(11) **EP 1 300 475 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:09.04.2003 Patentblatt 2003/15

(51) Int Cl.⁷: **C21D 1/673**, C21D 9/00

(21) Anmeldenummer: 02019321.5

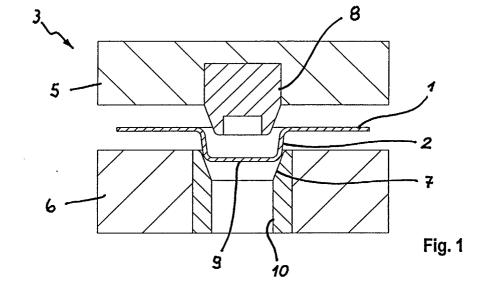
(22) Anmeldetag: 29.08.2002

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR Benannte Erstreckungsstaaten: AL LT LV MK RO SI

(30) Priorität: 05.10.2001 DE 10149221

(71) Anmelder: Benteler Automobiltechnik GmbH & Co. KG 33104 Paderborn (DE)


(72) Erfinder:

- Gehringhoff, Ludger 33106 Paderborn (DE)
- Klasfauseweh, Udo, Dr. 33334 Gütersloh (DE)
- Köhler, Ralf
 33165 Atteln (DE)
- Jungblut, Ulrich 33104 Paderborn (DE)
- (74) Vertreter: Ksoll, Peter, Dr.-Ing. Bergstrasse 159 44791 Bochum (DE)

(54) Verfahren zur Herstellung eines gehärteten Blechprofils

(57) Bei einem Verfahren zur Herstellung eines gehärteten Blechprofils 4 aus einer gegebenenfalls vorgeformten Platine 1 wird zunächst zumindest eine topfartige Ausformung 2 an der Platine 1 ausgeformt. Anschließend wird die Platine 1 in einem Pressenwerkzeug 3 zum Blechprofil warm umgeformt und gehärtet.

Hierbei erfolgt im Pressenwerkzeug 3 eine endformgebende Kalibrierung der Ausformung 2. Vorzugsweise wird eine Ausformung 2 hergestellt, deren Abmessungen von Durchmesser und Tiefe ein Verhältnis von 2:1 aufweisen. In Nachfolgeoperationen kann das Blechprofil 4 beschnitten werden.

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren zur Herstellung eines gehärteten Blechprofils aus einer gegebenenfalls vorgeformten Platine. Der Begriff Platine wird nachfolgend einheitlich sowohl für eine ebene Stahlblechplatine als auch für ein bereits vorgeformtes Halbzeug verwendet.

[0002] Durch die DE 24 52 486 A1 zählt ein Verfahren zur Herstellung eines gehärteten Blechprofils aus einer Platine in einem Presshärtverfahren zum Stand der Technik. Hierbei wird eine aus einem härtbaren Stahl bestehende Platine auf Härtetemperatur erhitzt, dann in einem Pressenwerkzeug warm umgeformt und anschließend ausgehärtetet, während das Blechprofil im Pressenwerkzeug verbleibt. Da das Blechprofil bei der im Zuge des Härtungsvorgangs vorgenommene Kühlung im Pressenwerkzeug eingespannt ist, erhält man ein Produkt mit guter Maßhaltigkeit.

[0003] Das Warmumformen und Härten im Pressenwerkzeug ist aufgrund der Kombination von Umformund Vergütungsvorgang in einem Werkzeug eine rationelle Arbeitsweise.

[0004] Im Rahmen der WO 99/07492 ist vorgesehen, das vorbeschriebene Presshärtverfahren zu modifizieren und im Pressenwerkzeug die randseitigen Bereiche von vorgefertigten Löchern abzubiegen, so dass Kragen entstehen. Das Abbiegen der Löcher geschieht im Pressenwerkzeug vor dem Härten. Die Öffnungen im Blechprofil sollen als Durchführungslöcher für Befestigungsschrauben dienen. Im Stand der Technik ist es auch üblich, solche fachterminologisch als Durchzüge bezeichnete Öffnungen als Referenzlöcher bzw. Aufnahmen für die positionsgenaue Ausrichtung des Blechprofils in Folgeprozessen zu nutzen. Des Weiteren dienen sie als Montagefreigänge oder als Versteifungsmaßnahme.

[0005] Das Ausformen der Durchzüge im Pressenwerkzeug bringt jedoch einen vergleichsweise großen Werkzeugverschleiss mit sich. Auch ist nur eine begrenzte Umformung des Kragens möglich. Nachteilig wirken sich zudem die gegenüber dem konventionellen Kaltumformen höheren Fertigungskosten aus.

[0006] Der Erfindung liegt ausgehend vom Stand der Technik die Aufgabe zugrunde, ein Verfahren zur Herstellung von gehärteten Blechprofilen ökonomischer und rationeller zu gestalten.

[0007] Die Lösung dieser Aufgabe zeigt Patentanspruch 1 auf. Danach werden an der Platine eine oder mehrere topfartige Ausformungen hergestellt, und zwar bevor die Platine in einem Pressenwerkzeug zum Blechprofil warm umgeformt und gehärtet wird.

