
Printed by Jouve, 75001 PARIS (FR)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(19)

E
P

1 
28

0 
06

2
A

2
*EP001280062A2*
(11) EP 1 280 062 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
29.01.2003 Bulletin 2003/05

(21) Application number: 02016219.4

(22) Date of filing: 18.07.2002

(51) Int Cl.7: G06F 12/08

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
IE IT LI LU MC NL PT SE SK TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 27.07.2001 US 917432

(71) Applicant: Broadcom Corporation
Irvine, California 92618 (US)

(72) Inventors:
• Rowland, Joseph B.

Santa Clara, California 95054 (US)
• Carlson, Michael D.

Mountain View, California 94043 (US)

(74) Representative: Grünecker, Kinkeldey,
Stockmair & Schwanhäusser Anwaltssozietät
Maximilianstrasse 58
80538 München (DE)

(54) Read exclusive transaction for fast, simple invalidate

(57) An agent, in response to a write to a shared
block, is configured to initiate a read exclusive transac-
tion on an interface on which the agent communicates.
Additionally, the agent is configured to indicate, to a re-
sponding agent or agents on the interface, that a data
transfer is not required from the responding agent or
agents in response to the read exclusive transaction. In
one embodiment, the agent indicates to the responding

agents that a data transfer is not required in a response
phase of the transaction. Specifically, the agent may re-
spond in such a way that the agent indicates that it will
provide the data (i.e. that the agent will provide the data
to itself). For example, the agent may respond with an
exclusive ownership indication. On the interface for
such an embodiment, an exclusive ownership response
may require that the agent having exclusive access re-
spond with the data.



EP 1 280 062 A2

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] This invention is related to the field of caches
and, more particularly, to the handling of stores to
shared cache lines.

2. Description of the Related Art

[0002] A bus is frequently used in systems to inter-
connect a variety of devices included in the system.
Generally, one or more devices are connected to the
bus, and use the bus to communicate with other devices
connected to the bus. Other systems may use other
types of interconnect (e.g. distributed packet-based in-
terfaces, etc.) for communicating between devices. As
used herein, the term "agent" refers to a device which
is capable of communicating on an interface. The agent
may be a requesting agent if the agent is capable of in-
itiating transactions on the interface and may be a re-
sponding agent if the agent is capable of responding to
a transaction initiated by a requesting agent. A given
agent may be capable of being both a requesting agent
and a responding agent. Additionally, a "transaction" is
a communication on the interface. The transaction may
include an address transfer and optionally a data trans-
fer. Transactions may be read transactions (transfers of
data from the responding agent to the requesting agent)
and write transactions (transfers of data from the re-
questing agent to the responding agent). Transactions
may further include various coherency commands
which may or may not involve a transfer of data.
[0003] Frequently, transactions are initiated by agents
to access memory. Since agents may cache data ac-
cessed from memory (to decrease the latency of subse-
quent accesses to the data), a coherency scheme may
be used to ensure that the various copies of data in
caches and the copy in memory remain consistent in
view of updates to the data. Generally, each block in the
cache may have a coherency state associated with it.
The coherency state is an indication of the state of the
block with respect to the corresponding data in main
memory, as well as an indication of whether or not other
copies are stored in other caches within the system. A
variety of coherency schemes exist, many of which may
include a shared coherency state. For example, the pop-
ular MESI (Modified, Exclusive, Shared, Invalid) and
MOESI (Modified, Owned, Exclusive, Shared, Invalid)
schemes (and various simplified forms thereof) include
a shared state. The shared state indicates that the cor-
responding block is valid and may by cached in at least
one other cache.
[0004] When an agent attempts to write a block for
which the coherency state is shared (a "shared cache
block" or a "shared block" herein), the other cached

blocks are typically invalidated to ensure that data which
does not reflect the write is not subsequently used by
any agent. There are several ways to accomplish the
invalidation. On some interfaces, an explicit invalidate
command is used. Receivers of the invalidate command
invalidate the block indicated by the address included
in the invalidate command. Unfortunately, this solution
requires a command encoding on the interface to be
dedicated to the invalidate command, utilizing an encod-
ing which could be used for some other transaction type
and requiring logic in the receiver of the invalidate com-
mand to decode the command and take appropriate ac-
tion. Another solution is to invalidate the block in the
agent attempting to write the block and then for the
agent to read the block with a read exclusive command.
The read exclusive command causes other copies of the
block to be invalidated and the block is returned to the
agent in a data phase of the read exclusive command.
Unfortunately, this solution may increase the latency of
the write, since the data must be returned on the inter-
face before the write can be completed. Furthermore,
the data phase may be delayed due to competition for
interface bandwidth (e.g. with the data phases of earlier
transactions) or due to competition for memory band-
width to read the data block from memory.

SUMMARY OF THE INVENTION

[0005] An agent is described which, in response to a
write to a shared block, is configured to initiate a read
exclusive transaction on an interface on which the agent
communicates. Additionally, the agent is configured to
indicate, to a responding agent or agents on the inter-
face, that a data transfer is not required from the re-
sponding agent or agents in response to the read exclu-
sive transaction. In one embodiment, a separate encod-
ing/logic for an invalidate transaction may be avoided,
as may the complexities of handling invalidate transac-
tions for writes to shared blocks (e.g. the underlying
block being invalidated and thus having to change the
invalidate transaction to another type of transaction).
Additionally, latency related to the responding agent or
agents (e.g. memory controllers, L2 caches, etc.) may
not affect completion of the write to the shared block, in
one embodiment.
[0006] In one embodiment, the agent indicates to the
responding agents that a data transfer is not required in
a response phase of the transaction. Specifically, the
agent may respond in such a way that the agent indi-
cates that it will provide the data (i.e. that the agent will
provide the data to itself). For example, the agent may
respond with an exclusive ownership indication. On the
interface for such an embodiment, an exclusive owner-
ship response may require that the agent having exclu-
sive access respond with the data.
[0007] Broadly speaking, an agent is contemplated.
The agent comprises a cache and an interface circuit.
The cache is configured to store at least a first cache

