BACKGROUND OF THE INVENTION
[0001] The present invention relates to a stent that is implanted in lumens such as the
blood vessel, the bile duct, the trachea, the esophagus, the ureter, and the like
so that it is used to improve a stenosed portion or a closed portion generated in
the lumens.
[0002] To cure various diseases that are caused when the blood vessel or lumens in the human
body are stenosed or dosed, the stent which is a tubular medical appliance is implanted
at the stenosed portion or the dosed portion to expand them and secure the lumen thereof.
Because the stent is inserted into the human from outside, its diameter is small.
The stent is dilated or returned to its original shape to make its diameter large
at the stenosed or closed portions to keep the dilated state of the lumen.
[0003] The stent is dassified into a self-expandable stent and a balloon expandable stent,
depending on the function and dilating mode thereof.
[0004] The balloon expandable stent which itself has no dilating function is inserted into
a desired portion. Then, a balloon provided in the stent is inflated to dilate (plastically
deform) the stent so that the stent is fixed to the inner surface of the desired lumen,
with the stent in dose contact therewith. That is, it is necessary to dilate the stent
of this type in implanting it in the desired portion.
[0005] Fundamentally, the self-expandable stent is made of an elastic material. The final
size of the self-expandable stent is set when it is expanded. In introducing the self-expandable
stent into the human body, it is folded into a small size and put into a member (plastic
tube in most cases) restricting its configuration. Then the member, namely, the tube
is introduced into the human body. The self-expandable stent is discharged from the
tube at the desired portion. The self-expandable stent dilates itself owing to its
elasticity.
[0006] The dilating mode of the balloon expandable stent and that of the self-expandable
stent are different from each other. The characteristic of the balloon expandable
stent and that of the self-expandable stent are also different from each other. These
two kinds of the stents have merits and demerits. The balloon expandable stent dilates
in the form of a plastic deformation in conformity to the dilation of the balloon.
Therefore the balloon expandable stent can be embedded in a curved blood vessel, with
the balloon expandable stent curved plastically. However, in the case where the balloon
expandable stent is embedded in a sublimis blood vessel (artery near the surface of
human body such as carotid arteries, femoral artery, and the like), there is a fear
that the balloon expandable stent is deformed plastically by an external force. Generally,
embedded into such a portion is the self-expandable stent that is capable of returning
to its original configuration by its elasticity, even though it is deformed by an
external force applied thereto. The self-expandable stent has property of returning
to its original configuration. In most cases, the stent is formed straight in its
longitudinal direction. Thus even though the self-expandable stent is so configured
that it can be curved at a light force, it will return to its original (straight)
configuration in the human body. Therefore when the self-expandable stent is implanted
in a curved blood vessel, the force of the self-expandable stent of returning to its
original straight shape is always applied to both ends thereof.
[0007] The self-expandable stent is disclosed in U.S.P.6,042,606 (WO99/16,387). The stent
disclosed therein is formed straight in its longitudinal direction. Thus even though
the self-expandable stent is so configured that it can be curved at a light force,
it will return to its original (straight) configuration in the human body. Therefore
when the self-expandable stent is implanted in a curved blood vessel, the force of
the self-expandable stent of returning to its original straight shape is always applied
to both ends thereof.
SUMMARY OF THE INVENTION
[0008] Therefore, it is an object of the present invention to provide a stent of a self-expandable
type to which little stress is applied to both ends thereof after it is implanted
in the blood vessel of the human body.
[0009] According to a first aspect of the invention, there is provided a stent, to be implanted
in a human body, made of a super-elastic metal which is formed approximately cylindrically
and integrally and which shows super-elasticity before and after said stent is inserted
into said human body; said stent having a plurality of annular parts deformable in
a direction in which an outer diameter thereof contracts, when a stress is applied
thereto and a plurality of connection parts each connecting said adjacent annular
parts to each other, with said annular parts arranged in an axial direction of said
stent, wherein each of said annular parts is elastically deformable owing to super-elasticity
thereof, whereas said connection part is substantially a plastically deformable part
not super-elastic entirely or partly or a normal elastically deformable part not super-elastic
entirely or partly.
[0010] According to a second aspect of the invention, there is provided a method of producing
a stent to be implanted in a human body, comprising the steps of: forming a base material
for said stent having a plurality of annular parts deformable in a direction in which
an outer diameter thereof contracts, when a stress is applied thereto and a plurality
of connection parts each connecting said adjacent annular parts to each other, with
said annular parts arranged in an axial direction of said stent, by partly removing
a side surface of a prepared approximately cylindrical pipe, made of a super-elastic
metal, having an outer diameter suitable for a portion of the human body in which
said stent is implanted; and heat-treating a part or an entirety of said connection
part of said base material for said stent to substantially eliminate super-elasticity
of said connection part and impart plastic deformability or normal elasticity thereto.
[0011] According to a third aspect of the invention, there is provided a method of producing
a stent to be implanted in a human body, comprising the steps of: forming a base material
for said stent having a plurality of annular parts and a plurality of connection parts
each connecting said adjacent annular parts to each other, with said annular parts
arranged in an axial direction of said stent by preparing an approximately cylindrical
metal pipe having an outer diameter smaller than an inner diameter of a portion in
which said stent is implanted and having super-elasticity or a shape memory characteristic
or to which said super-elasticity or said shape memory characteristic can be imparted
and by partly removing a side surface of said pipe; forming an expanded mode of said
base material for said stent by expanding said base material for said stent so that
an outer diameter thereof becomes suitable for said portion in which said stent is
implanted and by heat-setting said base material for said stent in an expanded state
to store a configuration of said expanded base material for said stent and allow said
super-elasticity to appear; and heat-treating said expanded base material for said
stent by heating an entirety or a portion of said connection part to eliminate super-elasticity
thereof substantially and impart plastic deformability or normal elasticity thereto.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] Fig. 1 is a front view showing a stent according to an embodiment of the present
invention.
[0013] Fig. 2 is a development view showing the stent shown in Fig. 1.
[0014] Fig. 3 is a partly enlarged view showing the stent shown in Fig. 1.
[0015] Fig. 4 is an explanatory view showing a state in which a connection part of the stent
shown in Fig. 3 has been stretched.
[0016] Fig. 5 is a front view showing a state in which the stent shown in Fig. 1 has been
contracted.
[0017] Fig. 6 is perspective view showing a stent according to another embodiment of the
present invention.
[0018] Fig. 7 is perspective view showing a stent according to another embodiment of the
present invention.
[0019] Fig. 8 is a front view showing a stent according to an embodiment of the present
invention.
[0020] Fig. 9 is a development view showing the stent shown in Fig. 8.
[0021] Fig. 10 is a partly enlarged view showing the stent shown in Fig. 8.
[0022] Fig. 11 is a front view showing a stent according to an embodiment of the present
invention.
[0023] Fig. 12 is a development view showing the stent shown in Fig. 11.
[0024] Fig. 13 is a partly enlarged view showing the stent shown in Fig. 11.
[0025] Fig. 14 is an explanatory view for explaining an example of a heat treatment apparatus
to be used in a heat treatment step.
[0026] Fig. 15 shows a heat sink of the heat treatment apparatus shown in Fig. 14.
[0027] Fig. 16 shows a state in which a base material for the stent is mounted on the heat
sink shown in Fig. 15.
[0028] Fig. 17 shows a heat sink according to another embodiment.
DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
[0029] The stent of an embodiment of the present invention will be described below with
reference to the drawings.
[0030] A stent 1 of the present invention is implanted in a human body. The stent 1 is made
of a super-elastic metal formed approximately cylindrically and integrally. The super-elastic
metal shows super-elasticity before and after the stent 1 is inserted into the human
body. The stent 1 has a plurality of annular parts 2 (in other words, expansion element)
deformable in a direction in which an outer diameter thereof contracts, when a stress
is applied thereto and a plurality of connection parts 3 (in other words, connection
element) each connecting the adjacent annular parts 2 to each other, with the annular
parts 2 arranged in the axial direction of the stent 1. The annular part 2 is elastically
deformable owing to its super-elasticity. The connection part 3 is substantially a
plastically deformable part not super-elastic entirely or partly or a normal elastically
deformable part not super-elastic entirely or partly.
[0031] The connection part 3 has a plastically deformable part or a normal elastically deformable
part.
[0032] The stent 1 of the embodiment is an integral product having a plurality of the annular
parts 2 arranged in the axial direction of the stent 1 and a plurality of the connection
parts 3 each connecting the adjacent annular parts 2 to each other.
[0033] As shown in Figs. 1 and 2, the annular parts 2 formed of the super-elastic metal
showing the super-elasticity are arranged almost linearly. Each annular part 2 has
a deformation assistant function of assisting the deformation of the stent 1 in the
direction in which the outer diameter thereof contracts, when a stress is applied
to the stent 1. The adjacent annular parts 2 are connected to each other with the
connection parts 3 constituting the plastically deformable part or having the plastically
deformable part. The connection parts 3 may constitutes the plastically deformable
part or has the plastically deformable part. As shown in Fig. 5, the diameter of the
stent 1 of the embodiment contracts, when a load is applied radially inwardly to the
entire side (peripheral) surface thereof.