[0008] Die Ausformungen können beliebige Formen aufweisen. Sie können beispielsweise rund oder oval gestaltet sein.

[0009] Da die topfartigen Ausformungen vor dem Warmumformprozess hergestellt werden, ist der Werkzeugverschleiss im Vergütungswerkzeug geringer.

Durch die Herstellung der Töpfe in einem Vorformwerkzeug ist zudem die Formgebungsmöglichkeit sehr viel größer. Im Vorformwerkzeug kann eine topfartige Ausformung auch in mehreren Stufen hergestellt werden. Insgesamt werden die Fertigungskosten verringert.

[0010] Das Blechprofil kann in Folgeprozessen anhand der Ausformungen als Referenzpunkte aufgenommen werden und ist so exakt lagepositioniert. Selbstverständlich können die Ausformungen auch als Versteifung des Blechprofils dienen.

[0011] Eine besonders vorteilhafte Verfahrensmaßnahme sieht gemäß Patentanspruch 2 vor, dass im Pressenwerkzeug eine endformgebende Kalibrierung der Ausformung erfolgt. Im Pressenwerkzeug wird die Ausformung auf ihr exaktes genaues Maß gebracht. Dann setzt der Härteprozess ein. Bei der hierbei vorgenommenen Kühlung ist das Blechprodukt im Pressenwerkzeug eingespannt.

[0012] Bevorzugt kommt eine Platine bzw. ein Halbzeug aus einem Stahl zum Einsatz, der in Gewichtsprozenten ausgedrückt besteht aus Kohlenstoff (C) 0,19 bis 0,25, Silizium (Si) 0,15 bis 0,50, Mangan (Mn) 1,10 bis 1,40, Titan (Ti) 0,020 bis 0,050, Bor (B) 0,002 bis 0,005, Aluminium (Al) 0,02 bis 0,06 sowie Phosphat (P) in einem Anteil bis max. 0,025, Schwefel (S) max. 0,015, Chrom (Cr) max. 0,35 und Molybdän (Mo) max. 0,35, wobei der Rest Eisen (Fe) ist einschließlich erschmelzungsbedingter Verunreinigungen.

[0013] Die mit einer oder mehreren Ausformungen versehene Platine wird in der Wärmebehandlungsanlage auf Härtungstemperatur, das heißt auf eine über Ac₃ liegende Temperatur erhitzt, wo sich der Stahl in austenitischem Zustand befindet. In der Regel liegt diese Temperatur zwischen 775 °C und 1000 °C. Anschließend erfolgt der Umformvorgang im Pressenwerkzeug, worauf durch Kühlung das Härten einsetzt. Hierbei stellt sich ein feinkörniges martensitisches oder bainitisches Werkstoffgefüge ein. Das Blechprofil befindet sich während des Härtungsvorgangs eingespannt im Pressenwerkzeug. Die hierbei vorgenommene Kühlung kann direkt oder indirekt durchgeführt werden. Bei der direkten Kühlung wird das Blechprofil unmittelbar in Kontakt mit einem Kühlmittel gebracht. Bei der indirekten Kühlung wird das Pressenwerkzeug bzw. Teile hiervon gekühlt.

[0014] Nach den Merkmalen von Patentanspruch 3 ist vorgesehen, dass der Boden einer Ausformung im Pressenwerkzeug herausgetrennt wird. Dies kann durch eine entsprechende Gestaltung des Stempels des Pressenwerkzeugs erfolgen. Beim Kalibrieren des vorgezogenen Topfs wird der Boden dann herausgerissen.

[0015] Vorzugsweise wird eine Ausformung hergestellt, bei der die Abmessungen von Durchmesser und Tiefe im Verhältnis 2:1 sind, wie dies Patentanspruch 4 vorsieht. Als für die Praxis vorteilhaft werden Ausformungen angesehen mit einem Durchmesser von mindestens 20 mm bei einer Tiefe von ca. 10 mm.

[0016] Das Blechprofil kann in Nachfolgeoperationen

50

10

beschnitten werden (Patentanspruch 5). Hierbei können die topfartigen Ausformungen beschnitten werden. Auch das Blechprofil selbst kann Schneideoperationen unterzogen werden. Sofern die Ausformungen nicht mehr benötigt werden und im Abfallbereich des Blechprodukts liegen, können auch diese selbst entfernt werden.

[0017] Die Erfindung ist nachfolgend anhand eines in den Zeichnungen dargestellten Ausführungsbeispiels näher beschrieben. Es zeigen:

- Figur 1 im Schema technisch vereinfacht einen Ausschnitt aus einem Pressenwerkzeug mit eingelegter Blechplatine;
- Figur 2 einen Ausschnitt aus einem Blechprodukt mit einer topfartigen Ausformung in der Seitenansicht und
- Figur 3 die Darstellung gemäß Figur 2 in der Draufsicht.

[0018] Figur 1 zeigt eine Stahlblechplatine 1, in der bereits eine topfartige Ausformung 2 hergestellt ist. Die Herstellung der Ausformung 2 erfolgt an der Stahlblechplatine 1 vor dem Umformvorgang und dem Vergütungsprozess.

