(11) **EP 1 306 301 A1**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:02.05.2003 Patentblatt 2003/18

(51) Int CI.⁷: **B63H 1/18**

(21) Anmeldenummer: 02090313.4

(22) Anmeldetag: 04.09.2002

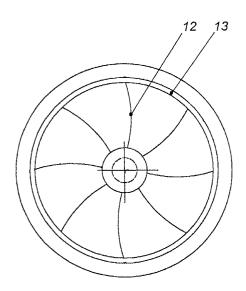
(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
IE IT LI LU MC NL PT SE SK TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 26.10.2001 DE 10152977

(71) Anmelder: HOWALDTSWERKE-DEUTSCHE WERFT AG 24143 Kiel (DE)

(72) Erfinder: Schulze, Reinhard, Dr. habil. 16341 Zepernick (DE)


(74) Vertreter: Köckeritz, Günter Radickestrasse 48 12489 Berlin (DE)

(54) Vorrichtung zur Entgegenwirkung von im Nabenbereich von Propellern und/oder Propellerantrieben im umgebenden Fluid erzeugten Strömungswirbeln

(57) Vorrichtung (6) zur Entgegenwirkung von im Nabenbereich von Propellern und/oder Propellerantrieben im umgebenden Fluid erzeugten Strömungswirbeln (5), die mindestens eine Schaufel (12) aufweist, wobei die Wölbung der Schaufel der Wölbung des Propellers entgegengerichtet ist, dadurch gekennzeichnet, dass

die Schaufel (12) von einem konusförmigen Übergangsteil (9) über ein zylindrisches Nabenteil (10) zum wieder konusförmigen divergierendem Abschlußteil (11) verläuft, wobei der

äußere Abschluss der Schaufel (12) durch einen zylinderförmigen Mantel (13) von 10 bis 50% der Länge der Schaufelfläche erfolgt.

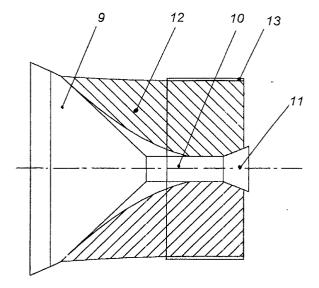


Fig. 5

Beschreibung

[0001] Die Erfindung bezieht sich auf eine Vorrichtung zur Entgegenwirkung von im Nabenbereich von Propellern und/oder Propellerantrieben im umgebenden Fluid erzeugten Strömungswirbeln. Dabei handelt es sich um ein rotationssysmmetrisches Übergangsteil (Hub Vortex Vane) zwischen einem Propeller und dem in Strahlrichtung angrenzenden Fluid (inkompressibles Medium) auf derselben Rotationsachse wie der Propeller. In Abhängigkeit von der jeweiligen Ausführung des Propellerantriebes (Wellenanlage, Motorgondel, Getriebegondel) und möglicher weiterer Anhänge (z.B. Ruder oder Leiteinrichtungen) kann die Vorrichtung mitdrehend mit dem Propeller oder feststehend ausgeführt werden. Anwendungsbereiche sind vorrangig im Schiffund Flugzeugbau möglich.

Propeller von Schiffs- und Luftschrauben bilden an den nabenseitigen Enden ebenso wie an den äußeren Rändern der Propellerblätter energiereiche Randwirbel aus. Im Unterschied zu den äußeren Randwirbeln der einzelnen Propellerblätter vereinigen sich die inneren Randwirbel aller Propellerblätter zu einem Nabenwirbel im umgebenden Fluid in Strahlrichtung hinter dem Propeller, wobei der geometrische Ort des Nabenwirbels wohldefiniert mit der Drehachse des Propellers zusammenfällt. Dabei ist es für die Ausbildung des Nabenwirbels unerheblich, ob sich hinter dem eigentlichen Propeller noch ein Strömungskörper befindet oder nicht. Hochbelastete Propeller mit verhältnismäßig großen Nabendurchmessern bilden meist stärkere Nabenwirbel aus als schwach belastete Propeller mit verhältnismäßig kleinen Nabendurchmessern. In den Patentschriften US 4 212 586 [2], 1978, EP 255 136 [3], 1987, EP 758 606, 1996 [4] werden verschiedene Varianten zur Reduktion des Nabenwirbelanteils vorgestellt. In der Druckschrift [1]: "An investigation into effective boss cap designs to eliminate propeller hub vortex cavitation" von Atlar, M.; Patience, G. (Osterveld, M.W.C.; Tan, S.G. editors: Practical Design of Ships and Mobile Units, 1998 Elsevier Science B.V.)