1 2



EP 1 280 062 A2

3

5

10

15

20

25

30

35

40

45

50

55

block and a first coherency state corresponding to the
first cache block. The interface circuit is configured to
communicate on an interface with other agents, wherein
the interface circuit is configured to initiate a read exclu-
sive transaction on the interface in response to a write
which hits the first cache block and the first coherency
state is shared. The interface circuit is configured, dur-
ing the read exclusive transaction, to indicate to one or
more responding agents of the read exclusive transac-
tion that a data transfer is not required for the read ex-
clusive transaction.
[0008] Additionally, a method is contemplated. A write
hit to a first cache block is detected in a cache within
first agent. A first coherency state corresponding to the
first cache block is shared. A read exclusive transaction
is initiated on an interface from the first agent in re-
sponse to the detecting. During the read exclusive trans-
action, an indication is provided to one or more respond-
ing agents of the transaction that a data transfer is not
required for the read exclusive transaction.
[0009] Moreover, an agent is contemplated. The
agent comprises a cache configured to store at least a
first cache block and a first coherency state correspond-
ing to the first cache block, and an interface circuit. The
interface circuit is configured to communicate on an in-
terface with other agents, and is configured to initiate a
read exclusive transaction on the interface in response
to a write which hits the first cache block and the first
coherency state is shared. The interface circuit is con-
figured, during a response phase of the read exclusive
transaction, to provide a first response indicating that
the agent will provide data for the read exclusive trans-
action.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The following detailed description makes ref-
erence to the accompanying drawings, which are now
briefly described.

Fig. 1 is a block diagram of one embodiment of a
system.

Fig. 2 is a block diagram of one embodiment of an
agent.

Fig. 3 is a flowchart illustrating operation of one em-
bodiment of the agent shown in Fig. 2 during a
cache access.

Fig. 4 is a flowchart illustrating operation of one em-
bodiment of the agent shown in Fig. 2 during a re-
sponse phase of a transaction.

Fig. 5 is a timing diagram illustrating one embodi-
ment of a read exclusive transaction.

Fig. 6 is a timing diagram illustrating a second em-

bodiment of a read exclusive transaction.

Fig. 7 is a block diagram of one embodiment of a
carrier medium.

[0011] While the invention is susceptible to various
modifications and alternative forms, specific embodi-
ments thereof are shown by way of example in the draw-
ings and will herein be described in detail. It should be
understood, however, that the drawings and detailed de-
scription thereto are not intended to limit the invention
to the particular form disclosed, but on the contrary, the
intention is to cover all modifications, equivalents and
alternatives falling within the spirit and scope of the
present invention as defined by the appended claims.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

System Overview

[0012] Turning now to Fig. 1, a block diagram of one
embodiment of a system 10 is shown. Other embodi-
ments are possible and contemplated. In the embodi-
ment of Fig. 1, system 10 includes processors 12A-12B,
an L2 cache 14, a memory controller 16, a pair of input/
output (I/O) bridges 20A-20B, and I/O interfaces 22A-
22D. System 10 may include a bus 24 for interconnect-
ing the various components of system 10. More partic-
ularly, as illustrated in Fig. 1, bus 24 may include arbi-
tration lines 28, an address bus 30, response lines 32,
a data bus 34, and a clock line or lines 36. As illustrated
in Fig. 1, each of processors 12A-12B, L2 cache 14,
memory controller 16, and I/O bridges 20A-20B are cou-
pled to bus 24. Thus, each of processors 12A-12B, L2
cache 14, memory controller 16, and I/O bridges 20A-
20B may be an agent on bus 24 for the illustrated em-
bodiment. More particularly, each agent may be coupled
to clock line(s) 36 and to the conductors within bus 24
that carry signals which that agent may sample and/or
drive. I/O bridge 20A is coupled to I/O interfaces 22A-
22B, and I/O bridge 20B is coupled to I/O interfaces
22C-22D. L2 cache 14 is coupled to memory controller
16, which is further coupled to a memory 26.
[0013] Bus 24 may be a split transaction bus in the
illustrated embodiment. A split transaction bus splits the
address and data portions of each transaction and al-
lows the address portion (referred to as the address
phase) and the data portion (referred to as the data
phase) to proceed independently. In the illustrated em-
bodiment, the address bus 30 and data bus 34 are in-
dependently arbitrated for (using signals on arbitration
lines 28). Each transaction including both address and
data thus includes an arbitration for the address bus 30,
an address phase on the address bus 30, an arbitration
for the data bus 34, and a data phase on the data bus
34. Additionally, coherent transactions may include a re-
sponse phase on response lines 32 for communicating

