(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 02.04.2003 Patentblatt 2003/14

(51) Int CI.⁷: **F25J 1/02**, F25J 1/00, F25J 3/04

(21) Anmeldenummer: 02019784.4

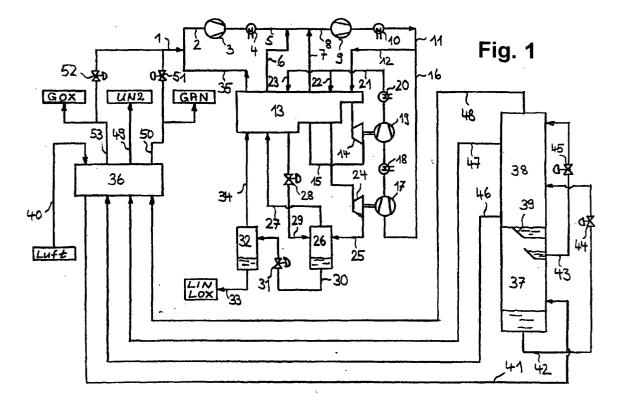
(22) Anmeldetag: 04.09.2002

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR Benannte Erstreckungsstaaten: AL LT LV MK RO SI

(30) Priorität: 28.09.2001 DE 10148166

(71) Anmelder: Linde AG 65189 Wiesbaden (DE)


(72) Erfinder: Voit, Jürgen 86938 Schondorf (DE)

(74) Vertreter: Imhof, Dietmar et al LINDE AG Zentrale Patentabteilung 82049 Höllriegelskreuth (DE)

(54) Verfahren und Vorrichtung zur Erzeugung von flüssigem Sauerstoff und flüssigem Stickstoff

(57) Das Verfahren und die Vorrichtung dienen zur Erzeugung von flüssigem Sauerstoff und/oder flüssigem Stickstoff. Zu verflüssigendes Gas (1,2,5,8,11,16,21,22,23) wird in einem Kreislauf-Wärmetauscher (13,213) durch indirekten Wärmeaustausch mit einem Kreislaufmedium (15,27,34) abgekühlt und verflüssigt. Das Kreislaufmedium wird in einem Kältekreislauf verdichtet (9), abgekühlt (13), ar-

beitsleistend entspannt (14,24) und/oder verflüssigt, in dem Kreislauf-Wärmetauscher (13) angewärmt und/ oder verdampft und wieder der Verdichtung (3,9) zugeführt. In einem ersten Betriebszustand wird das Kreislaufmedium durch ein erstes Fluid gebildet. In einem zweiten Betriebszustand wird das Kreislauf-Fluid durch ein zweites Fluid gebildet, das sich in seinen thermodynamischen Eigenschaften von dem ersten Kreislauf-Fluid unterscheidet.

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren zur Erzeugung von flüssigem Sauerstoff und/oder flüssigem Stickstoff, bei dem zu verflüssigendes Gas in einem Kreislauf-Wärmetauscher durch indirekten Wärmeaustausch mit einem Kreislaufmedium verflüssigt wird, wobei das Kreislaufmedium in einem Kältekreislauf verdichtet, abgekühlt, arbeitsleistend entspannt und/oder verflüssigt, in dem Kreislauf-Wärmetauscher angewärmt und/oder verdampft und wieder der Verdichtung zugeführt wird und das Kreislaufmedium in einem ersten Betriebszustand durch ein erstes Fluid gebildet wird.

[0002] Stickstoff-Verflüssigungsverfahren dieser Art sind allgemein bekannt, zum Beispiel aus DE 2548222 B, DE 3732364 A, EP 316768 A, DE 4030750 A, DE 4303771 A, DE 4418435 A, EP 795727 A oder EP 949471 A. Aus US 5678425 ist außerdem bekannt, ein derartiges Verfahren in zwei unterschiedlichen Betriebszuständen zu betreiben. Im einen Betriebszustand wird ausschließlich Flüssigstickstoff produziert, im anderen Flüssigstickstoff und Flüssigsauerstoff. In beiden Fällen wird Luft als Kreislaufmedium eingesetzt.

[0003] Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art und eine entsprechende Vorrichtung anzugeben, die sowohl für die Produktion von flüssigem Sauerstoff und flüssigem Stickstoff geeignet sind und einen besonders niedrigen Energieverbrauch aufweisen.