[0034] As shown in Figs. 1, 2, and 3, the stent 1 of the embodiment has a plurality of the
annular parts 2 each composed of a linear material 4 that is wavy (zigzag) and annular
and functions to keep the stent 1 expanded. The annular parts 2 are connected to one
another with the connection parts 3 (connector) in such a way that the adjacent annular
parts 2 do not separate from each other. A plurality of the annular parts 2 are arranged
almost linearly in the axial direction of the stent 1, with valleys and mountains
of the axially adjacent wavy annular parts 2 proximate to each other.
[0035] As described above, the annular part 2 is composed of the linear material 4 wavy
(zigzag) and annular. Thus the annular parts 2 has the deformation assistant function
of assisting the deformation of the stent 1 in the direction in which the outer diameter
thereof contracts, when a stress is applied to the stent 1. Further the annular part
2 is made of the super-elastic metal showing the super-elasticity. Thus the annular
part 2 returns to the original configuration, when the stress is eliminated therefrom.
[0036] Unlike the annular part 2, the connection part 3 is not substantially super-elastic
entirely or partly and is plastically deformable or normal elastically deformable.
Each of the connection parts has a plastically deformable part or a normal elastically
deformable part. But some of he connection parts may have a plastically deformable
part or a normal elastically deformable part. Thereby the stent 1 is capable of plastically
deformable or normal elastically deformable at the connection part 3. Further the
connection part 3 reduces a stress applied to a lumen such as a blood vessel by both
ends of the stent 1, when the stent 1 is implanted therein. Since the connection part
3 is plastically deformable or normal elastically deformable, the connection part
3 is curved in conformity to a curvature of the blood vessel and keeps its curved
configuration when the stent 1 is implanted in a curved blood vessel or the like.
Therefore little load is applied to both ends of the stent 1. Fig. 3 is an enlarged
view showing the neighborhood of the connection part 3 of the stent 1. The connection
part 3 (portion shown with oblique lines) shown in Fig. 3 deforms plastically or normal
elastically. When the stent 1 is bent, with the connection part 3 (portion shown with
oblique lines) disposed radially outward, the connection part 3 is stretched and deforms
plastically as shown in Fig.4. Consequently there is an increase in the interval between
the adjacent annular parts 2 because the adjacent annular parts 2 are connected to
each other with the stretched connection part 3. Since the connection part 3 deforms
plastically, the connection part 3 keeps the stretched state. The occupation percentage
of the plastically deformable portion (or normal elastically deformable portion) of
the connection part 3 is favorably in the range of 10 to 100 and more favorably in
the range of 40 to 100. The occupation percentage of the plastically deformable portion
(or normal elastically deformable portion) of the connection part 3 is more favorably
in the range of 50 to 100 and most favorably in the range of 80 to 100.
[0037] The connection part 3 of the stent 1 of the embodiment connects proximate valleys
and mountains of the adjacent wavy annular parts 2 to each other and is curved or
bent. Therefore, when a force is applied to the stent 1 in a curved direction after
the stent 1 is implanted in the lumen, the stent 1 is capable of coping with the applied
force without opposing thereto, because the connection part 3 is disposed radially
outward and thus capable of stretching. Therefore little stress is applied to the
lumen in which the stent 1 has been implanted. In the stent 1 of the embodiment, the
connection part 3 is curved in the direction orthogonal to the axial direction of
the stent 1. Therefore the connection part 3 is capable of reliably stretching, when
the connection part 3 is curved. The connection part 3 does not necessarily have to
be orthogonal to the axial direction of the stent 1, but may be curved or bent at
a predetermined angle with respect to the axial direction of the stent 1. Although
the connection part 3 of the embodiment is U-shaped, it may be V-shaped or S-shaped.
In the case where the connection part 3 is bent or curved, it is preferable that a
bent portion thereof or a curved portion thereof is essentially the plastically deformable
portion (or normal elastically deformable portion).
[0038] In the stent 1 of the embodiment, the adjacent annular parts 2 are connected to each
other with a plurality of the connection parts 3. It is preferable to connect the
annular parts 2 to each other by a plurality of the connection parts 3. In this case,
it is preferable to almost confront them at two positions of all the positions where
the valleys and the mountains of the adjacent annular parts 2 confront each other.
It is also preferable to dispose three or more connection parts 3, with the connection
parts 3 forming an almost equal angle with respect to the axis of the stent 1. In
the embodiment, valleys and mountains of the axially adjacent wavy annular parts 2
are proximately formed, with the valleys and the mountains connected to each other
alternately by the connection parts 3. In the stent 1 of the embodiment, the connection
part 3 is not disposed inside the annular part 2. Therefore in the stent 1, the annular
parts 2 and the connection parts 3 are arranged in the axial direction thereof. In
the stent 1 of this embodiment, a plurality of the annular parts 2 and a plurality
of the connection parts 3 are alternately arranged in the axial direction thereof,
with the annular parts 2 disposed at both ends of the arrangement. When the connection
parts 3 are viewed from the side (peripheral) surface of the stent 1, the connection
parts 3 are not disposed inside the annular parts 2, but disposed on an annular zone
orthogonal to the axis of the stent 1. Therefore it is possible to treat a change
in properties of the connection part 3 easily and reduce an influence given to the
annular part 2 by the treatment of the change in properties of the connection part
3.
[0039] Although the outer diameter of the stent 1 is different according to a portion where
the stent 1 is implanted, the outer diameter thereof is favorably in the range of
2.0 to 30mm and more favorably in the range of 2.5 to 20mm. The thickness of the stent
1 is favorably in the range of 0.04 to 1.0mm and more favorably in the range of 0.06
to 0.5mm. The length of the stent 1 is in the range of 10 to 150mm and favorably in
the range of 15 to 100mm. In the case where the stent is implanted in a blood vessel,
the outer diameter thereof is favorably in the range of 2.0 to 14mm and more favorably
in the range of 2.5 to 10mm. The thickness of the stent is favorably in the range
of 0.04 to 0.3mm and more favorably in the range of 0.06 to 0.2mm. The length of the
stent is in the range of 5 to 40mm and favorably in the range of 10 to 30mm.
[0040] As described above, in the stent 1 of the embodiment, the annular part 2 is composed
of a plurality of linear materials 4 wavy (zigzag) and annular. The number of waves
is favorably in the range of 6 to 36 and more favorably in the range of 8 to 24. The
length of the annular part 2 is favorably in the range of 1 to 10mm and more favorably
in the range of 1.5 to 5mm. The number of the annular parts 2 is favorably in the
range of 3 to 30 and more favorably in the range of 5 to 20. The distance between
the adjacent annular parts 2, in other words, the length of the connection part 3
in the axial direction of the stent 1 is favorably in the range of 0.1 to 5mm and
more favorably in the range of 0.15 to 3mm. It is favorable that the width of the
linear material 4 constituting the connection part 3 is small to allow the linear
material 4 to be bent at a small force. More specifically, the width of the linear
material 4 constituting the connection part 3 is favorably in the range of 0.03 to
0.2mm and more favorably in the range of 0.05 to 0.1mm. The length of the connection
part 3 is favorably in the range of 0.15 to 8mm and more favorably in the range of
0.2 to 5mm when the connection part 3 is straight.
[0041] The mode of the annular part of the stent is not limited to the above-described one.
[0042] For example, the stent may have the annular part having a form as shown in Fig. 6.
[0043] As in the case of the stent 1, a stent 20 of the embodiment is implanted in the human
body and made of a super-elastic metal formed approximately cylindrically and integrally.
The super-elastic metal shows super-elasticity before and after the stent 20 is inserted
into the human body.
[0044] An annular part 21 of the stent 20 of the embodiment is composed of a linear constituent
which has a plurality of notches and a plurality of openings formed on a side (peripheral)
surface thereof and is made of a metal showing super-elasticity.
[0045] The stent 20 of the embodiment is also an integral product having a plurality of
the annular parts 21 arranged in the axial direction of the stent 20 and a plurality
of the connection parts 27 each connecting the adjacent annular parts 21 to each other.
[0046] The annular part 21 has the notch at its ends 23a and 23b. Thus the ends 23a and
23b of the annular part 21 are capable of deforming easily. In particular, a partial
deformation of the end can be accomplished. Therefore the annular part 21 has a favorable
response to a deformation of a blood vessel in which the stent is implanted. The end
23 is composed of ends of a plurality of frames 26a. Thus the end 23 has a sufficient
strength and thus is not easily broken. An opening 24 surrounded with frames 26a and
26b is formed between both ends 23a and 23b of the annular part 21. The opening 24
is deformed easily by a deformation of the frame 26a. Therefore the annular part 21
deforms easily at its central portion (central portion of frame).