3 4



EP 1 280 062 A2

4

5

10

15

20

25

30

35

40

45

50

55

coherency information after the address phase. The bus
clock signal CLK on clock line(s) 36 defines the clock
cycle for bus 24, or may be a multiple or ratio thereof.
[0014] Bus 24 may be pipelined. Bus 24 may employ
any suitable signalling technique. For example, in one
embodiment, differential signalling may be used for high
speed signal transmission. Other embodiments may
employ any other signalling technique (e.g. TTL, CMOS,
GTL, HSTL, etc.).
[0015] Processors 12A-12B may be designed to any
instruction set architecture, and may execute programs
written to that instruction set architecture. Exemplary in-
struction set architectures may include the MIPS in-
struction set architecture (including the MIPS-3D and
MIPS MDMX application specific extensions), the IA-32
or IA-64 instruction set architectures developed by Intel
Corp., the PowerPC instruction set architecture, the Al-
pha instruction set architecture, the ARM instruction set
architecture, or any other instruction set architecture.
[0016] L2 cache 14 is a high speed cache memory.
L2 cache 14 is referred to as "L2" since processors 12A-
12B may employ internal level 1 ("L1") caches. If L1
caches are not included in processors 12A-12B, L2
cache 14 may be an L1 cache. Furthermore, if multiple
levels of caching are included in processors 12A-12B,
L2 cache 14 may be an outer level cache than L2. L2
cache 14 may employ any organization, including direct
mapped, set associative, and fully associative organi-
zations. In one particular implementation, L2 cache 14
may be a 512 kilobyte, 4 way set associative cache hav-
ing 32 byte cache lines. A set associative cache is a
cache arranged into multiple sets, each set comprising
two or more entries. A portion of the address (the "in-
dex") is used to select one of the sets (i.e. each encoding
of the index selects a different set). The entries in the
selected set are eligible to store the cache line accessed
by the address. Each of the entries within the set is re-
ferred to as a "way" of the set. The portion of the address
remaining after removing the index (and the offset within
the cache line) is referred to as the "tag", and is stored
in each entry to identify the cache line in that entry. The
stored tags are compared to the corresponding tag por-
tion of the address of a memory transaction to determine
if the memory transaction hits or misses in the cache,
and is used to select the way in which the hit is detected
(if a hit is detected).
[0017] Memory controller 16 is configured to access
memory 26 in response to memory transactions re-
ceived on bus 24. Memory controller 16 receives a hit
signal from L2 cache 14, and if a hit is detected in L2
cache 14 for a memory transaction, memory controller
16 does not respond to that memory transaction. If a
miss is detected by L2 cache 14, or the memory trans-
action is non-cacheable, memory controller 16 may ac-
cess memory 26 to perform the read or write operation.
Memory controller 16 may be designed to access any
of a variety of types of memory. For example, memory
controller 16 may be designed for synchronous dynamic

random access memory (SDRAM), and more particu-
larly double data rate (DDR) SDRAM. Alternatively,
memory controller 16 may be designed for DRAM, Ram-
bus DRAM (RDRAM), SRAM, or any other suitable
memory device.
[0018] I/O bridges 20A-20B link one or more I/O inter-
faces (e.g. I/O interfaces 22A-22B for I/O bridge 20A
and I/O interfaces 22C-22D for I/O bridge 20B) to bus
24. I/O bridges 20A-20B may serve to reduce the elec-
trical loading on bus 24 if more than one I/O interface
22A-22B is bridged by that I/O bridge. Generally, I/O
bridge 20A performs transactions on bus 24 on behalf
of I/O interfaces 22A-22B and relays transactions tar-
geted at an I/O interface 22A-22B from bus 24 to that I/
O interface 22A-22B. Similarly, I/O bridge 20B generally
performs transactions on bus 24 on behalf of I/O inter-
faces 22C-22D and relays transactions targeted at an I/
O interface 22C-22D from bus 24 to that I/O interface
22C-22D. In one implementation, I/O bridge 20A may
be a bridge to a PCI interface (e.g. I/O interface 22A)
and to a Lightning Data Transport (LDT) I/O fabric (also
known as HyperTransport) developed by Advanced Mi-
cro Devices, Inc. (e.g. I/O interface 22B). Other I/O in-
terfaces may be bridged by I/O bridge 20B. Other im-
plementations may bridge any combination of I/O inter-
faces using any combination of I/O bridges. I/O interfac-
es 22A-22D may include one or more serial interfaces,
Personal Computer Memory Card International Associ-
ation (PCMCIA) interfaces, Ethernet interfaces (e.g.
media access control level interfaces), Peripheral Com-
ponent Interconnect (PCI) interfaces, LDT interfaces,
etc.
[0019] It is noted that system 10 (and more particular-
ly processors 12A-12B, L2 cache 14, memory controller
16, I/O interfaces 22A-22D, I/O bridges 20A-20B and
bus 24) may be integrated onto a single integrated cir-
cuit as a system on a chip configuration. In another con-
figuration, memory 26 may be integrated as well. Alter-
natively, one or more of the components may be imple-
mented as separate integrated circuits, or all compo-
nents may be separate integrated circuits, as desired.
Any level of integration may be used.
[0020] It is noted that, while the illustrated embodi-
ment employs a split transaction bus with separate ar-
bitration for the address and data buses, other embod-
iments may employ non-split transaction buses arbitrat-
ed with a single arbitration for address and data and/or
a split transaction bus in which the data bus is not ex-
plicitly arbitrated. Either a central arbitration scheme or
a distributed arbitration scheme may be used, according
to design choice.
[0021] It is noted that, while Fig. 1 illustrates I/O inter-
faces 22A-22D coupled through I/O bridges 20A-20B to
bus 24, other embodiments may include one or more I/
O interfaces directly coupled to bus 24, if desired. Fur-
thermore, embodiments in which one processor 12A or
more than two processors are included are contemplat-
ed.

