| (19) |
 |
|
(11) |
EP 1 296 095 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
24.11.2010 Bulletin 2010/47 |
| (22) |
Date of filing: 12.09.2002 |
|
| (51) |
International Patent Classification (IPC):
|
|
| (54) |
Plant for treating refuse by pyrolysis and for producing energy by means of said treatment
Anlage zur Aufbereitung von Müll durch Pyrolyse und zur Energieerzeugung durch diese
Aufbereitung
Installation pour le traitement d'ordures par pyrolyse et pour la production d' énergie
avec ledit traitement
|
| (84) |
Designated Contracting States: |
|
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
| (30) |
Priority: |
24.09.2001 IT MI20011981
|
| (43) |
Date of publication of application: |
|
26.03.2003 Bulletin 2003/13 |
| (73) |
Proprietor: Goggi, Lorenzo |
|
27045 Casteggio (Pavia) (IT) |
|
| (72) |
Inventors: |
|
- Goggi, Francesco
27045 Casteggio (PV) (IT)
- Goggi, Lorenzo
27045 Casteggio (PV) (IT)
|
| (74) |
Representative: Ripamonti, Enrico et al |
|
Giambrocono & C. S.p.A.,
Via Rosolino Pilo, 19/B 20129 Milano 20129 Milano (IT) |
| (56) |
References cited: :
DE-A- 4 107 200 US-A- 5 592 888 US-A- 5 980 858
|
GB-A- 1 401 207 US-A- 5 645 616
|
|
| |
|
|
- BERWEIN H J ET AL: "MUELLENTSORGUNG MIT EINER SCHWEL-BRENN-ANLAGE" BWK BRENNSTOFF
WARME KRAFT, VDI VERLAG GMBH. DUSSELDORF, DE, vol. 42, no. 10, 1 October 1990 (1990-10-01),
pages R26-R28,R31-R3, XP000162988 ISSN: 0006-9612
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to a plant for treating solid and/or liquid refuse
by pyrolysis in accordance with the introduction to the main claim. The invention
also relates to a method for treating refuse within the aforesaid plant, in accordance
with the corresponding independent claim. Refuse disposal has become a well known
and increasingly urgent problem in particular in the more developed countries. Also
well known is the need to recover energy from the refuse treatment and disposal process
to make it increasingly attractive economically.
[0002] Two main refuse treatment methods (in addition to classical dumping) are known: that
by which the refuse is fed to an incinerator and that by which the refuse is treated
by a pyrolytic process. In the first process and in the relative plant in which it
is implemented, relatively low temperatures are generated together with large air
volumes leading to the formation of noxious gases which have to be suitably retained
and/or treated before being discharged to atmosphere. This results in very high plant
costs together with problems of environmental impact caused by products which cannot
be eliminated. Moreover the refuse combustion temperature does not always enable the
refuse fed into the incinerator to be completely destroyed.
[0003] With regard to the pyrolytic process, this is implemented within a plant in which
the refuse is fed in such dimensions as not to enable it to be completely treated.
In this respect, the pyrolysis which occurs in such plants intervenes only on the
surface of the refuse mass because of the refuse compactness and dimensions. Consequently
the process under examination does not enable correct and complete refuse disposal
to be obtained on termination. For this reason, a pyrolysis plant does not enable
a large quantity of energy to be generated by the process; consequently the plant
itself and the implementation of the pyrolytic process represent costs which are difficult
to recover within an acceptable time.
[0004] US 5980858 describes a method and apparatus for treating wastes by two-stage gasification in
order to recover metals or ash content in the wastes in such a state that they can
be recycled, and gases containing carbon monoxide (CO) and hydrogen gas (H
2) for use as synthesis gas for ammonia (NH
3) or production of hydrogen gas. The wastes are gasified in a fluidized-bed reactor
at a low temperature. Then, gaseous material and char produced in the fluidized-bed
reactor are introduced into a high-temperature combustor, and gasified at a high temperature
and ash content is converted into molten slag. After water scrubbing and a CO conversion
reaction, the gas is separated into H
2 and residual gas. The residual gas is then supplied to the fluidizing gas.
[0005] DE 4107200 and XP 000162988 both disclose a plant for treating wastes or refuses in a low temperature
reactor. The plant treats soil contaminated with organic or inorganic substances,
contaminated wood, oil, slurry and a plastics of all types, as distinct from household
refuse. Contaminants include heavy metals, inorganic substances containing HC1 or
CN-. During the treatment a separation occurs between larger, solid materials, and
fine dust or gaseous material. The relatively low temperature process is carried out
mainly without oxygen. The process ensures that liquid fine particles and dry waste
products are burnt, dust is removed from the smoke and trapped in the melted slag,
heavy metal oxides are separated from the smoke for further recycling, the molten
slag after cooling can be used for building material.
[0006] An object of the present invention is to provide a plant for treating refuse by pyrolysis
which enables the refuse to be completely demolished, with the formation generally
of CO
2 and H
2, this latter being able to produce clean electrical energy which can be used to self-sustain
the plant or for other ecological uses such as motor traction using hydrogen motors,
and fuel cells.
[0007] Another object is to provide a plant of the aforesaid type which enables valuable
gases, such as pure H
2 and CO
2, to be produced and recovered for other uses external to the plant.
[0008] A further object is to provide a plant of acceptable maintenance and operating costs.
[0009] A further object is to provide a plant of the stated type which has virtually no
environmental impact.
[0010] These and further objects are attained by a plant in accordance with the accompanying
corresponding claims.
[0011] Another object is to provide a method for treating refuse by means of the plant of
the invention, said method being of high efficiency and acceptable implementation
cost.
[0012] This object is attained by a method in accordance with the accompanying corresponding
claims.
[0013] The present invention will be more apparent from the accompanying drawing, which
is provided by way of non-limiting example and in which:
Figure 1 shows a simplified scheme of the plant according to the invention;
Figure 2 is a schematic view of a part of the plant of Figure 1;
Figure 3 is a schematic view of a portion of the plant part of Figure 2;
Figure 4 is a schematic view of another part of the plant of Figure 1;
Figure 5 is a partly sectional plan view of one embodiment of the plant portion of
Figure 3;
Figure 6 is a section on the line 6-6 of Figure 5;
Figure 7 shows one embodiment of the part indicated by A in Figure 1 and parts 2 and
5 of Figure 2;
Figure 8 is an enlarged view of the part indicated by B in Figure 7; and
Figure 9 is a section on the line 9-9 of Figure 8.
[0014] The plant of the present invention is based on the high temperature pyrolysis of
organic substances (substances containing essentially carbon and hydrogen) for the
purpose of producing very pure H
2 gas for use as fuel in appliances such as steam-producing boilers combined with steam
turbines, gas turbines combined with micro-steam turbines or fuel cells combined with
micro-steam turbines; all aimed at the production of electrical energy which, besides
powering energy consumers of the cycle, produce an excess to be utilized for uses
external to the plant.
[0015] The essential concepts on which this technology is based are those of a clean and
correct pyrolysis developed at high temperature and controlled with the aid of regulating
and control systems preferably of microprocessor type. The purpose of this is to obtain
the final production of a gas of almost total molecular hydrogen composition (H
2) for use in fuel cells, with initial utilization in gas turbines with condensation
heat exchangers to produce electrical energy and, where necessary and usable, hot
water for domestic or heating purposes, with final condensation of pure water to be
used within the cycle itself and of which any excess can be used either as pure (distilled)
water or in mixture with potable water derived from desalination plants. The inert
part present in the liquid or solid refuse is melted at pyrolytic temperature, vitrified
by cooling in water and extracted as perfectly inert material usable for example as
filling material in road covering mixtures (in view of its particle size, hardness
and degree of inertness).
