(19)
(11) EP 1 284 404 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
19.02.2003  Patentblatt  2003/08

(21) Anmeldenummer: 01128631.7

(22) Anmeldetag:  30.11.2001
(51) Internationale Patentklassifikation (IPC)7F25J 3/04
(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 13.08.2001 DE 10139727

(71) Anmelder: Linde Aktiengesellschaft
65189 Wiesbaden (DE)

(72) Erfinder:
  • Rottmann, Dietrich
    81737 München (DE)
  • Kunz, Christian
    81479 München (DE)
  • Corduan, Horst
    82178 Puchheim (DE)

(74) Vertreter: Imhof, Dietmar 
LINDE AG Zentrale Patentabteilung
82049 Höllriegelskreuth
82049 Höllriegelskreuth (DE)

   


(54) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft


(57) Das Verfahren und die Vorrichtung dienen zur Gewinnung eines Druckprodukts (22; 336) durch Tieftemperaturzerlegung von Luft in einem Rektifiziersystem, das eine Drucksäule (3) und eine Niederdrucksäule (4) aufweist. Ein erster Strom (50) verdichteter und gereinigter Einsatzluft (1) wird in einem Hauptwärmetauscher-System (2; 102a, 102b) abgekühlt und in die Drucksäule (3) eingeführt (51, 677). Mindestens eine Fraktion (5) aus der Drucksäule (3) wird entspannt (7) und in die Niederdrucksäule (4) eingespeist Eine sauerstoffreiche Fraktion (24; 218a) aus der Niederdrucksäule (4) wird flüssig auf Druck gebracht (25; 220) und auf eine Mischsäule (27) aufgegeben (26; 224, 226). Ein Wärmeträger (66) wird in den unteren Bereich der Mischsäule (27) eingeleitet und in Gegenstromkontakt mit der sauerstoffreichen Fraktion (26; 226) gebracht. Aus dem oberen Bereich der Mischsäule (27) wird ein gasförmiges Kopfprodukt (28) entnommen. Eine Produktfraktion (19; 218a; 335) wird aus dem Rektifiziersystem entnommen, flüssig auf Druck gebracht (20; 220; 337), in indirektem Wärmeaustausch (2, 102b) mit dem gasförmigen Kopfprodukt (28) der Mischsäule (27) verdampft und als Druckprodukt (22; 336) abgezogen. Der indirekte Wärmeaustausch zur Verdampfung der flüssig auf Druck gebrachten Produktfraktion (21) wird in dem Hauptwärmetauscher-System (2; 102a, 102b) durchgeführt.




Beschreibung


[0001] Die Erfindung betrifft ein Verfahren zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft in einem Rektifiziersystem, das eine Drucksäule und eine Niederdrucksäule aufweist, wobei dieses Verfahren die im Patentanspruch 1 aufgeführten Schritte a bis f umfasst.

[0002] Das Rektifiziersystem der Erfindung kann als klassisches Doppelsäulensystem ausgebildet sein, aber auch als Drei- oder Mehrsäulensystem. Es kann zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung weitere Vorrichtungen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen aufweisen. Zusätzlich zu dem Rektifiziersystem wird in dem Verfahren eine Mischsäule eingesetzt, in der eine sauerstoffreiche Fraktion aus der Rektifikation in direktem Wärmeaustausch mit einem Wärmeträger verdampft wird. Das Kopfgas der Mischsäule dient zur indirekten Verdampfung einer flüssig auf Druck gebrachten Produktfraktion (so genannte Innenverdichtung).

[0003] Die sauerstoffreiche Fraktion, die als Einsatz für die Mischsäule verwendet wird, weist eine Sauerstoffkonzentration auf, die höher als diejenige von Luft ist und beispielsweise bei 70 bis 99,5 mol%, vorzugsweise bei 90 bis 98 mol% liegt. Unter Mischsäule wird eine Gegenstromkontaktkolonne verstanden, in der eine leichter flüchtige gasförmige Fraktion einer schwerer flüchtigen Flüssigkeit entgegengeschickt wird.

[0004] Das erfindungsgemäße Verfahren eignet sich zur Gewinnung von gasförmigem Drucksauerstoff und/oder gasförmigem Druckstickstoff, insbesondere zur Erzeugung von gasförmigem unreinen Sauerstoff unter Druck. Als unreiner Sauerstoff wird hier ein Gemisch mit einem Sauerstoffgehalt von 99,5 mol% oder weniger, insbesondere von 70 bis 99,5 mol% verstanden. Die Produktdrücke liegen beispielsweise bei 3 bis 25 bar, vorzugsweise bei 4 bis 16 bar. Selbstverständlich kann das Druckprodukt bei Bedarf in gasförmigem Zustand weiter verdichtet werden.

[0005] Ein Verfahren der eingangs genannten Art ist aus DE 19803437 A1 bekannt. Hier wird flüssiger Sauerstoff gepumpt und im Kopfkondensator der Mischsäule verdampft.