5 6



EP 1 280 062 A2

5

5

10

15

20

25

30

35

40

45

50

55

Write Hit Shared Handling

[0022] Turning next to Fig. 2, a block diagram of a por-
tion of one embodiment of an agent 40 is shown. Other
embodiments are possible and contemplated. In the
embodiment of Fig. 2, the agent 40 includes a data
cache 42, a data cache control circuit 44, a set of request
buffers 46, a set of write buffers 48, a bus control circuit
50, an address in buffer 52, an address out buffer 54, a
data in buffer 56, and a data out buffer 58. The data
cache control circuit 44 is coupled to receive a read/write
(R/W) signal and other control signals (DCtl), and is cou-
pled to the request buffers 46, the data cache 42, and
the bus control circuit 50. The data cache 42 is further
coupled to receive an address and is coupled to the data
in buffer 56 and the write buffers 48. The write buffers
48 and the request buffers 46 are both coupled to the
bus control circuit 50. The request buffers 46 are cou-
pled to the address out buffer 54. The write buffers are
coupled to the data out buffer 58. The address in buffer
52 and the address out buffer 54 are coupled to the ad-
dress lines 30A (Addr[39:5]), which are part of the ad-
dress bus 30. The data in buffer 56 and the data out
buffer 58 are both coupled to the data lines 34A (Data
[255:0]), which are part of the data bus 34. The bus con-
trol circuit 50 is coupled to control lines (which may in-
clude both control lines for the address bus 30 and con-
trol lines for the data bus 34) (Ctl -- reference numeral
60) and is further coupled to the arbitration lines 28 and
the response lines 32.
[0023] Generally, the agent 40 is configured to per-
form a read exclusive transaction on the bus 24 in re-
sponse to attempting a write to a shared cache block in
the data cache 42. Additionally, the agent 40 is config-
ured to indicate, to one or more responding agents for
the read exclusive transaction, that a data transfer for
the read exclusive transaction is not required. For ex-
ample, in one embodiment, during the response phase
of the transaction, the agent 40 is configured to provide
a response indicating that agent 40 will supply the data
for the transaction. In other words, the agent 40 indi-
cates that it will supply the data to itself. The agent 40
may or may not actually perform a data transfer on the
bus 24, depending on design choice. Another embodi-
ment may make the performance or non-performance
of the data transfer programmable via a configuration
register, a tie-up or tie-down pin, etc. In another embod-
iment, the agent 40 may signal the responding agent
directly (e.g. the memory controller 16 and/or L2 cache
14) during the transaction that a data transfer is not re-
quired. Such a signalling may occur at any time during
the transaction (e.g. during the address phase, during
the response phase) or throughout the transaction, as
desired.
[0024] Since a read exclusive transaction (which may
also be used for a write miss in data cache 42 or for
other types of cache accesses where exclusive access
to the cache block may be desirable) is used instead of

an explicit invalidate-only transaction, a command en-
coding during the address phase for the invalidate trans-
action may be avoided. Agents which snoop the read
exclusive transaction invalidate any cached copies of
the affected cache block, similar to the response to an
invalidate transaction. Additionally, complexities related
to using an invalidate transaction for the write hit to a
shared cache block may be avoided. For example, if an-
other transaction invalidates the shared cache block be-
fore the invalidate transaction can be performed, the
transaction must be changed to a read exclusive trans-
action.
[0025] Furthermore, by providing the data transfer of
the read exclusive transaction from the initiating agent,
latency caused by competing with other agents for
memory bandwidth in the memory controller 16 (and
memory 26) and/or in the L2 cache 14 may be alleviated.
In embodiments in which data transfers can be per-
formed out of order with respect to address transfers,
the agent 40 may attempt to start the data phase of the
read exclusive transaction rapidly, thus reducing the
overall latency of the transaction. Furthermore, embod-
iments which do not actually perform the data transfer
may further eliminate the latency of competing for the
data bus 34 (and may update the shared cache block
with the write data at the completion of the response
phase). Viewed in another way, the bandwidth on the
data bus 34 may be reduced by the lack of a data phase
for the read exclusive transaction performed in re-
sponse to a write hit to a shared cache block. However,
debugging of the system 10 may be easier if the data
transfer is performed (thus allowing address phases and
data phases to be matched up). Furthermore, perform-
ing the data transfer (having a data phase) may reduce
the likelihood of unusual bugs occurring due to an agent
expecting a data transfer for a read exclusive transac-
tion.
[0026] The operation of the embodiment of the agent
40 illustrated in Fig. 2 will now be described in more de-
tail. Generally, agent circuitry (not shown) may generate
addresses of memory locations to be accessed (read or
written). For example, a processor agent such as proc-
essors 12A-12B shown in Fig. 1 may include circuitry to
execute load and store instructions. Load instructions
cause reads of memory, and store instructions cause
writes to memory. The writes may be carried out via a
read transaction (e.g. a read exclusive transaction) and
a write to the cache block in cache. Other agents may
generate reads and writes due to the operation of their
circuitry as well. For example, an agent performing
graphics operations may read or write graphics data in
memory. The I/O bridges 20A-20B may include caches
and the read/write operations may be generated by I/O
interfaces/devices coupled thereto.
[0027] The address of the memory location is provid-
ed by the agent circuitry as an input to the data cache
42 (and the request buffers 46). Additionally, the read/
write nature of the access is provided on a R/W line and

7 8



EP 1 280 062 A2

6

5

10

15

20

25

30

35

40

45

50

55

other control information (e.g. the size of the access,
etc.) may be provided on the DCt1 lines by the agent
circuitry to the data cache control circuit 44. The data
cache 42 accesses the cache storage locations indicat-
ed by the address (e.g. one storage location indexed by
a portion of the address in a direct mapped configura-
tion, N storage locations indexed by the portion of the
address for an N way set associative configuration, or
all storage locations for a fully associative configuration)
and determines whether or not the address hits in the
data cache 42. The data cache 42 provides the coher-
ency state of the cache block to the data cache control
circuit 44.
[0028] Depending on the type of access and the co-
herency state, the data cache control circuit 44 may gen-
erate a request for a transaction on the bus 24 (allocat-
ing a request buffer in the request buffers 46 to store the
request until selected by the bus control circuit 50 for
transfer on the bus 24) and/or cause the data cache 42
to supply data for the access or capture the data into the
affected cache block. For example, for read accesses
which hit in the data cache 42, the data cache control
circuit 44 may signal the data cache 42 to forward the
data to the agent circuitry. For a read miss or a write
miss, a cache block may be evicted (and may be stored
in the write buffers 48 for writing back to the memory 26
if the cache block has been modified in the data cache
42) and a request for a read or read exclusive transac-
tion may be queued in the request buffers 46. For a write
hit shared, a request for the read exclusive transaction
may be queued and, in one embodiment, the shared
block may be evicted from the data cache 42 into the
write buffers 48. For a write hit exclusive or modified,
the data provided by the agent circuitry may be captured
into the affected cache block.
[0029] The data output of the data cache 42 is shown
coupled to the write buffers 48 and is also shown for-
warding out to the agent circuitry. The data output may
be the entire cache block, in which case there may be
byte selection circuitry between the agent circuitry and
the data cache 42 to select the byte or bytes requested
by the access. Alternatively, the data output may be less
than a cache block (e.g. an aligned set of four bytes,
eight bytes, etc.), in which case multiple reads may be
performed when a cache block is evicted from the data
cache 42 into the write buffers 48.
[0030] If a transaction is to be requested in response
to a cache access, the data cache control circuit 44 may
allocate one of the request buffers 46 for the request
using the allocate control signal or signals illustrated in
Fig. 1. Additionally, the data cache control circuit 44 may
provide a request type (ReqType) indicating the type of
transaction to be performed. The ReqType may include
an indication, for the read exclusive transaction, of
whether or not a write hit to a shared cache block caused
the request for the read exclusive transaction. The indi-
cation may be used by the bus control circuit 50 to de-
termine whether or not a response indicating that the