[0004] Diese Aufgabe wird dadurch gelöst, dass das Kreislaufmedium in einem zweiten Betriebszustand durch ein zweites Fluid gebildet wird, das sich in seinen thermodynamischen Eigenschaften von dem ersten Fluid unterscheidet, das in dem ersten Betriebszustand eingesetzt wird. Dies bedeutet, dass mindestens ein thermodynamischer Parameter der beiden Fluide unterschiedlich ist, beispielweise Siedetemperatur, spezifische Verdampfungswärme und/oder spezifische Wärme.

[0005] Auf diese Weise kann der Kälteerzeugungsund Verflüssigungsprozess optimal an das zu verflüssigende Gas angepasst werden, um einen möglichst geringen Energieverbrauch bei der Verflüssigung zu erzielen. Zu verschiedenen Zeitpunkten (erster und zweiter
Betriebszustand) können dabei in derselben Anlage unterschiedliche Flüssigprodukte gewonnen werden,
ohne dass bei der Wirtschaftlichkeit des Prozesses Abstriche gemacht werden müssen. Beispielsweise wird
bei der Erzeugung von flüssigem Sauerstoff 5 % weniger Energie verbraucht, wenn als Kreislaufmedium Sauerstoff, Argon oder ein Argon und Sauerstoff enthaltendes Gemisch anstelle von Stickstoff verwendet wird.

[0006] Vorzugsweise weisen zu verflüssigendes Gas und Kreislaufmedium ähnliche Siedepunkte auf. Darunter ist zu verstehen, dass sich die Siedepunkte bei den in dem Verflüssigungsverfahren vorkommenden Druck um maximal 5 K, vorzugsweise um maximal 3 K unter-

scheiden. Die beiden Medien können beispielsweise dieselbe chemische Zusammensetzung aufweisen. Zum Beispiel werden in dem ersten Betriebszustand das zu verflüssigende Gas und das Kreislaufmedium durch Stickstoff gebildet, wogegen in dem zweiten Betriebszustand Sauerstoff sowohl als zu verflüssigendes Gas, als auch als Kreislaufmedium eingesetzt wird. Alternativ kann im zweiten Betriebszustand Argon oder ein mindestens 80 mol%, vorzugsweise mindestens 95 mol% Argon enthaltendes Gemisch als Kreislaufmedium verwendet werden; in der Praxis ist es günstig, zu diesem Zweck ein hauptsächlich Argon und Sauerstoff enthaltendes Gemisch wie Rohargon einzusetzen, das üblicherweise in der Rohargonsäule einer Tieftemperatur-Luftzerlegungsanlage hergestellt wird.

[0007] Das zu verflüssigende Gas wird vorzugsweise in beiden Betriebszuständen aus einer Luftzerlegungsanlage, insbesondere einer Tieftemperatur-Luftzerlegungsanlage, entnommen.

[0008] Beim Umschalten vom ersten in den zweiten Betriebszustand beziehungsweise umgekehrt wird eine Spülfraktion durch den Kreislauf-Wärmetauscher geleitet und vorzugsweise in einen Speicherbehälter eingeleitet. Die Spülfraktion kann zu einem späteren Zeitpunkt der Luftzerlegungsanlage zugeführt werden. Somit lässt sich der Kälteinhalt der Spülfraktion zurückgewinnen und die Spülung stellt keinen bedeutenden Energieverlust dar.

[0009] Die Erfindung betrifft außerdem eine Vorrichtung zur Erzeugung von flüssigem Sauerstoff und/oder flüssigem Stickstoff gemäß den Patentansprüchen 8 bis 11

[0010] Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand zweier Ausführungsbeispiele, die in den Zeichnungen dargestellt sind, näher erläutert. Die einander entsprechenden Vorrichtungsteile und Verfahrensschritte tragen in beiden Zeichnungen dieselben Bezugszeichen.

[0011] Zu verflüssigendes Gas 1 wird bei dem Verfahren und der Vorrichtung von Figur 1 unter etwa atmosphärischem Druck über Leitung 2 einem Feedgas-Verdichter 3 mit Nachkühler 4 zugeführt und dort auf einen Zwischendruck von beispielsweise 4 bis 8 bar, vorzugsweise 5 bis 6 bar komprimiert. Das Kreislaufmedium 6, 7 weist bei dem Ausführungsbeispiel von Figur 1 in beiden Betriebszuständen jeweils die gleiche chemische Zusammensetzung wie das zu verflüssigende Gas 1 auf. Die beiden Gase werden unter dem Zwischendruck vermischt und gemeinsam über Leitung 8 einem Kreislauf-Verdichter 9 mit Nachkühler 10 zugeführt. Dort wird das Gas auf einen hohen Druck von beispielsweise 26 bis 32 bar, vorzugsweise 28 bis 30 bar verdichtet.