[0047] In this embodiment, the opening 24 has the shape of a hexagon long in the axial direction
of the stent 20. The notch 25 has the shape of an isosceles triangle. A plurality
of the notches 25 are formed at each end of the annular part 21. More specifically,
six notches 25 having almost the same configuration are formed at each end of the
annular part 21. A plurality of the openings 24 are formed in such a way as to form
the side surface of the stent 20 or the peripheral surface thereof. More specifically,
six openings 24 are formed. Neither the configuration of each of the notch and the
opening is limited to the above-described one nor the number of each of the notch
and the opening is limited to the above-described one. It is preferable that the number
of the notches is 3 to 10 and that the number of the openings is also 3 to 10.
[0048] In the stent 20 of the embodiment, a plurality of the annular parts 21 are arranged
in the axial direction thereof. The adjacent annular parts 21 are connected to each
other with the connection parts 27. The connection part 27 is substantially a plastically
deformable part (or normal elastically deformable part) not super-elastic entirely
or partly. In other words, the connection part 27 constitutes the substantially plastically
deformable part (or normal elastically deformable part) or has the plastically deformable
part (or normal elastically deformable part).
[0049] In the stent 20 of the embodiment, three annular parts 21 are linearly arranged and
connected to each other by the connection parts 27. The connection part 27 connects
proximate apexes of the adjacent annular parts 21 to each other and is curved or bent.
Therefore, when a force is applied to the stent 20 in a curved direction after the
stent 20 is implanted in the lumen, the stent 20 is capable of coping with the applied
force without opposing thereto, because the connection part 27 is disposed radially
outward and thus capable of stretching. Therefore little stress is applied to the
lumen in which the stent 20 has been implanted. In the stent 20 of the embodiment,
the connection part 27 is curved in the direction orthogonal to the axial direction
of the stent 20. Therefore the connection part 27 is capable of reliably stretching,
when the connection part 27 is curved. The connection part 27 does not necessarily
have to be orthogonal to the axial direction of the stent 20, but may be curved or
bent at a predetermined angle with respect to the axial direction of the stent 20.
Although the connection part 27 of the embodiment is U-shaped, it may be V-shaped
or S-shaped. In the case where the connection part 27 is bent or curved, it is preferable
that a bent portion thereof or a curved portion thereof is essentially the plastically
deformable portion. The occupation percentage of the plastically deformable portion
(or normal elastically deformable portion) of the connection part 27 is favorably
in the range of 10 to 100 and more favorably in the range of 40 to 100. The occupation
percentage of the plastically deformable portion (or normal elastically deformable
portion) of the connection part 27 is more favorably in the range of 50 to 100 and
most favorably in the range of 80 to 100.
[0050] In the stent 20 of the embodiment, the adjacent annular parts 21 are .connected to
each other with a plurality of the connection parts 27. It is preferable to connect
the annular parts 21 to each other with a plurality of the connection parts 27. In
this case, it is preferable to almost confront them at two positions of all the positions
where the adjacent annular parts 21 confront each other. It is also preferable to
dispose three or more connection parts 27, with the connection parts 27 forming an
almost equal angle with respect to the axis of the stent 20. In the embodiment, the
connection parts 27 are confronted at two positions of all the positions where the
adjacent annular parts 21 confront each other.
[0051] In the stent 20 of the embodiment, the connection part 27 is not disposed inside
the annular part 21. Therefore in the stent 20, the annular parts 21 and the connection
parts 27 are arranged in the axial direction thereof. In the stent 20 of this embodiment,
a plurality of the annular parts 21 and a plurality of the connection parts 27 are
alternately arranged in the axial direction thereof, with the annular parts 21 disposed
at both ends of the arrangement. When the connection parts 27 are viewed from the
side (peripheral) surface of the stent 20, the connection parts 27 are not disposed
inside the annular parts 21, but disposed on an annular zone orthogonal to the axis
of the stent 20. Therefore it is possible to treat a change in properties of the connection
part 27 easily and reduce an influence given to the annular part 21 by the treatment
of the change in properties of the connection part 27.
[0052] The length of the annular part 21 of the stent 20 of the embodiment is favorably
in the range of 2 to 4mm and more favorably in the range of 2.5 to 3.5mm. The number
of the annular parts 21 is favorably in the range of 3 to 30 and more favorably in
the range of 5 to 20. The distance between the adjacent annular parts 21, in other
words, the length of the connection part 27 in the axial direction of the stent 20
is favorably in the range of 0.1 to 5mm and more favorably in the range of 0.15 to
3mm. It is favorable that the width of the linear material (frame) constituting the
annular part 21 is favorably in the range of 0.08 to 0.3mm and more favorably in the
range of 0.1 to 0.2mm. The .length of the connection part 27 is favorably in the range
of 0.15 to 8mm and more favorably in the range of 0.2 to 5mm when the connection part
27 is straight. It is favorable that the width of the linear material constituting
the connection part 27 is small to allow the linear material to be bent at a small
force. More specifically, the width of the linear material constituting the connection
part 27 is favorably in the range of 0.03 to 0.2mm and more favorably in the range
of 0.05 to 0.1mm.
[0053] As shown in Fig. 7, according to another embodiment of the present invention, a stent
30 may have annular parts 31 each having trapezoidal notches formed at its both ends
and a plurality of hexagonal openings formed at its central portion in the shape of
a honeycomb. As in the case of the above-described embodiments, a connection part
27 is plastically deformable partly or entirely.
[0054] The mode of the annular part is not limited to the above-described one.
[0055] Fig. 8 is a front view showing a stent according to an embodiment of the present
invention. Fig. 9 is a development view showing the stent shown in Fig. 8. Fig. 10
is a partly enlarged view showing the stent shown in Fig. 8.
[0056] As shown in Figs. 8 and 9, a stent 50 of the embodiment has a plurality of the annular
parts 2 each composed of a linear material 4 that is wavy (zigzag) and annular and
functions to keep the stent 50 expanded. The annular parts 2 are connected to each
other with the connection parts 53 (connector) in such a way that the adjacent annular
parts 2 do not separate from each other. A plurality of the annular parts 2 are arranged
almost linearly in the axial direction of the stent 50, with valleys and mountains
of the axially adjacent wavy annular parts 2 confronting each other.
[0057] The connection part 53 is not substantially super-elastic entirely or partly and
is plastically deformable or normal elastically deformable. Thereby the stent 50 is
capable of plastically deformable or normal elastically deformable at the connection
part 53. Further the connection part 53 reduces a stress applied to a lumen such as
a blood vessel by both ends of the stent 50, when the stent 50 is implanted therein.
Since the connection part 53 is plastically deformable or normal elastically deformable,
the connection part 53 is curved in conformity to a curvature of the blood vessel
and keeps its curved configuration when the stent 50 is implanted in a curved blood
vessel or the like. Therefore little load is applied to both ends of the stent 50.
Fig. 10 is an enlarged view showing the neighborhood of the connection part 53 of
the stent 50. The connection part 53 (portion shown with oblique lines) shown in Fig.
10 deforms plastically or has a normal elastic deformation. When the stent 50 is bent,
the connection part 53 deforms plastically or normal elastically. The occupation percentage
of the plastically deformable portion (or normal elastically deformable portion) of
the connection part 53 is favorably in the range of 10 to 100 and more favorably in
the range of 40 to 100. The above-described normal elastic deformation means an elastically
deformed state not reaching the super-elastic.
[0058] The connection part 53 of the stent 50 of the embodiment connects proximate valleys
and mountains of the adjacent wavy annular parts 2 to each other. The connection part
53 is straight. In the stent of the embodiment, each connection part 53 connects the
valley of the annular part 2 to the mountain adjacent to the mountain, of the adjacent
annular part 2, nearest to the valley. Thus the connection part 53 inclines. That
is, the connection part 53 indines at a predetermined angle to the axis of the stent
50.
[0059] In the stent 50 of the embodiment, the adjacent annular parts 2 are connected to
each other by a plurality of the connection parts 53. It is preferable to connect
the annular parts 2 to each other with a plurality of the connection parts 53. In
the case where the connection parts 53 are formed at two positions, it is preferable
to confront them at two positions of all the positions where the valleys and the mountains
of the adjacent annular parts 2 almost confront each other. It is also preferable
to dispose three or more connection parts 53, with the connection parts 53 forming
an almost equal angle with the axis of the stent 50. In the embodiment, a plurality
of valleys and mountains are formed on the axially adjacent wavy annular parts 2,
with the valleys and the mountains proximate to each other. The valleys and the mountains
are connected to each other alternately by the connection parts 53. The valley of
the annular part 2 is connected to the mountain adjacent to the mountain, of the adjacent
annular part 2, nearest to the valley. The connection parts 53 connecting the same
adjacent annular parts 2 to each other are parallel with each other. The connection
part 53 adjacent to each other in the axial direction of the stent 50 connects the
valleys to each other alternately. The connection parts 53 adjacent to each other
in the axial direction of the stent 50 incline in different directions. As shown in
Fig. 9, the connection part 53 disposed uppermost incline left downward, whereas the
connection part 53 disposed below it incline right downward. In the stent 50 of the
embodiment, the connection part 53 and the straight portion of the annular part 2
connected with the connection part 53 form a zigzag line in the axial direction of
the stent 50. In the stent 50 of the embodiment, the connection part 53 is not disposed
inside the annular part 2.