wird eine ausführliche Übersicht über den Stand der Technik gegeben. In [2] wird eine Variante der Reduktion des Nabenwirbels untersucht, bei die Abgase eines Verbrennungsmotors durch die Nabe geleitet werden, und so versucht wird, das sich durch den Nabenwirbel ausbildende Unterdruckgebiet zu eleminieren. In [3] werden in Interaktion mit jedem einzelnen Propellerblatt auf dem Nabenablauf zusätzliche Flügel angebracht, die einen nabenwirbelreduzierenden Effekt haben sollen

Für die Geräuschminderung an Marineschiffen, insbesondere bei U-Booten, wurde bisher beim Propellerentwurf versucht durch besondere Steigungs- und Wölbungsverteilungen der Propeller der Bildung dieser Randwirbel entgegenzuwirken. Dies konnte aber nur mit deutlichen Wirkungsgradverlusten erreicht werden. [0002] Während bei den auf [2] basierenden relativ

häufig im Sportbootsektor angewandten Methoden zur Reduktion der nachteiligen Einflüsse des Nabenwirbels lediglich die Druckverhältnisse im Umgebungsbereich der Propellernabe beeinflußt wurden, kann mit dieser Ausführungsform weder die eigentliche Wirbelstärke des Nabenwirbels noch eine Drehmomentreduktion erfolgen. Ein weiterer entscheidender Nachteil ist die starke zusätzliche Geräuschemission im Bereich des Propellers und das Aufrechterhalten der Nabenwirbelkavitation. Außerdem ist die Umweltverträglichkeit in Frage gestellt.

Bei den Nabenkappenflossen gemäß [3] befinden sich auf der Nabenablaufkappe des Propellers genau so viele Zusatzflügel wie der Propeller Blätter hat und stehen in direkter Wechselwirkung mit diesen. Sie sind (im Wesentlichen) außerhalb des später betrachteten Grenzradiusses angebracht (vgl. Fig. 1 bis Fig. 3 in [3]) und können ihre optimale Wirkung nur für einen relativ kleinen Fortschrittsgradbereich (Belastungsbereich) entfalten, da sich in Abhängigkeit vom Fortschrittsgrad die Positionen der inneren Randwirbel der einzelnen Propeller verändern. Trotz ihres wirbelreduzierenden Effektes können insbesondere bei höheren Belastungen noch parasitäre Kavitationserscheinungen mit ihrem nachteiligen Effekt auf die Geräuschabstrahlung auftreten.

[0003] In [4] sind die Leitflossen zur Reduktion des Nabenwirbels bereits innerhalb des später erklärten Grenzradiusses nach Konzentration der Randwirbel zu einem einheitlichen Nabenwirbel angebracht und ergeben in ihrer meist größeren Anzahl als die Propellerflügelzahl einen wirkungsgradsteigernden Effekt, können aber noch nicht vollständig die parasitären Kavitationserscheinungen mit ihrem nachteiligen Effekt auf die Geräuschabstrahlung unterdrücken.

[0004] Der Erfindung liegt die Aufgabe zugrunde, eine Lösung für eine deutliche Reduzierung der Energieverluste durch die Ausbildung des Nabenwirbels, für eine Geräuschminderung durch fluktuierende Erscheinungen im Bereich des Nabenwirbels im Propellerabstrom und insbesondere für die Geräuschminderung der durch den Nabenwirbel verursachten Kavitationserscheinungen (Nabenwirbelkavitation) zu entwickeln. Erfindungsgemäß wird diese Aufgabe durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Ausbildungen der Erfindung sind in den zugehörigen Ansprüchen 2

Die Erfindung geht aus von einer Vorrichtung zur Entgegenwirkung von im Nabenbereich von Propellern und/oder Propellerantrieben im umgebenden Fluid erzeugten Strömungswirbeln, die mindestens eine Schaufel aufweist, wobei die Wölbung der Schaufel der Wölbung des Propellers entgegengerichtet ist.

und 3 enthalten.

Die Schaufel verläuft erfindungsgemäßvon einem konusförmigen Übergangsteil über ein zylindrisches Nabenteil zum wieder konusförmigen divergierendem Abschlußteil, wobei der äußere Abschluss der Schaufel durch einen zylinderförmigen Mantel von 10 bis 50 % 20

der Länge der Schaufelfläche erfolgt. Nach einem bevorzugten Merkmal sind mehrere Schaufeln in meridionaler Anordnung regelmäßig auf den Umfang der Vorrichtung verteilt.