[0012] Ein erster Teilstrom 12 des Hochdruckgases 11 wird in einem Kreislauf-Wärmetauscher 13 auf eine erste Zwischentemperatur abgekühlt und anschließend in einer warmen Turbine 14 arbeitsleistend auf etwa den Zwischendruck entspannt. Der entspannte erste Teilstrom des Kreislaufmediums strömt über die Leitungen

30

15, 7 und 8 durch den Kreislauf-Wärmetauscher 13 zum Eintritt des Kreislauf-Verdichters 9 zurück.

[0013] Ein zweiter (22) und dritter (23) Teilstrom des Hochdruckgases 11 werden zunächst gemeinsam (16) in den seriell geschalteten Nachverdichtern 17, 19 mit Nachkühlern 18, 20 auf einen noch höheren Druck von beispielsweise 45 bis 60 bar, vorzugsweise 48 bis 52 bar gebracht, der in Leitung 21 herrscht. Anschließend wird der zweite Teilstrom 22 im Kreislauf-Wärmetauscher 13 auf eine zweite, niedrigere Zwischentemperatur abgekühlt und anschließend in einer kalten Turbine 24 arbeitsleistend auf etwa den Zwischendruck entspannt. Das dabei entstandene Zwei-Phasen-Gemisch 25 wird in einen Zwischendruck-Abscheider (Phasentrenner) 26 eingeführt. Dampf aus dem Zwischendruck-Abscheider 26 strömt über die Leitungen 27, 6 und 8 durch den Kreislauf-Wärmetauscher 13 zum Eintritt des Kreislauf-Verdichters 9 zurück.

[0014] Der dritte Teilstrom 23 wird bis zum kalten Ende des Kreislauf-Wärmetauschers 13 geführt, anschließend auf etwa den Zwischendruck drosselentspannt (28) und über Leitung 29 in den Zwischendruck-Abscheider (Phasentrenner) 26 eingeleitet. Die Flüssigkeit 30 wird weiter auf etwa Atmosphärendruck entspannt (31) und in einem Niederdruck-Abscheider 32 einer weiteren Phasentrennung unterworfen. Die verbleibende Flüssigkeit 33 bildet das Flüssigprodukt, während das Flashgas über die Leitungen 34, 35 und 2 durch den Kreislauf-Wärmetauscher 13 zum Eintritt des Feedgas-Verdichters 3 zurückfließt.

[0015] In einem ersten Betriebszustand wird über Leitung 1 Stickstoff-Gas in das Kreislauf- und Verflüssigungssystem eingeleitet. In Leitung 33 wird flüssiger Stickstoff (LIN) als Produkt entnommen. In einem zweiten Betriebszustand wird über Leitung 1 Sauerstoff-Gas in das Kreislauf- und Verflüssigungssystem eingeführt. Entsprechend wird in Leitung 33 flüssiger Sauerstoff (LOX) gewonnen.

[0016] Beim Umschalten vom ersten in den zweiten Betriebszustand muss der Kältekreislauf gespült werden. Dazu wird zunächst die Zufuhr von Stickstoff-Gas in die Leitung 1 beendet und stattdessen Sauerstoff in den Kreislauf eingeblasen - zunächst als Spülfraktion. Gleichzeitig wird die Verbindung zwischen der Produktleitung 33 und dem Verbraucher oder Speicher für Flüssigstickstoff unterbrochen und die Flüssigkeit stattdessen in einen (nicht dargestellten) Speicherbehälter für Spülflüssigkeit geleitet. Dies wird so lange fortgesetzt, bis in der Produktleitung 33 die gewünschte Reinheit für das Flüssigsauerstoff-Produkt erreicht ist. Anschließend wird die Produktleitung 33 mit dem Verbraucher oder Speicher für Flüssigsauerstoff verbunden und der zweite Betriebszustand ist damit erreicht. (Anschließend kann die aufgefangene Spülflüssigkeit in einer Luftzerlegungsanlage, wie sie unten beschrieben wird, wieder aufgearbeitet werden.) Das Umschalten vom zweiten in den ersten Betriebszustand funktioniert analog.