[0016] In its most general form (see Figures 1-4), the plant of the invention comprises
a reactor 1 in which pyrolysis takes place of refuse fed into said reactor 1 via a
feed line 2. This refuse can be solid and/or liquid. This latter originates from a
tank 3 connected via a pump or other feed means to a member 5 into which there converge
the liquid refuse, the solid refuse from a plant portion 7 shown schematically in
Figure 3 and constructionally in Figures 5 and 6 and described hereinafter, high pressure
and high temperature steam metered and regulated by a measurement and control member
8V comprising a pneumatic control valve and a flowmeter (not shown), and the powder
PR. The liquid refuse is evaporated by the steam entering the member 5.
[0017] Within the plant portion 7 the refuse is micro-disintegrated to dimensions enabling
it to be easily liquefied or pre-sublimed by the thermal energy of the steam fed into
the portion 7 by metering via a pneumatic control valve and quantified by a flowmeter
under the control of an operating and control unit (described hereinafter) which handles
and controls the plant operation. The steam is fed into the portion 7 by a feed unit
8 in determined proportions based on the type of refuse being treated. The refuse
treated in this manner reaches the member 5, where it is vaporized and/or sublimed
by the feed of steam through the measurement and control member 8V, and is further
heated by steam circulating in counter-current along an external jacket 10 of the
line 2 see Figure 7), in order to evaporate the liquid and create substantial gasification
of all the refuse fed into the line 2. In this respect, gasification means the complete
evaporation of the liquid refuse or the refuse previously liquefied within the plant
portion 7 and the complete sublimation of the micro-disintegrated solid refuse (that
which does not have a liquid phase) within the steam present in the line 2. The members
directly or functionally connected to the line 2 define a plant pretreatment portion
for the refuse 9.
[0018] The refuse hence arrives at the reactor 1, at a nozzle 12 to which there also arrive
an oxygen feed line 13 and a feed line 15 connected to a hydrogen tank 15A forming
part of the plant or, alternatively, a tank 15B of any fuel such as liquefied gas
(LPG) or methane. The fuel 15B serves only for start-up until hydrogen is produced
for feed into the tank 15A; the hydrogen in excess of that required for sustaining
pyrolysis at the nozzle 12 of the reactor 1 (H
2 and O
2 stoichiometric combustion) feeds the electrical energy production line either comprising
a boiler and steam turbine, or a gas turbine and steam micro-turbine, or fuel cells
and a micro-steam turbine (not shown). For some types of liquid and/or solid refuse,
when pyrolysis has commenced there is no further need for fuel (H
2), pyrolysis being sustained by the pure oxygen alone, which utilizes part of the
hydrogen already developed at the nozzle 12 of the refuse 1. At the nozzle 12 (shown
in detail in Figures 7-9 which will be described hereinafter), the refuse undergoes
pyrolysis at very high temperature, leading to the cracking of the organic molecules
into simple elementary molecules CO, CO
2, H
2 etc. of the refuse; the inert fraction produced by the reaction falls by gravity
into the lower part 18 of the reactor 1 and is vitrified in water, from whence it
is collected in a tank 19 after passing through a filter 20 by the action of a pump
21. This latter withdraws through a line 22 any solid refuse plus the vitrification
and wash water from the part 18 of the reactor 1, it feeds them through the filter
20 where they separate, and returns the solid-free water to the part 18 of the reactor
1. The level of the wash and vitrification water is continuously monitored and made
up to a level determined by a level indicator 152 by water from a plant water recovery
line 43.
[0019] The reactor 1 is contained within an outer enclosure 23 provided with an interspace
through which hot water circulates to recover heat from the enclosure; the reactor
1 communicates with the outer enclosure 23 through apertures 25 provided below the
reactor 1 and adjusted in their degree of opening by an electromechanical device 156
controlled by a regulation and control system 147 operating on the basis of the pressure
in the enclosure 23. The enclosure contains heat exchangers, for example of serpentine
coil type 26, arranged in several internal columns and with one column sandwiched
within the enclosure 23 to produce high pressure superheated steam by the passage
along its surface of hot gas from the reactor. A part of this steam is fed to the
feed unit 8 and to the member 8V of Figure 3 and Figure 2, to the jacket 10 of the
line 2, and to a catalysis line 160. As described hereinafter, this steam is metered
and measured by the pneumatic control valve and flowmeter (regulated and controlled
by the plant operating and control unit). The steam is also fed to a cooling line
35A for the nozzle 12, again metered and controlled by a valve and flowmeter controlled
by the control unit, and finally the excess steam is fed via a valve and flowmeter
controlled by the control unit, to a heat exchanger 243 of a gas separation line 40
shown in Figure 4. The gas produced by the reactor is extracted from the enclosure
23 through a line 30 and transferred to a heat exchanger 31, for example of tube bundle
type.
[0020] Within this heat exchanger, the gas undergoes violent cooling and is fed to a gas
recycle plant portion 33 in which a variable-throughput motor-driven fan 34 is present
to feed this pyrolysis gas to a line 35. This has two branches 35A and 35B into which
there are connected flowmeters 35K and metering valves 38, operated and controlled
by the regulator and control unit to control the quantity of pyrolysis-produced gas
to be recirculated through the reactor 1 and that to be fed to the aforesaid line
40 of Figure 4 for the gas enrichment and separation stages; for example, the valves
38 are of the pneumatic control valve type. The two branches of the line 35 are connected
respectively to the outside of the nozzle 12 (to create thereat a turbulence between
the arriving fluids) and to the gas separation line 40 shown in Figure 4. From this
line, via various heat exchangers and reactors described hereinafter, carbon dioxide
(CO
2), molecular hydrogen (H
2) and water are obtained, this latter being returned, mixed with the various wash
and cooling water streams, to the plant via the said line 43. Any powder material
present in the fluid of line 40 is recycled and reaches the member 5 (where it is
indicated by PR) and to the reactor 1 where it is inerted and vitrified.
[0021] The refuse pretreatment portion 9 will now be analyzed in greater detail. As stated,
this latter comprises the portion 7 where the solid refuse is micro-disintegrated
and mixed with the high pressure, high temperature steam from the serpentine coils
26. With reference to Figures 3, 5 and 6, the portion 7 is shown comprising a container
70 in which the solid refuse is collected. This latter is fed into a hopper 71 in
which a mixer 72 is positioned, driven by its own electric motor 73. The hopper lowerly
presents a metering screw 74 (shown schematically in Figure 3 as coaxial with the
hopper, but in reality positioned as shown in Figure 5) terminating with a frusto-conical
end 75 by means of which the refuse R is pressed and directed towards a first disintegrating
unit 76 provided with a disintegrating member 77 (for example defined by moving disintegration
blades) and a conveying member 78 defined for example by a screw. The member 78 caries
the refuse (via a frusto-conical part 76A), subjected to first disintegration, towards
a second disintegrating unit 80 provided with a disintegrating member 81 and a conveying
member 82 totally similar to the said members 77 and 78. The conveying member 82 carries
the now finely disintegrated (or rather micro-disintegrated) refuse towards a dispensing
zone 84 of the second disintegrating unit where a container 85 is present having its
longitudinal axis W perpendicular to the axis T of the unit 80 and acting as an "overflow"
member or dispensing member for the micro-disintegrated refuse. This container comprises
a piston 87 positioned above its contents and pressed onto the refuse with a pressure
obtained by feeding air above the piston via a suitable conduit 80. An adjustable
bleed member 91 is positioned at the closed top 92 of the container 85 (where the
conduit 90 is connected) and enables the pressure in the container to be regulated.
In the example, the piston 87 is associated with a rod 95 emerging from the top 92
and cooperating with a proximity sensor 96 carried by a support 97 (position measurer
or encoder) fixed to said top. On the basis of the relative position of the rod 95,
this sensor generates a proximity signal directed towards a control unit 100 (data
processing unit for the management and control of all the processes described in the
present text), preferably a microprocessor member and a programmed logic interface,
which controls the entire plant and operates each moving member (motor, valve, flow
meters, or other) present therein. On the basis of the position of the rod (or of
the piston 87 within the container 85), the unit 100 controls the speed of the geared
motors 73 and of the motors 74A of the screw 74, 78A of the member 78 and 82A of the
member 82 of the plant portion 7. In this manner the quantity of refuse fed to the
reactor 1 is controlled to prevent an excess of refuse in this latter.