[0006] Der Erfindung liegt die Aufgabe zugrunde, das eingangs genannte Verfahren wirtschaftlich günstiger zu gestalten, insbesondere durch apparative Vereinfachung und/oder Energieeinsparung.

[0007] Diese Aufgabe wird dadurch gelöst, dass der indirekte Wärmeaustausch zur Verdampfung der flüssig auf Druck gebrachten Produktfraktion nicht mehr in einem separaten Kondensator-Verdampfer durchgeführt wird, sondern in dem Hauptwärmetauscher-System, in dem auch die Drucksäulenluft abgekühlt wird. Vorzugsweise wird die Produktfraktion unmittelbar nach der Druckerhöhung (zum Beispiel in einer Pumpe) in das kalte Ende des Hauptwärmetauscher-Systems eingeführt, dort zunächst auf Siedepunktstemperatur angewärmt und anschließend verdampft, beides gegen die kondensierende beziehungsweise kondensierte Kopffraktion der Mischsäule.

[0008] Hierdurch kann auf den separaten Kondensator-Verdampfer, der bei dem Verfahren von DE 19803437 A1 notwendig ist, verzichtet werden, ebenso auf einen separaten Wärmetauscher für die Entfernung der Unterkühlung aus der flüssig auf Druck gebrachten Produktfraktion. Durch die Integration der Verdampfung der flüssigen Produktfraktion und die Abkühlung von Luft kann außerdem der Wärmeaustauschvorgang (Q-T-Diagramm) verbessert werden, sodass besonders geringe Austauschverluste erreicht und damit ein relativ geringer Energieverbrauch erzielt wird.

[0009] Das Hauptwärmetauscher-System im Sinne der vorliegenden Erfindung kann, muss aber nicht durch einen einzigen Wärmetauscherblock realisiert sein. Es kann auch aus mehreren parallel oder seriell verbundenen Blöcken bestehen. Bei paralleler Verschaltung weisen die Blöcke die gleichen Ein- und Austrittstemperaturen auf. In der Regel findet die Verdampfung und mindestens ein Teil der Anwärmung des flüssig auf Druck gebrachten Produktstroms in demselben Wärmetauscherblock statt.

[0010] Die Mischsäule wird unter einem Druck betrieben, der ausreicht, um die Produktfraktion unter dem gewünschten Druck gegen das kondensierende Kopfgas der Mischsäule zu verdampfen, beispielsweise unter 5 bis 17 bar, vorzugsweise unter 5 bis 13 bar. Der Druck der Drucksäule liegt bei der Erfindung im Bereich von beispielsweise 5 bis 15 bar, vorzugsweise 5 bis 12 bar, derjenige der Niederdrucksäule bei beispielsweise 1,3 bis 6 bar, vorzugsweise 1,3 bis 4 bar.

[0011] Vorzugsweise wird das Kopfprodukt der Mischsäule stromabwärts der Kondensation, die im Kondensator-Verdampfer stattfindet, entspannt und in die Niederdrucksäule zurückgeleitet. Es wird dort insbesondere einige theoretische Böden (zum Beispiel ein bis zehn theoretische Böden) oberhalb der Entnahme der sauerstoffreichen Fraktion eingespeist. Zwischen Kondensator-Verdampfer und Entspannung wird sie gegebenenfalls abgekühlt, beispielsweise durch indirekten Wärmeaustausch mit der Produktfraktion und/oder der sauerstoffreichen Fraktion.

[0012] Vorzugsweise wird ein zweiter Strom gereinigter Einsatzluft auf einen Druck verdichtet, der deutlich höher als der Betriebsdruck der Drucksäule ist, im Hauptwärmetauscher-System abgekühlt und anschließend als Wärmeträger in die Mischsäule eingeleitet. Dieser zweite Luftstrom liefert gleichzeitig mindestens einen Teil der Wärme zur Anwärmung der flüssig auf Druck gebrachten Produktfraktion stromabwärts ihrer Verdampfung. Unter "deutlich höher" wird hier eine Druckdifferenz verstanden, die höher als die Leitungsverluste ist, insbesondere höher als 1 bar. Diese Druckdifferenz kann beispielsweise dadurch erreicht werden, dass die Gesamtluft auf im wesentlichen Drucksäulendruck verdichtet und anschließend in zwei Luftströme verzweigt wird, wobei der zweite Strom weiter verdichtet wird, beispielsweise durch einen motorisch getriebenen Kompressor. Alternativ können die beiden Luftströme getrennt von Atmosphärendruck auf die jeweils benötigten Drücke verdichtet werden. Der Druck, auf den der zweite Luftstrom verdichtet wird, beträgt im Allgemeinen das 1,1- bis 2,0-Fache des Drucks der flüssigen Produktfraktion bei deren Verdampfung.