[0017] Sowohl Sauerstoff als auch Stickstoff werden bei dem Ausführungsbeispiel in einer Tieftemperatur-Luftzerlegungsanlage hergestellt. Diese umfasst einen Hauptwärmetauscher 36 sowie ein Zwei-Säulen-Rektifiziersystem mit Hochdrucksäule 37 und Niederdrucksäule 38, die über einen Kondensator-Verdampfer (Hauptkondensator) 39 in wärmetauschender Verbindung stehen (Linde-Doppelsäule). Über Leitung 40 wird verdichtete und gereinigte Luft dem warmen Ende des Hauptwärmetauschers 36 zugeführt, dort auf etwa Taupunktstemperatur abgekühlt und über Leitung 41 in die Hochdrucksäule 37 eingeleitet. Flüssiger Rohsauerstoff 42 und flüssiger Stickstoff 43 aus der Hochdrucksäule 37 beziehungsweise dem Hauptkondensator 39 werden in die Niederdrucksäule 38 eingedrosselt (44, 45). Über die Produktleitungen werden Sauerstoff 46, stickstoffreiches Restgas 47 und Stickstoff 48 zum Hauptwärmetauscher 36 geleitet und schließlich unter etwa Umgebungstemperatur und Atmosphärendruck aus der Luftzerlegungsanlage abgezogen (53, 49, 50). Wollte man kein Flüssigprodukt erzeugen, würden alle drei Ströme als gasförmige Produkte GOX, UN2 und GAN abgezo-

[0018] Im ersten Betriebsfall der Flüssigproduktion wird mindestens ein Teil des in der Luftzerlegungsanlage abgetrennten gasförmigen Stickstoffs 50 über Ventil 51 zur Leitung 1 geführt und strömt damit in den Verflüssigungskreislauf. Das Ventil 52 ist geschlossen. In Leitung 33 wird flüssiger Stickstoff als Endprodukt erzeugt.

[0019] Beim Umschalten in den zweiten Betriebszustand wird das Ventil 51 geschlossen, sodass das gesamte Stickstoff-Produkt der Luftzerlegungsanlage gasförmig abgezogen wird (GAN). Gleichzeitig wird das Ventil 52 geöffnet und mindestens ein Teil des gasförmigen Sauerstoffs aus Leitung 53 über Leitung 1 in den Verflüssigungskreislauf geführt. Dieser Sauerstoff dient zunächst als Spülfraktion. Die während der Spülung in Leitung 33 anfallende unreine Flüssigkeit (Sauerstoff-Stickstoff-Gemisch) wird wie oben beschrieben in einem (nicht dargestellten) Speicherbehälter aufgefangen. Sobald in der Produktleitung 33 die gewünschte Sauerstoff-Reinheit erreicht ist, wird von der Spülung auf den zweiten Betriebszustand umgeschaltet, indem die Produktflüssigkeit 33 nicht mehr in den Speicherbehälter für Spülflüssigkeit, sondern zu einem Flüssigsauerstoff-Verbraucher oder -Speicher geleitet wird.

[0020] Die Spülflüssigkeit kann nach und nach an geeigneter Stelle in die Hochdrucksäule 37 und/oder die Niederdrucksäule 38 eingespeist werden.

[0021] Figur 2 stimmt in weiten Teilen mit Figur 1 überein. Im Folgenden werden nur die unterschiedlichen Merkmale näher erläutert.

[0022] Bei dem Verfahren von Figur 2 wird im zweiten Betriebszustand ein Argon-Sauerstoff-Gemisch (beispielsweise etwa 98 mol% Argon und etwa 2 mol% Sauerstoff enthaltendes Rohargon) als Kreislaufmedium zur Verflüssigung von Sauerstoff eingesetzt. Der Kreis-

20

35

lauf-Wärmetauscher weist hier zwei Blöcke 13, 213 auf, wobei der Block 213 als Kondensator-Verdampfer ausgebildet ist.