agent 40 will supply the data is to be provided in the
response phase of the read exclusive transaction. It is
noted that, in such an embodiment, circuitry may be in-
cluded to snoop the request buffers 46. If an invalidate
transaction occurs which invalidates the shared cache
block corresponding to a read exclusive transaction, the
indication in the ReqType may be changed by such cir-
cuitry.
[0031] If a cache block is to be evicted in response to
a cache access and written back to memory (or supplied
as data in the read exclusive transaction corresponding
to a write hit to a shared block), the cache block is stored
into one of the write buffers 48. The address of the evict-
ed cache block may be queued in the request buffers
46, or may be stored in the write buffers 48 along with
the evicted cache block.
[0032] The bus control circuit 50 scans the requests
queued in the request buffers 46 and arbitrates for the
address bus 30 using arbitration lines 28 if a request is
ready for transmission on the bus 24. The bus control
circuit 50 may select the address of the transaction into
the address out buffer 54 and, in response to winning
the arbitration, may cause the address to be driven of
the address lines 30A during the address phase of the
transaction. Additionally, the bus control circuit 50 may
drive the address control signals on control lines 60 (in-
cluding, e.g. the type of transaction which may include
read, read exclusive, write, etc.). During the response
phase of the transaction, the bus control circuit 50 may
sample the response lines 32 to determine the coher-
ency response from the other agents. Additionally, for
read exclusive transactions resulting from a write hit to
a shared cache block, the bus control circuit 50 may
drive a response indicating that the agent 40 will supply
the cache block.
[0033] The data phase of the transaction may be han-
dled in various ways based on the transaction being per-
formed. For reads (including read exclusives for miss-
es), the bus control circuit 50 may monitor the control
signals on the control lines 60 for an indication that the
data phase is occurring. In one embodiment, for exam-
ple, tagging may be used to link address phases and
corresponding data phases. The bus control circuit 50
may assign a tag and drive the tag during the address
phase, and then detect the tag during the data phase to
receive the data transfer. Other embodiments may use
other mechanisms (e.g. in order data transfers, etc.).
For writes (and read exclusives for write hits to a shared
block, for embodiments in which the data phase is ac-
tually performed), the bus control circuit 50 may arbitrate
for the data bus 34 (using the arbitration lines 28). Ad-
ditionally, the bus control circuit 50 may read the data
from the corresponding write buffer 48 into the data out
buffer 58. In response to winning the arbitration, the data
may be driven on the data lines 34A and the bus control
circuit 50 may further drive control signals on the control
lines 60 which correspond to the data bus 34 to indicate
that the data is being transferred.

9 10



EP 1 280 062 A2

7

5

10

15

20

25

30

35

40

45

50

55

[0034] The data may be sampled from the data lines
34A into the data in buffer 56, which is coupled to pro-
vide the data to the data cache 42. In response to de-
tecting that the read data is provided (including, in one
embodiment, the read data driven by the agent 40 for
the read exclusive transaction performed in response to
the agent 40 performing a write hit to a shared block),
the bus control circuit 50 may signal the data cache con-
trol circuit 44 that the fill data has arrived (Fill in Fig. 2)
and the data may stored into the data cache 42.
[0035] The bus control circuit 50 may be responsible
for snooping transactions performed by other agents on
the bus 24. The address in buffer 52 may sample the
address lines 30A, and the bus control circuit may detect
that an address transfer is occurring on the control lines
60 which correspond to the address bus 30. The bus
control circuit 50 may then snoop the data cache 42 (or
a separate copy of the tags of the cache blocks stored
in the data cache 42), the write buffers 48, etc. to deter-
mine if a coherency state change is to be performed in
response to the snooped transaction. Any coherency
protocol which includes a shared state may be used. A
cache block is the unit of allocation/deallocation of
space in the cache, and may be used interchangeably
with the term cache line.
[0036] In addition to performing snooping for coher-
ency state changes, the bus control circuit 50 may fur-
ther snoop to detect a read exclusive request queued in
response to a write to a shared cache block. If the
snooped transaction causes the shared cache block to
be invalidated (e.g. a snooped read exclusive transac-
tion), the indication with the read exclusive request that
indicates that the bus control circuit 50 is to provide a
response in the response phase indicating that the
agent 40 will supply the data may be changed so that
the read exclusive transaction is performed normally (i.
e. with another agent providing the data).
[0037] Generally, the request buffers 46 may be one
or more request buffers, according to design choice.
Each request buffer may store the address of a request,
the type of transaction requested, and any other infor-
mation that may be useful in various embodiments. The
request buffers may be divided into various types (e.g.
certain buffers may be used for cache fill requests, oth-
ers for evictions of modified cache blocks (or cache
blocks corresponding to write hits to a shared cache
block) etc.). Similarly, the write buffers 48 may be one
or more write buffers. Each write buffer may be capable
of storing a cache block to be written back to memory
(or to be provided for storage in the data cache 42, in
the case of a write hit to a shared cache block).
[0038] The data cache 42 may generally be any type
of cache. The data cache 42 may be capable of storing
one or more cache blocks and corresponding coherency
states. Any organization may be used (e.g. direct-
mapped, set associative, fully associative, etc.). The da-
ta cache 42 may include storage for the cache blocks,
tags, and coherency state, as well as one or more com-

