

(11) **EP 1 286 024 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 26.02.2003 Patentblatt 2003/09

(51) Int Cl.7: **F01L 1/344**, F16D 3/10

(21) Anmeldenummer: 02015997.6

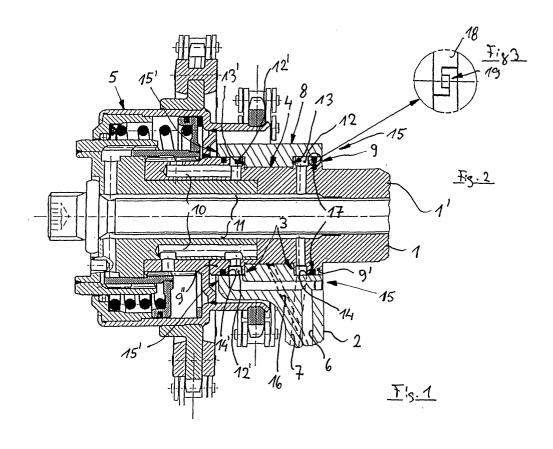
(22) Anmeldetag: 18.07.2002

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(30) Priorität: 23.08.2001 DE 10141213


(71) Anmelder: Bayerische Motoren Werke Aktiengesellschaft 80809 München (DE)

(72) Erfinder: Halmanseger, Leonhard 83059 Kolbermoor (DE)

(54) Anordnung einer Nockenwelle im Zylinderkopf einer Brennkraftmaschine

(57) Für eine Anordnung einer Nockenwelle im Zylinderkopf einer Brennkraftmaschine, bei der die im Zylinderkopf über ein mit einem Spurlager kombiniertes Gleitlager angeordnete Nockenwelle mit einem hydraulisch gesteuerten Phasensteller ausgerüstet ist, dem über einen Wellenbund der Nockenwelle mit Umfangsnuten ein Hydraulikmedium gesteuert zugeführt ist, wird vorgeschlagen, dass der in einem geteilt ausgebildeten Gehäuse angeordnete Wellenbund ein integriert ange-

ordnetes Gleitlager mit Spurlager umfasst mit beiderseits des Gleitlagers ausgebildeten axialen Spurlager-Anschlagflächen in gegenüber dem Gleitlager-Durchmesser größeren Ausnehmungen im Gehäuse, in die die Nockenwelle mit im Durchmesser angepassten Wellenbund-Abschnitten mit Umfangs- bzw. Radialspiel derart eingreift, dass die in den Wellenbund-Abschnitten angeordneten Umfangsnuten lediglich zur jeweiligen äußeren Stirnseite des Gehäuses hin in den Ausnehmungen abgedichtet sind.

Beschreibung

[0001] Die Erfindung bezieht sich nach dem Oberbegriff des Patentanspruches 1 auf eine Anordnung einer Nockenwelle im Zylinderkopf einer Brennkraftmaschine, bei der die im Zylinderkopf über ein mit einem Spurlager kombiniertes Gleitlager angeordnete Nockenwelle mit einem hydraulisch gesteuerten Phasensteller ausgerüstet ist, dem ein Hydraulikmedium aus im Zylinderkopf angeordneten Kanälen über einen umfänglich mit einem zylinderkopfseitigen Gehäuse zusammenwirkenden Wellenbund und weiteren Kanälen in der Nokkenwelle zugeführt ist, wobei die ersten Kanäle mit den zweiten Kanälen über im Wellenbund angeordnete, vom Gehäuse abgedeckte und nach außen abgedichtete Umfangsnuten in Verbindung stehen.

[0002] Eine derartige Anordnung einer Nockenwelle ist beispielsweise aus den Figuren 1 und 4 der deutschen Patentschrift DE 195 25 836 C1 bekannt. Hierbei umfasst die Nockenwelle neben dem kombinierten Gleit-/Spurlager einen gesonderten Wellenbund mit Einrichtungen zum Verteilen des Hydraulikmediums entsprechend einer gewünschten Steuerung des Phasenstellers. Diese bekannte Anordnung eines gesonderten Wellenbundes neben einem gesonderten kombinierten Gleit-/Spurlager erfordert in nachteiliger Weise eine zusätzliche Baulänge der Nockenwelle.

[0003] Der Erfindung liegt die Aufgabe zugrunde, die gattungsgemäße Anordnung einer Nockenwelle derart zu verbessern, dass eine Nockenwelle mit kürzerer Baulänge erzielt ist.

[0004] Diese Aufgabe ist mit dem Patentanspruch 1 dadurch gelöst, dass der in einem geteilt ausgebildeten Gehäuse angeordnete Wellenbund ein integriert angeordnetes Gleitlager mit Spurlager umfasst mit beiderseits des Gleitlagers ausgebildeten axialen Spurlager-Anschlagflächen in gegenüber dem Gleitlager-Durchmesser größeren Ausnehmungen im Gehäuse, in die die Nockenwelle mit im Durchmesser angepassten Wellenbund-Abschnitten mit Umfangs- bzw. Radialspiel derart eingreift, dass die in den Wellenbund-Abschnitten angeordneten Umfangsnuten lediglich zur jeweiligen äußeren Stirnseite des Gehäuses hin in den Ausnehmungen abgedichtet sind.