[0022] The dispensing zone 84 is connected, by a conduit 101 leaving a frusto-conical part
80A, to a further conveying member 102 inserted into a transfer unit 103 (provided
with its own geared motor 102A also controlled by the unit 100) which is connected
to the refuse reception unit 5 to which it transfers the micro-disintegrated refuse
liquefied or pre-sublimed by the steam fed into the disintegrating unit 76. It should
be noted that vacuum (indicated by X in Figure 3) is preferably applied to the first
disintegrating unit 76. This is achieved by a usual pump (not shown) and by the formation
of "plugging" at the exit from this unit and in the end 75 of the hopper 71 caused
by the amassing of refuse within these parts. Steam is injected into the two cones
75 and 76A of Figure 5 via conduits 8W by the feed unit 8 shown in Figure 3 in order
to soften and heat the refuse, to cause it to flow and facilitate micro-disintegration.
[0023] The refuse in the section 7 is also heated by steam flowing through a double wall
positioned about the screws 78, 82, 102, and by the hot water within the interspace
of the screw 74.
[0024] As stated, the liquid refuse also reaches the member 5 through a conduit 110 into
which the pump 4, a normally closed pneumatic safety valve 111, a non-return valve
112 and a flowmeter 111k are connected, this latter, by means of the unit 100, controlling
the throughput of the pump 4 under the control of an electronic inverter (not shown).
Another unidirectional valve 113 is also present in the line 2 to prevent refuse returning
from the reactor 1 to the member 5 because of any excess pressure present in said
reactor. Along this line there are also provided a normally closed spring-operated
safety valve 114 for any overpressure, a metering valve 115 operated and controlled
by the unit 100, and temperature and pressure measuring devices for the fluid in the
line 2, indicated by 118 and 119 respectively.
[0025] As stated, the line 2 also presents a jacket 10 through which steam circulates originating
from the serpentine coil 26. This steam raises the temperature of the fluid (steam
with evaporated liquid refuse and micro-disintegrated solid refuse) flowing through
the line 2 towards the reactor 1. As this line is defined by several segments joined
together by flanges F, by-pass lines 120 for the jacket 10 are present around these
flanges.
[0026] Figure 7 also shows a conduit 8Z connected to the member 8V to feed steam into the
line 2 (fully described hereinbefore) and conduits 122 for feeding steam into the
jacket 10.
[0027] The line 2 is connected to a multiple pipe 125 presenting a central section S1 and
concentric annular sections S2, S3 and S4, visible in Figures 7 and 8. These sections
are connected respectively to the line 2, to the oxygen feed line 13, to the hydrogen
or fuel feed line 15, to a line 201 carrying cooling steam for the nozzle 12 and to
the branch 35A of the line 35 which carries recirculation gas to the reactor 1. This
gas advantageously creates turbulence between the other fluids leaving the nozzle
12 to hence enable complete pyrolysis of the refuse fed into the reactor. About the
outer wall 126 of the pipe 125 an annular chamber 127 is present through which the
gas produced by the said pyrolysis recirculates.
[0028] It should be noted that in correspondence with the terminal parts of the various
sections of the pipe 125 defined by cylindrical walls 125A, 125B, 125C and by the
outer wall 126, very fine apertures 128 are present through which the various fluids
originating from the sections S2, S3 and S4 pass, even though the section S2 is directly
connected to the section S1 via a series of apertures 130 provided at the end of the
pipe 125A for feeding O
2 directly into the pre-gasified refuse. These apertures 130 are preferably inclined
and made with interchangeable nozzles having different diameter holes such as to cause
the oxygen to emerge at sonic velocity to create turbulence within the fluid containing
the pre-gasified refuse; those apertures 128, carrying a part of the O
2, the fuel and the cooling steam to the nozzle 12, are formed, for example, as cuts
having right or left helixes such as to widen the flame and create maximum turbulence
within the inner part of the nozzle 12 where pyrolysis at very temperature occurs.
[0029] Moreover as shown in Figures 7 and 8, the (main) section S1 through which the fluid
containing the "gasified" refuse arrives can be closed by a closure member 131 movable
within that section. Said member 131 is carried by an end 132A of a rod 132, the other
end 132B of which is subjected to an actuator member 133 (pneumatic, mechanical or
electrical) in order to be able to move in a guided manner within the section S1.
That end 132A carries a disc 134 on which there acts a spring 135 inserted into a
chamber 136 within which the disc moves, between this latter and a chamber end face
136A through which the rod 132 passes. The closure member can cooperate with a projecting
edge 200 formed in the interior of the section S1.
[0030] The nozzle 12 presents fins 12A which separate it from the wall 1A of the reactor
1 and enable the gas produced by the refuse pyrolysis to be recirculated.
[0031] The various sections S2, S3 and S4 are connected to the respective lines 13, 15 and
201 as shown in Figure 7.
[0032] The lines 13 and 15 are conceptually similar: both are connected, for example, to
gas tanks (respectively oxygen (gaseous or liquid) 13K and hydrogen 15K or methane
gas or liquefied propane gas 15B), and present a plurality of normally closed valves
13V and 15V, non-return valves 13N and 15N, metering valves 13D and 15D and mass flowmeters
13M and 15M. Alternatively, the pure oxygen is obtained from a self-contained unit
fed with electrical energy produced by the plant.
[0033] Other valve members, as stated, are present in the branches 35A and 35B of the line
35, and a control valve 139 in a bypass line 137 in the plant portion 33 which connects
together the entry conduit 137A to the fan 34 and the exit conduit 137B therefrom.
This conduit 137B is connected to the line 35, at its connection point there being
a pressure sensor 140. Similar pressure sensors are present in the lower part of the
reactor 1 (sensor 141), in the upper part of the enclosure 23 (sensor 142) and in
the lower part thereof (sensor 143).
[0034] Temperature sensors are also present, specifically 145 and 146 positioned respectively
in the upper part of the enclosure 23 and of the reactor 1, 147 and 148 positioned
in the lower part of this latter and of the enclosure 23, and 146C for measuring the
temperature of the enclosure itself. Other temperature sensors 150 and 151 are positioned
at the two ends of the heat exchanger 31.
[0035] All these sensors and valves are controlled by the unit 100.
[0036] The level indicator 152 is connected to the lower part 18 of the reactor 1, to which
there is also connected the mechanical linear control actuator 156 which regulates
the degree of opening of the passages 25 (controlled by the unit 100).
[0037] As stated, the pyrolysis gas leaving the enclosure 23 passes through the line 30.
To this there also arrives catalysis steam from a line 160 (suitably controlled and
metered by a control valve and flowmeter controlled by the unit 100), plus the steam
from the serpentine coil line 26; hot water passes through an interspace (not shown)
of the enclosure 23, present along the wall of the reactor 1, in order to cool this
wall.
[0038] Returning to the line 30, as stated this terminates in the heat exchanger 31, at
the exit of which the plant portion 33 is located; from the exit of this latter the
pyrolysis gas is at least partly fed to the separation line 40 shown in greater detail,
but schematically, in Figure 4. With reference to this figure, the line 40 comprises
a plurality of catalytic converters 240 (two in Figure 4) connected in series. Their
function is to oxidize carbon monoxide to carbon dioxide (CO → CO
2) present in the gas or fluid originating from the reactor 1, so increasing the temperature
of this latter. A filtration unit 241 is present in series with the converters 240,
to filter off and retain powder material present in the fluid originating from the
reactor; this unit 241 is connected to a recirculation member 242 for the retained
powder, and 242A for the metered powder for the pyrolysis, which are returned to the
cycle at the member 5 (and indicated by PR in Figure 2).