parators for comparing the input address to the tags to
detect a hit or miss in the data cache 42.
[0039] Generally, a write to a cache block is an access
performed to change the value of at least one byte within
the cache block. For example, in processor agents, the
write may be the result of a store instruction executed
by the processor agent. As another example, for I/O
bridges, the write may be the result of the operation of
an I/O interface or a device connected to the interface.
[0040] While the embodiment shown in Fig. 2 commu-
nicates via a bus 24, generally an agent may communi-
cate using any interface. An interface may be a bus, a
packet based distributed interface, or any other commu-
nication mechanism. Furthermore, a "response phase"
is a portion of a transaction in which the coherency pro-
tocol is enforced through the exchange of information
between the coherent agents. In various embodiments,
a coherent agent may indicate, during the response
phase, the coherency state that should be assigned by
the receiving agent of the cache block transferred during
the transaction or, alternatively, the state that the coher-
ent agent will assign to its own cached copy of the af-
fected cache block as a result of the transaction. Based
on one or more of the type of transaction, the current
coherency state, and the information supplied in the re-
sponse phase, each coherent agent may ensure that an
appropriate coherency state is assigned to any copy of
the affected cache block in that coherent agent. If the
interface is a bus, for example, the response phase may
occur on one or more response lines 32 at a set interval
after the address transfer for the transaction. The inter-
val may be fixed or programmable, as desired. In a dis-
tributed packet-based system, the response phase may
include one or more packets from each coherent agent
(or those coherent agents which have cached copies of
the affected cache block).
[0041] In one specific implementation of the system
10 shown in Fig. 1, the response lines 32 may comprise
a separate shared line and a separate exclusive line for
each agent on the bus 24. A shared signal on the shared
line may be asserted to indicate that the requesting
agent should receive the block in the shared state (e.g.
the corresponding agent is maintaining a shared copy
of the cache block). An exclusive signal on the exclusive
line may indicate that the corresponding agent has a
copy of the cache block in an exclusive state (e.g. a
modified state or a non-modified but exclusive state).
Assertion of the exclusive signal by an agent may cause
the L2 cache 14 and the memory controller 16 to not
supply data for the transaction. The agent signalling ex-
clusive supplies the copy. In such an embodiment, the
agent 40 may assert its exclusive signal during the re-
sponse phase of its own read exclusive transaction, if
the read exclusive transaction is performed in response
to a write hit to a shared cache block. However, other
embodiments may employ other responses to indicate
that a given agent will supply the data. For example, a
separate signal from signals indicating the coherency

11 12



EP 1 280 062 A2

8

5

10

15

20

25

30

35

40

45

50

55

state may be used to indicate that the agent will supply
the data. Any indication may be used, in various embod-
iments.
[0042] As used herein, a read exclusive transaction is
a read transaction which is used by the requesting agent
to request that other cached copies of the affected block
be invalidated in response to the transaction (and thus
the requesting agent has the only copy of the affected
block after the transaction occurs). Receiving agents of
the read exclusive transaction may provide a copy of the
affected cache block (e.g. by writing back to memory or
by supplying the cache block directly) if the cache block
has been modified by the receiver, but the copy is inval-
idated within the receiving agent in either case.
[0043] It is noted that, in one embodiment, the data
lines 34A illustrated in Fig. 2 may be capable of trans-
ferring an entire cache block in one transfer (e.g. a
cache block may be 256 bits, or 64 bytes, in such an
embodiment). However, other embodiments may use
several transfers across the data lines to transfer a
cache block. More or fewer data lines may be provided
on the data bus for various embodiments. Similarly, the
size of the address as illustrated in Fig. 2 may be varied.
[0044] It is noted that, while certain embodiments
above evict the shared cache block from the data cache
42 in response to a write hit to the shared cache block
(thus invalidating the cache block in the data cache 42
and transferring the shared cache block to the write buff-
ers 48), other embodiments may not evict the cache
block from the data cache 42. For example, embodi-
ments in which the data transfer for the read exclusive
transaction is not performed if the read exclusive trans-
action is the result of a write hit to a shared cache block
may not evict the cache block. Additionally, an embod-
iment is contemplated in which the data is provided for
transfer on the data bus, but the cache block is not evict-
ed from the data cache. The cache block may be updat-
ed after the response phase in the data cache 42, and
the unmodified data may be transferred on the data bus
(and ignored by the agent 40). Furthermore, other em-
bodiments may evict the cache block but not perform
the data transfer (instead transferring the data internally
from the write buffer 48 back into the data cache 42 after
the response phase of the read exclusive transaction).
[0045] It is noted that address buffers 52 and 54 and
data buffers 56 and 58 are optional and may be elimi-
nated in other embodiments. It is further noted that
agent 40 may be any agent which is configured to cache
data. For example, in the embodiment of Fig. 1, agent
40 may be any of processors 12A-12B, I/O bridges 20A-
20B, etc.
[0046] Turning next to Fig. 3, a flowchart is shown il-
lustrating operation of one embodiment of the agent 40
(particularly the data cache control circuit 44) during a
cache access to data cache 42. Other embodiments are
possible and contemplated. While the blocks shown in
the embodiment Fig. 3 are illustrated in a particular order
for ease of understanding, any suitable order may be