[0005] Mit der erfindungsgemäßen Integration des kombinierten Gleit-/Spurlagers im Wellenbund ist in vorteilhafter Weise eine verkürzte Baulänge der Nockenwelle erzielt, wobei als weiterer Vorteil der Fortfall der gegenseitigen Abdichtung der Umfangsnuten zu nennen ist.

[0006] Gemäß einer vorteilhaften Weiterbildung der Erfindung stehen ein im Gleitlager austretender Schmierkanal und die ersten und zweiten Hydraulikkanäle für den Phasensteller mit dem Schmiersystem der Brennkraftmaschine in Verbindung, wobei die Wellenbund-Abschnitte relativ zur Breite des Gleitlagers zwischen den Spurlager-Anschlagflächen mit Axialspiel beabstandet angeordnet sind.

[0007] Mit dieser Ausgestaltung kann bei einem Ausfall des Schmierkanals für das Gleitlager dieses über das dem Schmiersystem der Brennkraftmaschine entnommene Steueröl für den Phasensteller zumindest notlaufmäßig versorgt werden.

[0008] Gemäß einem weiteren Vorschlag ist die Abdichtung der Umfangsnuten in den Wellenbund-Abschnitten gegen die Ausnehmungen im Gehäuse mittels in Ringnuten angeordneten Hakenringen bewirkt.

[0009] Diese nach Art von Kolbenringen eine radiale Spannkraft aufweisenden Hakenringe ergeben durch die labyrinthartige Verhakung eine hohe Dichtwirkung, so dass bei ggf. gesondert geförderten Steueröl für den Phasensteller die Schmierung des Gleitlagers über das Spurlager-Axialspiel sichergestellt ist.

[0010] Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels beschrieben. Es zeigt

20 Figur 1 die Anordnung einer Nockenwelle mit kurzem stirnseitigem Ende,

Figur 2 die Anordnung einer Nockenwelle mit einem langen, stirnseitigen Überstand,

Figur 3 in einem vergrößerten Ausschnitt die ineinander greifenden Haken eines Hakenringes.

[0011] Die in den Figuren 1 und 2 jeweils hälftig dargestellten Nockenwellen 1, 1' unterscheiden sich voneinander durch phasenstellerseitig unterschiedlich gestaltete Enden, was in Bezug auf die erfindungsgemäße Anordnung einer Nockenwelle 1, 1' im Zylinderkopf 2 einer nicht näher gezeigten Brennkraftmaschine jedoch ohne Bedeutung ist. Hierbei ist die im Zylinderkopf 2 über ein mit einem Spurlager 3 kombiniertes Gleitlager 4 angeordnete Nockenwelle 1, 1' mit einem hydraulisch gesteuerten Phasensteller 5 ausgerüstet. Diesem Phasensteller 5 ist ein Hydraulikmedium aus im Zylinderkopf 2 angeordneten Kanälen 6 und 7 über einen umfänglich mit einem zylinderkopfseitigen Gehäuse 8 zusammenwirkenden Wellenbund 9 und weiteren Kanälen 10 und 11 in der Nockenwelle 1, 1' zugeführt, wobei die ersten Kanäle 6, 7 mit den zweiten Kanälen 10, 11 über im Wellenbund 9 angeordnete, vom Gehäuse 8 abgedeckte und nach außen abgedichtete Umfangsnuten 12, 12' in Verbindung stehen.

[0012] Zur Erzielung einer gegenüber dem aufgezeigten Stand der Technik kürzer bauenden Nockenwelle wird erfindungsgemäß vorgeschlagen, dass der in einem geteilt ausgebildeten Gehäuse 8 angeordnete Wellenbund 9 ein integriert angeordnetes Gleitlager 4 mit Spurlager 3 umfasst mit beiderseits des Gleitlagers 4 ausgebildeten axialen Spurlager-Anschlagflächen 13, 13' in gegenüber dem Gleitlager-Durchmesser größeren Ausnehmungen 14, 14' im Gehäuse 8. In diese Ausnehmungen 14, 14' greift die Nockenwelle 1, 1' mit im Durchmesser angepassten Weilenbund-Abschnitten 9',