[0013] Es ist ferner günstig, wenn der zweite Strom nach seiner Abkühlung im Hauptwärmetauscher-System und vor seiner Einleitung in die Mischsäule in indirektem Wärmeaustausch mit der flüssig auf Druck gebrachten sauerstoffreichen Fraktion weiter abgekühlt wird. Damit werden die beiden Einsatzfraktionen der Mischsäule auf die für ihre Einspeisung optimale Temperatur gebracht.

[0014] Für die Optimierung des Q-T-Diagramms des Hauptwärmetauscher-Systems ist es von Vorteil, wenn der zweite Strom bei einer ersten Zwischenstelle unter einer ersten Zwischentemperatur aus dem Hauptwärmetauscher-System entnommen wird, wobei die erste Zwischentemperatur deutlich höher als sein Taupunkt liegt. Das gasförmige Kopfprodukt der Mischsäule wird bei der ersten Zwischenstelle in das Hauptwärmetauscher-System eingeführt, an der der zweite Strom aus dem Hauptwärmetauscher-System entnommen wird. Dadurch kann dieselbe Passage im Hauptwärmetauscher-System sowohl für die Abkühlung des zweiten Luftstroms als auch für die Kondensation des Kopfprodukts der Mischsäule verwendet werden.

[0015] Falls das Druckprodukt Sauerstoff ist, wird die Produktfraktion aus der Niederdrucksäule entnommen. Die Produktfraktion und die sauerstoffreiche Fraktion für die Mischsäule können dann gemeinsam aus der Niederdrucksäule abgezogen und/oder gemeinsam flüssig auf Druck gebracht werden, was apparativ besonders einfach ist. Alternativ dazu können die Produktfraktion und die sauerstoffreiche Fraktion an verschiedenen Stellen der Niederdrucksäule entnommen werden. Dabei wird die sauerstoffreiche Fraktion vorzugsweise mindestens einen theoretischen oder praktischen Boden oberhalb der Entnahmestelle der Produktfraktion aus der Niederdrucksäule abgezogen.

[0016] Alternativ oder zusätzlich zum Drucksauerstoff kann Stickstoff als Druckprodukt gewonnen werden. Die (zusätzliche) Produktfraktion wird dann aus der Drucksäule entnommen, falls notwendig beispielsweise im Kopfkondensator der Drucksäule verflüssigt, getrennt von der sauerstoffreichen Fraktion flüssig auf Druck gebracht und im Hauptwärmetauscher-System verdampft und angewärmt.

[0017] Im unteren Bereich wird der Mischsäule eine flüssige Fraktion, beispielsweise Sumpfflüssigkeit, entnommen, entspannt und in die Drucksäule oder in die Niederdrucksäule eingeleitet. Im Falle der Einleitung in die Niederdrucksäule liegt die Einspeisestelle vorzugsweise oberhalb der Entnahme der sauerstoffreichen Fraktion und der Rückspeisung der Kopffraktion aus der Mischsäule, vorzugsweise ein bis zwanzig theoretische Böden oberhalb der Einführung der Kopffraktion der Mischsäule. Vor der Entspannung wird die flüssige Fraktion aus der Mischsäule gegebenenfalls abgekühlt, beispielsweise durch indirekten Wärmeaustausch mit der Produktfraktion und/oder der sauerstoffreichen Fraktion.

[0018] Die Erfindung betrifft außerdem eine Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft gemäß Patentanspruch 10.

[0019] Die Erfindung sowie weitere Einzelheiten der Erfindung werden im folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
Figur 1
eine erste Ausführungsform der Erfindung mit einem Hauptwärmetauscher-System in Form eines einzigen Blocks,
Figur 1A
eine Variante von Figur 1, bei der das Hauptwärmetauscher-System durch zwei parallele Blöcke gebildet wird,
Figur 2
eine weitere Variante von Figur 1, bei der nur eine Pumpe benötigt wird,
Figur 3
eine vierte Ausführungsform, bei der neben Sauerstoff auch Stickstoff innenverdichtet wird,
Figur 4
ein Verfahren, das Aspekte der Figuren 2 und 3 kombiniert,
Figuren 5 bis 8
weitere Ausführungsbeispiele, die insbesondere zur Argongewinnung geeignet sind, und
Figur 9
das Q-T-Diagramm zum Ausführungsbeispiel der Figur 2.


[0020] Für übereinstimmende oder einander entsprechende Verfahrensschritte beziehungsweise Apparate werden in allen Zeichnungen dieselben Bezugszeichen oder in den letzten beiden Stellen übereinstimmende Zahlen verwendet.

[0021] Verdichtete und gereinigte Luft 1 wird bei dem in Figur 1 skizzierten Prozess stromaufwärts eines Hauptwärmetauschers 2 in drei Teilströme 50, 60, 70 verzweigt. Der Luftdruck an dieser Stelle entspricht dem Betriebsdruck der Drucksäule 4 plus Leitungsverlusten.