[0060] More specifically, in the stent 50 shown in Figs. 8 and 9, the number of the zigzag
lines of each annular part 2 is 16. The connection part 53 is formed at eight positions,
with the connection parts 53 forming an equal angle to the axis of the stent 50. In
the stent 50, a plurality of the annular parts is formed, with the mountains and the
valleys adjacent to each other. Each connection part is formed from the mountain of
the annular part to the valley of the adjacent annular part, with the connection part
oblique to the axis of the stent 50. The connection part is not disposed inside the
annular part.
[0061] The mode of the annular part is not limited to those described above.
[0062] Fig. 11 is a front view showing a stent according to an embodiment of the present
invention. Fig. 12 is a development view showing the stent shown in Fig. 11. Fig.
13 is a partly enlarged view showing the stent shown in Fig. 11.
[0063] A stent 60 of this embodiment is almost the same as the above-described stent 50
except that the connection part 53 is substantially parallel with the axial direction
(in other words, axis) of the stent 60. As shown in Figs. 11 and 12, the stent 60
of the embodiment has a plurality of the annular parts 2 each composed of a linear
material 4 that is wavy (zigzag) and annular and functions to keep the stent 60 expanded.
The annular parts 2 are connected to one another with the connection parts 53 (connector)
in such a way that the adjacent annular parts 2 do not separate from each other. A
plurality of the annular parts 2 are arranged almost linearly in the axial direction
of the stent 60, with mountains of the axially adjacent wavy annular parts 2 are almost
straight. Similarly, plurality of the annular parts 2 are arranged almost linearly
in the axial direction of the stent 60, with valleys of the axially adjacent wavy
annular parts 2 are almost straight. That is, the modes and dispositions of the annular
parts 2 are identical to each other. The connection part 53 is not substantially super-elastic
entirely or partly and is plastically deformable. Fig. 13 is an enlarged view showing
the neighborhood of the connection part 53 of the stent 60. The connection part 53
(portion shown with oblique lines) shown in Fig. 13 deforms plastically or normal
elastically. When the stent 60 is bent, with the connection part 53 (portion shown
with oblique lines) disposed radially outward, the connection part 53 deforms plastically.
The occupation percentage of the plastically deformable portion (or normal elastically
deformable portion) of the connection part 53 is favorably in the range of 10 to 100
and more favorably in the range of 40 to 100.
[0064] The connection part 53 of the stent 60 of the embodiment connects proximate valleys
and valleys of the adjacent wavy annular parts 2 to each other. The connection part
53 is straight. The connection parts 53 are parallel with the axis of the stent 60.
[0065] In the stent 60 of the embodiment, the adjacent annular parts 2 are connected to
each other by a plurality of the connection parts 53. It is preferable to connect
the annular parts 2 to each other with a plurality of the .connection parts 53. In
the case where there are two connection parts 53, it is preferable to almost confront
them at two positions of all the positions where the valleys and the mountains of
the adjacent annular parts 2 confront each other. It is also preferable to dispose
three or more connection parts 53, with the connection parts 53 forming an almost
equal angle to the axis of the stent 60. In the embodiment, a plurality of valleys
and mountains are formed on the axially adjacent wavy annular parts 2, with the valleys
and the mountains proximate to each other. Valleys nearest to each other are connected
to each other by the connection parts 53 every three valley. The connection parts
53 are parallel with each other. In the stent 60 of the embodiment, a part of the
connection part 53 is disposed inside the annular part 2. The connection parts 53
are formed in such a way that they are uncontinuous in the axial direction of the
stent 60. The connection parts 53 adjacent to each other in the axial direction of
the stent 60 connect the valleys to each other alternately.
[0066] More specifically, in the stent 60 shown in Figs. 11 and 12, the number of the zigzag
lines of each annular part 2 is 12, and the connection part 53 is formed at three
positions, with the connection parts 53 forming an equal angle to the axis of the
stent 60. In the stent 60, a plurality of the annular parts 53 are formed, with the
valleys adjacent to each other. The connection parts are parallel with the axis of
the stent 60. Each connection part is formed from the valley of the annular part to
the valley of the adjacent annular part, with a part of the connection part disposed
between the adjacent annular part. By forming the stent 60 in the above-described
configuration, it is possible to make the length of the connection part larger than
that of the zigzag annular part and curve the stent easily at the connection part
thereof.
[0067] Although the outer diameter of each of the stents 50 and 60 is different according
to a portion where they are implanted, the outer diameter thereof is favorably in
the range of 2.0 to 30mm and more favorably in the range of 2.5 to 20mm. The thickness
of the stent is favorably in the range of 0.04 to 1.0mm and more favorably in the
range of 0.06 to 0.5mm. The length of the stent is in the range of 10 to 150mm and
favorably in the range of 15 to 100mm. In the case where the stent is implanted in
a blood vessel, the outer diameter thereof is favorably in the range of 2.0 to 14mm
and more favorably in the range of 2.5 to 10mm. The thickness of the stent is favorably
in the range of 0.04 to 0.3mm and more favorably in the range of 0.06 to 0.2mm. The
length of the stent is in the range of 5 to 80mm and favorably in the range of 10
to 60mm.
[0068] As described above, in the stents 50 and 60 of the embodiment, the annular part 2
is composed of a plurality of linear materials 4 wavy (zigzag) and annular. The number
of waves is favorably in the range of 6 to 36 and more favorably in the range of 8
to 24. The length of the annular part 2 is favorably in the range of 1 to 10mm and
more favorably in the range of 1.5 to 5mm. The number of the annular parts 2 is favorably
in the range of 3 to 30 and more favorably in the range of 5 to 20. The distance between
the adjacent annular parts 2 is favorably in the range of 2 to 7mm. The length of
the connection part 53 is favorably in the range of 2 to 10mm. It is favorable that
the width of the linear material 4 constituting the connection part 53 is small to
allow the linear material 4 to be bent at a small force. More specifically, the width
of the linear material 4 constituting the connection part 53 is favorably in the range
of 0.03 to 0.2mm and more favorably in the range of 0.05 to 0.12mm.
[0069] As shown in Figs. 8, 9, 11, and 12, in the stents 50 and 60 of the above-described
embodiments, it is preferable that an apex 55 of the bent portion forming the outermost
end of each of the annular parts 2 disposed at both ends of the stent has a bulged
configuration to reduce a load to be applied by the outermost end of the stent to
the inner wall of a lumen of the human body. It is preferable that as shown in Figs.
8 and 11, both ends of the stent are approximately circular.
[0070] It is preferable to provide the stents 50 and 60 with a marker 56 made of an X-ray-unpermeable
material. It is favorable to dispose the marker 56 at an end of the stent. It is more
favorable to dispose the marker 56 at both ends of the stent. More specifically, as
shown in Figs. 8, 9, 11, and 12, it is preferable to dispose a plurality of the markers
56 at both ends of the stent. In the stents 50 and 60, the marker 56 is provided on
the connection part 53 disposed at one extreme end thereof, and also at the other
extreme end thereof.
[0071] The marker 56 made of the X-ray-unpermeable material is fixed to the stent with the
marker 56 sealing a small opening formed on the stent. It is preferable to install
the marker 56 on the small opening formed on the stent by disposing a disk-shaped
member made of an X-ray contrast material a little smaller than the small opening
and pressing and caulking both surfaces thereof. The form of the marker made of the
X-ray-unpermeable material is not limited to the above-described type. For example,
it is possible to apply the X-ray contrast material to the outer surface of the stent,
wind a wire material formed of the X-ray contrast material around the stent or mount
a ring-shaped member formed of the X-ray contrast material on the stent. It is preferable
to form the marker 56 of gold, platinum, tungsten, tantalum, alloy thereof or silver-palladium
alloy. The stents 1, 20, and 30 may be provided with the marker 56 made of the X-ray-unpermeable
material.
[0072] A super-elastic alloy can be preferably used as the super-elastic metal forming the
stent of each of the above-described embodiments. Herein the super-elastic alloy means
a so-called shape memory alloy that shows super-elasticity essentially at the temperature
(in the vicinity of 37°C) of the human body. The following super-elastic metals can
be preferably used: A Ti-Ni alloy of 49 to 53 atomic percent of Ni, a Cu-Zn alloy
of 38.5 to 41.5 wt% of Zn, a Cu-Zn-X alloy of 1 to 10 wt% of X (X=Be, Si, Sn, Al,
Ga), and a Ni-Al alloy of 36 to 38 atomic percent of Al. The Ti-Ni alloy is most favorable.
The mechanical characteristic of the Ti-Ni alloy can be appropriately changed by replacing
a part of the Ti-Ni alloy with 0.01 to 10.0% of X to obtain a Ti-Ni-X alloy (X=Co,
Fe, Mn, Cr, V, Al, Nb, W, B) or by replacing a part of the Ti-Ni alloy with 0.01 to
30.0 atomic percent of X to obtain a Ti-Ni-X alloy (X=Cu, Pb, Zr). Further the mechanical
characteristic of the Ti-Ni alloy can be appropriately changed by selectively adopting
a cold working ratio or/and the condition of final heat treatment. In the case where
the Ti-Ni-X alloy is used, it is also possible to change its mechanical characteristic
appropriately by selectively adopting a cold working ratio or/and the condition of
final heat treatment.