Nach einem besonders bevorzugten Merkmal beginnen die Schaufeln in ihrer radialen Erstreckung in der Rotationsachse des Propellers und überschreiten einen Grenzradius (R_G) nicht, innerhalb welchem die Tangentialkomponente (V_T) der Geschwindigkeit (V_W) der Wirbelströmung größer ist als die durch die Propellerdrehung verursachte Umfangsgeschwindigkeit (V_{IJ}).

[0005] Der Erfindung liegt die Erkenntnis zugrunde, dass durch entsprechende Ausgestaltung bzw. Formgebung der Vorrichtung, der Bildung von Wirbeln durch den Propeller in der Nabenumgebung entgegengewirkt werden kann, indem die Druckverhältnisse in dieser Umgebung durch die Ausgestaltung der Vorrichtung gezielt verändert werden.

Da der geometrische Ort des Nabenwirbels (innerer Randwirbel) im Gegensatz zum Spitzenwirbel (äußerer Randwirbel) wohlbekannt (Drehachse des Propellers) und unabhängig von der Propellerdrehzahl und Schiffsgeschwindigkeit ist, kann durch sekundäre Maßnahmen nur der Ausbildung des Nabenwirbels entgegengewirkt werden.

[0006] Durch die erfindungsgemäße Ausgestaltung der Vorrichtung kann zumindest im Nabenbereich aus den Wirbeln Energie zurückgewonnen und die Kavitationsausbildung weitestgehend verzögert werden, womit der Wirkungsgrad eines Schiffsantriebes nennenswert verbessert werden und die Ortungsreichweite eines Marineschiffes erheblich reduziert werden kann.

Die Vorteile der Erfindung beruhen auf der erfindungsgemäß erstmals realisierten Kombination von einer deutlichen wirkungsgradsteigernden Wirkung und einer weitestgehenden Vermeidung jeglicher Kavitationserscheinungen (mit ihrem nachteiligen Effekt auf die Geräuschabstrahlung). In Versuchsreihen zeigten sich im Vergleich zu anderen Typen von Nabenkappenflossen für die erfindungsgemäße Vorrichtung der höchste Wirkungsgradgewinn. Ein zusätzlicher Gewinn ergibt sich auf Seiten des Propellerentwurfes für kavitationsfreie Auslegungen, dass man keine wirkungsgradsenkende Maßnahmen zur Vermeidung von Nabenwirbelkavitation mehr ergreifen muß. D.h. bereits der entworfene Propeller hat selbst einen höheren Wirkungsgrad der noch durch die Energierückgewinnung durch die HVV aus den Nabenwirbelverlusten vergrößert wird.

[0007] Die Erfindung soll nachstehend anhand eines Ausführungsbeispiels näher erläutert werden. In den Zeichnungen zeigen die

- Fig.1: Wirbelbildung hinter einem Propeller entlang der eines Hub Vortex Vane (nachfolgend HVV genannt),
- Fig. 2: eine Applikation 6 einer HVV als Ersatz für einen normalen Nabenablauf bei dem die HVV

mit dem Propeller mitrotiert,

- Fig. 3: eine HVV 6 ist am Ruderblatt 7 eines Schiffes fixiert.
- Fig. 4: die HVV ist am Ende einer Motorgondel/Pod/ Getriebegehäuse 8 fest montiert,
- Fig. 5: schematische Darstellung einer möglichen Ausführung eines Hub Vortex Vane,
- Fig.6: schematische Darstellung der "Abwind"komponente der Geschwindigkeitsverteilung in der Nähe der Propellerblätter für die Radienverhältnisse 0.1 als Zylinderabwicklungen,
- Fig.7: schematische Darstellung der "Abwind"komponente der Geschwindigkeitsverteilung in der Nähe der Propellerblätter für die Radienverhältnisse 0.15 als Zylinderabwicklungen,
- Fig.8: Darstellung der Abhängigkeit des Gütegrades der Propulsion von der Reynoldszahl.

[0008] Gemäß einer fertigungstechnisch einfachen Ausgestaltung der erfindungsgemäßen Vorrichtung enthält der Hub Vortex Vane mindestens eine Schaufel 12 die im Betrieb für eine Reduktion der Nabenwirbelstärke und der damit verbundenen Nabenwirbelkavitation sorgt. Eine HVV ist jederzeit nachrüstbar, dazu sind keine weiteren Bauteile auszutauschen, vielmehr können alle übrigen Bauteile des Antriebssystems unverändert beibehalten werden.