[0022] Ein erster Luftstrom 50 wird im Hauptwärmetauscher 2 gegen Rückströme auf etwa Taupunktstemperatur abgekühlt und über Leitung 51 ohne druckverändemde Maßnahmen in den unteren Bereich einer Drucksäule 3 eingespeist.

[0023] Rohsauerstoff 5 aus dem Sumpf der Drucksäule 3 wird - gegebenenfalls nach Unterkühlung im Unterkühlungs-Gegenströmer 6 - in eine Niederdrucksäule 4 eingedrosselt (7). Kopfstickstoff 8 der Drucksäule 3 wird über Leitung 9 in einen Hauptkondensator 10 geführt und dort gegen verdampfende Sumpfflüssigkeit der Niederdrucksäule 4 verflüssigt. Das Kondensat 11 wird mindestens zum Teil über Leitung 12 als Rücklauf auf die Drucksäule 3 aufgegeben. Ein anderer Teil kann als flüssiges Stickstoffprodukt 13 gewonnen werden.

[0024] Ein Teil 35 des Kopfstickstoffs 8 der Drucksäule 3 wird direkt zum Hauptwärmetauscher 2 geführt und als gasförmiges Druckstickstoffprodukt 36 gewonnen.

[0025] Von einer Zwischenstelle der Drucksäule 3 wird stickstoffreiche Flüssigkeit 14 abgenommen, im Unterkühlungs-Gegenströmer 6 unterkühlt und über Drosselventil 15 der Niederdrucksäule 4 am Kopf als Rücklauf aufgegeben.

[0026] Am Kopf der Niederdrucksäule 4 wird ein stickstoffreiches Restgas 16 abgezogen und in den Wärmetauschern 6 und 2 auf etwa Umgebungstemperatur angewärmt. Das warme Restgas 17 kann beispielsweise als Regeneriergas in einer nicht dargestellten Reinigungsvorrichtung für die Einsatzluft 1 genutzt werden.

[0027] Im Sumpf der Niederdrucksäule 4 wird unreiner Sauerstoff mit einem Sauerstoffgehalt von 95 mol% erzeugt. Mindestens ein Teil 19 der Sumpfflüssigkeit 18 der Niederdrucksäule 4 bildet die Produktfraktion im Sinne der Erfindung. Sie wird mittels einer Pumpe 20 auf etwa den Produktdruck von beispielsweise 7,4 bar gebracht und über Leitung 21 zum kalten Ende des Hauptwärmetauschers 2 geleitet. Dort wird sie nacheinander auf Siedetemperatur angewärmt, verdampft und auf etwa Umgebungstemperatur angewärmt. Schließlich wird die Produktfraktion bei 22 als gasförmiges Druckprodukt unter dem Produktdruck von 7,4 bar abgezogen. Ein anderer Teil 23 der Sumpfflüssigkeit 18 der Niederdrucksäule 4 kann als flüssiges Sauerstoffprodukt gewonnen werden.

[0028] Einige (z. B. drei theoretische) Böden oberhalb des Sumpfs der Niederdrucksäule wird eine sauerstoffreiche Fraktion 24 mit einem Sauerstoffgehalt von Sauerstoff beispielsweise 88 mol% flüssig entnommen, in einer Pumpe 25 auf Druck gebracht und nach Anwärmung in 65 über Leitung 26 auf den Kopf einer Mischsäule 27 aufgegeben. Der Betriebsdruck der Mischsäule beträgt beispielsweise 9,6 bar am Sumpf. Das gasförmige Kopfprodukt 28 der Mischsäule 27 weist einen Sauerstoffgehalt von 83 mol% auf und wird in den kalten Teil des Hauptwärmetauschers 2 eingeleitet. Dort liefert es die Wärme zur Verdampfung des Produktstroms 21 und zu dessen Anwärmung auf Siedetemperatur. Bei dem indirektem Wärmeaustausch im Hauptwärmetauscher 2 wird das Kopfprodukt der Mischsäule kondensiert und unterkühlt. Die Flüssigkeit strömt über Leitung 29 und Drosselventil 30 zurück in die Niederdrucksäule 4. Die Einspeisestelle liegt etwa drei theoretische Böden oberhalb der Stelle, an der die sauerstoffreiche Fraktion 24 entnommen wird.