[0073] The buckling strength (yield stress when load is applied to stent) of the super-elastic
alloy to be used is favorably in the range of 5 to 200 kg/mm
2 (22°C) and more favorably in the range of 8 to 150 kg/mm
2. The restoring stress (yield stress when load is eliminated from stent) of the super-elastic
alloy is favorably in the range of 3 to 180 kg/mm
2 (22°C) and more favorably in the range of 5 to 130 kg/mm
2. The super-elasticity means that when a metal is deformed (bent, stretched, compressed)
to a region in which it deforms plastically at a service temperature, it returns to
its original configuration without heating it after the deformation is released.
[0074] The stent is formed by removing (for example, cutting, dissolving) a part, of a pipe
made of a super-elastic metal, not constituting the stent. Thereby the stent is obtained
as an integral product.
[0075] The pipe made of the super-elastic metal to be used to form the stent of the present
invention can be produced by dissolving a super-elastic alloy such as the Ti-Ni alloy
in an inactive gas atmosphere or a vacuum atmosphere to form an ingot thereof, polishing
the ingot mechanically, forming a pipe having a large diameter by hot press and extrusion,
repeating drawing step and heat treatment step to adjust the diameter and thickness
of the pipe to a predetermined thickness and reduced diameter, and finally polishing
the surface of the pipe chemically or physically.
[0076] The pipe made of the super-elastic metal can be processed into the base material
for the stent by a cutting work such as laser processing (for example, YAG laser),
electrical discharge machining, and the like or chemical etching or in combination
thereof.
[0077] The stent of the present invention may be coated with a material suitable for the
human body on its inner surface, outer surface or inner and outer surfaces. As the
material suitable for the human body, synthetic resin and metal suitable for the human
body can be used. The following inactive metals are used to coat the surface of the
stent: gold by electroplating method, stainless steel by evaporation method, silicon
carbide by sputtering method, plated titanium nitride by sputtering method, and plated
gold by sputtering method.
[0078] As the synthetic resin, the following thermoplastic resins or thermosetting resins
can be used: polyolefin (for example, polyethylene, polypropylene, ethylene-propylene
copolymer), polyvinyl chloride, ethylene-vinyl acetate copolymer, polyamide elastomer,
polyurethane, polyester, fluorocarbon resin, silicone rubber. Polyolefin, polyamide
elastomer, polyester, and polyurethane are favorable. A resin decomposable in the
human body (polylactic acid, polyglycolic acid, polylactic acid-polyglycolic acid
copolymer) is also favorable. It is preferable that the film of the synthetic resin
is soft to such an extent as not to prevent frames constituting the stent from being
curved. The thickness of the film of the synthetic resin is favorably in the range
of 5 to 300 µm and more favorably in the range of 10 to 200 µm.
[0079] As the method of thinly coating the surface of the stent with the synthetic resin,
it is possible to use a method of inserting the pipe made of the super-elastic metal
into the melted synthetic resin or into the synthetic resin dissolved in a solution.
It is also possible to use a chemical evaporation method of polymerizing a monomer
on the surface of the pipe made of the super-elastic metal. In the case where the
surface of the stent is coated very thinly with the synthetic resin, the use of a
dilute solution or chemical evaporation method is preferable.
[0080] To improve the quality of the material suitable for the human body to a higher extent,
the resinous film may be coated with an anti-thrombus material or the anti-thrombus
material may be fixed to the resinous film. As the anti-thrombus material, known various
resins can be used singly or as a mixture thereof. For example, polyhydroxyethyl methacrylate,
copolymer of hydroxyethyl-methacrylate and styrene (for example, HEMA-St-HEMA block
copolymer) can be preferably used.
[0081] The method of producing the stent of the present invention is described below.
[0082] There is provided a method of producing a stent to be implanted in a human body,
including the steps of forming a base material for the stent having a plurality of
annular parts deformable in a direction in which an outer diameter thereof contracts,
when a stress is applied thereto and a plurality of connection parts each connecting
the adjacent annular parts to each other, with the annular parts arranged in an axial
direction of the stent by partly removing a side surface of a prepared approximately
cylindrical pipe, made of a super-elastic metal, having an outer diameter suitable
for a portion of the human body in which the stent is implanted; and heat-treating
a part or an entirety of the connection part of the base material for the stent to
substantially eliminate super-elasticity of each of the connection parts and impart
plastic deformability or normal elasticity thereto.
[0083] The pipe made of the super-elastic metal can be produced by dissolving a super-elastic
alloy such as the Ti-Ni alloy in an inactive gas atmosphere or a vacuum atmosphere
to form an ingot thereof, polishing the ingot mechanically, forming a pipe having
a large diameter by hot press and extrusion, repeating drawing step and heat treatment
step to obtain a predetermined reduced thickness and diameter of a semi-finished product
of the stent, and finally polishing the surface thereof chemically or physically.
[0084] A cutting work such as laser beam machining (for example, YAG laser), electrical
discharge machining, and mechanical polishing or chemical etching can be used or in
combination thereof to perform the step of forming a base material for the stent having
a plurality of annular parts deformable in a direction in which an outer diameter
thereof contracts, when a stress is applied thereto and a plurality of connection
parts each connecting the adjacent annular parts to each other, with the annular parts
arranged in an axial direction of the stent by partly removing a side surface of a
prepared approximately cylindrical pipe, made of a super-elastic metal. Since the
stent is formed by processing the pipe as described above, the outer diameter of the
processed pipe is equal to that of the stent. Thus the stent formed in this manner
has high dimensional accuracy and returns to its original configuration when it is
implanted in the human body. Therefore it is possible to securely improve a stenosed
portion of the human body.
[0085] More specifically, in the step of forming the base material for the stent, a primary
processing step of initially processing the base material for the stent into a predetermined
configuration is carried out. That is, initially electrical discharge machining is
conducted to fuse the portion, of the pipe made of the super-elastic metal, not constituting
the base material for the stent. Thereby the portion of the pipe not constituting
the base material for the stent is removed. Thereafter a chamfering step (secondary
processing) of shaving the edge of the primarily processed pipe for the stent is carried
out. In the chamfering step, blast treatment is conducted for removal of a burr and
chamfering by using hard fine particles. In the case where a thermally modified portion
is formed on the peripheral edge of the primarily processed pipe, a step of treating
the thermally modified portion (tertiary step, chemical etching) may be conducted
to remove the thermally modified portion. The step of treating the thermally modified
portion is performed by immersing the primarily processed pipe that has undergone
the blast treatment in a thermally modified portion-treating solution in which a mixture
of hydrofluoric acid and nitric acid is mixed with a small amount of hydrogen peroxide
solution. The chemical etching (thermally modified portion-treating step) may be used
to accomplish burr removal and chamfering simultaneously. In this case, it is unnecessary
to carry out the blast treating step.
[0086] It is preferable that in the primary processing of the step of forming the .base
material for the stent from the pipe made of the super-elastic metal, the prepared
pipe, made of the super-elastic metal, having a predetermined outer diameter is machined
by using a laser apparatus (for example, YAG laser apparatus).
[0087] The step of forming the base material for the stent from the pipe made of the super-elastic
metal may be performed by using photo-fabrication technique, as described below.
[0088] In this method, initially, grease is removed from the inner and outer surfaces of
the pipe made of the super-elastic metal. Then they are cleaned. The grease removal
and deaning are conducted by immersing the pipe in a solution containing a surface-active
agent, immersing the pipe in an RO solution or immersing the pipe in a cleaning organic
solvent of hexane or the like. After the pipe is dried, a photo-resist is applied
to the inner and outer surfaces of the pipe. As the photo-resist, both positive type
and negative type can be used. A UV resist, an electron beam resist, and an X-ray
resist may be used. The thickness of the photo-resist is preferably in the range of
0.5 to 4 µ m. To enhance the adhesiveness of the photo-resist film to the pipe, heat
treatment (pre-baking) is performed at 80 to 90°C.
[0089] Thereafter a masking film (different according to whether photo-resist is of positive
type or negative type) having a pattern corresponding to the predetermined configuration
of the base material for the stent is wound around the outer surface of the pipe made
of the super-elastic metal to bring the masking film into close contact with the outer
surface of the pipe in a vacuum atmosphere. Then an exposing work is performed. The
exposing work can be performed by using a super-high pressure mercury vapor lamp.
It is preferable to perform the exposing work by rotating the pipe so that the pipe
is entirely and securely irradiated. Then developing treatment is performed. The developing
treatment is performed by immersing the pipe in a photo-resist developer. Thereafter
the developer is heated to 120 to 145°C to perform post-baking treatment. Thereby
the masking process terminates.
[0090] In the pipe processed as described above, the photo-resist is not present in the
portion of the pipe not constituting the base material for the stent, whereas the
hardened photo-resist is present in the portion of the pipe constituting the base
material for the stent. The semi-finished product for the stent is immersed in an
etching solution to dissolve the portion of the pipe not constituting the base material
for the stent therein. Thereby the portion of the pipe not constituting the base material
for the stent is removed. The portion of the pipe not constituting the base material
for the stent is dissolved in the etching solution because it contacts the etching
solution. On the other hand, the hardened photo-resist prevents the portion of the
pipe constituting the base material for the stent from contacting the etching solution.