[0009] Vorzugsweise sind mehrere, auf den Umfang der HVV regelmäßig verteilte Schaufeln 12 vorgesehen, die annähernd in meridionaler Ausrichtung angeordnet sind. Die Anzahl der Schaufeln ist unabhängig von der Propellerflügelzahl und der Außendurchmesser der HVV ist auf ungefähr 0.16 des Propellerdurchmnessers (bei mitrotierenden HVV) beschränkt. Die innere Begrenzung der Schaufeln wird durch einen Rotationskörper der Gestalt gemäß der Bezugszeichen 9, 10, 11 und die äußere Begrenzung durch einen Ring der Gestalt 13 gebildet. Die speziellen inneren und äußeren Begrenzungen dienen einer weitgehenden Unterdrückung möglicher sekundärer Kavitationserscheinungen am inneren und äußeren Ende der Schaufel(n).

[0010] Durch entgegengesetzte Ausrichtungen der starken Wölbung der Nabenschaufeln und der Wölbung der Propellerflügel ist es möglich die hohen Tangentialgeschwindigkeiten in Nabennähe so in Strahlrichtung umzulenken, dass ein zusätzlicher Schub erzeugt wird. Das dabei durch die Umlenkung auftretende Drehmoment ist dem den Propeller antreibenden Motormoment gleichgerichtet, was einer Leistungseinsparung gleichkommt. Außerdem führt die vollständige Beseitigung des Nabenwirbels zu einer Reduzierung der Schallabstrahlung.

[0011] Die erfindungsgemäße HVV ist sowohl bei Schraubenpropellern, die als Druckpropeller arbeiten, als auch bei Zugpropellern anwendbar.

[0012] Besonders geeignet ist die Anwendung an Propellern für höhere Schubbelastungsgrade, z. B. an Propellern, die einen hohen Schub auf vergleichsweise geringer Fläche erzeugen und dabei zwangsweise eine verstärkte Nabenwirbelbildung verursachen. Hierbei ist das erreichbare Verbesserungspotential entsprechend groß.

Die Fig. 2 bis Fig. 4 zeigen unterschiedliche Applikationsmöglichkeiten der HVV auf.

[0013] Der gemäß Fig. 2 als Druckpropeller 1 mit Propellernabe 2 arbeitende Schraubenpropeller hat eine mitdrehende HVV 6, die in Strahlrichtung hinter dem Propeller 1 liegt. Der sich hinter dem Propeller 1 entlang der HVV 6 bildende Wirbel, besteht zunächst aus mehreren Wirbeln der verschiedenen Flügel, die sich dann sehr schnell zu einem einzigen Wirbel zusammenformen, der seine Spur in einem eng begrenzten Gebiet entlang der Drehachse des Propellers hinterlässt. Dieses Verhalten ist in der Fig. 1 dargestellt. Die Drehrichtung dieses Wirbels fällt dabei mit der Drehrichtung des Propellers zusammen und die Tangentialgeschwindigkeiten des Wirbels sind innen am größten (im Wirbelauge potentialtheoretisch unendlich groß) und nehmen nach außen ab.

[0014] Wegen der Zunahme der Tangentialgeschwindigkeiten (V_T) des Fluids zum Wirbelauge (beim Nabenwirbel identisch mit Propellerdrehachse) þin nach einem rein potentialtheoretischen Gesetz $V_T = \frac{B}{\Gamma} (\Gamma_B Nabenwirbelstärke)$, bzw. unter Berücksichtigung zähigkeitsbedingter Einflüsse (Oseen-Wirbel) näherungsweise mit einem geeigneten Wert für das Wirbelalter t

$$V_{T} = \frac{\Gamma_{B}}{2 \cdot \pi \cdot r} (1 - e^{-\left(\frac{r^{2}}{4 \cdot \upsilon \cdot t}\right)})$$

treten innerhalb eines Grenzradiusses

$$R_G \approx \sqrt{\frac{\Gamma_B}{2 \cdot \pi \cdot n}}$$

($\sim 0.16 R_P \text{ mit } R_P = 1/2 D_P \text{ Propellerradius}$)

[0015] Tangentialgeschwindigkeiten V_T auf, die deutlich höher sind als die Umfangsgeschwindigkeit V_U eines mit der Propellerdrehzahl n rotierenden Punktes im Abstand r von der Drehachse. Bis zu dem Grenzradius R_G ist ein Energierückgewinnung bei einer mitrotierenden HVV möglich. Für eine fest montierte HVV (vgl. Fig. 3 und Fig. 4) gibt es diesen Grenzradius nicht.