[0029] Der Wärmeträger für die Mischsäule 27 wird durch den zweiten Teilstrom 60 der Einsatzluft gebildet. Dieser wird in einem (in dem Beispiel mittels externer Energie angetriebenen) Nachverdichter 61 mit anschließender Nachkühlung 62 auf etwas über Mischsäulendruck gebracht und über Leitung 63 zum warmen Ende des Hauptwärmetauschers 2 geführt. Der zweite Teilstrom der Luft wird bei einer Zwischentemperatur oberhalb des kalten Endes wieder aus dem Hauptwärmetauscher 2 entnommen. Nach weiterer Abkühlung in 65 wird er als Wärmeträger 66 in den Sumpfbereich der Mischsäule eingeführt. Sowohl die Sumpffraktion 31/32 als auch eine Zwischenfraktion 33/34 der Mischsäule 27 werden in 65 unterkühlt und anschließend an den ihrer jeweiligen Zusammensetzung entsprechenden Stellen in die Niederdrucksäule 4 eingedrosselt.

[0030] Zur Abkühlung des zweiten Luftteilstroms 63 und zur Kondensation und Abkühlung der Kopffraktion 28 im Hauptwärmetauscher werden dieselben Passagen verwendet. Die kalten und die warmen Abschnitte dieser Passagen sind durch undurchlässige horizontale Wände voneinander getrennt (in der Zeichnung durch eine einzige horizontale Linie 67 symbolisiert). Diese Wände (so genannte Sidebars), sind an der Stelle der Zwischentemperatur angeordnet, an der die Kopffraktion 28 und der zweite Luftteil 64 dem Hauptwärmetauscher zugeführt beziehungsweise entnommen werden.

[0031] Zum Ausgleich der Isolations- und Austauschverluste und gegebenenfalls zur Erzeugung flüssiger Produkte (z. B. über Leitung 13 und/oder Leitung 23) wird Kälte durch arbeitsleistende Entspannung eines oder mehrerer Prozess-Ströme erzeugt. Bei dem Ausführungsbeispiel der Figur 1 wird zu diesem Zweck ein dritter Teil 70/73 der Einsatzluft bei einer Zwischentemperatur aus dem Hauptwärmetauscher 2 herausgeführt (74) und in einer Turbine 75 arbeitsleistend auf 1,4 bar entspannt. Zur Erhöhung der Kälteleistung beziehungsweise zur Verringerung der Turbinenluftmenge kann die Luft 70 vor der arbeitsleistenden Entspannung auf einen Druck von beispielsweise 8 bar nachverdichtet (71) werden. Der Nachverdichter 71 wird in dem Beispiel durch die in der Turbine 75 erzeugte mechanische Energie angetrieben, vorzugsweise durch direkte mechanische Kopplung von Turbine 75 und Nachverdichter 71. Die Verdichtungswärme wird durch indirekten Wärmeaustausch mit einem Kühlmittel in einem Nachkühler 72 entfernt. Die arbeitsleistend entspannte Luft 76, 77 wird direkt in die Niederdrucksäule 4 eingespeist.

[0032] In Figur 1 wird das Hauptwärmetauscher-System im Sinne der Erfindung durch einen einzigen Block 2 gebildet, der oben als Hauptwärmetauscher bezeichnet wurde. Im Unterschied dazu wird bei dem Prozess, der in Figur 1A dargestellt ist, das Hauptwärmetauscher-System durch zwei separate Blöcke 102a, 102b gebildet. In 102a, dem Hauptwärmetauscher im engeren Sinne, werden die gasförmigen Produktströme 35, 16 gegen den ersten und den dritten Luftstrom 50, 73 angewärmt. In dem Sauerstoffwärmetauscher 102b wird ausschließlich der flüssige Produktstrom angewärmt und verdampft, und zwar in Gegenstrom zur Kopffraktion 28 der Mischsäule 27 und zum zweiten Luftstrom 63.

[0033] Die Verfahrensweise von Figur 1A ist apparativ günstiger, weil lediglich der Tauscher Sauerstoffwärmetauscher 102b auf den hohen Druck des zweiten Teilstroms 63 der Luft ausgelegt werden muss. Diese Lösung bietet sich für kleinere Anlagen an. Energetisch günstiger und damit bei großen Anlagen vorteilhafter ist die vollständige Integration der beiden Wärmeaustauschvorgänge gemäß Figur 1.

[0034] Das Verfahren von Figur 2 unterscheidet sich von dem Prozess gemäß Figur 1 durch die Einsparung einer Pumpe (25 in Figur 1). Erreicht wird dies, indem die Produktfraktion 21 und die sauerstoffreiche Fraktion 224/226 gemeinsam vom Sumpf der Niederdrucksäule 4 abgezogen (218, 218a) und in einer Pumpe 220 auf Druck gebracht werden. Die Hochdruck-Flüssigkeit 218b wird anschließend auf Produktstrom 21 und Einsatzflüssigkeit 224 für die Mischsäule 27 aufgeteilt. (Die in den Zeichnungen als Einzelpumpen dargestellten Apparate werden aus Redundanzgründen regelmäßig als jeweils ein Pumpenpaar ausgeführt.)

