(11) **EP 1 300 291 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:09.04.2003 Patentblatt 2003/15

(51) Int Cl.⁷: **B60R 13/08**, B05D 1/00

(21) Anmeldenummer: 02021945.7

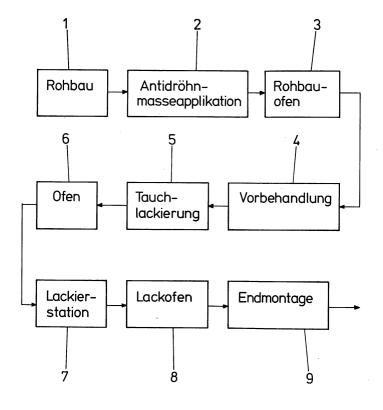
(22) Anmeldetag: 30.09.2002

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
IE IT LI LU MC NL PT SE SK TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 28.09.2001 DE 10148103

(71) Anmelder: CWW-GERKO Akustik GmbH & Co. KG 67547 Worms (DE)


(72) Erfinder:

- Bildner, Karlheinz 63589 Linsengerricht-Grossenhausen (DE)
- Kornacki, Zdislaw, Dr.
 61130 Nidderau-Heldenbergen (DE)
- Simon, Marcus
 61118 Bad Vilbel (DE)
- (74) Vertreter: Schlagwein, Udo, Dipl.-Ing. Patentanwalt, Frankfurter Strasse 34 61231 Bad Nauheim (DE)

(54) Verfahren zum Aufbringen einer Antidröhnmasse auf Basis von Epoxidharzen auf eine Fahrzeugkarosserie

(57) Einer Antidröhnmasse auf Epoxidharzbasis wird vor ihrer Verarbeitung ein Geliermittel zugesetzt. Dadurch geliert die Antidröhnmasse nach ihrer Applikation bereits im Rohbauofen bei Temperaturen von etwa 120° C und Verweilzeiten von 10 bis 12 Minuten in ei-

nem solchen Maße, dass sie der Beanspruchung in einer dem Lackiervorgang vorgeschalteten Vorbehandlung standzuhalten vermag. Das chemische Aushärten der Antidröhnmasse findet wie üblich nach der Lackierung in Öfen der Lackierstation statt.

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren zum Aufbringen einer Antidröhnmasse auf Basis von Epoxidharzen auf eine Fahrzeugkarosserie, bei dem die aufgebrachte Antidröhnmasse zusammen mit in einer Lackiererei aufgebrachten Lackschichten in Lacköfen aushärtet, wobei der Lackiererei ein Rohbauofen zum Aushärten von Kleber auf der Rohbaukarosserie und ein Wäscher zum Entfernen von Verschmutzungen, insbesondere Ziehölen, auf der Rohbaukarosserie vorgeschaltet ist. Weiterhin soll eine Antidröhnmasse zur Durchführung dieses Verfahrens geschaffen werden. [0002] Antidröhnmassen auf Basis von Epoxidharzen benötigen zum Aushärten Temperaturen von über 160° C und dabei Verweilzeiten von mindestens 20 bis 30 Minuten. Diese Bedingungen sind bei der Fahrzeugfertigung in den Lacköfen der Lackiererei erfüllt. Deshalb hat man bisher die Antidröhnmasse unmittelbar vor dem Lackieren auf die Karosserie aufgebracht, damit sie zusammen mit dem Lack im Lackofen aushärten kann. Es besteht jedoch der Wunsch, die Lackiererei von allen nicht zum Lackieren erforderlichen Arbeitsgängen freizuhalten, damit keine Verunreinigungen auf die Karosserie gelangen können, die nach der Lackierung stören. Deshalb entstand der Wunsch, die Antidröhnmasse bereits auf die Rohbaukarosserie aufzubringen. Es zeigte sich jedoch, dass diese den bei der Vorbehandlung herrschenden Bedingungen nicht standzuhalten vermag. Insbesondere die Entfettungsmittel und der Druck von meist 4 - 5 bar sowie die Temperaturen von 50 - 60° C beim Waschen der Rohbaukarosserie führen dazu, dass die Antidröhnmasse teilweise abgewaschen wird. Die Verwendung eines Beschleunigers für das Aushärten der Antidröhnmasse erwies sich schon allein aus Kostengründen als nicht praktikabel. Auch der Zusatz einer ein rasches Aushärten bewirkenden zweiten Komponente kommt für die Automobilindustrie nicht in Frage, weil dann das Problem entstehen würde, dass bei einem Stillstand der Produktion die Antidröhnmasse in der Appliziervorrichtung aushärten und ein umständliches Reinigen, insbesondere der Auftragsdüsen, notwendig würde.