Die Schaufeln 12 der HVV erstrecken sich aus diesem Grund von der Propellerachse bis maximal dem Grenzradius $R_{\rm G}$, um die Wirkung der Schaufeln optimal zu nutzen. Die Wölbung der Schaufelflächen ist der der Propellerflächen entgegengesetzt. Auf die Weise werden

die Wirbelströme in Strahlrichtung umgelenkt, wobei ein zusätzlicher Schub erzeugt wird. In dem dargestellten Ausführungsbeispiel sind acht, auf den Umfang der HVV verteilte Schaufeln (Fig. 5) gezeigt, die sich von dem der Propellernabe Pos. 2 in Fig. 1 zugekehrten Ende 9 bis zum Ende der HVV bei 11 aus Fig. 5 erstrecken. [0016] Besonders vorteilhaft gegenüber bekannten Lösungen hinsichtlich der Vermeidung von Nabenwirbeln ist der innere und äußere Abschluß der Schaufelflächen. Die innere Anbindung der Schaufelflächen erfolgt von einem konusförmigen Übergangsteil 9 vom druckseitigen Propellernabenende 2 über den zylindrischen Nabenteil 10 der HVV zum wieder konusförmigen divergierendem Abschlußteil 11 der Nabe der HVV. Der äußere Abschluß der Schaufelflächen der HVV erfolgt durch einen zylinderförmigen Mantel 13 von 10 bis 50 % der Länge der Schaufelflächen.

[0017] Der hydrodynamische Nutzen der Aufteilung der Nabe der HVV auf die drei Abschnitte 9 bis 11 besteht in der Konzentration der einzelnen (nabenseitigen) Randwirbelanteile der Propellerflügel zu einem konzentrierten Nabenwirbel, der Umlenkung der tangentialen Geschwindigkeitskomponenten im gesamten Bereich der Schaufeln 12 und der "Zerfaserung" eines möglichen Restwirbelanteils im Bereich des divergenten konischen Abschlußteils 11. Der Durchmesser des zylindrischen Zwischenstückes 10 sollte mit dem Durchdes zähigkeitsbedingten Wirbelkerns (Wirbelalter) zusammenfallen. Der hydrodynamische Nutzen der zylindrischen Mantelfläche 13 um die Schaufeln besteht in einer Verhinderung möglicher parasitärer Kavitationserscheinungen am äußeren Ende der Schaufeln.

[0018] Zur Darstellung der Ableitung der Form der Schaufelflächen dienen die Figuren 6 und 7. Dargestellt ist die "Abwind"komponente 14 der Geschwindigkeitsverteilung in der Nähe der Propellerblätter 1 die die wesentliche Ursache für das Zustandekommen der Tangentialgeschwindigkeiten hinter dem Propeller ist. Durch die im Allgemeinen vorhandene Zunahme des Steigungswinkel der Propellerblätter zur Drehachse zu und durch die wirbelbedingte Zunahme der Tangentialgeschwindigkeiten, müssen sich die Krümmungen der Schaufeln 12 in Abhängigkeit vom Radius verändern, so dass die Strömungslinien möglichst in Strahlrichtung 15 umgelenkt werden. In den Fig. 6 und Fig. 7 sind diese Verhältnisse für unterschiedliche Radienverhältnisse als Zylinderabwicklungen für die Radienverhältnisse 0.10 und 0.15 dargestellt.

[0019] Anwendungsmöglichkeiten und Ausgestaltungsformen der HVV sind in Fig. 2 bis Fig. 4 gezeigt. Für Druckpropelleranordnungen in Verbindung mit normalen Wellenanlagen oder an Getriebegondeln oder an Pods oder an sonstigen Motorgondeln ist die mitdrehende Ausführungsform entsprechend Fig. 2 von Vorteil. Für Propelleranordnungen auf die hinter dem Propeller Anhänge wie z.B. ein Ruderplatt folgen, ist eine feststehende Ausführungsform wie in Fig. 3 skizziert, hydrody-

25

30

35

40

45

namisch vorteilhaft. Für Zugpropelleranordnungen an Getriebgondeln, Pods oder Motorgondeln ist eine feststehende Ausführungsform am Ende der Gondel entsprechend Fig. 4 vorteilhaft.

[0020] Die Anwendung von besonders ausgebildeten HVV ist insbesondere an Propellern für höhere Schubbelastungsgrade wichtig. Derartige Propeller erzeugen einen hohen Schub auf vergleichsweise geringer Fläche und damit zwangsweise verstärkte Nabenwirbel. Aufgrund des hohen Verlustes kann bei Anwendung einer erfindungsgemäß ausgebildeten HVV eine hohe Verbesserung erreicht werden.

[0021] Für eine Druckpropelleranordnung gemäß der Figur 2 wird in Figur 8 der erreichbare Nutzen mittels einer HVV ("HVV") an Hand von Messungen dargestellt.

