend un dispositif de télécommunication basé sur le CDMA.
3. Dispositif selon la revendication 1 ou 2, dans lequel l'unité de télécommunication
(200) comprend le générateur de signaux d'horloge (201).
4. Dispositif selon l'une des revendications 1 à 3, dans lequel le générateur de signaux
d'horloge comprend un oscillateur à quartz.
5. Dispositif selon l'une des revendications 1 à 4, dans lequel l'oscillateur commandé
(326) est un oscillateur à commande par tension.
6. Dispositif selon l'une des revendications 1 à 5, comprenant en outre un interrupteur
servant à enclencher de manière sélective la boucle de réaction pour commander l'oscillateur
à commande par tension.
7. Dispositif selon la revendication 6, dans lequel l'interrupteur (250) est fixé de
façon permanente lors de la fabrication.
8. Procédé permettant de lancer au rythme de l'horloge les opérations du récepteur GPS
comprenant l'étape consistant à
recevoir un signal d'horloge (S8) d'un générateur de signaux d'horloge depuis un oscillateur
à quartz (201) d'une unité de télécommunication (200)
générer une tension de commande pour commander la fréquence d'un signal d'oscillateur
généré par un oscillateur à commande par tension (115) du récepteur GPS basée sur
un signal de réaction (S7) depuis un synthétiseur de fréquence (116) du récepteur
GPS, et
générer un signal d'horloge système (Z) d'une fréquence précise en réponse à la tension
de commande, dans lequel
le synthétiseur de fréquence génére le signal de réaction (S7) conformément aux étapes
suivantes :
réception du signal d'horloge système (Z) ;
division de la fréquence du signal de réaction par au moins deux valeurs entières
pour générer un signal de diviseur fractionnel-N sur une période distincte ;
génération d'un signal retardé variablement basé sur le signal divisé fractionnel-N,
dans lequel le retard variable compense les temps de propagation de phase du signal
divisé fractionnel-N au cours de la période distincte ; et
comparaison de la phase du signal retardé variablement à celle d'un signal de référence
et variation du signal d'horloge système selon la différence.
9. Procédé selon la revendication 8, dans lequel l'unité de télécommunication comprend
une unité de télécommunication basée sur le CDMA.