[0039] The unit 241 is followed by a heat exchanger 243 and then a quenching unit 244 comprising
a scrubbing, purification and cooling unit 245 for the pyrolysis gas and a droplet
separation unit 246 for recovering the water present in the fluid originating from
the reactor. This water is then returned to the reactor 1 via the line 43.
[0040] The line 40 further comprises, downstream of the unit 244, a concentrator 247 comprising,
in the example of Figure 4, a unit 248 for enriching the CO
2-H
2 mixture still present in the fluid originating from the unit 244. Carbon dioxide
is also absorbed in the unit 248 by a suitable known solvent. Downstream of the unit
248 there is a unit 250 for scrubbing the enriched H
2 gas and removing the residues of the solvent used in the unit 248. The scrubbing
water is recycled to the line 43. Gaseous H
2 can hence be obtained from the unit 250 for compression by a compressor 250A into
the tank 15A, from which there flows that part fed via the line 15 to pyrolysis and
the excess part utilized for various uses, for example for the fuel cells to produce
electrical energy for operating the plant, any excess being sold.
[0041] The unit 248 is finally connected to a solvent storage tank 248S via the line 254A.
The solvent is recirculated to the unit 248 by a pump or other device 254P via the
line 254B, the CO
2-laden solvent returning to the tank 248S via a line 254A; a pump 253P withdraws the
CO
2-laden solvent from the tank 248S and feeds it to a stripping column 251 via the line
253A where countercurrent air from a fan 255 passing through a line 256 removes the
CO
2 from the solvent and discharges it with the air through the vent 257; the purified
solvent returns to the tank 248S via the line 253B.
[0042] The aforedescribed concentrator 247 can alternatively comprise a CO
2-H
2 mixture enrichment unit with mixture compression for separation through a membrane,
a unit for freezing the CO
2 and separating it from the residual H
2, then loading it into cylinders for industrial use, and a unit for scrubbing the
enriched H
2 gas and removing miscellaneous residues and recycling the water to water make-up,
to give virtually pure H
2.
[0043] Hence summarizing, the following are fed to the plant:
- a) The raw material (the refuse) which, in the case of solid refuse, must be previously
disintegrated; liquid refuse does not require pretreatment.
- b) Pure oxygen either obtained from the air by a self-contained unit powered by the
electrical energy produced within the plant itself, or taken from an appropriate container.
- c) Distilled or demineralized pure water which after start-up originates from the
water recovered by condensation in the electrical energy production unit.
[0044] The refuse a) provides the fuel (together with the line 15), the oxygen b) is the
combustion support and the water c) is the oxidizing agent.
[0045] The plant provides:
- a) Electrical and thermal energy
- b) Vitrified inerts
- c) Excess pure water
- d) Carbon dioxide (CO2)
[0046] In its primary function, the plant enables solid and liquid refuse of organic origin
(almost the whole of existing refuse) to be eliminated (without pollution) while at
the same time enabling clean electrical energy to be produced from waste materials.
Refuse is eliminated without pollution because the residues are electrical energy,
pure water without salts, and vitrified inerts, only carbon dioxide being discharged
to atmosphere; in the highest performance case the CO
2 is also recovered, for use in the plastic industries, welding etc.
[0047] The final result in the highest performance case is therefore to transform what is
merely refuse for disposal (more or less bulky and noxious refuse) into electrical
energy as a clean and renewable source, usable inerts (for example for road coverings)
and CO
2 for industrial uses.
[0048] All this is achieved with a plant designed in accordance with high energy physical
and chemical relationships and having an original configuration from the technology,
operation and management viewpoint.
[0049] The plant of the invention is summarily described hereinafter in terms of its innovative
components. The plant as described hence comprises:
- 1. Unit for feeding the material into the chamber of the high temperature pyrolysis
reactor;
- 2. Unit for producing high temperature, high pressure steam with recovery of thermal
energy from the pyrolysis gas;
- 3. High temperature pyrolysis member with very high performance and nearly stoichiomeric
yields;
- 4. Member for controlling, mixing and creating turbulence of the gases within the
pyrolytic process;
- 5. Member for re-solidifying, vitrifying and separating the inert slag;
- 6. Converters for converting CO into CO2;
- 7. Powder filtration member, powder recycling and metering of powder materials for
producing vitrified inerts;
- 8. Pyrolysis gas cooling and scrubbing unit.
- 9. Mixture enrichment unit for producing H2 and separating CO2.
- 10. Unit for recycling and metering powder materials for their solidification and
for eliminating pollutants from the gas.
- 11. Unit for producing electrical energy for self consumption and for external feed.
- 12. Unit for condensing and recovering H2O for its recycling to the plant and for use of the excess either as distilled water
or adding to desalinated water in sea-water desalination plants.
- 13. Systems and units for producing primary O2.
[0050] A specific embodiment of the invention has been described. Others are possible while
remaining within the scope of the present document.
1. A plant for treating solid and/or liquid refuse, comprising an environment or reactor
(1) in which the refuse (R) is subjected to pyrolysis treatment, said refuse (R) being
fed to the reactor (1) by feed means (2), means (19, 40) being provided to recover
and/or treat the solid, liquid and gaseous products deriving from said refuse pyrolysis
treatment and being connected to said reactor (1), the feed means (2) comprising micro-disintegrating
means (76, 80) and pre-gasifying means (2, 5) for transforming the liquid refuse into
the gaseous phase and the solid refuse into the vapour or gaseous phase prior to their
introduction into the reactor (1), in order that the total mass of refuse is able
to undergo the thermal pyrolysis treatment with its consequent complete demolition,
the micro-disintegrating and pre-gasifying means comprise a reception member (5) arranged
to receive the liquid refuse from a feed conduit (110) and to receive the solid refuse
already micro-disintegrated within a plant portion (7) presenting the micro-disintegrating
means (76, 80), the reception member also receiving steam at high pressure and high
temperature, from said member (5) the refuse being transferred to the reactor (1),
the feed means comprising a line (2) connected to the reception member (5) for the
pre-gasified and micro-disintegrated refuse for feeding the pre-gasified refuse to
the reactor (1), the feed line (2) being connected to a high pressure and high temperature
steam feed (8V) for gasifying the entry refuse characterised in that the line (2) has a perimetral interspace or jacket (10) through which steam circulates
in counter-current at high pressure and high temperature to enhance the gasification
of the refuse.
2. A plant as claimed in claim 1, characterised in that the micro-disintegrating means comprise at least one disintegrating unit (76, 80)
presenting a disintegrating member (77, 81) which receives the refuse mixed with steam
fed by a suitable unit (8), a feed member (74, 78), and a conveying member (78, 82)
which transfers the micro-disintegrated refuse to an exit provided in a tapered part
(76A, 80A), the disintegrating unit (76, 80) receiving steam at high pressure and
high temperature, a steam feed member (8) being connected to the disintegration unit
(76, 80).
3. A plant as claimed in claim 2, characterised in that means (8, 8V) are provided for metering the steam fed into the disintegrating unit
(76, 80) and fed into the feed line (2) and the perimetral interspace or jacket (10)
of said line.
4. A plant as claimed in claim 1, characterised in that the feed line (2) flows into a multiple pipe (125) presenting different sections
(S1, S2, S3, S4) flowing into a nozzle (12) and connected respectively to said line
(2), to a fuel feed line (15), to a combustion-support feed line (13), to a high pressure
and high temperature steam feed line (201) for cooling the nozzle (12), and to a conduit
(35A) which recirculates the pyrolytic gas to create turbulence within the fluids
leaving the nozzle (12).
5. A plant as claimed in claim 4, characterised in that a controlled closure member (131) is present in that section (S1) of the multiple pipe (125) connected to the refuse feed line (2) in
order to regulate the flow of refuse to the reactor (1) until it interrupts this flow
when it cooperates with a seat (200) provided on the wall (125A) defining said section
(S1).