Im Vergleich zu einem normalen häufig eingesetzten Nabenabschluß ("Normal") durch eine einfache konische Nabenkappe steigt der Wirkungsgradgewinn mit der Reynoldszahl deutlich an. Die Nabenwirbelkavitation konnte durch Anwendung vollständig unterdrückt werden. Werden zur Unterdrückung der Nabenwirbelkavitation wie sonst üblich divergente Nabenabläufe ("Divergent") eingesetzt steigt bei Verwendung der HVV der Wirkungsgradgewinn noch deutlich an.

Liste der verwendeten Bezugszeichen

[0022]

- 1. Propeller, Schiffschraube, Luftschraube
- 2. Propellernabe
- 3. Antriebswelle des Propellers
- 4. Ablaufhaube
- 5. Nabenwirbel
- 6. Hub-Vortex-Vane (HVV)
- 7. Ruderblatt
- 8. Getriebegehäuse eines rundumsteuerbaren Antriebes, Motorgondel, Pod mit Motor
- 9. Übergangsteil Propeller-HVV
- 10. Zylindrisches Nabenzwischenstück der HVV
- 11. Konisches Abschlußteil der Nabe der HVV
- 12. Schaufeln, Flossen der HVV
- 13. Zylindermantel der HVV
- 14. "Abwind" des Propellers an einem Flügel
- 15. Axiale Strahlrichtung

Patentansprüche

Vorrichtung zur Entgegenwirkung von im Nabenbereich von Propellern und/oder Propellerantrieben im umgebenden Fluid erzeugten Strömungswirbeln, die mindestens eine Schaufel aufweist, wobei die Wölbung der Schaufel der Wölbung des Propellers entgegengerichtet ist, dadurch gekennzeichnet, dass die Schaufel (12) von einem konusförmigen Übergangsteil (9) über ein zylindrisches Nabenteil (10) zum wieder konusförmigen divergieren-

dem Abschlußteil (11) verläuft, wobei der äußere Abschluss der Schaufel (12) durch einen zylinderförmigen Mantel (13) von 10 bis 50 % der Länge der Schaufelfläche erfolgt.

- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass mehrere Schaufeln (12) in meridionaler Anordnung regelmäßig auf den Umfang der Vorrichtung verteilt sind.
- 3. Vorrichtung nach einem der o.g. Ansprüche, dadurch gekennzeichnet, dass die Schaufeln in ihrer radialen Erstreckung in der Rotationsachse des Propellers beginnen und einen Grenzradius (R_G) nicht überschreiten, innerhalb welchem die Tangentialkomponente (V_T) der Geschwindigkeit (V_W) der Wirbelströmung größer als die durch die Propellerdrehung verursachte Umfangsgeschwindigkeit (V_U) ist.