Therefore the portion of the pipe constituting the base material for the stent is
not dissolved in the etching solution. The base material for the stent having an outer
configuration similar to that of the stent is formed by the treatment conducted by
using the etching solution. Thereafter the hardened photo-resist that has attached
to the surface of the base material for the stent is removed. This treatment is performed
by immersing the base material for the stent in a solution in which the hardened photo-resist
dissolves. Further, to remove the burr formed on the peripheral edge of the base material
for the stent and chamfer it, the blast treatment is carried out, as described above.
Then the base material for the stent is immersed in the etching solution to perform
surface treatment. Thereby the base material for the stent is formed.
[0091] As necessary, the step of plating the semi-finished product for the stent with metal
or forming a resinous film thereon is performed. The semi-finished product for the
stent is plated with gold by electroplating method, stainless steel by evaporation
method, silicon carbide by sputtering method, titanium nitride or gold.
[0092] It is favorable that the configuration of the base material for the stent formed
as described above is the same as that of any of the stents 1, 20, 30, 50, and 60.
It is most favorable that the configuration of the base material for the stent is
the same as that of the stent 1. However, the configuration of the base material for
the stent is not limited to that of the stents 1, 20, 30, 50, and 60.
[0093] Thereafter heat treatment step is performed. The connection part of the base material
for the stent is heated to substantially eliminate the super-elasticity of the connection
part and impart plastic deformability thereto.
[0094] The step of heat-treating the connection part is executed by a heat developed by
an electric resistance of each connection part that is energized at both ends thereof
(electric resistance method), irradiating each connection part with a laser beam (laser
heating method) or pressing a highly heated tool such as a soldering iron against
each connection part (direct heating method).
[0095] In the case where the electric resistance method is used, a high-voltage electricity
is applied to only both ends of the connection part to heat the connection part by
the electric resistance of the super-elastic metal. This method is capable of easily
controlling heating because the connection part can be heated to a high temperature
by an instantaneous energization of both ends thereof and because the connection part
is cooled rapidly by terminating the energization. When this method is used, it is
efficient that the connection part is comparatively long because the resistance of
the super-elastic metal is high.
[0096] In performing the laser heating method, it is preferable to use YAG laser and semiconductor
excitation laser as the laser. It is possible to adjust heating energy by adjusting
the output and focal distance thereof.
[0097] In using the direct heating method, it is preferable to use a soldering iron having
a length equal to or longer than the connection part.
[0098] In any of the above-described methods, it is preferable to use the base material
for the stent in which the connection part is disposed in an annular portion (between
adjacent annular parts) orthogonal to the axis of the base material for the stent.
By using the base material for the stent in this mode, the heat treatment process
can be performed easily. More specifically, by intermittently rotating the base material
for the stent fixed to an apparatus, heat treatment of the connection part disposed
in one annular portion can be accomplished. After the treatment of the connection
part in one annular portion terminates, the base material for the stent or the base
material to be heated is moved axially to sequentially perform heat treatment of the
connection parts in other annular portions.
[0099] When the base material for the stent is stopped during its intermittent rotation,
the following operations are performed in each heat treatment method: energizing contacts
are brought into contact with the connection part to heat it when the electric resistance
method is used; laser beams are emitted to each connection part when the laser heating
method is used; and the connection part is allowed to contact a heat source when the
direct heating method is used.
[0100] Although the heating temperature in the heat treatment for the connection part is
different according to the metallic composition of the super-elastic alloy and a temperature
treatment condition for imparting the super-elasticity thereto, the heating temperature
at a portion of the connection part where an elastic deformation is eliminated favorably
in the range of 400 to 600°C and more favorably in the range of 450 to 550°C.
[0101] It is preferable that the step of heat-treating (heat treatment step) is performed
by disposing a base material for a stent on a heat sink on which the base material
for the stent can be mounted and which has a plurality of concavities, with each annular
part of the base material for the stent in contact with an outer surface of the heat
sink and with the connection part, an entirety of a portion thereof or a portion thereof
over the concavities of the heat sink, namely, not in contact with the outer surface
of the heat sink and by energizing the entire base material for the stent so that
the base material for the stent self-heats and the annular part in contact with the
outer surface of the heat sink radiates heat.
[0102] This heat treatment step is the same as that of the method, which will be described
later, of producing the stent to be implanted in the human body. Thus the description
of the heat treatment step is omitted herein.
[0103] It is preferable that the method, of the present invention, of producing the stent
to be implanted in the human body is as follows:
[0104] The method of producing the stent to be implanted in the human body comprises the
steps of forming a base material for the stent having a plurality of annular parts
and a plurality of connection parts each connecting the adjacent annular parts to
each other, with the annular parts arranged in an axial direction of the stent by
preparing an approximately cylindrical metal pipe having an outer diameter smaller
than an inner diameter of a portion in which the stent is implanted and having super-elasticity
or a shape memory characteristic or to which the super-elasticity or the shape memory
characteristic can be imparted and by partly removing a side surface of the pipe;
forming an expanded mode of the base material for the stent by expanding the base
material for the stent so that an outer diameter thereof becomes suitable for the
portion in which the stent is implanted and by heat-setting (heat-treating) the base
material for the stent in an expanded state to store a configuration of the expanded
base material for the stent and allow the super-elasticity to appear; and heat-treating
the expanded base material for the stent by heating an entirety or a portion of the
connection parts to eliminate super-elasticity thereof substantially and impart plastic
deformability or normal elasticity
thereto.
[0105] Each step will be described below.
[0106] Initially the step of forming the base material for the stent is carried out.
[0107] Prepared in the above step may be an approximately cylindrical metal pipe which has
an outer diameter smaller than an inner diameter of a portion of the human body in
which the stent is implanted and to which super-elasticity or a shape memory characteristic
can be imparted.
[0108] The metal to be prepared may have the super-elasticity or the shape memory characteristic.
Otherwise, the super-elasticity or the shape memory .characteristic may be imparted
to a metal pipe in a processing step which will be described later.
[0109] The pipe can be produced by dissolving a super-elasticity-impartable alloy such as
an Ti-Ni alloy in an inactive gas atmosphere or a vacuum atmosphere to form an ingot
thereof, polishing the ingot mechanically, forming a pipe having a large diameter
by hot press and extrusion, repeating drawing step and heat treatment step to adjust
the diameter and thickness of the pipe to a predetermined thickness and reduced diameter,
and finally polishing the surface of the pipe chemically or physically.
[0110] The side surface of the pipe is partly removed to form the base material for the
stent having a plurality of annular parts and a plurality of connection parts each
connecting the adjacent annular parts to each other, with the annular parts arranged
in an axial direction of the stent. This step can be accomplished by a cutting work
such as laser processing (for example, YAG laser), electrical discharge machining,
mechanical polishing or chemical etching or in combination thereof.
[0111] Thereafter the step of forming an expanded mode of the base material for the stent
is performed by expanding the outer diameter of the base material for the stent prepared
as described above so that the diameter is suitable for a portion of the human body
in which it is implanted and by performing heat-setting in a base material-expanded
state to store the configuration of the base material for the stent in the base material-expanded
state and allow the super-elasticity to appear.
[0112] The step of expanding the outer diameter of the base material for the stent prepared
as described above so that the diameter is suitable for a portion of the human body
in which it is implanted can be accomplished by using a mandrel having a tapered portion
having a smaller diameter than that of the base material for the stent at its one
end thereof so that the one end thereof can be inserted into the base material for
the stent. The mandrel has a large-diameter portion continuous with the tapered portion,
whose diameter is equal to the outer diameter of the stent in the expanded state.
The end of the tapered portion of the mandrel is inserted into the base material for
the stent, and the base material for the stent is pressed into the large-diameter
portion of the mandrel. Thereby the base material for the stent is expanded. The step
of expanding the stent base material may be performed stepwise. More specifically,
a plurality of mandrels different in the length of the outer diameter of the large-diameter
portion are prepared. The above-described expanding step (primary expansion) is performed
by using the mandrel having a small outer diameter. Then an expanding step (secondary
expansion) is performed by using the mandrel having a large outer diameter. As necessary,
an expanding step (tertiary expansion) is performed by using the mandrel having a
larger outer diameter
[0113] In the step of heat-setting the base material for the stent in an expanded state
to store the configuration of the base material for the stent in the expanded state
and allow the super-elasticity to appear, the base material for the stent is heated
by a heating means such as a heater, with the base material for the stent disposed
on the large-diameter portion of the mandrel to store the configuration of the expanded
base material for the stent and impart the super-elasticity thereto. That is, by heating
the base material for the stent fitted on the mandrel, heat treatment is performed
in such a way that a stored configuration of the stent is the outer diameter of the
large-diameter portion of the mandrel. It is preferable to heat-treat the base material
for the stent in an atmosphere of an inactive gas such as argon, nitrogen or the like.