6. A plant as claimed in claim 4, characterised in that the powdered refuse recycled from other parts of the plant also reach the nozzle
(12) from other parts (242, 242D) of the plant, via the conduit (35A).
7. A plant as claimed in claim 4, characterised in that the nozzle (12) presents external fins (12A).
8. A plant as claimed in claim 4, characterised in that the combustion-support feed line (13) is connected to a source of oxygen (13K).
9. A plant as claimed in claim 4, characterised in that the fuel feed line (15) is connected to a tank of hydrogen (15A) or of a fuel gas
(methane or LPG) (15B).
10. A plant as claimed in claim 4, characterised in that the fuel feed and combustion-support lines (13, 15) connected to the multiple pipe
(125) comprises metering valves (13D, 15D) and other valve members (13V, 15V) controlled
by the plant control means (100), these latter also being connected to pressure and
temperature sensors (119, 118), to valve members (114, 115) and to a flowmeter (111
K) positioned in or connected to the refuse feed line (2).
11. A plant as claimed in claim 2, characterised in that the disintegrating member (77, 78) comprises a plurality of movable disintegrating
blades.
12. A plant as claimed in claims 1 and 2, characterised by comprising at least two disintegrating units (76, 80) connected in cascade, the first
(76) receiving the solid refuse to be micro-disintegrated though a screw feeder (74)
at which the refuse arrives from a hopper (70) preferably provided with a mixer (72),
the second disintegrating unit (80) feeding the micro-disintegrated refuse to the
reception member (5).
13. A plant as claimed in claim 12, characterised in that between the reception member (5) and the second disintegrating unit (80) there is
present a transfer unit (103), these units being mutually perpendicular, the second
disintegrating unit (80) also being positioned perpendicular to the first unit (76).
14. A plant as claimed in claim 2, characterised in that the disintegrating unit (80) comprises regulator means (85, 87, 95, 96) controlling
the flow of micro-disintegrated refuse to the reception member (5).
15. A plant as claimed in claim 2, characterised in that the regulator means comprise a container (85) positioned with its longitudinal axis
(W) perpendicular to the longitudinal axis (T) of the disintegrating unit (80), means
(87, 95, 96) being provided in said container to measure the quantity of refuse which
has penetrated into and been collected in the container before its exit from the tapered
part (80A) of the disintegrating unit (80) towards the reception member (5), said
measurement means (87, 95, 96) being connected to plant control means (100) which
on the basis of the quantity of refuse present in the container (85) control the rate
of flow of the refuse to the reactor (1) and control each controlled movable member
present in the plant to enable the pyrolysis treatment to take pace on the refuse.
16. A plant as claimed in claim 15, characterised in that the measurement means are a piston (87) movable within the container (85) under the
action of the refuse (R) and against a resistant force, said piston (87) being connected
to a rod (95) movable in front of a proximity sensor (96) connected to the plant control
means (100).
17. A plant as claimed in claim 16, characterised in that the resistant force is a fluid under pressure, preferably air, said pressure being
adjustable.
18. A plant as claimed in claim 16, characterised in that the plant control means (100) comprise a microprocessor unit.
19. A plant as claimed in claim 2, characterised in that vacuum is created in the disintegrating unit (76, 80).
20. A plant as claimed in claim 1, characterised in that the reactor (1) is located in a container or enclosure (23) in which heat exchangers
(26) are present to produce steam at high temperature and high pressure to be also
used in the feed means (2), said heat exchangers being lapped by the gaseous products
deriving from the refuse pyrolysis.
21. A plant as claimed in claim 1, characterised by comprising a gas cooling member (31) and control valves (38, 139) for separating
the gas obtained by the refuse pyrolysis reaction within the reactor, said member
being connected to a plant portion (33) arranged to recirculate said fluids through
the plant, to said portion there being connected a line (35) comprising two branches
(35A, 35B), a first branch (35A) directed to the reactor (1) and a second branch (35B)
directed to a separation line (40) for the reaction gas produced.
22. A plant as claimed in claim 21, characterised in that the separation line (40) comprises catalytic converters (240), a filtration unit
(241) to recover any powder present in the transiting fluid, a quenching unit (244)
and a concentrator (247) to enable the CO2 and H2 present in said fluid to be separated and possibly recovered.
23. A method for treating refuse by pyrolysis in a plant in accordance with one or more
of the preceding claims, the refuse being micro-disintegrated before being fed to
a reactor (1) in which the pyrolysis takes place, the micro-disintegrated refuses
being pre-gasified before being fed to the reactor (1), that is the liquid part of
said refuse being transformed into the gaseous phase and the micro-disintegrated solid
part being fed with high temperature, high pressure steam to liquefy and then evaporate
or sublime it before the refuse enters the reactor (1), said micro-disintegrated and
evaporated liquid refuses being fed to a feed line (2) into which the high pressure
and high temperature steam circulate, said steam raising the temperature of the micro-disintegrated
solid refuse and the evaporated liquid refuse so as to completely gasify the refuse
before they reach the reactor, characterised in that a further heating of said refuse is obtained by heating the outer of the feed line
(2), when said refuse moves, by means of a counter-current flow of high pressure and
high temperature steam, the latter flowing into a perimetral interspace or jacket
(10) of said feed line (2).
24. A method as claimed in claim 23, characterised in that the steam flowing into the feed line (2) and into the perimetral interspace or jacket
(10) comes from the reactor (1).
25. A method as claimed in claim 23, characterised in that the steam is also introduced into the refuse during their micro-disintegration.
26. A method as claimed in claim 25, characterised in that the steam fed to the refuse, the feed line (2) and the jacket (10) of the latter
is metered and measured.
1. Anlage zum Behandeln von festem und/oder flüssigem Abfall, die eine Umgebung oder
eine Reaktor (1), in der/dem der Abfall (R) einer Pyrolysebehandlung unterzogen wird,
umfasst, wobei der Abfall (R) dem Reaktor (1) durch Zuführungsmittel (2) zugeführt
wird; Mittel (19, 40) angeordnet sind, um die festen, flüssigen und gasförmigen Produkte,
die aus der Abfallpyrolysebehandlung stammen, zum gewinnen und/oder zu behandeln,
und mit dem Reaktor (1) verbunden sind; das Zuführungsmittel (2) Mikrozerkleinerungsmittel
(76, 80) und Vorvergasungsmittel (2, 5) zum Überführen des flüssigen Abfalls in die
gasförmige Phase und des festen Abfalls in die Dampf- oder gasförmige Phase vor ihrer
Einleitung in den Reaktor (1) umfasst, damit die gesamte Masse an Abfall geeignet
ist, die thermische Behandlung mit ihrer anschließenden vollständige Demolition durchzumachen;
wobei die Mikrozerkleinerungsmittel und Vorvergasungsmittel ein Aufnahmeelement (5)
umfassen, das angeordnet ist, um den flüssigen Abfall aus einer Beschickungsleitung
(110) aufzunehmen und den festen Abfall, der in einem Anlagenteil (7), der Mikrozerkleinerungsmittel
(76, 80) aufweist, bereits zerkleinert wurde, aufzunehmen; wobei das Aufnahmeelement
auch Dampf mit hohem Druck und hoher Temperatur aufnimmt; der Abfall aus dem Element
(5) zu dem Reaktor (1) befördert wird; das Zuführungsmittel eine Leitung (2), verbunden
mit dem Aufnahmeelement (5) für den vorvergasten und mikrozerkleinerten Abfall, zum
Befördern des vorvergasten Abfalls zu dem Reaktor (1) umfasst; die Zuführungsleitung
(2) mit einer Hochdruck- und Hochtemperatur-Dampfzuführung (8V) zum Vergasen des Eingangsabfalls
verbunden ist, dadurch, gekennzeichnet, dass die Leitung (2) einen perimetrischen Zwischenraum oder einen Mantel (10) hat, durch
welchen Dampf im Gegenstrom mit hohem Druck und hoher Temperatur zirkuliert, um die
Vergasung des Abfalls zu verstärken.