5

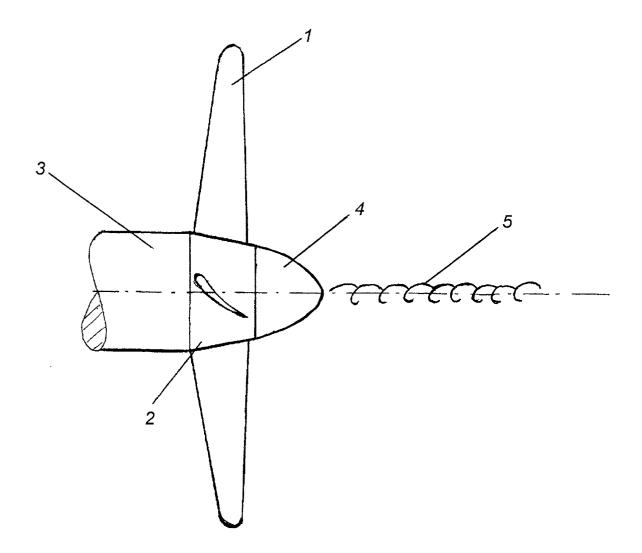


Fig. 1

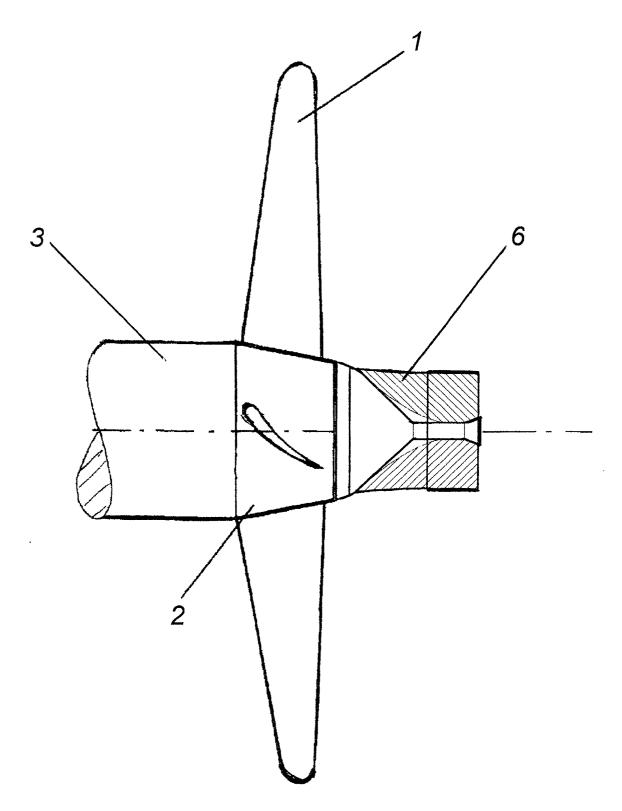


Fig. 2

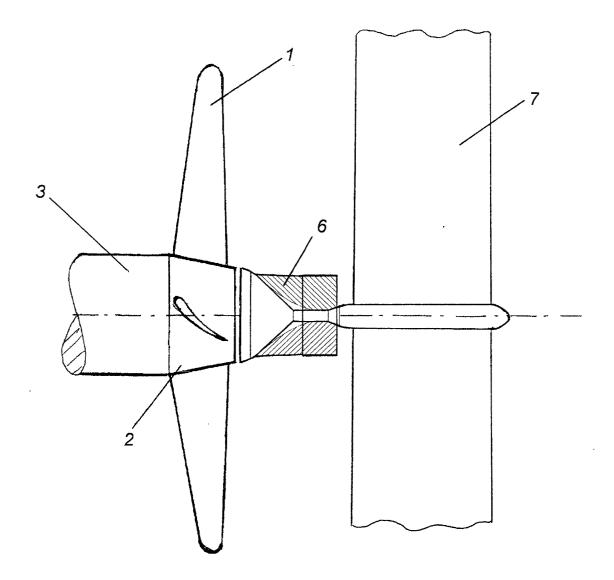


Fig. 3

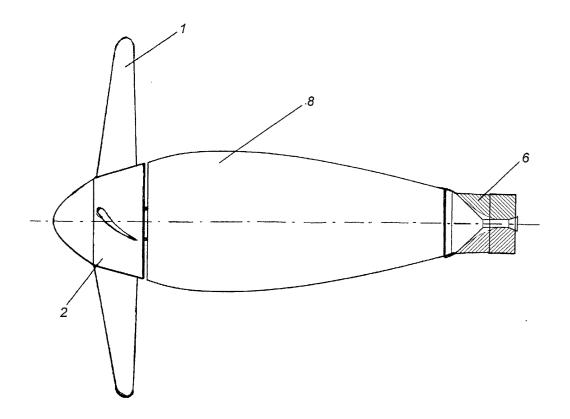
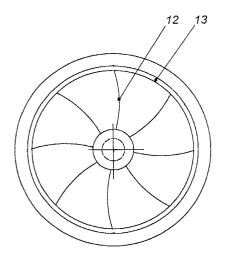



Fig. 4

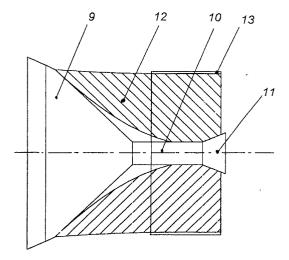


Fig. 5

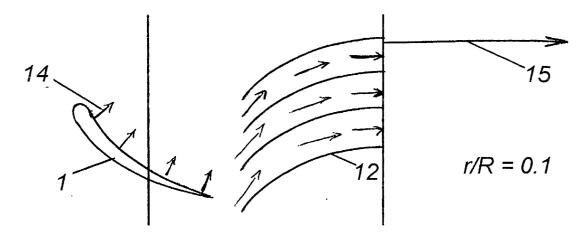


Fig. 6:

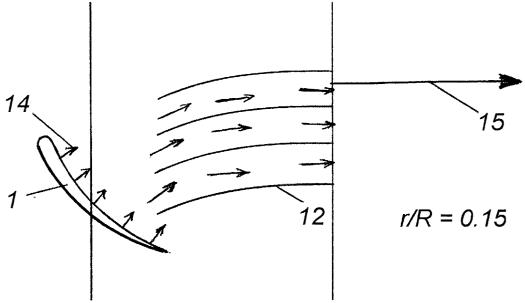


Fig. 7:

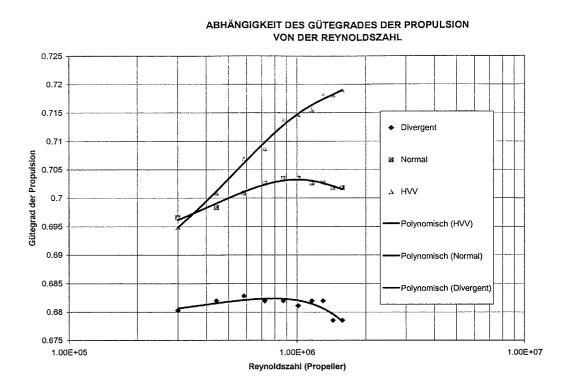


Fig. 8

Europäisches EUROPÄISCHER TEILRECHERCHENBERICHT

Nummer der Anmeldung

der nach Regel 45 des Europäischen Patentübereinkommens für das weitere Verfahren als europäischer Recherchenbericht gilt

EP 02 09 0313

KLASSIFIKATION DER ANMELDUNG (Int.CI.7) B63H1/18
B63H1/18
RECHERCHIERTE SACHGEBIETE (Int.CI.7)
B63H
ВОЗП
Ū
1
Prüfer
Pruter Van Rooij, M
/an Rooij, M
/an Rooij, M Inde Theorien oder Grundsätze jedoch erst am oder röffentlicht worden ist
van Rooij, M Inde Theorien oder Grundsätze jedoch erst am oder
-

UNVOLLSTÄNDIGE RECHERCHE ERGÄNZUNGSBLATT C

Nummer der Anmeldung EP 02 09 0313

Vollständig recherchierte Ansprüche: 1,2 Nicht recherchierte Ansprüche: Grund für die Beschränkung der Recherche: Der geltenden Patentanspruch 3 ist auf eine Vorrichtung zu beziehen, die mittels folgender Parameter definiert wird : "Rg" : der Grenzradius, innerhalb welchem die Tangentialkomponente (Vt) der Geschwindigkeit (Vw) der Wirbelströmung größer ist, als die durch die Propellerdrehung verursachte Umfangsgeschwindigkeit (Vu). Die Verwendung dieses Parameters muss im gegebenen Zusammenhang als Mangel an Klarheit im Sinne von Art. 84 EPÜ erscheinen. Es ist praktisch nicht möglich, die vom Anmelder gewählten Parameter mit dem zu vergleichen, was der Stand der Technik hierzu offenbart. Der Mangel an Klarheit ist dergestalt, daß er eine sinnvolle vollständige Recherche unmöglich macht. Daher wurde die Recherche beschränkt auf die Ansprüche 1 und 2.

EUROPÄISCHER TEILRECHERCHENBERICHT

Nummer der Anmeldung EP 02 09 0313

	EINSCHLÄGIGE DOKUMENTE	KLASSIFIKATION DER ANMELDUNG (Int.CI.7)	
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich der maßgeblichen Teile	Betrifft Anspruch	
A,D	ATLAR M AND PATIENCE G.: "An investigation into effective boss cap designs to eliminate propeller hub vortex cavitation" PRACTICAL DESIGN OF SHIPS AND MOBILE UNITS, PROCEEDINGS, THE HAGUE, SEPTEMBER 1998, ELSEVIER, OOSTERVELD & TAN, ED, ISBN: 0 444 82918 0, September 1998 (1998-09), Seiten 757-769, XP002229334 amsterdam NL * Abbildungen *	Anspruch 1	RECHERCHIERTE SACHGEBIETE (Int.Cl.7)

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 02 09 0313

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

30-01-2003

	cherchenbericht es Patentdokum		Datum der Veröffentlichung		Mitglied(er) Patentfam	der ilie	Datum der Veröffentlichung
EP 075	8606	Α	19-02-1997	DE EP	19622829 0758606		20-02-1997 19-02-1997
DE 303	7369	Α	11-03-1982	DE	3037369	A1	11-03-1982
US 624	4912	B1	12-06-2001	AU EP WO	4548001 1202903 0170569	A 2	03-10-2001 08-05-2002 27-09-2001
						· 	

 $\label{prop:prop:single} \mbox{F\"{u}r} \ \ n\mbox{\"{a}here} \ \ \mbox{Einzelheiten} \ \ \mbox{zu} \ \ \mbox{diesem} \ \mbox{Anhang} : \mbox{siehe} \ \mbox{Amtsblatt} \ \mbox{des} \ \mbox{Europäischen} \ \mbox{Patentamts}, \mbox{Nr.12/82} \ \mbox{Nr.12/82} \ \mbox{endotre for the properties of the$

EPO FORM P0461