used. Furthermore, blocks may be performed in parallel
by combinatorial logic circuitry within the agent 40/data
cache control circuit 44 and/or may be performed in dif-
ferent clock cycles, as desired. The embodiment shown
may be compatible with the MESI coherency protocol,
although other embodiments may implement other co-
herency protocols.
[0047] If the cache access is not a write (i.e. it is a
read) (decision block 70), then the data cache control
circuit 44 performs read processing (block 72). On the
other hand, if the cache access is a write and the state
is shared (decision block 74), then the data cache con-
trol circuit 44 may generate a read exclusive transaction
request (block 76). Additionally, in one embodiment, the
data cache control circuit 44 may evict the shared cache
block (block 78). It is noted that the eviction of the shared
cache block may be performed subsequent to detecting
the write to the shared block. Furthermore, other em-
bodiments may evict the cache block when the fill data
is provided. Still further, as mentioned above, other em-
bodiments may not evict the shared cache block. The
data cache 42 may be updated once the read exclusive
transaction has occurred (and the cache block has been
returned to the cache, if applicable) (block 82).
[0048] If the state of the cache block is not shared,
the state is either exclusive, modified, or invalid. If the
state of the cache block is exclusive or modified (deci-
sion block 80), then the data cache control circuit 44 sig-
nals the data cache 42 to update with the data provided
in response to the write (block 82). If the state of the
cache block is invalid, then the data cache control circuit
44 may generate a read exclusive transaction request
to fetch the cache block (block 84). Subsequent to re-
ceiving the cache block in response to the read exclu-
sive transaction, the cache is updated (block 82). It is
noted that, in this case, the read exclusive transaction
is performed normally. As mentioned above, an indica-
tion may be provided in the request buffers 46 to distin-
guish between a read exclusive for a write hit to a shared
cache block versus a write miss (coherency state =
invalid). Alternatively, the bus control circuit 50 may, in
embodiments in which the shared cache block is evict-
ed, search the write buffers 48 to determine if the shared
cache block is stored therein to distinguish. In other im-
plementations, the write miss may not generate a read
exclusive transaction. Instead, a write may be per-
formed on the bus 24 to transfer the corresponding data
to memory.
[0049] Turning now to Fig. 4, a flowchart illustrating
operation of one embodiment of the agent 40 (specifi-
cally, the bus control circuit 50) during a response phase
of a transaction is shown. Other embodiments are pos-
sible and contemplated. While the blocks shown in the
embodiment Fig. 4 are illustrated in a particular order
for ease of understanding, any suitable order may be
used. Furthermore, blocks may be performed in parallel
by combinatorial logic circuitry within the agent 40/bus
control circuit 50 and/or may be performed in different

13 14



EP 1 280 062 A2

9

5

10

15

20

25

30

35

40

45

50

55

clock cycles, as desired.
[0050] If the transaction is not a read exclusive trans-
action (decision block 90), the bus control circuit 50 re-
sponds to the transaction based on snoop results gen-
erated/collected by the bus control circuit 50 in response
to the address phase of the transaction (block 92). Sim-
ilarly, if the transaction is a read exclusive transaction
(decision block 90) and the source of the transaction is
not agent 40 (decision block 94), the bus control circuit
50 responds to the transaction based on the snoop re-
sults (block 92). If the transaction is a read exclusive
transaction (decision block 90) sourced from the agent
40 (decision block 94) and the read exclusive transac-
tion is due to a write hit to a shared cache block (decision
block 96), then the bus control circuit 50 provides the
exclusive response on the bus 24 (block 98). If the trans-
action is a read exclusive transaction (decision block 90)
sourced from the agent 40 (decision block 94) and the
read exclusive transaction is not due to a write hit to a
shared cache block (decision block 96), then the bus
control circuit 50 may provide no response on the bus
24.
[0051] Turning next to Figs. 5 and 6, timing diagrams
are shown illustrating a pair of embodiments of a read
exclusive transaction. Other embodiments are possible
and contemplated. In Figs. 5 and 6, clock cycles are de-
limited by vertical dashed lines and labeled at the top
(e.g. CLK0, CLK1, etc.). The ellipses between CLK2 and
CLKN are intended to illustrate the elapse of zero or
more clock cycles.
[0052] Referring to Fig. 5, during clock cycle CLK0,
the agent 40 drives the address transfer during the ad-
dress phase of the read exclusive transaction (reference
numeral 100). The response phase of the read exclusive
transaction occurs in clock cycle CLK2 (reference nu-
meral 102), and thus the agent 40 drives the exclusive
response for the read exclusive transaction. According-
ly, the delay from the address phase to the response
phase is two clock cycles in the illustrated embodiment,
although other embodiments may employ a larger or
smaller delay. Finally, during clock cycle CLKN, the data
phase of the read exclusive transaction occurs (refer-
ence numeral 104). Since the agent 40 is both source
and receiver for the data, the agent 40 drives and re-
ceives the data during the data phase. Each of the ad-
dress phase, the response phase, and the data phase
comprises one clock cycle in the illustrated embodi-
ment, although other embodiments may include more
than one clock cycle in any phase, and the phase may
each last differing numbers of clock cycles, as desired.
[0053] The second embodiment illustrated in Fig. 6 is
similar to the first embodiment, except that no data
phase is performed. Thus, in the embodiment of Fig. 6,
the read exclusive transaction includes the address and
response phases in clock cycles CLK0 and CLK2, re-
spectively (reference numerals 100 and 102, respec-
tively). The lack of a data phase for the embodiment of
Fig. 6 is illustrated by the dashed enclosure of the