2. Anlage, wie sie in Anspruch 1 beansprucht ist, dadurch gekennzeichnet, dass die Mikroerkleinerungsmittel wenigstens eine Zerkleinerungseinheit (76, 80) umfasst,
die ein Zerkleinerungselement (77, 81), welches den Abfall gemischt mit Dampf, welcher
durch eine geeignete Einheit (8) zugeführt wird, aufnimmt", ein Beschickungselement
(74, 78) und ein Transportelement (78, 82) aufweist, welches den mikrozerkleinerten
Abfall zu einem Ausgang transferiert, der in einem sich verengenden Teil (76A, 80A)
angeordnet ist; wobei die Zerkleinerungseinheit (76, 80) Dampf mit hohem Druck und
hoher Temperatur aufnimmt; wobei ein Dämpfzuführungselement (8) mit der Zerkleinerungseinheit
(76, 80) verbunden ist.
3. Anlage nach Anspruch 2, dadurch gekennzeichnet, dass Mittel (8, 8V) zum Abmessen das (Wasser-) Dampfs, der in die Zerkleinerungseinheit
(76, 80) geleitet wird und in die Zuführungsleitung (2) und den perimetrischen Zwischenraum
oder den Mantel (10) der Leitung geleitet wird, angeordnet sind.
4. Anlage nach Anspruch dadurch gekennzeichnet, dass die Zuführungbleitung (2) in ein Mehrfachrohr (125) führt, das verschiedene Abschnitte
(S1, S2, S3, S4) aufweist, die in eine Düse (12) führten und mit der Leitung (2),
mit einer Brennstoffzuführungsleitung (15), mit einer Verbrennungsträger-Zuführungsleitung
(13), mit einer Hochdruck- und Hochtemperatur-Dampfzuführungsleiturig (201) zum Kühlen
der Düse (12) bzw. mit einer Leitung (35A), welche das pyrolytische Gas unter Erzeugung
von Turbulenz in den Fluiden, die die Düse (12) verlassen, umwälzt, verbunden sind.
5. Anlage nach Anspruch 4, dadurch gekennzeichnet, dass ein kontrolliertes schließelement (131) in dem Abschnitt (S1) des Mehrfachrohrs (125),
der mit der Abfallzuführungsleitung (2) verbunden ist, vorhanden ist, um den Abfallstrom
zu dem Reaktor (1) zu regulieren, bis es diesen Strom unterbricht, wenn es mit dem
Sitz (200) zusammenwirkt, der an der Wand (125A), die diesen Abschnitt (S1) definiert,
angeordnet ist.
6. Anlage, wie sie in Anspruch 4 definiert ist, dadurch gekennzeichnen, dass der gepulverte Abfall, der aus anderen Teilen der Anlage zurückgeführt wird, die
Düse (12) auch aus anderen Teilen (242, 242D) der Anlage über die Leitung (35A) erreicht.
7. Anlage, wie sie in Anspruch 4 beansprucht ist, dadurch gekennzeichnet, dass die Düse (12) äußere Rippen (12A) aufweist.
8. Anlage, wie sie in Anspruch 4 beansprucht ist, dadurch gekennzeichnet, dass die Verbrennungsträger-Zuführungsleitung (13) mit einer Sauerstoffquelle (13K) verbunden
ist.
9. Anlage, wie sie in Anspruch 4 beansprucht ist, dadurch gekennzeichnet, dass, die Brennstoffzufuhrungsleitung (15) mit einem Wasserstofftank (15A) oder einem
Tank für Brennstoffgas (Methan oder LPG) (15B) verbunden ist.
10. Anlage, wie sie in Anspruch 4 beansprucht ist, dadurch gekennzeichnet, dass die Brennstoffzuführungs- und Verbrennungsträger-Leitungen (13, 15), die, mit dem
Mehrfachrohr (125) verbunden sind. Dosierventile (13D, 15D) und andere Ventilelemente
(13V, 15V), die durch die, Anlagen-Steuerungsmittel (100) gesteuert werden, umfassen,
wobei diese letztgenannten auch mit Druck- und Temperatursensoren (119, 118), mit
Ventilelementen (114, 115) und mit einem Durchflussmessgerät (111K), positioniert
in oder verbunden mit der Abfallzuführüngsleitung (2), verbunden sind.
11. Anlage, wie sie in Anspruch 2 beansprucht ist, dadurch gekennzeichnet, dass das Zerkleinerungselement (77, 78) eine Vielzahl von beweglichen Zerkleinerungsmessern
umfasst.
12. Anlage, wie sie in den Ansprüchen 1 und 2 beansprucht ist, dadurch gekennzeichnet, dass sie wenigstens zwei Zerkleinerungseinheiten (76, 80), die in Kaskade zusammengeschaltet
sind, umfasst, wobei die erste (76) den festen Abfall, der zu zerkleiner ist, durch
einen Schneckenförderer (74), an dem der Abfall aus einem Trichter (70), der vorzugsweise
mit einem Mischer (72) ausgestattet ist, ankommt, aufnimmt, wobei die zweite Zerkleinerungseinheit
(80) den mikrozerkleinerten Abfall zu dem Aufnahmeelement (5) führe.
13. Anlage, wie sie in Anspruch 12 beansprucht ist, dadurch gekennzeichnet, dass zwischen dem Aufnahmeelement (5) und der zweiten Zerkleinerungseinheit (80) eine
Transfereinheit (103) vorhanden ist, wobei diese Einheiten zueinander senkrecht sind,
die zweite Zerkleinerungseinheit (80) zu der ersten Einheit (76) ebenfalls senkrecht
positioniert ist.
14. Anlage, wie sie in Anspruch 2 beansprucht ist, dadurch gekennzeichnet, dass die Zerkleinerungseinheit (80) Regulatormittel (85, 87, 95, 96) umfasst, die den
Strom von mikrozerkleinertem Abfall zu dem Aufnahmeelement (5) regulieren.
15. Anlage, wie sie in Anspruch 2 beansprucht ist, dadurch gekennzeichnet, dass die Regulatormittel einen Behälter (85), der mit seiner Längsachse (W) senkrecht
zu der Längsachse (T) der Zerkleinerungseinheit (80) positioniert ist, Mittel (87,
95, 96), die in dem Behälter angeordnet sind, um die Abfallmenge abzumessen, welche
in den Behälter eingedrungen ist und in diesem gesammelt wurde, und zwar vor seinem
Austritt aus dem zulaufenden Teil (80A) der Zerkleinerungseinheit (80) in Richtung
des Aufnahmeelements (5), umfasst, wobei die Abmessmittel (87, 95, 96) mit Anlagensteuerungsmittel
(100) verbunden sind, welche auf der Basis der Abfallmenge, die in dem Behälter (85)
vorlegt, die Strömungsgeschwindigkeit des Abfalls zu dem Reaktor (1) steuern und jedes
gesteuerte bewegliche Element, das in der Anlage vorhanden ist, steuern, um zu ermöglichen,
dass die Pyrolysebehandlung an dem Abfall vorgenommen wird.
16. Anlage, wie sie in Anspruch 15 beansprucht ist, dadurch gekennzeichnet, dass die Abmessmittel ein Kolben (87) sind, der innerhalb des Behälters (85) unter der
Wirkung des Abfalls (R) und gegen eine Widerstandskraft beweglich ist, wobei der Kolben
(87) mit einer Stange (95) verbunden ist, die vor einem Näherungssensor (96) bewegbar
ist, welcher mit den Anlagensteuerungsmitteln (100) verbunden ist.
17. Anlage, wie sie in Anspruch 16 beansprucht ist, dadurch gekennzeichnet, dass die Widerstandskraft ein Fluid unter Druck, vorzugsweise Luft, ist, wobei der Druck
einstellbar ist.