[0003] Der Erfindung liegt das Problem zugrunde, ein Verfahren zum Aufbringen einer Antidröhnmasse auf Basis von Epoxidharzen auf eine Fahrzeugkarosserie zu entwickeln, welches außerhalb der Lackiererei ausgeführt werden kann und zu einer möglichst geringen Erhöhung der Fertigungskosten führt. Weiterhin soll eine Antidröhnmasse zur Durchführung dieses Verfahrens geschaffen werden.

[0004] Dieses Problem wird erfindungsgemäß dadurch gelöst, dass der Antidröhnmasse ein Geliermittel zugesetzt und die das Geliermittel enthaltende Antidröhnmasse vor dem Einbringen der Rohbaukarosserie in den Rohbauofen appliziert wird.

[0005] Bei einem solchen Verfahren wird die Antidröhnmasse auf die noch geölten Bleche der Rohbaukarosserie aufgetragen, so dass eigentlich zu erwarten ist, dass diese beim anschließenden Waschvorgang zum Entfernen des Öls zumindest teilweise wieder abgewaschen wird. Durch das Geliermittel kommt es jedoch beim Passieren der Rohbaukarosserie durch den Rohbauofen bei der dort herrschenden Temperatur von etwa 120° C und innerhalb der dort ohnehin erforderlichen Verweilzeit von 10 - 12 Minuten in einem solchen Maße zu einem Gelieren, dass die Antidröhnmasse den Bedingungen standzuhalten vermag, die bei der dem Lackierprozess vorgeschalteten Vorbehandlung herrschen. Bei dem Gelieren handelt es sich um einen physikalischen Prozess, einem **Aufquellen" und noch nicht um den im Lackofen auftretenden chemischen Vernetzungsprozess. Das Geliermittel selbst ist in der Antidröhnmasse ein Fremdstoff, der jedoch nicht nur für die Wirksamkeit der Antidröhnmasse unschädlich ist, sondern überraschenderweise ihre akustische Wirksamkeit noch verbessert.

[0006] Das zweitgenannte Problem wird erfindungsgemäß dadurch gelöst, dass die Antidröhnmasse ein Geliermittel enthält, welches bei einer Temperatur von etwa 120° C innerhalb von etwa 10 - 12 Minuten derart geliert, dass die Antidröhnmasse der Beanspruchung in einem der Lackiererei vorgeschalteten Wäscher zur Entfernung von Verschmutzungen und Ziehölen standzuhalten vermag.

[0007] Geliermittel, welche die vorgenannten Bedingungen erfüllen, sind sehr kostengünstig für etwa EUR 3,-- pro kg erhältlich, während als Alternative möglicherweise einsetzbare Beschleuniger etwa EUR 50,-- pro kg kosten. Durch das Geliermittel ändert sich die Lagerstabilität der Antidröhnmasse nicht und ihre Applizierbarkeit wird nicht negativ beeinflusst. Die akustischen Eigenschaften der Antidröhnmasse werden durch das Geliermittel sogar verbessert.

[0008] Als Geliermittel kommen verschiedene Zusätze in Frage. Praktisch erprobt wurde eine Antidröhnmasse, bei der das Geliermittel ein Acrylpolymer auf Basis von Methylmethacrylat und n-Butylmethacrylat ist und sein Anteil 1 - 10 Gew.-% beträgt.

[0009] Die Antidröhnmasse ist insgesamt optimal zusammengesetzt, wenn sie folgende Komponenten enthält:

Epoxidharz

Härter, heißhärtend (Dicyandiamid)

Beschleuniger

Kreide

Farbstoff

Thixotrophiehilfsmittel

40 - 45 Gew.-%

1 - 3 Gew.-%

0,1 - 4 Gew.-%

45 - 55 Gew.-%

1 - 5 Gew.-%

1 - 5 Gew.-%

55

50

45

20

30

35

EP 1 300 291 A2

(fortgesetzt)

Viskositätshilfsmittel	0,5 Gew%
Geliermittel (Methyl-Methacrylat)	1 - 10 Gew%

[0010] Die Erfindung lässt verschiedene Ausführungsformen zu. Zur weiteren Verdeutlichung ihres Grundprinzips wird nachfolgend auf ein Blockschaltbild Bezug genommen.

[0011] Die Kraftfahrzeugfertigung beginnt mit einem Rohbau 1, so dass eine Rohbaukarosserie entsteht. Diese wird anschließend mit Robotern in einer Antidröhnmasse-Applikationsstation 2 mit Antidröhnmasse auf Basis von Epoxidharzen versehen. Wichtig für die Erfindung ist, dass die Antidröhnmasse ein Geliermittel enthält, bei dem es sich um ein Acrylpolymer auf Basis von Methylmethacryl und n-Butylmethacrylat handelt.

[0012] Danach gelangt die Rohbaukarosserie in einen Rohbauofen 3, der üblicherweise bei der Automobilfertigung der Aushärtung des auf der Rohbaukarosserie vorhandenen Klebers dient und in dem eine Temperatur von etwa 120° C herrscht und die Rohbaukarosserie etwa 10 bis 12 Minuten verbleibt.