Air can be also used as the atmosphere for the heat treatment thereof.
[0114] The heating temperature and the heating time period at this step (heat -setting step)
is different according to a metal to be used. It is preferable to heat the base material
for the stent at 350 to 550°C for five to twenty minutes.
[0115] After the base material for the stent is cooled, it is removed from the mandrel.
It is preferable to air-cool it. More specifically, it is preferable to cool it rapidly.
The entire base material for the stent, containing the connection part, obtained at
this step has the super-elasticity (or shape memory characteristic).
[0116] Thereafter the entirety or a portion of the connection parts expanded and having
the super-elasticity is heated to substantially eliminate the super-elasticity thereof
and impart plastic deformability or normal elasticity thereto.
[0117] The heat treatment is performed by disposing a base material 100 for the stent on
a heat sink 80 on which the expanded base material 100 for the stent can be mounted
and which has a plurality of concavities 81, with each annular part 2 of the base
material 100 for the stent in contact with an outer surface of the heat sink 80 and
with connection parts 53, an entirety of a portion thereof or a portion thereof disposed
over the concavities 81 of the heat sink and not in contact with the outer surface
of the heat sink and by energizing the entire base material 100 for the stent so that
the base material 100 for the stent self-heats and the annular part in contact with
the outer surface of the heat sink 80 radiates heat.
[0118] Fig. 14 is an explanatory view for explaining an example of a heat treatment apparatus
to be used in the heat treatment step.
[0119] A heat treatment apparatus 70 has a stent-heating device 71, a power supply device
72 for supplying electric current to the stent-heating device 71, a heated state grasping
device 73 for grasping the heated state of the stent, a controller 74 for controlling
the operation of the power supply device 72 by using information of the heated state
grasped by the heated state grasping device 73, and a cooling device 75 for cooling
the heat-treated stent.
[0120] The stent-heating device 71 has a heat sink 80 on which the stent to be heat-treated
is mounted, heat sink gripping portions 82a, 82b, electrodes 84a, 84b for energizing
the stent, and a connection terminal 85 for connecting the electrodes 84a, 84b to
the power supply device 72.
[0121] As shown in Fig. 15, the base material for the stent in the expanded mode can be
mounted on the heat sink 80. The heat sink 80 has a plurality of concavities 81. More
specifically, the heat sink 80 has a base shaft 86 whose surface has been insulated,
electrode-mounting cylinders 87a, 87b made of a conductive material and fixed to the
base shaft 86, with a predetermined interval spaced between each other, a plurality
of ring-shaped member 88 made of a conductive material and disposed between the electrode-mounting
cylinders 87a and 87b in such a way that the ring-shaped members 88 do not contact
each other. The concavities 81 are formed between the ring-shaped members 88 and the
electrode-mounting cylinders 87a as well as 87b. As the base shaft 86, a metal pipe
having preferable heat transfer property and a insulated outer surfac is used in the
embodiment. A cooling liquid circulated by the cooling device flows through the pipe.
As the base shaft 86, an aluminum pipe whose surface has been insulated is preferable.
As the method of insulating the base shaft 86, it is preferable to form an insulating
film thereon. As the insulating film, the following resins are suitable: fluorocarbon
resin such as PTFE and ETFE; and thermosetting resins such as epoxy resin, silicone
resin, phenol resin, polyimide resin, melamine resin, and urea resin. The thickness
of the film coating the surface of the base shaft 86 is favorably in the range of
20 µm to 50 µm. In the case where the aluminum pipe is used as the base shaft 86,
it is preferable to insulate its surface with anodized aluminum. In this case, the
thickness of the anodized aluminum is favorably in the range of 15 µm to 50 µm.
[0122] It is preferable that the electrode-mounting cylinders 87a, 87b and the ring-shaped
member 88 are made of metal such as copper and brass.
[0123] The cooling device 75 has a cooling liquid tank 92, ducts 93, 94, a pump 95, and
connectors 76a, 76b connected to the base shaft 86. A cooling liquid 92a inside the
cooling liquid tank 92 is circulated by the pump 95 through the duct 93, the connectors
76b, the base shaft 86, the connector 76a, the duct 94, and returned to the cooling
liquid tank 92. As the cooling liquid, water, polyethylene glycol and the like are
used. It is unnecessary to provide the cooling liquid tank 92 with a cooling means
because heat is radiated naturally when the cooling liquid tank 92 contains a large
amount of cooling liquid. In the case where a small amount of cooling liquid is used,
it is preferable to provide the cooling liquid tank 92 with a cooling means such as
a chiller for cooling the cooling liquid.
[0124] The cooling device does not necessarily have to be provided with the cooling liquid,
but may be provided with a cooling module. In the case where the cooling module is
used, it is installed on the base shaft. In this case, it is preferable that the base
shaft is solid. As the cooling module, it is possible to use a thermo module using
a Peltier element, an electronic cooling module, and the like.
[0125] As shown in Fig. 15, in the embodiment, each annular part 2 of the base material
for the stent 100 contacts the outer surface of the heat sink 80, and all of the connection
parts 53 other than both-end of the connection parts 53 are disposed over the concavities
81 so that they do not contact the outer surface of the heat sink 80.
[0126] As shown in Figs. 14 and 15, the electrodes 84a, 84b are mounted on the electrode-mounting
cylinders 87a, 87b of the heat sink 80. As shown in Fig. 14, both ends of the base
shaft 86 are gripped by the heat sink gripping portion 82a, 82b and fixed to a base
71a. The electrodes 84a, 84b are connected to the connection terminal 85 through lead
wires 89a, 89b. It is preferable that the electrodes 84a, 84b are reticulate, as shown
in Fig. 15.
[0127] As the power supply device 72, a DC power supply device is used. As the power supply
device, a constant-current regulated power is preferable. The power supply device
72 is connected to the connection terminal 85 through lead wires 72a, 72b. The electrodes
84a, 84b may be connected directly to the power supply device 72 without providing
the connection terminal.
[0128] As the heated state grasping device 73 for grasping the heated state of the stent,
a non-contact type such as a thermography apparatus and a spot thermometer is used.
When the thermography apparatus is used, a lens 73a for observing the stent enlargingly
is provided. The thermography apparatus 73 grasps the heated situation of the stent
while it is heated and sends the information thereof to the controller 74.
[0129] As the controller, a personal computer is used. The controller 74 is connected to
the power supply device directly or indirectly. The controller 74 has a function of
controlling the operation of the power supply device. More specifically, the controller
74 controls on and off of the power supply device or electric current or a voltage
so that the thermography apparatus 73 grasps the heated state of the connection part
of the stent which is heated to a desired temperature.
[0130] The base material 100 for the stent is disposed on the heat sink 80 of the heat treatment
apparatus having the above-described construction, with each annular part 2 of the
base material 100 for the stent in contact with the outer surface of the heat sink
80 and with at least the central portion of each connection part 2 disposed over the
concavities 81 of the heat sink 80 and not in contact with the outer surface of the
heat sink. The controller 74 is operated to flow direct current between the electrodes
84a and 84b from the power supply device to thereby self-heat the base material 100
for the stent. Further the cooling device is operated to cool the base shaft and the
heat sink 80. Thereby a self-heated portion of the base material 100 for the stent
in contact with the heat sink 80 is cooled, whereas the connection part not in contact
with the heat sink 80 remain self-heated. A portion of the connection part not in
contact with the heat sink 80 but proximate thereto is a little cooled and thus has
a lower temperature than that of the central portion thereof.
[0131] More specifically, with reference to Fig. 14, electric current supplied from the
power supply device 72 flows through the electrode 82b, the electrode-mounting cylinder
87b, the right end of the base material for the stent, the left end of the base material
for the stent, the electrode-mounting cylinder 87a, the electrode 82a, and the power
supply device 72. As shown in Fig. 16, because the ring-shaped members 88 of the heat
sink 80 and the base shaft 86 are insulated from each other, the electric current
flows through the base material 100 for the stent collectively. Upon application of
the electric current to the base material 100 for the stent, the base material 100
for the stent generates Joule heat. Since the annular part 2 and a part of the connection
part 53 contact the heat sink 80 (namely, ring-shaped members 88), the heat escapes
to the heat sink 80 (namely, ring-shaped members 88). Thus the temperature of the
stent does not rise. Because the portion (central portion) of the connection part
53 corresponds to the groove of the heat sink 80, the Joule heat generated in the
central portion of the connection part 53 does not escape to the heat sink. Thus the
central portion of the connection part 53 self-heats. The self-heating temperature
can be controlled by an amount of electric current flowing through the base material
100 for the stent.
[0132] More specifically, data measured by the thermography (non-contact type thermometer)
is inputted to the personal computer serving as the controller through a communication
means such as a GPIB or an RS-232C. The personal computer performs an appropriate
computation on measured data, based on the difference between a predetermined target
temperature and a measured temperature. The result of the computation (data obtained
by computation) is inputted to the DC power supply device through the communication
means. Output electric current of the DC power supply device is controlled so that
the temperature of the connection part has the target temperature. In this manner,
based on the program stored by the personal computer, the temperature of the connection
part can be maintained at a desired temperature for a desired period of time.