18. Anlage, wie sie in Anspruch 16 beansprucht ist, dadurch gekennzeichnet, dass die Anlagensteuerungsmittel (100) eine Mikroprozessoreinheit umfassen.
19. Anlage, wie sie in Anspruch 2 beansprucht ist, dadurch gekennzeichnet, dass in der Zerkleinerungseinheit (76, 80) Vakuum erzeugt wird.
20. Anlage, wie sie in Anspruch 1 beansprucht ist, dadurch gekennzeichnet, dass der Reaktor (1) in einem Behälter oder einem Gehäuse (23) lokalisiert ist, in dem
sich Wärmetauscher (26) befinden, um Dampf mit hoher Temperatur und hohem Druck zu
erzeugen, der auch in dem Zuführungsmittel (2) zu verwenden, ist, wobei die Wärmetauscher
durch die gasförmigen Produkte, die aus der Abfallpyrolyse stammen, umgeben sind.
21. Anlage, wie sie in Anspruch 1 beansprucht ist, dadurch gekennzeichnet, dass sie ein Gaskühlungselement (31) und Steuerungsventile (38, 139) zum Abtrennen des
Gases, das durch die Abfallpyrolysereaktion, im Reaktor erhalten wird, umfasst, wobei
das Element mit einem Anlagenteil (33), der zum Umwälzen der Fluide durch die Anlage
angeordnet ist, verbunden ist, wobei an dem genannten Teil eine Leitung (35), die
zwei Verzweigungen (35A, 35B) umfasst, angeschlossen ist, wobei die erste Verzweigung
(35A) zu dem Reaktor (1) führt und eine zweite Verzweigung (35B) zu einer Trennungsleitung
(40) für das produzierte Reaktionsgas führt.
22. Anlage, wie sie in Anspruch 21 beansprucht ist, dadurch gekennzeichnet, dass die Trennungsleitung (40) katalytische Wandler (240), eine Filtrationseinheit (241),
um Pulver, das in dem Übertragungsfluid vorhanden ist, zu gewinnen, eine Abschreckungseinheit
(244) und eine Konzentrierungsvorrichtung (247) umfasst, um zu ermöglichen, dass in
dem Fluid vorhandenes CO2 und H2 abgetrennt und möglicherweise wiedergewonnen werden.
23. Verfahren zur Behandlung von Abfall durch Pyrolyse in einer Anlage nach einem oder
mehreren der vorangehenden Ansprüche, wobei der Abfall mikrozerkleinert wird, bevor
er zu einem Reaktor (1) geführt wird, in dem die Pyrolyse stattfindet, wobei die mikrozerkleinerten
Abfälle vorvergast werden, bevor sie zu dem Reaktor (1) geführt werden, d.h. der flüssige
Teil des Abfalls wird in die gasförmige Phase übergeführt und dem mikrözerkleinerten
festen Teil wird Dampf hoher Temperatur und hohem Druck zugeführt, um ihn zu verflüssigen
und dann zu verdampfen oder zu sublimieren, bevor der Abfall in den Reaktor (1) eintritt,
wobei die mikrozerkleinerten und verdampften flüssigen Abfälle zu einer Zuführungsleitung
(2) geführt werden, in welcher der Dampf mit hohem Druck und hoher Temperatur zirkuliert,
wobei der Dampf die Temperatur des mikrozerkleinerten feine Abfalls und des verdampften
flüssigen Abfalls erhöht, so dass der Abfall vollständig verglast wird, bevor er den
Reaktor erreicht, dadurch gekennzeichnet, dass ein weiteres Erhitzen des Abfalls erreichte wird, indem die Außenseite der Zuführungsleitung
(2) erhitzt wird, wenn der Abfall bewegt wird, und zwar durch (Wasser-) Dampf mit
hohem Druck und höher Temperatur im Gegenstrom, wobei der letztgenannte in den perimetrischen
Zwischenraum oder den Mantel (10) der Zuführungsleitung (2) strömt.
24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass der Dampf, der in die Zuführungsleitung (2) und in den perimetrischen Zwischenraum
oder den Mantel (10) strömt, aus dem Reaktor (1) kommt.
25. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass der Dampf auch in den Abfall während seiner Mikrozerkleinerund eingeleitet wird.
26. Verfahren, wie es in Anspruch 25 beansprucht list, dadurch gekennzeichnet, dass der Dampf, der zu dem Abfall, der Zuführungsleitung (2) und dem Mantel (10) der letztgenannten
geleitet wird, dosiert und abgemessen wird.
1. Installation pour le traitement de déchets solides et/ou liquides, comprenant un environnement
ou réacteur (1), dans lequel les déchets (R) sont soumis à un traitement par pyrolyse,
lesdits déchets (R) étant amenés au réacteur (1) par des moyens d'alimentation (2),
des moyens (19, 40) étant fournis pour récupérer et/ou traiter les produits solides,
liquides ou gazeux dérivant dudit traitement des déchets par pyrolyse et étant raccordés
audit réacteur (1), les moyens d'alimentation (2) comprenant des moyens de micro-désintégration
(76, 80) et des moyens de pré-gazéification (2, 5) pour transformer les déchets liquides
en phase gazeuse et les déchets solides en phase vapeur ou gazeuse avant leur introduction
dans le réacteur (1), afin que la masse totale de déchets soit capable de subir le
traitement de pyrolyse thermique avec leur démolition complète qui en découle, les
moyens de micro-désintégration et de pré-gazéification comprenant un élément de réception
(5), disposé de façon à recevoir les déchets liquides, provenant d'un conduit d'alimentation
(110) et à recevoir les déchets solides déjà micro-désintégrés dans une partie de
l'installation (7) présentant les moyens de micro-désintégration (76, 80), l'élément
de réception recevant également de la vapeur à haute pression et à haute température,
les déchets étant transférés dudit élément (5) au réacteur (1), les moyens d'alimentation
comprenant une ligne (2) raccordée à l'élément de réception (5) pour les déchets pré-gazéifiés
et micro-désintégrés, afin d'amener les déchets pré-gazéifiés au réacteur (1), la
ligne d'alimentation (2) étant raccordée à une alimentation de vapeur haute pression
et haute température (8V) pour gazéifier les déchets en entrée, caractérisé en ce que la ligne (2) a un intervalle ou joint périmétrique (10) à travers lequel la vapeur
circule à contre-courant, à haute pression et haute température, pour augmenter la
gazéification des déchets.
2. Installation selon la revendication 1, caractérisée en ce que les moyens de micro-désintégration comprennent au moins une unité de désintégration
(76, 80) présentant un élément de désintégration (77, 81), qui reçoit les déchets
mélangés à la vapeur amenée par une unité adaptée (8), un élément d'alimentation (74,
78) et un élément de convoyage (78, 82) qui transfère les déchets micro-désintégrés
vers une sortie ménagée dans une partie conique (76A, 80A), l'unité de désintégration
(76, 80) recevant de la vapeur sous haute pression et à haute température, un élément
d'alimentation de vapeur (8) étant raccordé à l'unité de désintégration (76, 80).
3. Installation selon la revendication 2, caractérisée en ce que des moyens (8, 8V) sont fournis pour mesurer la vapeur amenée dans l'unité de désintégration
(76, 80) et amenée dans la ligne d'alimentation (2) et l'intervalle ou le joint périmétrique
(10) de ladite ligne.
4. Installation selon la revendication 1, caractérisée en ce que la ligne d'alimentation (2) s'écoule dans un tuyau multiple (125) présentant différentes
sections (S1, S2, S3, S4) s'écoulant dans une buse (12) et raccordé respectivement
à ladite ligne (2), à une ligne d'alimentation en combustible (15), à une ligne d'alimentation
en support de combustion (13), à une ligne d'alimentation en vapeur à haute pression
et à haute température (201) pour refroidir la buse (12) et à un conduit (35A) qui
recycle le gaz pyrolytique, afin de créer une turbulence dans les fluides quittant
la buse (12).