phrase "no data" in clock cycle CLKN (reference numer-
al 106).
[0054] It is noted that, while clock cycles are illustrat-
ed in the timing diagrams of Figs. 5 and 6, in one em-
bodiment the rising and falling edges of the clock signal
defining the clock cycles are used to transmit data. One
of the edges (e.g. the rising edge) may be used to cause
the driving device to drive the data, and the other edge
(e.g. the falling edge) may be used to sample the data.
[0055] Turning next to Fig. 7, a block diagram of a car-
rier medium 300 including a database representative of
system 10 is shown. Generally speaking, a carrier me-
dium may include storage media such as magnetic or
optical media, e.g., disk or CD-ROM, volatile or non-vol-
atile memory media such as RAM (e.g. SDRAM,
RDRAM, SRAM, etc.), ROM, etc., as well as transmis-
sion media or signals such as electrical, electromagnet-
ic, or digital signals, conveyed via a communication me-
dium such as a network and/or a wireless link.
[0056] Generally, the database of system 10 carried
on carrier medium 300 may be a database which can
be read by a program and used, directly or indirectly, to
fabricate the hardware comprising system 10. For ex-
ample, the database may be a behavioral-level descrip-
tion or register-transfer level (RTL) description of the
hardware functionality in a high level design language
(HDL) such as Verilog or VHDL. The description may be
read by a synthesis tool which may synthesize the de-
scription to produce a netlist comprising a list of gates
from a synthesis library. The netlist comprises a set of
gates which also represent the functionality of the hard-
ware comprising system 10. The netlist may then be
placed and routed to produce a data set describing ge-
ometric shapes to be applied to masks. The masks may
then be used in various semiconductor fabrication steps
to produce a semiconductor circuit or circuits corre-
sponding to system 10. Alternatively, the database on
carrier medium 300 may be the netlist (with or without
the synthesis library) or the data set, as desired.
[0057] While carrier medium 300 carries a represen-
tation of system 10, other embodiments may carry a rep-
resentation of any portion of system 10, as desired, in-
cluding any set of one or more agents (e.g. processors,
L2 cache, memory controller, etc.) or circuitry therein (e.
g. interface circuits, request buffers, write buffers, cach-
es, cache control circuits, etc.), bus 24, etc. A circuit de-
fining mechanism for the system 10 or portions thereof
may comprise the database representing the system 10.
[0058] Numerous variations and modifications will be-
come apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the fol-
lowing claims be interpreted to embrace all such varia-
tions and modifications.

Claims

1. An agent comprising:

15 16



EP 1 280 062 A2

10

5

10

15

20

25

30

35

40

45

50

55

a cache configured to store at least a first cache
block and a first coherency state corresponding
to the first cache block; and

an interface circuit configured to communicate
on an interface with other agents, wherein the
interface circuit configured to initiate a read ex-
clusive transaction on the interface in response
to a write which hits the first cache block and
the first coherency state is shared, and wherein
the interface circuit is configured, during the
read exclusive transaction, to indicate to one or
more responding agents of the read exclusive
transaction that a data transfer is not required
for the read exclusive transaction.

2. The agent as recited in claim 1, wherein the inter-
face circuit is configured to indicate to the one or
more responding agents using a first response dur-
ing a response phase of the read exclusive trans-
action, and wherein the first response indicates that
the agent will provide data for the read exclusive
transaction.

3. The agent as recited in claim 2 wherein the first re-
sponse is a response of exclusive ownership.

4. The agent as recited in claim 1 further comprising
a cache control circuit coupled to the cache, where-
in the cache control circuit is configured to generate
a request for the read exclusive transaction in re-
sponse to detecting the write which hits the first
cache block and the first coherency state is shared.

5. The agent as recited in claim 4 wherein the cache
control circuit is configured to evict the first cache
block from the cache.

6. The agent as recited in claim 5 wherein the interface
circuit is configured to drive the first cache block on
the interface during a data phase of the read exclu-
sive transaction.

7. The agent as recited in claim 6 wherein the agent
is further configured to capture the first cache block
from the interface and to store the first cache block
in the cache.

8. The agent as recited in claim 1 wherein the interface
circuit is configured to inhibit a data phase of the
read exclusive transaction.

9. An agent comprising:

a cache configured to store at least a first cache
block and a first coherency state corresponding
to the first cache block; and

an interface circuit configured to communicate
on an interface with other agents, wherein the
interface circuit configured to initiate a read ex-
clusive transaction on the interface in response
to a write which hits the first cache block and
the first coherency state is shared, and wherein
the interface circuit is configured, during a re-
sponse phase of the read exclusive transac-
tion, to provide a first response indicating that
the agent will provide data for the read exclu-
sive transaction.

10. A circuit defining mechanism comprising a data-
base representing the agent as recited in any of
claims 1-9.

11. A carrier medium carrying the circuit defining mech-
anism as recited in claim 10.

12. A system comprising the agent as recited in any of
claims 1-9 and at least one agent configured for re-
sponding to the read exclusive transaction.

13. A method comprising:

detecting a write hit to a first cache block in a
cache within a first agent, wherein a first coher-
ency state corresponding to the first cache
block is shared;

initiating a read exclusive transaction on an in-
terface from the first agent in response to the
detecting; and

during the read exclusive transaction, indicat-
ing to one or more responding agents of the
transaction that a data transfer is not required
for the read exclusive transaction.

14. The method as recited in claim 13 wherein the indi-
cating comprises providing a first response from the
first agent during a response phase of the read ex-
clusive transaction, the first response indicating that
the first agent will provide data for the read exclu-
sive transaction.

15. The method as recited in claim 14 wherein the first
response is a response of exclusive ownership.

16. The method as recited in claim 13 further compris-
ing evicting the first cache block from the cache in
response to the detecting.

17. The method as recited in claim 16 further compris-
ing driving the first cache block on the interface dur-
ing a data phase of the read exclusive transaction.

18. The method as recited in claim 17 further compris-

17 18



EP 1 280 062 A2

11

5

10

15

20

25

30

35

40

45

50

55

ing capturing the first cache block from the interface
and storing the first cache block in the cache.

19. The method as recited in claim 13 further compris-
ing inhibiting a data phase of the read exclusive
transaction.

19 20



EP 1 280 062 A2

12



EP 1 280 062 A2

13



EP 1 280 062 A2

14



EP 1 280 062 A2

15



EP 1 280 062 A2

16



EP 1 280 062 A2

17


	bibliography
	description
	claims
	drawings