[0035] Figur 3 stimmt ebenfalls in weiten Teilen mit Figur 1 überein. Bei diesem Prozess wird allerdings das gasförmige Druckstickstoffprodukt 336 auf einem höherem Druck gewonnen, der deutlich über dem Betriebsdruck der Drucksäule 3 liegt. Leitung 335 ist mit dem Austritt und nicht dem Eintritt (siehe 35 in Figur 1) des Hauptkondensators 10 verbunden. Der flüssige Stickstoff 335 wird in einer weiteren Pumpe 337 auf den benötigten Produktdruck (beispielweise 6 bis 25 bar) gebracht und im Hauptwärmetauscher 2 verdampft und angewärmt. Hierzu müssen selbstverständlich die anderen Ströme entsprechend angepasst werden, insbesondere Menge an Hochdruckluft 63 gegenüber Figur 1 erhöht werden. Somit kann mit dem erfindungsgemäßen Verfahren ohne zusätzlichen Gasverdichter kostengünstig Stickstoff unter hohem Druck produziert werden.

[0036] Die Druckstickstofferzeugung 335, 337 gemäß Figur 3 ist in Figur 4 mit der gemeinsamen Verdichtung 218a, 220 von sauerstoffreicher Fraktion und Produktfraktion kombiniert. In einer Variante des Verfahrens von Figur 4 wird die Stickstoff-Innenverdichtung 335/337 ohne Sauerstoff-Innenverdichtung durchgeführt, das heißt die Pumpe 220 dient nur zur Aufgabe von Flüssigkeit auf den Kopf der Mischsäule und nicht zur Erzeugung eines gasförmigen Sauerstoff-Produkts.

[0037] Das Verfahren der Erfindung eignet sich nicht nur für die Gewinnung von unreinem Sauerstoff, sondern lässt auch Produktreinheiten von 98 mol% oder mehr (beispielsweise 98 bis 99,9 %, vorzugsweise 98 bis 99,5 %) im Sauerstoffprodukt 22 zu. In diesem Fall kann eine Argonproduktion angeschlossen werden, wie Figur 5 zeigt. Hier ist eine übliche Rohargonsäule 538 mit einer Zwischenstelle der Niederdrucksäule verbunden (539, 540). Der Argon-Übergang 539/540 liegt zwischen den Zuspeisestellen der beiden Flüssigkeiten 30, 34 aus der Mischsäule 27. Der Kopfkondensator 541 der Rohargonsäule kann wie üblich mit Rohsauerstoff 5 stromabwärts der Unterkühlung 6 betrieben werden (nicht dargestellt). Das Rohargonprodukt 542 wird vorzugsweise weiter gereinigt, zum Beispiel in einer ebenfalls nicht dargestellten Reinargonsäule.

[0038] Zur Erhöhung der Argonausbeute kann auf die Direkteinblasung von Luft in die Niederdrucksäule 4 (77 in Figur 5) verzichtet werden, indem der dritte Teilstrom 73 der Einsatzluft in der Turbine 75 auf etwa den Betriebsdruck der Drucksäule 3 entspannt wird, wie es Figur 6 zeigt. Das Turbinenabgas 676 wird dann in die Drucksäule 3 eingeleitet (677), in dem Beispiel gemeinsam mit der Direktluft (erster Teilstrom 51 der Luft).

[0039] Wenn die in Figur 6 erzielte Kälteleistung nicht ausreicht, muss das Druckverhältnis an der Turbine 75 erhöht werden. Dies kann - wie in Figur 7 dargestellt - ohne Einsatz einer zusätzlichen Maschine erreicht werden, indem der extern angetriebene Nachverdichter für die Mischsäulenluft 763 zusätzlich für die Druckerhöhung in der Turbinenluft 770 genutzt wird. Die Turbine 75 entspannt in dem Beispiel auf Niederdrucksäulendruck; damit ist eine besonders hohe Flüssigproduktion möglich.

[0040] In Figur 8 wird auch in der Niederdrucksäule 4 reiner Stickstoff 843 - 844 - 845 gewonnen. Dazu wird ein Teil 814 des flüssigen Stickstoffs 11 aus dem Hauptkondensator 10 in 6 unterkühlt und über Drosselventil 815 als Rücklauf auf die Niederdrucksäule 4 aufgegeben. (Der in den anderen Ausführungsbeispielen dargestellte Zwischenabzug 14 an der Drucksäule kann hier entfallen.) Unreiner Stickstoff (stickstoffreiches Restgas) 816 wird von einer Zwischenstelle der Niederdrucksäule unterhalb eines Reinstickstoff-Abschnitts 846 abgenommen.

[0041] Das flüssige Stickstoffprodukt 813 wird in Figur 8 aus der Niederdrucksäule 4 abgezogen. Außerdem werden die Methoden zur Druckstickstoffgewinnung der Figur 1 (35 - 36) und der Figur 3 (335 - 337 - 338 - 336) gleichzeitig verwirklicht. Damit kann gasförmiger Stickstoff (845, 36, 336) unter insgesamt drei verschiedenen Drücken zur Verfügung gestellt werden, ohne dass dazu ein zusätzlicher Gasverdichter eingesetzt werden müsste.