[0019] Die Platine 1 wird auf Härtungstemperatur, d. h. auf eine über Ac₃ liegenden Temperatur erhitzt. Je nach Stahl wird die Temperatur zwischen 700°C und 1.100°C eingestellt. Der Stahl ist dann in einem austernitischen Zustand. Die Platine 1 wird anschließend in einem Pressenwerkzeug 3 zum Blechprofil 4 umgeformt. Das Pressenwerkzeug 3 weist ein Obergesenk 5 und ein Untergesenk 6 auf. Im Untergesenk 6 befindet sich eine auf die Kontur der topfartigen Ausformung 2 abgestimmte Matrize 7, wohingegen im Obergesenk 5 ein entsprechender Stempeleinsatz 8 vorgesehen ist. Während des Pressenvorgangs wird die Ausformung 2 im Pressenwerkzeug 3 kalibriert, d.h. auf ihr endgültiges genaues Maß gebracht. Hierbei erfolgt lediglich noch eine geringfügige Endformgebung an der Ausformung 2. Noch im Pressenwerkzeug 3 eingespannt wird das Blechprofil 4 dann durch schnelle Abkühlung gehärtet. [0020] Die Figuren 2 und 3 zeigen eine topfartige Ausformung 2 in einem Blechprofil 4. Die Ausformung 2 weist in dem hier dargestellten Beispiel eine Tiefe t von 10 mm auf und hat einen mittleren Durchmesser d von 20 mm. Die Ausformung 2 verjüngt sich unten mit einem Winkel α von etwa 10° oder größer. Dies gewährleistet, dass das Blechprofil 4 aus dem Pressenwerkzeug 3 gut herausgenommen werden kann. Die Verjüngung der Ausformung 2 stellt zudem sicher, dass das Blechprofil 4 in Nachfolgeoperationen einfach und positionsgetreu anhand der Ausformung 2 aufgenommen werden kann. [0021] Die Ausformung 2 kann sowohl als Referenztopf als auch als Verstärkungsausformung am fertigen Bauteil dienen.

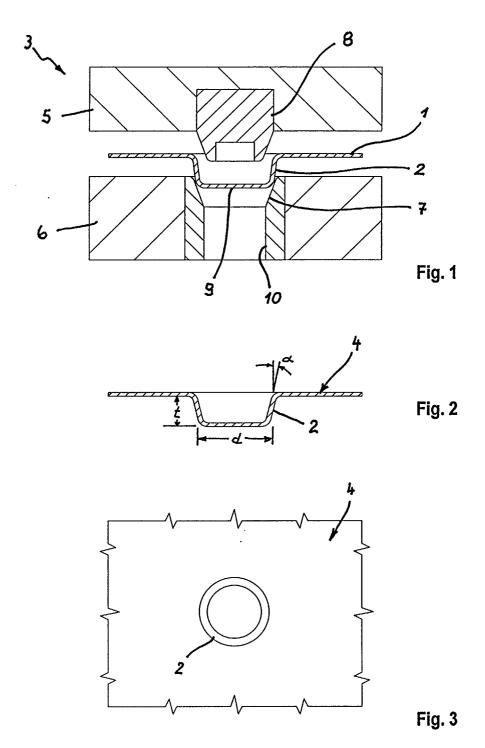
[0022] Durch eine entsprechende Gestaltung des Stempeleinsatzes 8 kann beim Kalibrieren der vorgezogenen Ausformung 2 deren Boden 9 abgetrennt bzw. ausgerissen werden. Auf diese Weise erhält man eine Durchstellung. Der ausgerissene Boden 9 kann durch einen Schrottabfuhrkanal 10 im Untergesenk 6 abgeführt werden.

Bezugszeichenaufstellung

[0023]

- 1 Platine
- 2 Ausformung
- 3 Pressenwerkzeug
 - 4 Blechprofil
 - 5 Obergesenk
 - 6 Untergesenk
 - 7 Matrize
- 8 Stempeleinsatz
- 9 Boden v. 2
- 10 Schrottabfuhrkanal
- d Durchmesser v. 2
- t Tiefe v. 2
 - α- Verjüngungswinkel

Patentansprüche


- Verfahren zur Herstellung eines gehärteten Blechprofils aus einer gegebenenfalls vorgeformten Platine (1), wobei zunächst zumindest eine topfartige Ausformung (2) an der Platine (1) ausgeformt wird, wonach die Platine (1) in einem Pressenwerkzeug zum Blechprofil warm umgeformt und gehärtet wird.
- 2. Verfahren nach Anspruch 1, wobei im Pressenwerkzeug eine endformgebende Kalibrierung der Ausformung (2) erfolgt.
- 3. Verfahren nach Anspruch 1 oder 2, wobei im Pressenwerkzeug der Boden (9) einer Ausformung (2) herausgetrennt wird.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, wobei eine Ausformung (2) hergestellt wird, deren Verhältnis der Abmessungen von Durchmesser (d) und Tiefe (t) 2:1 ist.
- **5.** Verfahren nach einem der Ansprüche 1 bis 4, wobei das Blechprofil in einer Nachfolgeoperation beschnitten wird.

3

40

45

50