[0133] According to this method, a plurality of stents having the same configuration (designs,
lengths, diameters are equal to each other) can be heat-treated easily and simultaneously.
[0134] To this end, a plurality of annealing jigs are disposed, with stents set thereon,
and they are wired in such a way that heating electric current are connected in series.
The cooling device (cooling liquid tank can be used commonly) and cooling liquid pipes
are arranged in parallel for each annealing jig. This method allows electric current/voltage
having the same value to be applied to the stents and allows heat to escape to the
heat sink in the same manner. Therefore it is possible to heat-treat a plurality of
stents at the same time and in the same manner. In this case, regarding the temperature
of the connection part, monitoring (measuring) of any one of the stents is sufficient.
[0135] A heat sink 90 having a mode shown in Fig. 17 is used for the stent 60, shown in
Figs. 11 through 13, in which a portion of the connection part 53 is disposed inside
the annular part 2. The heat sink 90 is different from the above-described heat sink
in that the ring-shaped member and the electrode-mounting cylinder are provided with
a groove for preventing contact between them and the connection part. In particular,
in the heat sink 90, a plurality of grooves 88a are formed on the outer surface of
the ring-shaped member 88, and a plurality of grooves 91 are formed on the electrode-mounting
cylinder 87b. The width of each of the grooves 88a and 91 is set larger than that
of the connection part.
[0136] It is possible to heat-treat the central portion of the connection part and plasticize
and soften it with the annular part 2 and both ends of the connection part 53 maintaining
super-elasticity. Although the percentage of the length of the connection part to
be plasticized depends on the design of the stent, it is favorably in the range of
10% to 100% and more favorably in the range of 40% - 90%.
[0137] The examples of the present invention are described below.
(Example 1)
[0138] Cold working of a Ti-Ni alloy (51 atomic percent of Ni) was performed to prepare
a super-elastic metal pipe having an outer diameter of about 8mm, an inner diameter
of about 7.6mm, and a length of about 34mm. The super-elastic metal pipe was set on
a jig provided with a rotary motor having a fastening mechanism in such a way as to
prevent the pipe from being off-centered. Thereafter the jig was set on an XY table
capable of making a numerical control. The XY table and the rotary motor were connected
to a personal computer. An output of the personal computer was inputted to a numerical
controller of the XY table and the rotary motor. A development drawing representing
the stent having the structure shown in Fig. 2 was inputted to the personal computer
storing a design software.
[0139] The XY table and the rotary motor were driven in accordance with design data outputted
from the personal computer. The pipe was irradiated with a laser beam to machine the
pipe into a base material for the stent having the configuration shown in Fig. 1.
[0140] As the laser machining condition for the metal pipe, current value was set to 25
A, an output was set to 1.5 W, and a drive speed was set to 10 mm/min. It is not limited
to above-described system as a laser marker. It may be a so-called laser marker(Galvanometer
system) the laser processing machine of which drives.
[0141] The base material for the stent was dipped in a heated chemical polishing solution
for about two minutes to chamfer (removal of burr and chemical polishing) it.
[0142] Thereafter energizing contacts were brought into contact with each connection part
to apply direct current thereto. Thereby the portion between both the energizing contacts
generated heat at about 490 degrees for several seconds.
[0143] The stent prepared in this manner had an outer diameter of about 8mm, an entire length
of 34mm, and a thickness of 0.2mm. The width of the linear material constituting the
annular part (expansion element) was 0.12 mm. The connection part (connector element)
had a width of 0.06mm. The entire connection part was plastically deformable.
(Example 2)
[0144] The entire surface of the stent of the example 1 was gold plated. The stent of the
example 1 was immersed in a sulfamic acid plating bath (produced by Tokuriki Kabushiki
Kaisha, trade name: Auroflex T1) heated at 40°C. Potassium cyanide was dissolved in
the plating bath. Thereby an unglossy gold-plated layer having a thickness of 1.8
µm was formed on the surface of the stent.
(Comparison Example)
[0145] A stent entirely showing super-elasticity having the following size was obtained
by carrying out a method similar to that of the example 1 except that connection part
was not heat-treated. The stent had an outer diameter of about 8mm, an entire length
of 34mm, and a thickness of 0.2mm. The width of the linear material constituting the
annular part (expansion element) was 0.12 mm. The connection part (connector element)
had a width of 0.06mm.
(Experiment)
[0146] The stent of the example 1 and that of the comparison example were wound around a
rod having a diameter of 50mm. Then an operator's hand was released from the stents
and the deformed state of the stents was observed. The result was that the stent of
the comparison example was not deformed and had an original configuration, whereas
the stent of the example 1 was curved gently at a radius of curvature of about 35mm.
This indicates that the stents of the examples deform for a load applied thereto.
(Example 3)
[0147] A super-elastic (or shape memory) Ti-Ni alloy pipe (for example, outer diameter was
about 1.6mm, thickness was about 0.2mm, and length was 1m) was cut by laser beams
to obtain a base material for the stent. More specifically, the pipe was set on an
X θ table whose movement was controlled by a computer to which a development drawing
of the stent shown in Fig. 9 was inputted. The outer surface of the pipe was convergently
and intermittently irradiated by laser beams. Thereby the base material for the stent
having a small diameter was prepared.
[0148] Thereafter the base material for the stent was chemically polished to remove a burr
therefrom. Then a core metal for expanding the diameter of the base material for the
stent was inserted into the base material for the stent. Thereby the outer diameter
of the base material for the stent was increased to about 10mm. Then the base material
for the stent was heat-treated (and then air-cooled), with the core metal disposed
in the base material for the stent. Thereby the expanded base material for the stent
entirely having super-elasticity was prepared.
[0149] The expanded base material for the stent was mounted on the heat sink of the heat
treatment apparatus having the construction shown in Fig. 14 to perform a selective
annealing (plasticizing) of the connection parts.
[0150] A temperature control program was inputted to the computer (PC) serving as the controller
shown in Fig. 14. In accordance with the program, an electric power was supplied from
a DC power supply device to a partial annealing device (and to base material for the
stent) through a lead wire. In dependence on a desired temperature and time period,
a current value is set appropriately by using the program. Table 1 shows temperatures,
time periods, and current values used to anneal the connection part.
Table 1
| Time(minute) |
0(start of heating) |
20 |
25 |
30 |
95 |
135 |
135 |
Finish of heating |
| Temperature(°C) |
410 |
410 |
400 |
390 |
260 |
190 |
190 |
Down to room temperature |
| Electric current |
6.3 |
6.3 |
6.2 |
6.1 |
4.7 |
3.9 |
3.9 |
Air-cooling |
| Where #: temperature dropped at the rate of about -10°C/5 minutes. |
[0151] Electric current was applied to the base material for the stent to selectively heat
the connection parts by self-heating (Joule heat). The temperature of the stent was
kept at a high temperature (410°C) for a certain period of time (20 minutes). The
temperature dropped to 190°C (heating current was gradually decreased) at the rate
of about -10°C/5 minutes. Thereafter energizing was stopped to drop the temperature
to the room temperature. Then the heat treatment finished.
[0152] As described above, the temperature of the connection part was measured by a non-contact
type thermometer such as a thermography. The temperature is controlled by performing
feed back of the data. Therefore the fluctuation (difference between set temperature
and measured temperature) in the temperature during the heat treatment could be within
±2°C. This value is much smaller than temperature accuracy required for annealing
treatment. Accordingly, the fluctuation in the temperature hardly affects the annealing
treatment. The value of electric current required for heating is different according
to various factors such as the design of the stent and the temperature of the cooling
water.
[0153] It was possible to selectively plasticize and soften only the connection part of
the base material for the stent by performing the above-described partial annealing.
The bent portion of the zigzag line of the annular part was brought into contact with
the heat sink to prevent the temperature of the bent portion of the zigzag line from
rising. Therefore the bent portion of the zigzag line maintained the super-elasticity
and the base material for the stent maintained its original expansion force and self-expandability.
[0154] The stent of the present invention to be implanted in a human body is made of a super-elastic
metal formed approximately cylindrically and integrally and showing super-elasticity
before and after the stent is inserted into the human body. The stent has a plurality
of annular parts deformable in a direction in which an outer diameter thereof contracts,
when a stress is applied thereto and a plurality of connection parts each connecting
the adjacent annular parts to each other, with the annular parts arranged in an axial
direction of the stent. Each of the annular parts is elastically deformable owing
to super-elasticity thereof, whereas each of the connection parts is substantially
a plastically deformable part (or a normal elastically deformable part )not super-elastic
entirely or partly.
[0155] In the stent of the present invention, the annular part which is the expansion element
is elastically deformable and capable of reliably expanding a lumen in the human body
by its restoring force to its original diameter. Since only the connection part has
the plastically deformable portion, the lumen-expanding function of the annular part
is not inhibited. In conformity to a curve of the lumen, the plastically deformable
portion of the connection part is plastically curved. Therefore a stress caused by
the force of the stent of returning to its original straight shape is little applied
to the lumen.