[0042] Die speziellen Maßnahmen der Figuren 6 bis 8 können grundsätzlich auch ohne Argongewinnung (Rohargonsäule 538) eingesetzt werden.

[0043] Die folgenden Zahlenbeispiele in den Tabelle 1 und 2 beziehen sich auf das Ausführungsbeispiel von Figur 2. Sie betreffen zwei Auslegungsfälle mit unterschiedlicher Reinheit des Sauerstoffprodukts.
TABELLE 1 Nr. Menge in Nm3/h Druck
in bar
Temperatur
in K
O2-Gehalt
in mol-%
Gesamtluft 1 183117 5,40 290,0 20,95%
1. Teilstrom vor Einleitung in Drucksäule 51 113445 5,32 101,9 20,95%
2. Teilstrom vor Hauptwärmetauscher-System 63 53540 9,60 290,0 20,95%
2. Teilstrom vor Mischsäule 66 53540 9,52 107,6 20,95%
3. Teilstrom vor Turbine 74 15971 7,68 142,8 20,95%
3. Teilstrom nach Turbine 76 15971 1,40 92,8 20,95%
Mischsäulen-Sumpfflüssigkeit 31 32774 9,51 107,4 37,79%
Mischsäulen-Zwischenflüssigkeit 33 53304 9,51 111,0 61,84%
Sauerstoff vor Pumpe 218a 77569 1,40 92,6 95,00%
Sauerstoff nach Pumpe 218b 77569 11,00 93,3 95,00%
Sauerstoffreiche Fraktion vor Mischsäule 226 77569 10,89 116,9 95,00%
Sauerstoffprodukt 22 38000 7,38 287,3 95,00%
Druckstickstoffprodukt 36 1 5,16 287,3 0,95%
Restgas 17 22001 1,24 287,3 1,54%
Flüssiges Stickstoffprodukt 13 1 1,39 80,3 2,28%
Flüssiges Sauerstoffprodukt 23 1 1,35 91,0 95,00%
TABELLE 2 Nr. Menge
in Nm3/h
Druck
in bar
Temperatur
in K
O2-Gehalt
in mol-%
Gesamtluft 1 202839 5,40 290,0 20,95%
1. Teilstrom vor Einleitung in Drucksäule 51 128022 5,32 108,8 20,95%
2. Teilstrom vor Hauptwärmetauscher-System 63 58713 18,30 290,0 20,95%
2. Teilstrom vor Mischsäule 66 58713 18,22 118,2 20,95%
3. Teilstrom vor Turbine 74 15943 8,80 179,8 20,95%
3. Teilstrom nach Turbine 76 15943 1,39 113,7 20,95%
Mischsäulen-Sumpfflüssigkeit 31 39656 18,01 118,0 33,00%
Mischsäulen-Zwischenflüssigkeit 33 57370 18,01 123,0 61,09%
Sauerstoff vor Pumpe 218a 84828 1,40 92,8 90,50%
Sauerstoff nach Pumpe 218b 84828 19,00 94,2 90,50%
Sauerstoffreiche Fraktion vor Mischsäule 226 84828 18,89 130,0 90,50%
Sauerstoffprodukt 22 38000 14,88 287,0 99,35%
Druckstickstoffprodukt 36 1 5,16 287,0 2,40%
Restgas 17 22001 1,24 287,0 2,86%
Flüssiges Stickstoffprodukt 13 1 1,39 80,5 5,71%
Flüssiges Sauerstoffprodukt 23 1 1,35 91,0 90,50%


[0044] Figur 9 zeigt das Wärmeaustauschdiagramm (Q-T-Diagramm) für das Hauptwärmetauscher-System 2 des Verfahrens gemäß Figur 2 (Tabelle 1).


Ansprüche

1. Verfahren zur Gewinnung eines Druckprodukts (22; 336) durch Tieftemperaturzerlegung von Luft in einem Rektifiziersystem, das eine Drucksäule (3) und eine Niederdrucksäule (4) aufweist, bei dem

a. ein erster Strom (50) verdichteter und gereinigter Einsatzluft (1) in einem Hauptwärmetauscher-System (2; 102a, 102b) abgekühlt und in die Drucksäule (3) eingeführt (51, 677) wird,

b. mindestens eine Fraktion (5) aus der Drucksäule (3) entspannt (7) und in die Niederdrucksäule (4) eingespeist wird,

c. eine sauerstoffreiche Fraktion (24; 218a) aus der Niederdrucksäule (4) flüssig auf Druck gebracht (25; 220) und auf eine Mischsäule (27) aufgegeben (26; 224, 226) wird,