50

20

25

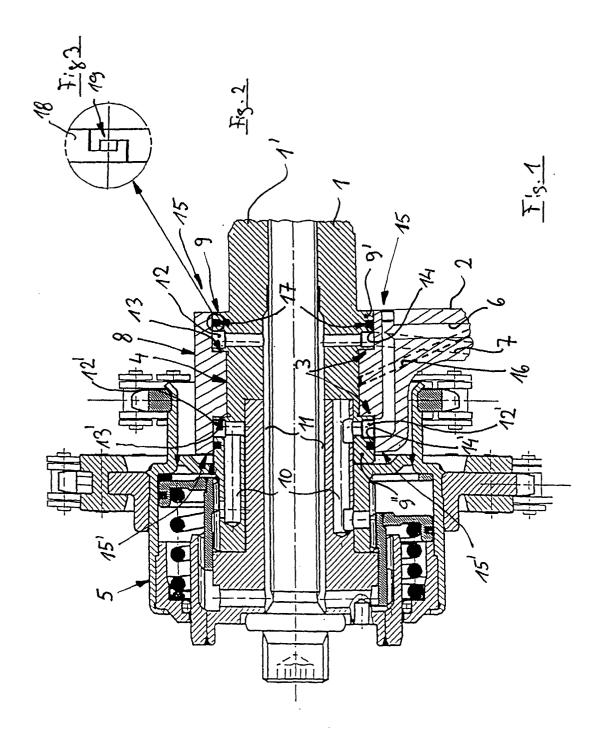
35

9" mit Umfangs- bzw. Radialspiel derart ein, dass die in den Wellenbund-Abschnitten 9', 9" angeordneten Umfangsnuten 12, 12' lediglich zur jeweiligen äußeren Stirnseite 15, 15' des Gehäuses 8 hin in den Ausnehmungen 14, 14' abgedichtet sind.

[0013] Weiter stehen ein im Gleitlager 4 austretender Schmierkanal 16 und die ersten und zweiten Hydraulikkanäle 6, 7 und 10, 11 für den Phasensteller 5 mit dem Schmiersystem der Brennkraftmaschine in Verbindung, wobei die Wellenbund-Abschnitte 9', 9" relativ zur Breite des Gleitlagers 4 zwischen den Spurlager-Anschlagflächen 13, 13' mit Axialspiel beabstandet angeordnet sind. Damit kann in sehr kleinem Umfang Steueröl aus den Umfangsnuten 12, 12' bei ungenügender Schmierung des Gleitlagers 4 in dieses übertreten zur Erzielung einer gewissen Notlaufeigenschaft.

[0014] Eine besonders wirksame und betriebssichere Abdichtung der Umfangsnuten 12, 12' in den Wellenbund-Abschnitten 9', 9" gegen die Ausnehmungen 14, 14' im Gehäuse 8 ist mittels in Ringnuten 17 angeordneten Hakenringen 18 erzielt, die in Figur 3 ausschnittsweise vergrößert dargestellt sind mit bei 19 zusammenwirkenden Haken.

Patentansprüche


- Anordnung einer Nockenwelle im Zylinderkopf einer Brennkraftmaschine,
 - bei der die im Zylinderkopf (2) über ein mit einem Spurlager (3) kombiniertes Gleitlager (4) angeordnete Nockenwelle (1, 1') mit einem hydraulisch gesteuerten Phasensteller (5) ausgerüstet ist, dem
 - ein Hydraulikmedium aus im Zylinderkopf (2) angeordneten Kanälen (6, 7) über einen umfänglich mit einem zylinderkopfseitigen Gehäuse (8) zusammenwirkenden Wellenbund (9) und weiteren Kanälen (10, 11) in der Nockenwelle (1, 1') zugeführt ist, wobei
 - die ersten Kanäle (6, 7) mit den zweiten Kanälen (10, 11) über im Wellenbund (9) angeordnete, vom Gehäuse (8) abgedeckte und nach außen abgedichtete Umfangsnuten (12, 12') in Verbindung stehen,

dadurch gekennzeichnet,

- dass der in einem geteilt ausgebildeten Gehäuse (8) angeordnete Wellenbund (9) ein integriert angeordnetes Gleitlager (4) mit Spurlager (3) umfasst mit beiderseits des Gleitlagers (4) ausgebildeten axialen Spurlager-Anschlagflächen (13, 13') in gegenüber dem Gleitlager-Durchmesser größeren Ausnehmungen (14, 14') im Gehäuse (8), in die
- die Nockenwelle (1, 1') mit im Durchmesser an-

- gepassten Wellenbund-Abschnitten (9', 9") mit Umfangs- bzw. Radialspiel derart eingreift, dass
- die in den Wellenbund-Abschnitten (9', 9") angeordneten Umfangsnuten (12, 12') lediglich zur jeweiligen äußeren Stirnseite (15, 15') des Gehäuses (8) hin in den Ausnehmungen (14, 14') abgedichtet sind.
- Anordnung nach Anspruch 1, dadurch gekennzeichnet,
 - dass ein im Gleitlager (4) austretender Schmierkanal (16) und die ersten und zweiten Hydraulikkanäle (6, 7; 10, 11) für den Phasensteller (5) mit dem Schmiersystem der Brennkraftmaschine in Verbindung stehen, und
 - dass die Wellenbund-Abschnitte (9', 9") relativ zur Breite des Gleitlagers (4) zwischen den Spurlager-Anschlagflächen (13, 13') mit Axialspiel beabstandet angeordnet sind.
 - Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Abdichtung der Umfangsnuten (12, 12') in den Wellenbund-Abschnitten (9', 9") gegen die Ausnehmungen (14, 14') im Gehäuse (8) mittels in Ringnuten (17) angeordneten Hakenringen (18) bewirkt ist.

3