5. Installation selon la revendication 4, caractérisée en ce qu'un élément à fermeture contrôlée (131) est présent dans la section (S1) du tuyau multiple
(125), qui est raccordée à la ligne d'alimentation des déchets (2), afin de réguler
le flux de déchets au réacteur (1) jusqu'à ce qu'il interrompe ce flux quand il coopère
avec un logement (200) ménagé sur la paroi (125A) définissant ladite section (S1).
6. Installation selon la revendication 4, caractérisée en ce que les déchets en poudre recyclés provenant d'autres parties de l'installation atteignent
également la buse (12), à partir d'autres parties (242, 242D) de l'installation, par
le biais du conduit (35A).
7. Installation selon la revendication 4, caractérisée en ce que la buse (12) présente des ailettes externes (12A).
8. Installation selon la revendication 4, caractérisée en ce que la ligne d'alimentation en support de combustion (13) est raccordée à une source
d'oxygène (13K).
9. Installation selon la revendication 4, caractérisée en ce que la ligne d'alimentation en combustible (15) est raccordée à un réservoir d'hydrogène
(15A) ou d'un gaz combustible (méthane ou GPL) (15B).
10. Installation selon la revendication 4, caractérisée en ce que les lignes d'alimentation en combustible et en support de combustion (13, 15) raccordées
au tuyau multiple (125) comprennent des soupapes de dosage (13D, 15D) et d'autres
éléments à soupape (13V, 15V) commandés par le système de contrôle de l'installation
(100), ces derniers étant également raccordés à des capteurs de pression et de température
(119, 118), aux éléments à soupape (114, 115) et à un débitmètre (111K) positionné
dans ou connecté à la ligne d'alimentation en déchets (2).
11. Installation selon la revendication 2, caractérisée en ce que l'élément désintégrateur (77, 78) comprend une pluralité de lames de désintégration
mobiles.
12. Installation selon les revendications 1 et 2, caractérisée en ce qu'elle comprend au moins deux unités de désintégration (76, 80) raccordées en cascade,
la première (76) recevant les déchets solides à micro-désintégrer, à travers une alimentation
à vis (74), à laquelle les déchets arrivent d'une trémie (70), de préférence dotée
d'un mélangeur (72), la seconde unité de désintégration (80) amenant les déchets micro-désintégrés
à l'élément de réception (5).
13. Installation selon la revendication 12, caractérisée en ce qu'entre l'élément de réception (5) et la seconde unité de désintégration (80), il existe
une unité de transfert (103), ces unités étant réciproquement perpendiculaires, la
seconde unité de désintégration (80) étant également positionnée perpendiculairement
à la première unité (76).
14. Installation selon la revendication 2, caractérisée en ce que l'unité de désintégration (80) comprend des moyens régulateurs (85, 87, 95, 96) contrôlant
le flux de déchets micro-désintégrés à l'élément de réception (5).
15. Installation selon la revendication 2, caractérisée en ce que les moyens régulateurs comprennent un contenant (85), positionné avec son axe longitudinal
(W) perpendiculaire à l'axe longitudinal (T) de l'unité de désintégration (80), des
moyens (87, 95, 96) étant fournis dans ledit contenant pour mesurer la quantité de
déchets qui a pénétré dans et qui a été collectée dans le contenant, avant leur sortie
de la partie conique (80A) de l'unité de désintégration (80) vers l'élément de réception
(5), lesdits moyens de mesure (87, 95, 96) étant raccordés audit moyen de contrôle
de l'installation (100) qui, sur la base de la quantité de déchets présents dans le
récipient (85), contrôlent le débit des déchets au réacteur (1) et contrôlent chaque
élément mobile contrôlé présent dans l'installation, afin de permettre que le traitement
par pyrolyse des déchets ait lieu.
16. Installation selon la revendication 15, caractérisée en ce que les moyens de mesure sont un piston (87) mobile dans le contenant (85), sous l'action
des déchets (R) et contre une force résistante, ledit piston (87) étant raccordé à
une tige (95) mobile face à un capteur de proximité (96) raccordé au moyen de contrôle
de l'installation (100).
17. Installation selon la revendication 16, caractérisée en ce que la force résistante est un fluide sous pression, de préférence l'air, ladite pression
étant réglable.
18. Installation selon la revendication 16, caractérisée en ce que les moyens de contrôle de l'installation (100) comprennent une unité à microprocesseur.
19. Installation selon la revendication 2, caractérisée en ce qu'un vide est créé dans l'unité de désintégration (76, 80).
20. Installation selon la revendication 1, caractérisée en ce que le réacteur (1) est situé dans un contenant ou boîtier (23) dans lequel les échangeurs
de chaleur (26) sont présents pour produire de la vapeur à haute température et à
haute pression, à utiliser également dans les moyens d'alimentation (2), lesdits échangeurs
de chaleur étant entourés de produits gazeux dérivant de la pyrolyse des déchets.
21. Installation selon la revendication 1, caractérisée en ce qu'elle comprend un élément de refroidissement de gaz (31) et des soupapes de commande
(38, 139) pour séparer le gaz obtenu par la réaction de pyrolyse des déchets dans
le réacteur, ledit élément étant raccordé à une partie de l'installation (33), disposée
de façon à recycler lesdits fluides à travers l'installation, une ligne (35) comprenant
deux ramifications (35A, 35B), étant raccordée à cette partie, une première ramification
(35A) étant dirigée vers le réacteur (1) et une seconde ramification (35B) étant dirigée
vers une ligne de séparation (40) pour le gaz de réaction produit.
22. Installation selon la revendication 21, caractérisée en ce que la ligne de séparation (40) comprend des convertisseurs catalytiques (240), une unité
de filtration (241) pour récupérer toute la poudre présente dans le fluide en transit,
une unité de trempe (244) et un concentrateur (247) pour permettre au CO2 et au H2 présents dans ledit fluide d'être séparés et éventuellement récupérés.
23. Procédé de traitement des déchets par pyrolyse dans une installation selon une ou
plusieurs des revendications précédentes, les déchets étant micro-désintégrés avant
d'être introduits dans un réacteur (1) dans lequel a lieu la pyrolyse, les déchets
micro-désintégrés étant pré-gazéifiés avant d'être introduits dans le réacteur (1),
à savoir la partie liquide desdits déchets étant transformée dans la phase gazeuse
et la partie solide micro-désintégrée étant introduite avec une vapeur à haute température
et à haute pression pour la liquéfier, puis l'évaporer ou la sublimer avant que les
déchets n'entrent dans le réacteur (1), lesdits déchets liquides micro-désintégrés
et évaporés étant introduits dans une ligne d'alimentation (2), dans laquelle circule
la vapeur à haute pression et à haute température, ladite vapeur augmentant la température
des déchet solides micro-désintégrés et des déchets solides évaporés, de façon à gazéifier
totalement les déchets avant qu'ils n'atteignent le réacteur, caractérisé en ce qu'un chauffage ultérieur desdits déchets est obtenu en chauffant l'extérieur de la ligne
d'alimentation (2), quand lesdits déchets bougent, au moyen d'un flux à contre-courant
de la vapeur à haute pression et haute température, cette dernière s'écoulant dans
un intervalle ou joint périmétrique (10) de ladite ligne d'alimentation (2).
24. Procédé selon la revendication 23, caractérisé en ce que la vapeur s'écoulant dans la ligne d'alimentation (2) et dans l'intervalle ou joint
périmétrique (10) provient du réacteur (1).
25. Procédé selon la revendication 23, caractérisé en ce que la vapeur est également introduite dans les déchets pendant leur micro-désintégration.
26. Procédé selon la revendication 25, caractérisé en ce que la vapeur amenée aux déchets, à la ligne d'alimentation (2) et au joint (10) de cette
dernière est dosée et mesurée.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description