d. ein Wärmeträger (66) in den unteren Bereich der Mischsäule (27) eingeleitet und in Gegenstromkontakt mit der sauerstoffreichen Fraktion (26; 226) gebracht wird,

e. aus dem oberen Bereich der Mischsäule (27) ein gasförmiges Kopfprodukt (28) entnommen wird und

f. eine Produktfraktion (19; 218a; 335) aus dem Rektifiziersystem entnommen, flüssig auf Druck gebracht (20; 220; 337), in indirektem Wärmeaustausch (2, 102b) mit dem gasförmigen Kopfprodukt (28) der Mischsäule (27) verdampft und als Druckprodukt (22; 336) abgezogen wird,
dadurch gekennzeichnet, dass

g. der indirekte Wärmeaustausch zur Verdampfung der flüssig auf Druck gebrachten Produktfraktion (21) in dem Hauptwärmetauscher-System (2; 102a, 102b) durchgeführt wird.


 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein zweiter Strom (60, 760) gereinigter Einsatzluft (1) auf einen Druck verdichtet (61, 761) wird, der deutlich höher als der Betriebsdruck der Drucksäule (3) ist, im Hauptwärmetauscher-System (2, 102a, 102b) abgekühlt und anschließend als Wärmeträger (64, 66) in die Mischsäule (27) eingeleitet wird.
 
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, der zweite Strom (64) nach seiner Abkühlung im Hauptwärmetauscher-System (2; 102a, 102b) und vor seiner Einleitung in die Mischsäule (27) in indirektem Wärmeaustausch (65) mit der flüssig auf Druck gebrachten sauerstoffreichen Fraktion (24; 224) weiter abgekühlt wird.
 
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der zweite Strom (64) bei einer ersten Zwischenstelle (67) unter einer ersten Zwischentemperatur aus dem Hauptwärmetauscher-System (2, 102a, 102b) entnommen wird, wobei die erste Zwischentemperatur deutlich höher als sein Taupunkt liegt.
 
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das gasförmige Kopfprodukt (28) der Mischsäule (27) bei der ersten Zwischenstelle (67) in das Hauptwärmetauscher-System (2; 102a, 102b) eingeführt wird, an der der zweite Strom (64) aus dem Hauptwärmetauscher-System entnommen wird.
 
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Produktfraktion (19, 21) aus der Niederdrucksäule (4) entnommen (18; 218) wird.
 
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Produktfraktion (21) und die sauerstoffreiche Fraktion (224) gemeinsam aus der Niederdrucksäule (4) abgezogen (218, 218a) und insbesondere gemeinsam flüssig auf Druck gebracht (220) werden.
 
8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die sauerstoffreiche Fraktion (24) mindestens einen theoretischen oder praktischen Boden oberhalb der Entnahmestelle der Produktfraktion (18, 19) aus der Niederdrucksäule (4) abgezogen wird.
 
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die oder eine weitere Produktfraktion (335; 35) aus der Drucksäule (4) entnommen wird.
 
10. Vorrichtung zur Gewinnung eines Druckprodukts (22; 336) durch Tieftemperaturzerlegung von Luft mit einem Rektifiziersystem, das eine Drucksäule (3) und eine Niederdrucksäule (4) aufweist,

a. mit einer ersten Einsatzluftleitung (1, 50, 51, 677) zur Einleitung verdichteter und gereinigter Einsatzluft über ein Hauptwärmetauscher-System (2; 102a, 102b) in die Drucksäule (3),

b. mit einer Flüssigkeitsüberführleitung (5) zur Einspeisung einer Fraktion aus der Drucksäule (3) in die Niederdrucksäule (4), wobei die Flüssigkeitsüberführleitung eine Entspannungseinrichtung (7) aufweist,

c. mit einem Mittel (25; 220) zur Erhöhung des Drucks einer sauerstoffreichen Fraktion (24; 218a) aus der Niederdrucksäule (4), dessen Austritt in Strömungsverbindung (26; 218b, 224, 226) mit einer Mischsäule (27) steht,

d. mit einer Zuführungsleitung (66) zur Einleitung eines Wärmeträgers in den unteren Bereich der Mischsäule (27),

e. mit einer Kopfproduktleitung (28) zur Entnahme eines gasförmigen Kopfprodukts aus dem oberen Bereich der Mischsäule (27) und

f. mit Mitteln (20; 220; 337) zur Erhöhung des Drucks einer flüssigen Produktfraktion (19; 218a; 335) aus dem Rektifiziersystem, deren Austritt in Strömungsverbindung mit einem Produktverdampfer (2, 102b) steht, der auch mit der Kopfproduktleitung (28) sowie mit einer Druckproduktleitung (22; 336) verbunden ist,
dadurch gekennzeichnet, dass

g. der Produktverdampfer durch das Hauptwärmetauscher-System (2; 102a, 102b) gebildet wird.


 




Zeichnung


































Recherchenbericht