[0013] Es schließt sich eine Vorbehandlung 4 an, in der insbesondere mit Wäschern bei Temperaturen von 50 bis 60° C und Drücken von 4 - 5 bar Fette auf der Rohbaukarosserie abgewaschen werden. Weiterhin erfolgt dort eine Phosphatierung der Rohbaukarosserie. Der Vorbehandlung schließen sich eine kataphoresische Tauchlackierung 5 und ein Trocknungsvorgang in einem Ofen 6 an. In diesem Ofen 6 beträgt die Temperatur 180° C. Die Karosserie verbleibt etwa 20 Minuten in dem Ofen 6. Dadurch wird der chemische Aushärtvorgang der Antidröhnmasse gestartet und so weit abgeschlossen, dass ihre Lackierung in einer Lackierstation 7 erfolgen kann. Ihr schließt sich ein Lackofen 8 an, in dem der Lack und die Antidröhnmasse vollständig trocknen bzw. aushärten. Die fertig lackierte Karosserie gelangt anschließend zur Endmontage 9.

Patentansprüche

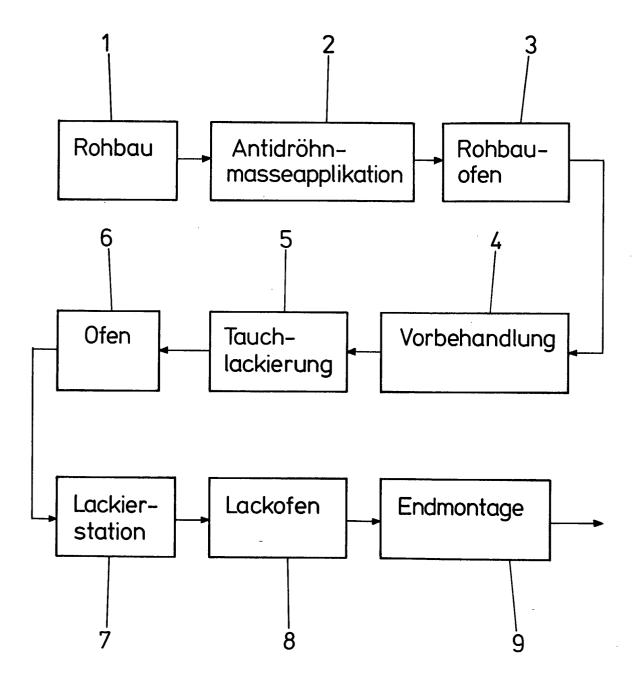
5

20

25

30

35


45

50

- 1. Verfahren zum Aufbringen einer Antidröhnmasse auf Basis von Epoxidharzen auf eine Fahrzeugkarosserie, bei dem die aufgebrachte Antidröhnmasse zusammen mit in einer Lackiererei aufgebrachten Lackschichten in Lacköfen aushärtet, wobei der Lackiererei ein Rohbauofen zum Aushärten von Kleber auf der Rohbaukarosserie und ein Wäscher zum Entfernen von Verschmutzungen, insbesondere Ziehölen, auf der Rohbaukarosserie vorgeschaltet ist, dadurch gekennzeichnet, dass der Antidröhnmasse ein Geliermittel zugesetzt und die das Geliermittel enthaltende Antidröhnmasse vor dem Einbringen der Rohbaukarosserie in den Rohbauofen appliziert wird.
- 2. Antidröhnmasse auf Basis von Epoxidharzen zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, dass sie ein Geliermittel enthält, welches bei einer Temperatur von etwa 120° C innerhalb von etwa 10 - 12 Minuten derart geliert, dass die Antidröhnmasse der Beanspruchung in einem der Lackiererei vorgeschalteten Wäscher zur Entfernung von Verschmutzungen und Ziehölen standzuhalten vermag.
- Antidröhnmasse nach Anspruch 2, dadurch gekennzeichnet, dass das Geliermittel ein Acrylpolymer auf Basis
 von Methylmethacrylat und n-Butylmethacrylat ist und sein Anteil 1 10 Gew.-% beträgt.
 - **4.** Antidröhnmasse nach zumindest einem der vorangehenden Ansprüche, **dadurch gekennzeichnet**, **dass** ihre Zusammensetzung wie folgt ist:

Epoxidharz	40 - 45 Gew%
Härter, heißhärtend (Dicyandiamid)	1 - 3 Gew%
Beschleuniger	0,1 - 4 Gew%
Kreide	45 - 55 Gew%
Farbstoff	0,04 Gew%
Thixotrophiehilfsmittel	1 - 5 Gew%
Viskositätshilfsmittel	0,5 Gew%
Geliermittel (Methyl-Methacrylat)	1 - 10 Gew%

55