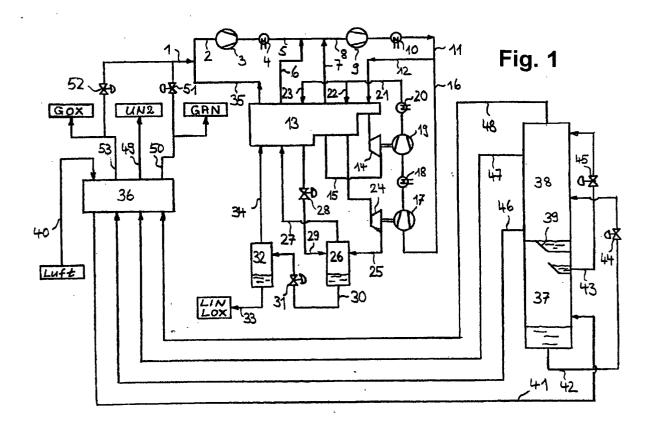
[0023] Beim Umschalten vom ersten in den zweiten Betriebszustand wird das Ventil 51 geschlossen, sodass das gesamte Stickstoff-Produkt der Luftzerlegungsanlage gasförmig abgezogen wird (GAN). Gleichzeitig wird das Ventil 258 geöffnet und Rohargon strömt über Leitung 259 in den Kältekreislauf. Das Rohargon 259 dient zunächst als Spülfraktion. Die während der Spülung in Leitung 33 anfallende unreine Flüssigkeit (Argon-Sauerstoff-Stickstoff-Gemisch) wird wie in Figur 1 in einem (nicht dargestellten) Speicherbehälter aufgefangen. Sobald in der Spülleitung 33 der gewünschte Argon-Sauerstoff-Gehalt erreicht ist, wird von der Spülung auf den alternativen zweiten Betriebszustand umgeschaltet, indem Ventil 254 geschlossen und die Ventile 255 und 252 geöffnet werden. Danach strömt gasförmiger kalter Sauerstoff 201 in den Kondensator-Verdampfer 213, wird dort verflüssigt, über Leitung 233 als flüssiges Sauerstoffprodukt abgezogen und zu einem Flüssigsauerstoff-Verbraucher oder -Speicher geleitet (nicht dargestellt). Gegen den kondensierenden Sauerstoff wird flüssiges Kreislaufmedium 256 in den Kondensator-Verdampfer 213 geführt, verdampft dort und strömt schließlich über die Leitungen 257, 34, 35 und 2 zurück zum Feedgas-Verdichter 3.

[0024] Die Anlage von Figur 2 kann zusätzlich das Ventil 52 und die entsprechende Leitung aus Figur 1 aufweisen, über die Sauerstoff in den Kreislauf eingeführt werden kann. In diesem Fall ist es möglich, die Anlage im zweiten Betriebszustand alternativ mit Sauerstoff (wie zu Figur 1 beschrieben) oder einem anderen Medium (zum Beispiel Rohargon wie oben bei Figur 2 beschrieben) als Kreislaufmedium zu fahren.

Patentansprüche

1. Verfahren zur Erzeugung von flüssigem Sauerstoff und/oder flüssigem Stickstoff, bei dem zu verflüssigendes Gas (1,, 201) in einem Kreislauf-Wärmetauscher (13) durch indirekten Wärmeaustausch mit einem Kreislaufmedium (15, 27, 34, 256) verflüssigt wird, wobei das Kreislaufmedium in einem Kältekreislauf verdichtet (9), abgekühlt (13), arbeitsleistend entspannt (14, 24) und/oder verflüssigt, in dem Kreislauf-Wärmetauscher (13, 213) angewärmt und/oder verdampft und wieder der Verdichtung (3, 9) zugeführt (6, 7, 15, 25, 27, 34, 35, 257) wird und das Kreislaufmedium in einem ersten Betriebszustand durch ein erstes Fluid gebildet wird, dadurch gekennzeichnet, dass das Kreislaufmedium in einem zweiten Betriebszustand durch ein zweites Fluid gebildet wird, das sich in seinen thermodynamischen Eigenschaften von dem ersten Fluid unterscheidet.

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das zu verflüssigende Gas in dem ersten Betriebszustand durch Stickstoff gebildet wird.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Kreislaufmedium in dem zweiten Betriebszustand durch Sauerstoff, Argon oder ein mindestens 80 mol% Argon enthaltendes Gemisch gebildet wird.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das zu verflüssigende Gas (1, 201) aus einer Luftzerlegungsanlage, insbesondere einer Tieftemperatur-Luftzerlegungsanlage (36, 37, 38, 39), entnommen (46, 48, 50, 51, 52, 53) wird.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass beim Umschalten vom ersten in den zweiten Betriebszustand und/ oder beim Umschalten vom zweiten in den ersten Betriebszustand eine Spülfraktion durch den Kreislauf-Wärmetauscher geleitet wird.
- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Spülfraktion stromabwärts des Kreislauf-Wärmetauschers (13) in einen Speicherbehälter eingeleitet wird.
- Verfahren nach Anspruch 4 und 6, dadurch gekennzeichnet, dass nach dem Umschalten mindestens ein Teil der Spülfraktion aus dem Speicherbehälter in die Luftzerlegungsanlage (36, 37, 38, 39) eingeleitet wird.
- 8. Vorrichtung zur Erzeugung von flüssigem Sauerstoff und/oder flüssigem Stickstoff, mit einem ersten Einlass (53, 201) für Sauerstoffgas und mit einem zweiten Einlass (50) für Stickstoffgas, mit einem Kältekreislauf, der einen Kreislauf-Verdichter (9) zur Verdichtung eines Kreislaufmediums, eine Entspannungsmaschine (14, 24) zur arbeitsleistenden Entspannung und einen Kreislauf-Wärmetauscher (13, 213) zur Anwärmung und/oder Verdampfung von entspanntem und/oder verflüssigtem Kreislaufmedium gegen zu verflüssigendes Gas aufweist, wobei der Kreislauf-Wärmetauscher (13, 213) umschaltbar (51, 52) mit dem ersten und dem zweiten Einlass für zu verflüssigendes Gas verbunden (1, 2, 5, 8, 11, 16, 23) ist.
- 9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der erste Einlass und/oder der zweite Einlass mit einer Produktleitung (46, 47, 48) einer Luftzerlegungsanlage, insbesondere einer Tieftemperatur-Luftzerlegungsanlage (36, 37, 38, 39), verbunden ist.


50

 Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Kreislauf-Wärmetauscher (13) mit einem Speicherbehälter für eine Spülfraktion verbindbar ist.

11. Vorrichtung nach Anspruch 9 und 10, dadurch ge-

kennzeichnet, dass der Speicherbehälter mit der Luftzerlegungsanlage (36, 37, 38, 39) verbindbar

ist.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 02 01 9784

Kategorie	Kennzeichnung des Dokun der maßgebliche	nents mit Angabe, soweit erforderlich, n Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.7)	
A	US 3 285 028 A (NEW 15. November 1966 (VTON CHARLES L)	1-11	F25J1/02 F25J1/00 F25J3/04	
D,A	US 5 678 425 A (AGF 21. Oktober 1997 (1 * Zusammenfassung;	1-11			
A	US 5 337 571 A (DUC 16. August 1994 (19 * das ganze Dokumen	94-08-16)	1-11		
A	EP 0 580 348 A (AIR 26. Januar 1994 (19 * das ganze Dokumen	94-01-26)	1-11		
A	US 6 220 053 B1 (AR 24. April 2001 (200 * das ganze Dokumen	11-04-24) t *	1-11	RECHERCHIERTE SACHGEBIETE (Int.CI.7) F25J	
Det vo	Recherchenort	rde für alle Patentansprüche erstellt Abschlußdatum der Recherche		Prüfer	
	MÜNCHEN	9. Dezember 2002	Gör	itz, D	
X : von I Y : von I ande A : tech O : nich	TEGORIE DER GENANNTEN DOKL besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung ren Veröffentlichung derselben Kateg nologischer Hintergrund tschriftliche Offenbarung chenliteratur	et E: älteres Patentdok et nach dem Anmeld mit einer D: in der Anmeldung orie L: aus anderen Grün	urnent, das jedoo edatum veröffent angeführtes Dol den angeführtes	dicht worden ist cument Dokument	

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 02 01 9784

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

09-12-2002

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 3285028	A	15-11-1966	DE FR GB NL	1289061 1420082 1096781 6500101	A A	13-02-1969 03-12-1965 29-12-1967 07-07-1965
US 5678425	А	21~10-1997	CA EP JP KR	2206649 0811816 10054658 240323	A2 A	07-12-1997 10-12-1997 24-02-1998 15-01-2000
US 5337571	Α	16-08-1994	FR CN	2681415 1071001		19-03-1993 14-04-1993
EP 0580348	A	26-01-1994	US CA DE DE EP ES JP KR		A A1 D1 T2 A1 T3 A B1	04-01-1994 21-01-1994 28-03-1996 27-06-1996 26-01-1994 16-05-1996 07-06-1994 02-04-1997
US 6220053	B1	24-04-2001	BR CN EP	0100034 1310322 1116925	A	21-08-2001 29-08-2001 18-07-2001

EPO FORM P0461

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82